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Abstract. We give a review of finite approximations of quantum systems,

both in an Archimedean and a Non-Archimedean setting. Proofs will generally

be omitted. In the Appendix we present some numerical results.
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1. Introduction

An early result in the topic of finite approximations of quantum systems was
published in a joint paper by Varadarajan, Varadhan and myself in 1994 [DVV94].
The underlying space was d-dimensional Euclidean space Rd, and the Hamiltonian
H = −∆ + V was acting in L2(Rd); here ∆ is the the Laplacian and the potential
V is a multiplication operator: (V f)(x) = v(x)f(x), where v is a non-negative,
continuous function such that v(x)→∞ as |x| → ∞. The latter condition ensures
that H has a discrete spectrum. Appropriate finite models were set up, and under
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various conditions it was shown that the eigenvalues and eigenfunctions of the finite
models converged to the corresponding objects of H (in a certain precise sense).
Two proofs were given: a standard functional analytic one, and a stochastic one. In
the latter a stronger convergence result was obtained: eigenfunctions were shown
to converge uniformly on compacta (and not just in the L2-norm). A quick review
of these results is given in Section 2.

The next step was to do for quantum systems over local fields what had been
done for quantum systems over Rd. This was accomplished in a couple of arti-
cles some twenty years later [BD15, BDW17]. Again two methods of proof were
employed: standard functional analytic [BD15] and stochastic [BDW17]; the latter
gave, as above, a sharper convergence result for the eigenfunctions. These results
are reviewed in Section 3.

The above results have been extended to a setting of locally compact abelian
groups in [AGK00]. However, the proofs used non-standard analysis, and will not
be commented on here.

All the above works dealt with Hamiltonians with discrete spectrum. The prob-
lem of obtaining similar results for Hamiltonians with mixed spectrum was attacked
by Erik M. Bakken in his PhD thesis [Bak16]. Here the setting was that of a
Hamiltonian with atomic potential in R3: H = −∆ + V acts in L2(R3) where

(V f)(x, y, z) = v(r)f(x, y, z), v(r) = −1/r, r =
√
x2 + y2 + z2. The approxima-

tion is done in two steps: one first approximates within a finite box, and then lets
the box grow to fill up the whole space R3, in such a way that the approximating
grid gets finer and finer and, at the same time, goes to infinity with the box. A
quick review of these results is given in Section 4.

In the Appendix we present some numerical results, illustrating the accuracy of
the finite models.

2. Finite approximations over the reals

We give a summary of the results in [DVV94]. The setting is as follows:

Hamiltonian. H = −∆ + V acts in L2(Rd), where ∆ is the d-dimensional Lapla-
cian, and the potential V is given as (V f)(x) = v(x)f(x), where v ≥ 0 is continuous
and v(x)→∞ as |x| → ∞.

Finite model. The finite models which were discussed can be divided into two
main types: one where the Laplacian is defined via the finite difference operator,
and one where the Laplacian is defined via the multiplication operator and the
finite Fourier transform. The latter is referred to as the Schwinger model.
Let ε > 0 and denote by G(ε) the lattice (Zε)d ⊂ Rd. For h ∈ G(ε) the translation
operator Th acts on functions on G(ε) by (Thf)(x) = f(x+ h), x ∈ G(ε).

Finite difference model. . If ei, i = 1 . . . d, are the standard basis vectors in Rd,
the partial difference operators Di(ε)

± are defined by

Di(ε)
+ = ε−1(Tεei − I), Di(ε)

− = ε−1(I − T−εei) i = 1 . . . d

and the discrete Laplacian ∆(ε) by

∆(ε) =
∑

1≤i≤d

Di(ε)
−Di(ε)

+

The Hamiltonian H(ε) on L2(G(ε)) is given by H(ε) = −∆(ε) + Vε, where the
operator Vε acts as multiplication by the restriction of v to G(ε). To get to the
finite level one introduces a natural number N0 = N0(ε) depending on ε such that
εN0 → ∞ as ε → 0, and sets N = N(ε) = 2N0 + 1. G(ε)0 is the subgrid X(ε)d

of G(ε) where X(ε) = {rε|r = 0,±1, . . . ,±N0}. One now needs to restrict the
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discrete Laplacian ∆(ε) to the finite grid G(ε)0, and this can be done in several
ways, depending on the treatment of boundary conditions. One can use periodic
boundary conditions; the corresponding operators are then given a superscript (p):
H(ε)(p) = −∆(ε)(p) + Vε. Another class of boundary conditions is also described
in [DVV94], and the corresponding operators are marked with superscript (0):
H(ε)(0) = −∆(ε)(0) + Vε. A simple example from the latter class is obtained by
setting ∆(ε)(0) = Pε∆(ε)Pε, where Pε is multiplication by the characteristic function
of G(ε)0 and L2(G(ε)0) is identified with a subspace of L2(G(ε)) in the obvious way.

Schwinger model. As in the periodic case the finite grid G(ε)0 is now identified with
G(ε)/(N(ε) ·G(ε)), a finite group with Nd elements. The associated finite Fourier
transform is denoted by Fε. We also fix the relationship between ε and N : ε =√

2π/N . Differentiation at the finite level is now defined, not by the finite difference
operator, but by the finite Fourier transform of the multiplication operator, in
analogy with the relation at the continuous level: p := 1

i
d
dx = F−1qF , where F is

the Fourier transform and q is multiplication by the coordinate: (qf)(x) = xf(x).
So we define, for i = 1 . . . d:

(qi,εf)(x) = xif(x) (x ∈ G(ε)), pi,ε = F−1ε qi,εFε, −∆(ε)(s) =
∑

1≤i≤d

p2i,ε

H(s)(ε) = −∆(ε)(s) + Vε .

Imbedding of finite model into L2(Rd), and convergence. Finally we need
to define an isometric imbedding of L2(G(ε)) (and hence also of L2(G(ε)0)) into
L2(Rd). We first define, for each x ∈ Rd

R(x) = {y = (y1, . . . , yd)|xi − ε/2 ≤ yi < xi + ε/2}
and then define the isometric imbedding f ∈ L2(G(ε)) 7→ f# ∈ L2(Rd) by

f# = ε−d/2
∑

x∈G(ε)

f(x)χR(x) (χE : characteristic function of E).

Via this imbedding operators on L2(G(ε)) can be thought of as operators on L2(Rd)
in the obvious way.

After considerable effort the main result of [DVV94] was stated as follows

Theorem 2.1 (Theorem 4 in [DVV94]). Let (εn) be a sequence tending to 0 and
∗ = p, s, 0. Let 0 < h1 < h2 < . . . be the eigenvalues of H and Tj the eigenspace
corresponding to hj. Then (i) if J is a compact subset of [0,∞) not containing

any eigenvalues of H, then no eigenvalue of H(εn)(∗) belongs to J if n is large
enough; (ii) if J is a compact neighborhood of hj not containing any hi, i 6= j, all

the eigenvalues of H(εn)(∗) that belong to J converge to hj; if Tnj is the span of the
corresponding eigenspaces, dim(Tnj) = dim(Tj) for n large enough, and there is an
orthonormal basis of Tnj that converges to an orthonormal basis of Tj.

This theorem was proved both by standard analytic and stochastic methods. The
two methods of proof will be commented on in the non-Archimedean section, where
similar methods are used. The stochastic method allowed for a stronger conclusion,
namely that the eigenvectors converged not only in the L2-norm, but also in the
topology of uniform convergence on compacta.

3. Finite approximations over a local field

3.1. Quick facts about local fields. We give here some quick facts about local
fields. For a thorough treatment, see the classic treatise of A. Weil [Wei74, Ch. I];
for a quicker review, see the book of Kochubei [Koc01a, Ch. 1.3].



4 TROND DIGERNES

A local field is a non-discrete, locally compact field. The only connected local
fields are R and C. Disconnected local fields are, in fact, totally disconnected.

Every local field comes equipped with a canonical absolute value which defines
its topology. It is is induced by the Haar measure and is called module in [Wei74]. It
is Archimedean in the case of R and C, and non-Archimedean in all other cases; it
coincides with the usual absolute values for the fields R, C, and Qp. For a general
local field K we will denote the canonical absolute value by | · |.

Convention. Since all local fields except R and C are (totally) disconnected, it is
customary to reserve the term ’local field’ for a (totally) disconnected, non-discrete,
locally compact field. We will follow that convention here.

With this convention, there are two main types of local fields:
Characteristic zero. The basic example of a local field of characteristic zero is the
p-adic field Qp (p a prime number). Every local field of characterisitic zero is a
finite extension of Qp for some p.
Positive characteristic. Every local field of positive characteristic p is isomorphic
to the field Fq((t)) of Laurent series over a finite field Fq, where q = pf for some
positive integer f ≥ 1.

Let K be a local field with canonical absolute value | · |. Following standard
notation, we set

O = {x ∈ K : |x| ≤ 1}, P = {x ∈ K : |x| < 1}, U = O \ P.
O is a compact subring of K, called the ring of integers. It is a discrete valuation
ring, i.e., a principal ideal domain with a unique maximal ideal. P is the unique
non-zero maximal ideal of O, called the prime ideal, and any element β ∈ P such
that P = βO is called a uniformizer (or a prime element) of K. For Qp one can
choose β = p, and for Fq((t)) one can take β = t.
The set U coincides with the group of units of O. The quotient ring O/P is a finite
field. If q = pf is the number of elements in O/P (p: a prime number, f : a natural
number) and β is a uniformizer, then |β| = 1/q, and the range of values of | · |
is {qN : N ∈ Z}. Further, if S is a complete set of representatives for the residue
classes in O/P , every non-zero element x ∈ K can be written uniquely in the form:

x = β−m(x0 + x1β + x2β
2 + · · · ),

where m ∈ Z, xj ∈ S, x0 6∈ P . With x written in this form, we have |x| = qm.

3.2. Characters and Fourier transform. We fix a Haar measure µ on K, nor-
malized such that µ(O) = 1. The Fourier transform F on K is given by

(Ff)(ξ) =

∫
K

f(x)χ(−xξ) dx ,

where χ is a suitably chosen non-trivial character on K, and dx := dµ(x) refers to
the Haar measure just introduced. For our set-up it will be essential to use a char-
acter of rank zero1. See [BD15, Subsection 2.1] for a standard way of constructing
rank zero characters.

Any Fourier transform based on a rank zero character is an L2-isometry with
respect to the normalized Haar measure defined above (since F1O = 1O for any
such Fourier transform F ; 1 denotes characteristic function). Thus F−1 = F∗ is
given by

(F−1f)(x) = (F∗f)(x) =

∫
K

f(y)χ(xy) dy.

1We remind the reader that the rank of a character χ is defined as the largest integer r such
that χ|Br ≡ 1.
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For the rest of this article F will denote a Fourier transform based on a rank zero
character on K.

3.3. Non-Archimedean Schrödinger operator. Our object of study is a ver-
sion of the Schrödinger operator, defined for Qp in the book of Vladimirov, Volovich,
Zelenov [VVZ94], and generalized to an arbitrary local field K by Kochubei in
[Koc01a]:

H = Pα + V ,

regarded as an operator in L2(K) 2. Here α > 0 3, P = F−1QF where (Qf)(x) =
|x|f(x) is the position operator, and F is the Fourier transform on L2(K). V
(the potential) is multiplication by a radial function: (V f)(x) = v(x)f(x), v(x) =
w(|x|) for some function w defined on [0,∞). We assume v to be non-negative and
continuous and that v(x)→∞ as |x| → ∞.

The operator H has been thoroughly analyzed (see [VVZ94] for K = Qp and
[Koc01a] for general K): It is self-adjoint on the domain {f ∈ L2(K) : Pαf +V f ∈
L2(K)}, has discrete spectrum, and all eigenvalues have finite multiplicity. We will
now set up a finite model for this operator.

3.4. Finite model, imbedding, and convergence. Keep the above notation,
i.e.: K is a local field, q = pf is the number of elements in the finite field O/P , β is
a uniformizer, and S is a complete set of representatives for O/P . For each integer
n set Bn = β−nO = ball of radius qn. Then Bn is an open, additive subgroup of K.
For n > 0 we set Gn = Bn/B−n. Then Gn is a finite group with q2n elements. Since
the subgroup B−n will appear quite frequently, we will sometimes denote it by Hn,
to emphasize its role as a subgroup. So Hn = B−n = βnO = ball of radius q−n,
and Gn = H−n/Hn. Each element of Gn has a unique representative of the form
a−nβ

−n + a−n+1β
−n+1 + · · · + a−1β

−1 + a0 + a1β + · · · + an−2β
n−2 + an−1β

n−1,
ai ∈ S. We denote this set by Xn, and call it the canonical set of representatives
for Gn; we also give it the group structure coming from its natural identification
with Gn.

Let again µ denote the normalized Haar measure on K (cfr. 3.2). Since Hn is an
open subgroup of K, we obtain a Haar measure µn on Gn = H−n/Hn by setting
µn(x+Hn) := µ(x+Hn) = µ(Hn) = q−n, for x+Hn ∈ Gn.

So each ”point” x + Hn of Gn has mass q−n, and the total mass of Gn is
q2n · q−n = qn.

With this choice of Haar measure on Gn the mapping which sends the charac-
teristic function of the point x + Hn in Gn to the characteristic function of the
subset x + Hn of K, is an isometric imbedding of L2(Gn) into L2(K). The im-
age of L2(Gn) under this mapping is the subspace Dn = {f ∈ L2(K)| supp(f) ⊂
Bn and f is locally constant of index ≤ q−n} of L2(K). We regard operators on
L2(Gn) as operators on L2(K) via this imbedding, setting them equal to 0 on the
orthogonal complement of Dn. Denoting the orthogonal projection on Dn by Dn,
one proves that FDn = DnF . For f ∈ Dn and x ∈ Xn we get

(Ff)(x) =

∫
K

f(y)χ(−xy)dy =

∫
Bn

f(y)χ(−xy)dy =
∑
z∈Xn

∫
z+Hn

f(y)χ(−xy)dy

=
∑
z∈Xn

f(z)χ(−xz)µ(Hn) = q−n
∑
z∈Xn

f(z)χ(−xz).

2Our operator P is denoted by D in the above cited works.
3For a direct analog of the Laplacian one should set α = 2. However, as is customary in the

non-Archimedean setting, one works with an arbitrary α > 0, since the qualitative behavior of
the operator H does not change with α > 0.
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The last expression coincides with the Fourier transform of f over the finite abelian
group Gn. This is because the bicharacter (x, y) 7→ χ(xy) of Bn factors through
the quotient group Gn = Bn/B−n and defines a non-degenerate bicharacter on Gn,
thus implementing the duality of Gn with itself. Denoting the Fourier transform of
L2(Gn) ' Dn by Fn, we thus have Fn = F|Dn .

For the finite versions of the dynamical operators we take their compressions by
Dn, i.e., Vn = DnV Dn, Qn = DnQDn, Pn = DnPDn = F−1QnF = F−1n QnFn,
and set Hn = Pαn + Vn.

For an operator A let PA denote the projection valued measure associated with
A, and for a projection E, let r(E) denote its range. The main convergence theorem
in [BD15] was stated as follows:

Theorem 3.1 (Theorem 4.1 in [BD15]).

(1) If J is a compact subset of [0,∞) with J ∩ σ(H) = ∅, then J ∩ σ(Hn) = ∅
for large n.

(2) If λ ∈ σ(H), there exists a sequence (λn) with λn ∈ σ(Hn) such that
λn → λ. Further, if J is a compact neighborhood of an eigenvalue λ ∈
σ(H), not containing any other eigenvalues of H, then any sequence λn
with λn ∈ σ(Hn) ∩ J converges to λ.

(3) Let again λ ∈ σ(H) and let J be a compact neighborhood of λ. Then
dimPHn(J) = dimPH(J) for large n, and for each orthonormal basis
{e1, . . . , em} for r

(
PH(J)

)
there is, for each n, an orthonormal basis

{en1 , . . . , enm} for r
(
PHn(J)

)
such that limn→∞ eni = ei, i = 1, . . . ,m.

This is the analog of Theorem 4 in [DVV94]; the wording is slightly different,
but the content is same.

As was the case in [DVV94] two proofs were given of this theorem: a standard
analytic one and a stochastic one. Again, the stochastic proof gave a stronger
convergence result for the eigenfunctions: they were shown to converge uniformly
on compacta (and not just in the L2-norm). We comment on both proofs below.

3.5. Comments on the standard analytic proof. There are two main steps in
this proof: Establishing the convergence Hn → H in the strong resolvent sense, and
proving a form of uniform compactness for the resolvents (I + Hn)−1. The proofs
follow a pattern similar to that of [DVV94], but some arguments can be simplified,
partly due to the non-Archimedean nature of K.

3.6. Comments on the stochastic proof. In the stochastic proof one works
with the dynamical semigroup generated by the Hamiltonian rather than with the
Hamiltonian itself. The aim is to show that e−tHn → e−tH in the trace norm. This
will imply the Main Theorem (Theorem 3.1). In addition, it yields the uniform
convergence on compacta of the eigenfunctions.

In order to prove convergence in trace norm, one needs to work with the kernel
(propagator) of the dynamical semigroup, and to establish Feynman-Kac formulas
for the relation beteween the semigroup and the kernel. The Feynman-Kac formulas
in turn require the construction of probability measures on the space of Skorokhod
functions over a fixed time interval [0, t]. All of this must be done both at the finite
and at the infinite level.

With some minor adjustments one uses the same finite models as in the analytic
proof. A new feature here is the introduction of stochastics at the finite level.

Stochastics over a local field has been treated by various authors (see, e.g.,
[Koc01b, Var97, VVZ94]: In analogy with the real case one defines a one-parameter
semigroup of probability densities (pt)t>0 as the inverse Fourier transform of what
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here corresponds to the Gauss function

pt(x) = (F−1e−t|·|
α

)(x) =

∫
K

e−t|ξ|
α

χ(xξ) dξ,

and shows that the family (pt)t>0 is indeed a semigroup: pt1+t2 = pt1pt2 , and that
it has all the other required properties:

e−tP
α

f = pt ∗ f, pt(x) > 0 (x ∈ K),

∫
K

pt(x)dx = 1, (*)

all relations holding for all t > 0. From the densities (pt)t>0 one constructs, for each
a ∈ K, a probability measure Pa on the space of Skorokhod functions4 D([0,∞) :
K) such that the following relation holds∫

D([0,∞):K))

f(ω(t)) dPa(ω) =

∫
K

f(y) pt(a− y) dy (3.1)

for all f in a suitable class of functions K → C. Pa gives full measure to the paths
which start at a. Similarly one constructs, for all a, b ∈ K, t > 0, a conditioned
probability measure Pa,b,t on D([0, t] : K). This measure gives full measure to the
paths which start at a and arrive at b at time t.

At the finite level one mimics the above constructions and defines, for each n, a
one-parameter semigroup of probability densities (pt,n)t>0 by

pt,n(x) = (F−1n e−t|·|
α

)(x) =

∫
Xn

e−t|ξ|
α

χ(xξ) dµn(ξ)

= q−n
∑
ξ∈Xn

e−t|ξ|
α

χ(xξ).

Again one shows that the family (pt,n)t>0 is indeed a semigroup, and that the
properties (*) hold, with Pn and pt,n in place of P and pt.

With the probability densities (pt,n)t>0 in place, one constructs unconditioned
measures Pn

a and conditioned measures Pn
a,b,t on D([0, t] : K) in the usual way5:

first on cylinder sets, and then on D([0, t] : K) by verifying the Čentsov condition.
Then one shows that the measures Pn

a and Pn
a,b,t converge weakly to Pa and Pa,b,t,

respectively.

Feynman-Kac formulas. Over the local field K:

(e−tHf)(x) =

∫
K

Kt(x, y)f(y) dy, f ∈ L2(K) , (3.2)

where

Kt(x, y) =

∫
D[0,t]

e−
∫ t
0
v(ω(s)) ds dPx,y,t(ω) · pt(y − x), x, y ∈ K . (3.3)

At the finite level we similarly show:

(e−tHnf)(x) =

∫
Xn

Kn
t (x, y)f(y) dµn(y)

= q−n
∑
y∈Xn

Kn
t (x, y)f(y), f ∈ L2(Xn)

(3.4)

4D([0,∞) : K) is defined as the set of functions f : [0,∞)→ K such that f is right continuous

on [0,∞) and f(s−0) exists for all s > 0. For a finite interval [0, t] one similarly defines D([0, t] : K)
as the set of functions f : [0, t] → K such that f is right continuous on [0, t), f(s − 0) exists for
s ∈ (0, t]), and f(t) = f(t−).

5In [BDW17] the unconditioned measures Pa and Pn
a were constructed as measures on D([0, t] :

K) rather than on D([0,∞) : K).
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where

Kn
t (x, y) =

∫
D[0,t]

e−
∫ t
0
vn(ω(s)) ds dPn

x,y,t(ω) · pt,n(y − x), x, y ∈ Xn . (3.5)

In order to show convergence in the trace norm, we must first show convergence of
the traces, i.e., we must show that

lim
n→∞

Tr(e−tHn) = Tr(e−tH)

We have

Tr(e−tHn) =

∫
Xn

Kn
t (x, x) dµn(x) = q−n

∑
x∈Xn

Kn
t (x, x)

Tr(e−tH) =

∫
K

Kt(x, x) dx ,

so it comes down to showing

lim
n→∞

q−n
∑
x∈Xn

Kn
t (x, x) =

∫
K

Kt(x, x) dx .

After considerable effort this was achieved in [BDW17]. The proof was patterned
on a similar proof in [DVV94]. – With this result in place it was relatively straight
forward to prove convergence with respect to the trace norm of the dynamical
semigroups. The main result, Theorem 3.1, followed from this, as did the uniform
convergence on compacta of the eigenfunctions.

4. Mixed spectrum: Atomic potential over R3

The results in this section are taken from the thesis of Erik Makino Bakken
[Bak16].

The task is to obtain finite approximations to the operator H = −∆+V acting in

L2(R3) where (V f)(x, y, z) = v(r)f(x, y, z), v(r) = −1/r, r =
√
x2 + y2 + z2; or,

by abuse of notation: H = −∆− 1/r. This operator is known to be self-adjoint on
its natural domain. A notable difference from the situation in the previous sections
is that the Coulomb Hamiltonian does not have a compact resolvent, and hence it
has a non-empty essential spectrum6 – its spectrum σ(H) consists of a discrete part
σdiscr(H) = {− 1

4k2 : k = 1, 2, 3, . . . } and a continuous part σcont(H) = σess(H) =
[0,∞). Another difference is the singularity at the origin, which makes it difficult
to use probabilistic methods, and that approach is not covered in this context.

The author considers a slightly more general situation, and makes the following
definition:

Definition 1 (Coulomb-like Operator). Let A be a self-adjoint operator which is
bounded below, with discrete spectrum below a constant c, and with σess(A) =
σcont(A) = [c,∞), where σcont(A) is the continuous spectrum of A. Then we will
call A a Coulomb-like operator.

Next he defines what he means by convergence of spectra. For this he takes the
conclusion of Theorem 3.1, but modifies it to allow for the presence of a continuous
spectrum.

6In this article the discrete spectrum σdiscr(H) of an operator H is defined as the set of isolated
eigenvalues of finite multiplicity, and the essential spectrum σess(H) is defined as the complement

of σdiscr(H) in σ(H), i.e., σess(H) = σ(H) \ σdiscr(H). The continuous spectrum σcont(H) is
generally a subset of σess(H).
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Definition 2 (Convergence of spectra). Let A be a Coulomb-like operator and
let An, n = 1, 2, ... be self-adjoint operators which are bounded below, and let An
have discrete spectrum. The eigenvalues of A are denoted by λ1 ≤ λ2 ≤ ... and are
counted with multiplicity. Assume that:

(1) If J is a compact subset of R containing no eigenvalues of A, then no
eigenvalues of An will be in J for sufficiently large n.

(2) For every λ ∈ σ(A) there exists a sequence λn ∈ σ(An) such that λn → λ.
If J = [a, b] is a compact interval with c < a < b, then PJ(An) converges
strongly to PJ(A).

(3) If J is a compact neighborhood containing the eigenvalue λj , and no other
eigenvalues of A different from λj , then all the eigenvalues of An in J
converge to λj . Furthermore ||PJ(An)− PJ(A)|| → 0 as n→∞.

We will then say that the spectrum of An converges to the spectrum of A, and we
will denote it by

σ(An)→ σ(A). (4.1)

The finite model is the same as in Section 2 (with n = 3), with a specific choice
of boundary conditions for the Laplacian.

4.1. Approximation in a cube. The author first discusses convergence of spectra
within a fixed open cube Tb = {(x1, x2, x3) ∈ R3 : |xi| < b, i = 1, 2, 3}. The idea
is to show that, in a finite box, the Hamiltonian has compact resolvent and hence
discrete spectrum. This makes available much of the proof techniques used in
[DVV94].

When restricted to the cube, the operators are given the index b: Hb = −∆b+Vb;
here ∆b is the Laplacian restricted to the cube, whereas the function vb, which
defines Vb, is modified to handle the singularity at the origin:

vb(r) =

{
− 1
r if r > 1/b

−b if r ≤ 1/b.
(4.2)

The author then shows that Hb does, indeed, have compact resolvent and hence
discrete spectrum.

For the finite grid inside the cube, the author sets ε = 2b/(n + 1) (the grid
spacing) and indexes the operators on the grid with the two parameters b, n: Hb,n =
−∆b,n + Vb,n. With the above result in hand (compact resolvent etc.) he is able to
show that limn→∞ σ(Hb,n) = σ(Hb) in the sense of Definition 2, or – since Hb has
discrete spectrum – in the sense of Theorem 2.1 or Theorem 3.1.

4.2. Approximation in all of R3. Finally the author must take the limit as
b → ∞, at the same time as the grid spacing goes to zero, i.e., b/n → 0. This
requires a certain dependence of n on b, call it n(b). A short version of his final
theorem can be stated as folloows:

Theorem 4.1. Let as before H be the Coulomb Hamiltonian, and let Hn,b be
the finite Hamiltonian as above. There exists an assignment b → n(b) such that
limb→∞ σ(Hb,n(b)) = σ(H) in the sense of Definition 2.

This is an existence theorem and doesn’t lend itself readily to computations, as
it doesn’t tell us how to choose the function b→ n(b). It does, however, show that
the Coulomb Hamiltonian can be obtained as a limit of some sequence of finite
Hamiltonians of the type described above, a result which is of independent interest.

One can make educated guesses as to the growth of the function b → n(b). In
the Appendix we present a computer run with n(b) ∼ b2. As can be seen there, the
numerically computed values show remarkable agreement with the exact theoretical
values.
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Appendix A. Numerical results

A.1. Numerics for the harmonic oscillator over R.

A1a The three groups of figures below show eigenvalues and eigenfunctions for
the harmonic oscillator over the R with 5, 21 and 81 points in the grid, respectively.

Eigenvalues for H5

0.4969786369997017
1.538153655416401
2.273277799898967
3.512928870280916
4.745031651763187
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Eigenfunction no. 0

for H5 (dotted) and H (smooth).
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Eigenfunction no. 1

for H5 (dotted) and H (smooth).
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Eigenfunction no. 2

for H5 (dotted) and H (smooth).

Eigenvalues for H21

0.4999999999999396
1.50000000000396
2.499999999873056
3.500000002436515
4.499999963136251
5.500000389175935
6.499996311530578
7.500024950572093
8.499832644686019
9.500769902078664
10.49608851334482
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Eigenfunction no. 0

for H21 (dotted) and H (smooth).
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Eigenfunction no. 1

for H21 (dotted) and H (smooth).
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Eigenfunction no. 10

for H21 (dotted) and H (smooth).
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Eigenvalues for H81

0.50000000000002
1.500000000000014
2.500000000000016
3.499999999999992
4.499999999999959
5.5
6.500000000000021
7.500000000000014
8.499999999999976
9.500000000000012
10.5
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for H81 (dotted) and H (smooth).
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for H81 (dotted) and H (smooth).
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Eigenfunction no. 40

for H81 (dotted) and H (smooth).
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A1b The two tables below show a comparison between the Schwinger method
and the standard finite difference method for the finite models of the real harmonic
oscillator. As can be seen, the Schwinger method gives far better numerical results.

N=81, 7 decimals
Exact Schwinger Finite diff.
1/2 0.5000000 0.4975640
3/2 1.5000000 1.4877712
5/2 2.5000000 2.4680608
7/2 3.5000000 3.4382768
9/2 4.5000000 4.3982546

11/2 5.5000000 5.3478205
13/2 6.5000000 6.2867905
15/2 7.5000000 7.2149698
17/2 8.5000000 8.1321509
19/2 9.5000000 9.0381131
21/2 10.5000000 9.9326202

N=241, 7 decimals
Exact Schwinger Finite diff.
1/2 0.5000000 0.4991839
3/2 1.5000000 1.4959143
5/2 2.5000000 2.4893615
7/2 3.5000000 3.4795090
9/2 4.5000000 4.4663402

11/2 5.5000000 5.4498380
13/2 6.5000000 6.4299851
15/2 7.5000000 7.4067638
17/2 8.5000000 8.3801562
19/2 9.5000000 9.3501440
21/2 10.5000000 10.3167088
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A.2. Numerics for the harmonic oscillator over Q3[
√

3].

A2a Harmonic oscillator H = 1
2 (P 2 +Q2) over Q3[

√
3]: Numerically computed

eigenvalues.
A shell function is a function which is supported on a single shell (sphere) about
the origin. A radial function is one which is constant on each shell.

Theoretical
eigenvalue

Numerical
eigenvalue

Theoretical
multiplic-
ity

Numerical
multiplic-
ity

Type of
eigenfunc-
tion

Comment

0 < λ0 < 9/13
≈ 0.6923

0.6684 1 1 radial

? 4.6922 ? 1 radial
? 4.7158 ? 1 radial
5 5.0000 2 2 shell function 2 = 1 + 1:

Coming
from two
different
shells.

9 9.0000 4 4 shell function All
supported
on the
same
shell.

? 40.5213 ? 2 radial
40+5/9 =
40.5555 . . .

40.5555 2 2 shell function 2 = 1 + 1:
Coming
from two
different
shells.

41 41.0000 8 8 shell function 8 = 4 + 4:
Coming
from two
different
shells.

45 45.0000 24 24 shell function 24 =
12 + 12:
Coming
from two
different
shells.
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A2b Numerically computed eigenfunctions for the harmonic oscillator H =
1
2 (P 2 +Q2) over the local field Q3[

√
3].

The table shows eigenfunctions for three different eigenvalues, 28 values for each
function, coming from all the 5 shells which occur for n = 2. Both kinds of
eigenfunctions occur (shell functions and radial functions). – Shell no. k (k =
2, 1, 0,−1,−∞) is the shell |x| = 3k (so shell no. −∞ is the shell |x| = 3−∞ = 0).

Eigenfunction for the lowest

eigenvalue λ ≈ 0.6684 .
It exhibits a perfect radial
behavior. Notice also that
the function is strictly posi-
tive, in accordance with the
corresponding statement for
the case K = Qp in [VVZ94,
p. 186].

Eigenfunction for λ = 5 .
Eigenfunctions here are lin-
ear combinations of shell
functions from two differ-
ent shells (shells 1 and 0).
As should be expected, the
function below exhibits non-
radial behavior, being non-
constant on each shell where
it doesn’t vanish (shells 1
and 0).

Eigenfunction for λ = 9 . It
exhibits a perfect shell func-
tion behavior, with support
on shell no. 1.

Shell no. Shell no. Shell no.
3.5818432 · 10−1 −∞ 0 −∞ 0 −∞
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
1.2747433 · 10−2 1 −2.3459638 · 10−1 1 5.9907185 · 10−2 1
1.2747433 · 10−2 1 2.3459638 · 10−1 1 −4.1084268 · 10−1 1
1.2747433 · 10−2 1 −2.3459638 · 10−1 1 −1.0595734 · 10−1 1
1.2747433 · 10−2 1 2.3459638 · 10−1 1 2.7644342 · 10−2 1
1.2747433 · 10−2 1 −2.3459638 · 10−1 1 4.6050157 · 10−2 1
1.2747433 · 10−2 1 2.3459638 · 10−1 1 3.8319834 · 10−1 1
3.1960943 · 10−1 0 3.9500330 · 10−2 0 0 0
3.1960943 · 10−1 0 −3.9500330 · 10−2 0 0 0
3.5768544 · 10−1 -1 0 -1 0 -1
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A.3. Numerics for the Coulomb Hamiltonian in R3. The table shows nu-
merically computed eigenvalues of a scaled Coulomb Hamiltonian (i.e., eigenvalues
are of the form − 1

k2 rather than − 1
4k2 ). The computation is done with n = 350

(i.e., 3503 points in the grid) and spacing ε = (2π/n)1/2.

Exact values Numerical values
-1 -0.9814558

-1/4 -0.2505890, -0.2505890,-0.2505890, -0.2483674
-1/9 -0.11136023,-0.11136023, -0.11136023, -0.11121653,

-0.11121653, -0.1111883, -0.1111883,-0.1111883,
-0.1106982

-1/16 -0.06260630, -0.06260630, -0.06260630, -0.06254948,
-0.06254948,-0.06254293, -0.06254293, -0.06254293,
-0.06252377, -0.06252377, -0.06252377, -0.06252227,
-0.06252227, -0.06252227, -0.06251815, -0.06231906
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