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Chapter 1

Introduction

Over the last decade, it has become increasingly important to extract useful
information quickly from vast amounts of data. Examples include analysis
of the human genome, development of Internet search engines, automatic
recognition of handwritten postal codes, weather forecasting and petroleum
reservoir evaluation. Since the introduction of Principal Component Anal-
ysis (PCA) by Pearson (1901) and Hotelling (1933), dimension reduction
techniques have therefore become an integral part of contemporary statisti-
cal data analysis.

Statistical and mathematical modelling of nonlinear spatiotemporal
problems in large dimensions is known to be a challenging task. High com-
putational demands makes these problems particularly di�cult to solve ef-
�ciently, which calls for approximate solutions when considering real-life
applications. Reduction of the model dimensionality is therefore a natural
approach to consider.

In this thesis, we apply dimension reduction techniques on high di-
mensional spatiotemporal models. As an inspirational source, we use two
computationally demanding problems in petroleum reservoir management;
petroleum reservoir characterisation and well control optimisation. Common
to both problems is that a repeated number of reservoir �ow simulations are
needed. This involves solving a set of non-linear Partial Di�erential Equa-
tions (PDE) in high dimensions, which can take days or even weeks when
considering traditional �nite di�erence PDE solvers on large reservoir mod-
els.

Petroleum reservoir characterisation aims at extracting information of
the earth's subsurface from seismic data, well tests, and observed production
data. When considering large reservoir domains, this involves solving a
spatiotemporal inverse problem in high dimensions (Omre and Tjelmeland,

1



2 Introduction

1997). Bayesian inversion, where the unknown properties of the reservoir
can be evaluated by generating realisations from the posterior probability
density function (pdf) of interest, is therefore a natural statistical approach
to consider. However, the non-linear structure of the inverse problem makes
the posterior pdf analytically intractable. Moreover, high computational
demands currently restrict the usefulness of asymptotically exact sampling
techniques such as Markov chain Monte Carlo (McMC) (Barndor�-Nielsen
et al., 2001) or Particle Filters (PF) (Doucet et al., 2001; Künsch, 2005).

The Ensemble Kalman Filter (EnKF), introduced by Evensen (1994), is
an approximate Monte Carlo method that can e�ciently solve non-linear
spatiotemporal inverse problems in high dimensions. A source of inspiration
for the EnKF is the Kalman Filter (KF) (Kalman, 1960). The KF provides
analytical expressions for the model parameters of the Gaussian posterior
pdf assuming linear system dynamics with a Gaussian prior pdf and a linear
Gaussian likelihood model, termed the Gauss-linear model. In the EnKF,
an ensemble of realisations is used to represent the statistical properties of
the posterior pdf. This is conceptually di�erent from alternative non-linear
�lters, such as the extended KF (Jazwinski, 1970) and the unscented KF
(Julier and Uhlmann, 1997), which uses the posterior mean and covariance
to represent the statistical properties of the model. As a result, the EnKF
can e�ciently handle non-linear system dynamics and is reasonably robust
with respect to the prior model assumptions (Evensen, 2007). Hence, the
EnKF has been applied to numerous �elds over the last decade, such as
numerical weather prediction (Houtekamer et al., 1996; Houtekamer and
Mitchell, 2001), oceanography (Keppenne and Rienecker, 2003; Leeuwen-
burgh et al., 2005), hydrology (Moradkhani et al., 2005), and petroleum
reservoir characterisation (Nævdal et al., 2003; Aanonsen et al., 2009).

Having characterised the properties of the reservoir, the next step is
often to optimise the extraction of hydrocarbons. This can be done by
changing the operating conditions of the reservoir, also known as the well
controls, e.g. by injecting water or gas into the reservoir at di�erent rates
or modifying the pressure in the producing wells. To accomplish this task,
we need to solve a non-linear multiobjective optimisation problem. Solving
this problem typically require several thousand reservoir �ow simulations,
meaning that approximate PDE solvers are often called for.

The Trajectory Piecewise Linearisation (TPWL) procedure, introduced
by Rewienski (2003), is an approximate PDE solver which has been applied
successfully to non-linear heat transfer problems (Yang and Shen, 2005),
electromechanical systems (Bond and Daniel, 2007; Vasilyev et al., 2006),
computational �uid dynamics (Gratton and Willcox, 2004), and reservoir
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Figure 1.1: Closed-loop reservoir management.

�ow simulation (Cardoso and Durlofsky, 2010). The main idea of the TPWL
is that new solutions of the PDE with di�erent well controls can be found
using a Taylor expansion around previously evaluated well controls. This
implies that a solution to the non-linear PDE is given by solving a set of
linear equations, rather than through non-linear PDE solvers. By further
applying dimension reduction techniques, this entails that we can perform
reservoir �ow simulation in less than a second, compared with a few hours
using traditional solvers. This brings us one step closer towards automatic,
or closed-loop, reservoir management, depicted in Figure 1.1. Here, the goal
is to update the model automatically and in real-time as new production or
seismic data arrives, to improve the future predictions.

The main focus in this thesis is solving spatiotemporal inverse prob-
lems using the EnKF, which we consider in Chapters 2 through 6. After a
brief presentation of the notation and a probabilistic formulation of the spa-
tiotemporal inverse problem, we will therefore proceed with a description of
the EnKF updating scheme, presented from both a Bayesian and frequentist
perspective. We will then proceed with a short description of PCA from a
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d
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Figure 1.2: Stochastic Directed Acyclic Graph (DAG) of the spatiotemporal in-
verse problem.

statistical point of view, and brie�y discuss a potential pitfall concerning
the selection of the subspace dimension. The introductory chapter is ended
with a short summary of the papers, where we emphasise new contributions
in this thesis, and a discussion regarding future work.

1.1 Notation and Model Formulation

Let x ∈ Rnx×1 denote that x is an nx-dimensional column vector in the
real space, with its transpose denoted by xT . Further let the matrix A
having a rows and b columns with real entries be denoted by A ∈ Ra×b. For
notational convenience, we will use the same notation for random vectors
and matrices.

A graphical description of the spatiotemporal forecast problem is given
in Figure 1.2. Here xtk ∈ Rnx×1 denotes the state of the unknown random
vector of interest at time step k and time tk, and correspondingly do

tk
∈

Rnd×1 denotes the vector of observed data. In a reservoir characterisation
setting, x can describe the unknown permeability, porosity, saturation and
pressure of the reservoir, whilst d can be the observed oil production rate,
seismic signal, or borehole data. For simplicity, we will from now on drop the
subscript tk, and write xk, d

o
k. Furthermore, x and d will be referred to as

the state and observation vector respectively. In the predictive setting, the
goal is to improve the estimates of the state vector sequentially as more data
is collected, and ultimately use the updated model for prediction purposes.

Let f(x0) be the prior pdf of the state vector at the initial time step.
Furthermore, let xk+1 = ω(xk, εxk

), k = 0, . . . ,K, where ω : (Rnx×1 ×
Rnx×1) → Rnx×1 is a known, possibly non-linear forward function. In the
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reservoir characterisation problem, ω(·, ·) describes the �uid �ow in the reser-
voir between consecutive time steps. Here εxk

represents model errors in the
forward model, following a known pdf f(εxk

). Note that this is in accor-
dance with the Markov assumptions in Figure 1.2, which entails that the
conditional distribution of the state vector at time step k +1 given the state
at all previous time steps is:

f(xk+1|x0:k) = f(xk+1|xk).

For notational convenience, we denote the sequence x0, . . . ,xl by x0:l. Fur-
ther note that the conditional pdf f(xk+1|xk) is implicitly de�ned through
the �ow simulator ω(·, ·). Hence, the prior pdf of the state vector at all time
steps factorises as

f(x0:(K+1)) = f(x0)
K∏

i=0

f(xi+1|xi).

The observed data, do
k, is connected to the state vector through a possibly

non-linear function: do
k = ζ(xk, εdk

), k = 0, . . . ,K, where εdk
represents

the likelihood model and observation errors. Thus, the likelihood function
f(dk|xk) is de�ned through ζ(·, ·).

Having a fully speci�ed prior and likelihood model, the spatiotemporal
�lter and forecast problem can be assessed by generating realisations xc

k

and xu
k+1 from the posterior pdfs f(xk|d0:k) and f(xk+1|d0:k) respectively

for k = 0, . . . ,K. Bayesian inversion provides a sequential solution to this
problem. Using Bayes rule and the Markov properties of the prior model,
we get for k = 1, . . . ,K;

f(xk|do
0:k) ∝ f(xk|do

0:(k−1))f(dk|xk)

f(xk+1|do
0:k) =

∫
f(xk+1|xk)f(xk|do

0:k)dxk. (1.1)

In general, the conditional pdfs de�ned in Eq. (1.1) is only known up
to an unknown normalising constant. Thus, we can apply computation-
ally intensive techniques based on McMC or rejection sampling to gener-
ate realisations from the posterior distributions. However, as mentioned
above, these techniques can be computationally prohibitive for a reser-
voir characterisation problem. An approximate solution is to assume that
xu

k ∼ f(xk|do
0:(k−1)) and do

k ∼ f(dk|xk) follow a probability distribution
that ensures analytical tractability of f(xk|do

0:k). This corresponds to the
model assumptions made in classical EnKF, when derived from a Bayesian
perspective.
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1.2 Ensemble Kalman Filter

Let x
c(i)
0 be a realisation from the posterior distribution at the initial time

step, f(x0|do
0) ∝ f(x0)f(d0|x0). In addition, let for k = 1, . . . ,K, x

u(i)
k =

ω(xc(i)
k−1, ε

(i)
xk) and d(i)

k = ζ(xu(i)
k , ε

(i)
dk

), where we as an approximation assume
that: [

x
u(i)
k

d
(i)
k

]
∼ Gaussny

([
µxu

k

µdk

]
,

[
Σxu

k
Σxu,dk

Σd,xu
k

Σdk

])
, (1.2)

with ny = nx + nd. Here the notation y ∼ Gaussny(µy,Σy) is used to
denote that y ∈ Rny×1 follows the multivariate Gaussian distribution with
mean µy and covariance matrix Σy (Mardia et al., 1979). Because the focus
from now on will be on a single time step, we will drop the subscript k from
the notation.

Under the Gaussian assumption in Eq. (1.2), a realisation from the
posterior pdf f(xk|do

0:k) can be generated by

xc(i) = xu(i) + Σxu,dΣ−1
d (do − d(i)). (1.3)

This follows because the Gaussian distribution is closed under linear opera-
tions, and by computing the expected value and covariance of xc(i) (Mardia
et al., 1979).

As seen from Eq. (1.3), the covariance matrices Σxu,d and Σd are the
only two model parameters included, forming the Kalman gain matrix,
K = Σxu,dΣ−1

d ∈ Rnx×nd . In the Gauss-linear case, the Kalman gain matrix
will be analytically obtainable through the Kalman �lter recursions. How-
ever, in the general setting analytical tractability is lost. In the EnKF, we
therefore use an ensemble of ne realisations {(xu(1),d(1)), . . . , (xu(ne),d(ne))}
to obtain empirical estimates of the unknown covariance matrices.

For notational convenience, let X = [xu(1), . . . ,xu(ne)] ∈ Rnx×ne and
D = [d(1), . . . ,d(ne)] ∈ Rnd×ne be the ensemble matrices for the state- and
observation vector respectively. This gives a classical empirical estimate of
the Kalman gain matrix:

K̂ = Σ̂xu,dΣ̂
−1
d = XHDT

(
DHDT

)−1
, (1.4)

whereH = I−1/ne11T ∈ Rne×ne is the idempotent centring matrix. Here I
is the identity matrix and 1 is a column vector with all entries equal to one;
both having proper dimensions. This gives the following EnKF updating
scheme in a general setting:

xc(i) = xu(i) + K̂(do − d(i)), for i = 1, . . . , ne. (1.5)
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Because we are using consistent estimators for the unknown covariance ma-
trices, the EnKF will be consistent with the KF in the Gauss-linear model
setting as the ensemble size tends to in�nity (Furrer and Bengtsson, 2007).

An alternative derivation of the EnKF updating scheme is to consider
the following multivariate linear regression problem:

[x|d] = Kd+ εr,

where K ∈ Rnx×nd is the unknown matrix of regression coe�cients and εr
denotes the regression error term. The classical, least squares estimate of
K is

K̂ = arg min
K

tr
{
(XH −KDH)(XH −KDH)T

}
, (1.6)

where tr{·} denotes the trace operator. Solving Eq. (1.6) analytically re-
covers the Kalman gain estimate in Eq. (1.4) (Seber and Lee, 2003). Hence,
the estimation of the unknown Kalman gain matrix can be viewed as a
multivariate linear regression problem (Anderson, 2003a).

Although the EnKF has seen several successful applications, the algo-
rithm can display poor performance resulting from the following:

• Severe violation of the Gaussian model assumptions implicitly used in
the updating, such as discrete variables in the state vector.

• Highly non-linear likelihood models.

• Estimation uncertainty in the Kalman gain matrix when the ensemble
size is restricted by high computational demands.

• Increasingly larger coupling of the updated ensemble members as we
assimilate data sequentially.

In this thesis, we will consider remedies for the �nal three issues. More
speci�cally, dimension reduction techniques known from multivariate linear
regression theory (Hastie et al., 2009) are used to improve on the classical
Kalman gain estimate.

1.3 Dimension Reduction Techniques

The main motivation for considering dimension reduction techniques is of-
ten to reduce the computational demands in an algorithm. Hence, a large
number of dimension reduction schemes exist, which are tailored to solve a
particular problem e�ciently (Fodor, 2002; van der Maaten et al., 2009). In
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this introductory chapter, we will only brie�y present the PCA dimension re-
duction technique, also known as the Karhunen-Loève transform and Proper
Orthogonal Decomposition. PCA is one of the most frequently used dimen-
sion reduction techniques in statistics, computer science and mathematics.
This is mainly because the technique is straightforward to implement using
Singular Value Decomposition (Golub and van Loan, 1996), the orthonor-
mal properties, and that PCA is the linear dimension reduction scheme that
minimises the mean squared reconstruction error (Pearson, 1901).

From a statistical perspective, the aim of PCA is to explain the covari-
ance structure of a random variable y ∈ Rny×1 through a small number of or-
thogonal linear combinations termed Principal Components (PC), zi = vT

i y,
i = 1, . . . , p. The PC are selected such that the variance of zi is maximised
under the orthonormality condition; vT

i vi = 1 for i = 1, . . . , p. It can be

shown (Anderson, 2003b) that the ith sample PC is z
(j)
i = vT

i y
(j), where

vi is the ith eigenvector of the empirical covariance matrix estimated based
on realisations y(j), j = 1, . . . , ne. Hence, in situations where the dimen-
sion of the input vector, ny is much larger than the subspace dimension, p,
the computational demands of an algorithm can be dramatically reduced by
working with the sample PC, z(j) ∈ Rp×1 rather than y(j).

A commonly used criterion for selection the subspace dimension, p, is
based on the explained variance of the sample PC:

ςk =
λ̂k∑r
i=1 λ̂i

, k = 1, . . . , r (1.7)

where λ̂k is the kth eigenvalue of the empirical covariance matrix, with a
rank equal to r. That is, the subspace dimension is selected such the �rst p
PC explains e.g. 90 percent of the total variation in the data;
p = arg mink{

∑k
l=1 ςl ≥ 0.90}. What is often overlooked, however, is that

the estimated eigenvalues can be severely biased compared with the true
eigenvalues (Ledoit and Wolf, 2004). Furthermore, a model selection crite-
rion based on ςk does not necessarily take into account the properties that
are important for the speci�c model, such as the predictive capabilities in a
regression setting. In this thesis, the importance of proper selection of the
subspace dimension and model validation is illustrated in Chapters 2, 3, 4,
and 7.

1.4 Overview of Thesis

The �rst part of this thesis consists of Papers I through V (Chapters 2�6),
where we consider the reservoir characterisation problem using the EnKF.
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The focus in Papers I, II and III is shrinkage regression and model selection in
an EnKF setting, whilst Papers IV and V introduces the idea of a stochastic
Kalman gain matrix. Instead of using a common plug-in estimate of the
Kalman gain matrix for each updated ensemble member, we can instead
generate separate realisations from the matrix variate pdf of K. Papers I
through V are best read chronologically, although they are self-contained.
Paper VI, (Chapter 7) considers the production optimisation problem using
the fast TPWL reservoir �ow simulator as a surrogate model.

1.4.1 Summary of Papers

A brief summary of the six scienti�c papers in this thesis follows, emphasis-
ing new contributions.

Paper I: Ensemble Kalman �ltering with shrinkage regression

techniques

Jon Sætrom and Henning Omre

In this paper, we de�ne alternative EnKF updating schemes using the shrink-
age regression techniques known as Principal Component Regression (PCR)
and Partial Least Squares Regression (PLSR). Common for both methods is
that the Kalman gain matrix is estimated using multivariate linear regres-
sion where the data vector is projected into a reduced order space. The main
di�erence between the two methods is that whilst the projection in PCR is
done without considering the values of the state vector, the supervised PLSR
technique uses the values of both the data and state vector.

The classical EnKF updating scheme and the two EnKF updating
schemes based on PCR and PLSR are tested on two synthetic models where
the former is a Gauss-linear model, whilst the latter includes a non-linear
forward model. We demonstrate the importance of model validation when
selecting the subspace dimension for the PCR technique, by comparing
the analytical criterion based on the estimated eigenvalues and a Cross-
Validation (CV) scheme. As expected, the CV scheme, which takes into
account the predictive capabilities of the regression model, provides much
better results. For these synthetic examples, the supervised PLSR scheme
appears as slightly better compared with the PCR scheme.

Because the updated ensemble members are based on a common plug-in
estimate of the unknown Kalman gain matrix, they will necessarily become
increasing coupled as more data is assimilated. For this reason, we see severe
problems of model over�tting and an underestimation of the prediction vari-
ance for small ensemble sizes using the classical EnKF. This is true for both
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the two synthetic reservoir examples and for a synthetic reservoir model,
where using the PLSR scheme led to dramatic improvements in the forecast
precision, with associated prediction variance, compared with the classical
EnKF scheme.

New contributions in this paper is usage of the PCR and PLSR shrink-
age regression techniques to estimate the unknown Kalman gain matrix.
Furthermore, we look at the importance of using a model validation scheme
when selecting the subspace dimension, and suggest an automatic CV scheme
to accomplish this task e�ciently. Finally, we demonstrate that the collapse
of the updated ensemble in the presented examples is a result of increasingly
collinear ensemble members, leading to severe problems of model over�tting
in the classical EnKF updating scheme for small ensemble sizes. We there-
fore see a signi�cant improvement in the results when using the shrinkage
based regression techniques in combination with the CV scheme.

Paper II: Ensemble Kalman �ltering for non-linear likelihood mod-

els using kernel-shrinkage regression techniques

Jon Sætrom and Henning Omre

In this paper, we apply non-linear (kernel) extensions of the shrinkage regres-
sion techniques presented in Paper I, to handle highly non-linear likelihood
models in an EnKF setting e�ciently. Kernel methods are in most of the
literature presented in mathematical terms, or simply as a black box. In this
paper, however, we present kernel methods using a probabilistic discussion
of a univariate non-linear regression problem with multivariate predictor
variables. Kernelised version of the Ridge regression, PCR and PLSR tech-
niques are then presented, and applied in an EnKF setting. We use a hidden
Markov model with a highly non-linear likelihood model to demonstrate that
the suggested updating schemes provide improved results compared with the
classical EnKF updating scheme.

New contributions in this paper include the non-linear extension of the
EnKF updating scheme to non-linear likelihood models using kernel-shrinkage
regression techniques. Again, we demonstrate the potential problem of re-
gression model over�tting in an EnKF setting.
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Paper III: Improved uncertainty quanti�cation in the Ensemble

Kalman Filter using statistical model selection techniques

Jon Sætrom, Joakim Hove, Jan-Arild Skjervheim and Jon G. Vabø

In this paper, we focus on model selection, and the e�ect of model over-
�tting in an EnKF setting. Similar to Papers I and II, we formulate the
classical EnKF updating scheme through a dimension reduction of the data
ensemble. The main di�erence between the formulation in this paper and
the formulation in Paper I, is that the likelihood model is assumed to have
an additive Gaussian noise term, with zero mean and known covariance.
Hence, the covariance matrix of the observation error is used directly in the
estimation of the Kalman gain matrix, similar to what is done in the classical
formulation of the EnKF (Evensen, 1994; Burgers et al., 1998). We proceed
with a short discussion regarding selection of the subspace dimension using
estimated eigenvalues, and suggest a CV scheme to prevent the potential
problem of model over�tting.

New contributions in this paper include the extension of the model selec-
tion scheme based on the CV to the previously suggested EnKF algorithms
based on dimension reduction. We demonstrate that the size of the subspace
dimension is crucial to the predictive power of the updated model and that
biased predictions occur when the subspace dimension is too large. A bench-
mark synthetic reservoir model developed at the Statoil research centre in
Bergen, demonstrates the potential gain of using statistical model selection
techniques that take into account the predictive power of the model.

Paper IV: Resampling the Ensemble Kalman Filter

Inge Myrseth, Jon Sætrom and Henning Omre

In this paper, we formulate the EnKF by generating realisations of the
Kalman gain matrix from an empirically estimated sample distribution,
referred to as the Resampling EnKF (ResEnKF). More speci�cally, non-
parametric bootstrapping is used to generate individual realisations of the
Kalman gain matrix in the EnKF updating scheme. This is an extension
of the Hierarchical EnKF (HEnKF) (Myrseth and Omre, 2010), where the
unknown covariance matrices, which de�nes the Kalman gain matrix, are
generated separately from analytically tractable posterior distributions. A
comparison between the classical EnKF, the ResEnKF, and the HEnKF
updating scheme is done on a synthetic reservoir example. We observe sig-
ni�cant improvement in the assessment of the prediction variance for both
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the ResEnKF and HEnKF updating schemes compared with the classical
EnKF updating scheme.

New contributions in this paper include the use of the bootstrap to gen-
erate realisations from the unknown pdf of the Kalman gain matrix. This
is somewhat di�erent from traditional applications of the bootstrap, where
a bootstrap estimate of the unknown parameter is formed from the mean of
several realisations from the sample distribution. Furthermore, a heuristic
argument is given why the classical EnKF updating scheme introduces cou-
pling in the updated ensemble members.

Paper V: Ensemble Kalman �ltering in a Bayesian regression

framework

Jon Sætrom, Inge Myrseth and Henning Omre

In this paper, we describe a hierarchical Bayesian extension of the classical
EnKF algorithm, where we assign prior pdfs to the unknown model param-
eters. Rather than using a common plug-in estimate of the Kalman gain
matrix for each updated ensemble member, we generate separate realisation
from analytically matrix-variate posterior pdfs of the unknown Kalman gain
matrix. Again, this can be viewed as an extension of the HEnKF scheme.

We use the connection between the EnKF updating scheme and multi-
variate linear regression to present theoretical results regarding the updated
ensemble members when a common plug-in estimate is used for the Gauss-
linear model. The results show that because the update ensemble members
are coupled through the Kalman gain matrix, the predictive covariance ma-
trix will necessarily be underestimated. These results are in accordance with
previous results and empirical studies in the EnKF literature (Houtekamer
and Mitchell, 1998, 1999; van Leeuwen, 1999; Sacher and Bartello, 2008;
Thomas et al., 2009), although the focus in these studies is on model error
and estimation error in the Kalman gain matrix.

We proceed by evaluating the posterior distribution of the Kalman gain
matrix under two prior models. The �rst one considers a conjugate family
prior (CP), whilst the non-informative Je�reys prior (JP) (Je�reys, 1946) is
used in the second. For both cases, the posterior distribution of the Kalman
gain matrix is of matrix−t type. To handle high dimensional problems ef-
�ciently, we combine the posterior distribution based on the Je�reys prior
with the shrinkage regression techniques of Paper I. This results in the de�ni-
tion of a singular matrix-t distribution from which we can quickly generate
realisations. The synthetic models de�ned in Paper I, are used to evalu-
ate the EnKF updating schemes based on Bayesian regression techniques.
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Improved estimates of the prediction mean and variance is seen compared
with the classical EnKF, both for the conjugate and Je�reys prior models.
When the prior hyperparameters are carefully selected, the EnKF updating
scheme based on the CP distributions provides the best results. However,
for a poorly selected prior distribution the CP-EnKF updating scheme ob-
tain similar results as the classical EnKF updating scheme. We therefore
conclude that the JP-EnKF updating scheme is a more robust alternative.
Moreover, the JP-EnKF updating scheme requires considerably less compu-
tational e�ort than the CP-EnKF updating scheme.

New contributions in this paper include the theoretical results regard-
ing the updated ensemble members in the classical setting when we treat
the Kalman gain as a random matrix. These results explain that because
the conditioned ensemble members are correlated, the estimated prediction
variance will necessarily be underestimated. The results further explain that
applying dimension reduction to the data vector, will reduce the ensemble
coupling. For completeness, we extend the results in Furrer and Bengtsson
(2007) to the multivariate case, where we prove that the EnKF updating
scheme will underestimate the prediction variance without assigning a pdf
to the unknown Kalman gain matrix.

To reduce the ensemble coupling, we use classical result known from
Bayesian regression to de�ne EnKF updating schemes where the Kalman
gain matrix is generated separately for each ensemble member from a
matrix−t distribution. Furthermore, we provide, to our knowledge, a new
formulation of the singular matrix−t distribution, and apply this to e�-
ciently handle models where the dimension of the state and data vector is
large while the ensemble size is small. Shrinkage regression techniques are
used to improve the predictive capabilities of the model.

Paper VI: Enhanced linearised reduced-order models

for subsurface �ow simulation

Jincong He, Jon Sætrom and Louis J. Durlofsky

In this paper, we continue the work done by Marco Cardoso (Cardoso, 2009)
regarding reservoir �ow simulation using the Trajectory Piecewise Linearisa-
tion (TPWL) technique. The goal of this work is to develop a fast, accurate
and stable reservoir �ow simulator speci�cally designed for well-control op-
timisation problems. That is, situations where multiple �ow simulations
are needed for a constant reservoir geology. We identify and address two
problems that can degenerate the TPWL solution: Reconstruction of the
reservoir state vector at important grid blocks and system stability.
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We start this paper with a brief overview of the physical equations gov-
erning the oil and water �ow in a petroleum reservoir, followed by a formu-
lation of the TPWL through a �rst order Taylor expansion of the non-linear
equations and PCA. The information from previously generated training
simulations is used in both the PCA and the Taylor expansion. Next, we
investigate some of the limitations of the previously de�ned TPWL reservoir
simulator. More speci�cally, the limitations of using PCA as a dimension
reduction technique when there is a large di�erence between the schedules
used for training and the simulation well schedules. Because reconstruction
is only necessary at a limited number of reservoir grid blocks, a localised
version of the PCA is suggested, thus eliminating the reconstruction error
in the TPWL scheme.

It is known that stability of the TPWL scheme is not guaranteed if the
PCA dimension reduction technique is used (Bond and Daniel, 2009). The
stability of the TPWL scheme is directly related to the spectral radius of
the ampli�cation matrices that are part of the TPWL representation, which
we show is related to the selected subspace dimension. We therefore pro-
pose two model selection schemes, where both of them improve the stability
properties of the TPWL model by optimising the subspace dimension using
two di�erent prepossessing steps. Both methods are successfully applied to
various reservoir models, where the previously de�ned TPWL scheme was
unstable.

The new contributions in this paper include the use of the localised PCA
dimension reduction technique to eliminate the reconstruction error in the
TPWL scheme. We use the spectral radius of the ampli�cation matrices as
an e�cient tool for model selection in terms of stability. Furthermore, the
TPWL scheme is combined with a generalised pattern-search optimisation
procedure to solve a well-control optimisation problem e�ciently.

1.4.2 Closing Remarks

The most important contribution in this thesis is the development of the
theoretical results in Paper V. These results provides a formula that explain
the behaviour seen in numerous empirical studies in the EnKF literature over
the last decade. We can further explain that applying shrinkage regression
techniques will reduce the ensemble coupling, which leads to improved EnKF
results as seen in Papers I and III.

Another important contribution is the usage of kernel shrinkage regres-
sion techniques to e�ciently handle non-linear likelihood models in an EnKF
setting. One of the major limitations of the classical EnKF updating scheme
is the implicit assumption of a linear relationship between the state and data
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vector. This assumption does not hold for many spatiotemporal models in
both weather forecasting and petroleum reservoir evaluation. The kernel
shrinkage regression techniques can potentially handle this problem, with-
out signi�cantly increasing the computational demands compared with the
classical EnKF updating scheme.

A third and �nal important contribution is the work done to further de-
velop the extremely fast, approximate �ow simulator based on the TPWL
technique. By identifying that reconstruction error and stability are two ma-
jor sources of error in the TPWL, we were able to address these problems
e�ciently. Because solving a well optimisation problem can require thou-
sands of repeated �ow simulations, developing fast approximate simulators
are of obvious interest.

1.5 Further Work

In this thesis, we only consider three shrinkage regression techniques in an
EnKF setting where the L2-norm is in focus. Alternative methods based on
the L1-norm, such as the LASSO (Tibshirani, 1996) and Least Angle Regres-
sion (Efron et al., 2004), will therefore be interesting to consider. Further-
more, a comparative study of the shrinkage regression EnKF schemes de-
scribed in this thesis and the previously suggested EnKF �shrinkage� schemes
based on covariance localisation (Hamill et al., 2001) would be interesting. A
more thorough investigation regarding the properties of the kernel-shrinkage
regression techniques in an EnKF setting is also called for. Alternative for-
mulations, e.g. using techniques known from Bayesian kriging (Omre, 1987),
can also be looked into. We would also like to improve on the error statis-
tics and model validation schemes considered in this thesis. Ideas based
on proper scoring rules (Gneiting and Raftery, 2007), would therefore be
interesting to consider.

Work currently in progress, is the combination of shrinkage regression
techniques and the bootstrap, which combines Papers I, IV, and V. Pre-
liminary results show that this approach can indeed lead to signi�cant im-
provement in the quanti�cation of the prediction uncertainty resulting from
a reduction in the coupling of the updated ensemble members.

Because the TPWL scheme is currently de�ned as a deterministic pro-
cess, it would be interesting to include a stochastic term in the formulation.
With this approach, we can potentially take into account the bias introduced
in the Taylor approximation, and will make it easier to quantify the uncer-
tainty of the predicted well controls. Ideas along the lines of the probabilistic
PCA (Tipping and Bishop, 1999), or the scale-corrected EnKF (Lødøen and
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Omre, 2008) can be considered. Furthermore, the TPWL can potentially be
used to solve both the reservoir characterisation and production optimisa-
tion problem e�ciently. Preliminary work done by Jincong He (He, 2010),
suggest that the TPWL can be used when both the static and dynamic prop-
erties of the reservoir model changes in the training and test simulations.
However, these problems will require a larger number of training simula-
tions compared to the production optimisation problem where the reservoir
geology is constant.

A �nal idea that can be explored is using the TPWL solution as a pro-
posal in a McMC based reservoir characterisation scheme. Through a careful
implementation of the TPWL scheme, we can potentially generate realisa-
tions from the proposal distribution in centiseconds on modern laptop com-
puters, rather than hours or days. Thus, we can potentially eliminate the
time consuming part of the McMC scheme using the TPWL. This opens
the door for solving reservoir evaluation problems where the state vector is
discrete, which is currently considered the crux in petroleum reservoir char-
acterisation. Alternatively, we can in the spirit of the linear regression view
of the EnKF updating scheme, e.g construct posterior probability maps for
the state vector conditioned on the data at each time step using Generalised
Linear Models (McCullagh and Nelder, 1999). Multi-point geostatistical
simulation tools (Strebelle, 2002; Zhang et al., 2006) can then be used to
simulate a new conditioned ensemble at each time step.



Bibliography 17

Bibliography

S. I. Aanonsen, G. Nævdal, D. S. Oliver, A. C. Reynolds, and B. Vallès.
Ensemble Kalman �lter in reservoir engineering - a review. SPE Journal,
14(3):393�412, 2009.

J. L. Anderson. A local least squares framework for ensemble �ltering.
Montly Weather Review, 131(4):634�642, 2003a.

T. W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley,
3 edition, 2003b.

O. E. Barndor�-Nielsen, D. R. Cox, and C. Kluppelberg. Complex Stochastic
Systems. Chapman and Hall, 2001.

B. N. Bond and L. Daniel. Stabilizing schemes for piecewise-linear reduced
order models via projection and weighting functions. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pages
860�867, San Jose, California, 2007.

B. N. Bond and L. Daniel. Stable reduced models for nonlinear descriptor
systems through piecewise-linear approximation and projection. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 28(10):1467�1480, 2009.

G. Burgers, P. J. van Leeuwen, and G. Evensen. Analysis scheme in the En-
semble Kalman Filter. Monthly weather review, 126(6):1719�1724, 1998.

M. A. Cardoso. Development and Application of Reduced-Order Modeling
Procedures for Reservoir Simulation. PhD thesis, Stanford University,
2009.

M. A. Cardoso and L. J. Durlofsky. Linearized reduced-order models for
subsurface �ow simulation. Journal of Computational Physics, 229(3):
681�700, 2010.

A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo
Methods in Practice. Springer, 2001.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression
(with discussion). Annals of Statistics, 32(2):407�499, 2004.

G. Evensen. Sequential data assimilation with nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. Journal of
Geophysical Research, 99:10143�10162, 1994.



18 Introduction

G. Evensen. Data assimilation. The Ensemble Kalman Filter. Springer,
2007.

I. K. Fodor. A survey of dimension reduction techniques. Technical report,
Lawrence Livermore National Laboratory, 2002. Technical Report UCRL-
ID-148494.

R. Furrer and T. Bengtsson. Estimation of high-dimensional prior and poste-
rior covariance matrices in Kalman �lter variants. Journal of Multivariate
Analysis, 98(2):227�255, 2007.

T. Gneiting and A. E. Raftery. Stricly propper scoring rules, prediction and
estimation. Journal of the American Statistical Association, 102(477):
359�378, 2007.

G. Golub and C. van Loan. Matrix Computations. Johns Hopkins University
Press, 1996.

D. Gratton and K. Willcox. Reduced-order, trajectory piecewise-linear mod-
els for nonlinear computational �uid dynamics. In 34th AIAA Fluid Dy-
namics Conference and Exhibit, pages 2004�2329, Portland, Oregon, USA,
2004.

T. M. Hamill, J. S. Whitaker, and L. A. Snyder. Distance-dependent �ltering
of background error covariance estimates in an Ensemble Kalman Filter.
Monthly Weather Review, 129(11):2776�2790, 2001.

T. Hastie, R. Tibshirani, and J. Freidman. The Elements of Statistical Learn-
ing; Data Mining, Inference, and Prediction. Springer, New York, 2 edi-
tion, 2009.

J. He. Enhanced linearized reduced-order models for subsurface �ow simu-
lation. Master's thesis, Stanford University, 2010.

H. Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24(6), 1933.

P. L. Houtekamer and H. L. Mitchell. A sequential Ensemble Kalman Filter
for atmospheric data assimilation. Monthly Weather Review, 129:123�137,
2001.

P. L. Houtekamer and H. L. Mitchell. Data assimilation using an Ensemble
Kalman Filter technique. Monthly Weather Review, 126:796�811, 1998.



Bibliography 19

P. L. Houtekamer and H. L. Mitchell. Reply. Monthly Weather Review, 127
(6):1378�1379, 1999.

P. L. Houtekamer, L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell.
A system simulation approach to ensemble prediction. Monthly Weather
Review, 124:1225�1242, 1996.

A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press,
1970.

H. Je�reys. An invariant form for the prior probability in estimation prob-
lems. Proceedings of the Royal Society of London (Ser. A), 186:453�461,
1946.

S. J. Julier and J. K. Uhlmann. A new extension of the Kalman �lter to
nonlinear systems. In Proceedings of the 12th International Symposium
of Aerospace/Defense Sensing, Simulation and Controls, pages 182�193,
1997.

R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME - Journal of Basic Engineering, 82(Series D):
35�45, 1960.

C. L. Keppenne and M. Rienecker. Assimilation of temperature into an
isopycnal ocean general circulation model using a parallel ensemble kalman
�lter. J. Marine. Sys., 40-41:363�380, 2003.

H. R. Künsch. Recursive monte carlo �lters: Algorithms and theoretical
analysis. The Annals of Statistics, 33(5):1983�2021, 2005.

O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional
covariance matrices. Journal of Multivariate Analysis, 88(2):365�411,
2004.

O. Leeuwenburgh, G. Evensen, and L. Bertino. The impact of ensemble
�lter de�nition on the assimilation of temperature pro�les in the tropical
paci�c. Quarterly Journal of the Royal Meteorological Society, 131(613):
3291�3300, 2005.

O. P. Lødøen and H. Omre. Scale-corrected ensemble kalman �ltering ap-
plied to production history conditioning in reservoir evaluation. SPE Jour-
nal, 13(2):177�194, 2008.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate analysis. Academic
Press, London, 1979.



20 Introduction

P. McCullagh and J. Nelder. Generalized Linear Models. Chapman and Hall,
1999.

H. Moradkhani, S. Sorooshian, H. V. Gupta, and P. R. Houser. Dual state
parameter estimation of hydrological models using Ensemble Kalman Fil-
ter. Advances in Water Resources, 28:135�147, 2005.

I. Myrseth and H. Omre. Hierarchical ensemble kalman �lter. SPE Journal,
15(2):569�580, 2010.

G. Nævdal, H. Mennseth, and E. Vefring. Near-well reservoir moitoring
though Ensemble Kalman Filter., 2003. Presented at the Society of
Petroleum Engineers Annual Technical Conference and Exhibition, Den-
ver, Colerado, USA, 5-8 October 2003, SPE 84372.

H. Omre. Bayesian kriging-merging observations and quali�ed guesses in
kriging. Mathematical Geology, 19:25�39, 1987.

H. Omre and H. Tjelmeland. Geostatistics Wollongong 96, Vol I, chapter
Petroleum Geostatistics, pages 41�52. Kluwer Acad. Publ., 1997.

K. Pearson. On lines and planes of closest �t to systems of points in space.
Philosophical Magazine, 2:559�572, 1901.

M. J. Rewienski. A Trajectory Piecewise-Linear Approach to Model Order
Reduction of Nonlinear Dynamical Systems. PhD thesis, Massachusetts
Institute of Technology, 2003.

W. Sacher and P. Bartello. Sampling errors in Ensemble Kalman �ltering.
Part I: Theory. Monthly Weather Review, 136(8):3035�3049, 2008.

G. A. F. Seber and A. J. Lee. Linear Regression Analysis. Wiley, 2003.

S. Strebelle. Conditional simulation of complex geological structures using
multiple-point statistics. Mathematical Geology, 34(1):1�21, 2002.

S. J. Thomas, J. P. Hacker, and J. L. Anderson. A robust formulation of
the ensemble Kalman �lter. Quarterly Journal of the Royal Meteorological
Society, 135:507�521, 2009.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B, 58(1):267�288, 1996.

M. E. Tipping and C. M. Bishop. Probabilistic Principal Component Anal-
ysis. Journal of the Royal Statistical Society, Series B, 61(3):611�622,
1999.



Bibliography 21

L. van der Maaten, E. Postma, and J. van den Herik. Dimensionality reduc-
tion: A comparative review. Technical report, Tilburg University, 2009.
Technical Report, TiCC-TR 2009-005.

P. J. van Leeuwen. Comments on "Data assimilation using an Ensemble
Kalman Filter technique". Monthly Weather Review, 127:1374�1377, 1999.

D. Vasilyev, M. Rewienski, and J. White. Macromodel generation for
BioMEMS components using a stabilized balanced truncation plus tra-
jectory piecewise-linear approach. IEEE Transactions on Computer-aided
Design of Integrated Circuits and Systems, 25(2):285�293, 2006.

Y. J. Yang and K. Y. Shen. Nonlinear heat-transfer macromodeling for
MEMS thermal devices. Journal of Micromechanics and Microengineer-
ing, 15(2):408�418, 2005.

T. Zhang, P. Switzer, and A. G. Journel. Filter-based classi�cation of train-
ing image patterns for spatial simulations. Mathematical Geology, 38(1):
63�80, 2006.





Papers





Paper I

Ensemble Kalman �ltering with shrinkage

regression techniques

Jon Sætrom and Henning Omre

Paper accepted for publication in Computational Geosciences,
DOI: 10.1007/s10596-010-9196-0.

The original publication is available at springerlink.com.





Chapter 2

Ensemble Kalman �ltering

with shrinkage regression

techniques

Abstract. The classical Ensemble Kalman Filter (EnKF) is known to un-
derestimate the prediction uncertainty. This can potentially lead to low
forecast precision and an ensemble collapsing into a single realisation. In
this paper we present alternative EnKF updating schemes based on shrink-
age methods known from multivariate linear regression. These methods
reduce the e�ects caused by collinear ensemble members, and have the same
computational properties as the fastest EnKF algorithms previously sug-
gested. In addition, the importance of model selection and validation for
prediction purposes is investigated, and a model selection scheme based on
Cross-Validation is introduced. The classical EnKF scheme is compared
with the suggested procedures on two toy examples and one synthetic reser-
voir case study. Signi�cant improvements are seen, both in terms of forecast
precision and prediction uncertainty estimates.
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2.1 Introduction

The Ensemble Kalman Filter (EnKF) is a Bayesian data assimilation method
that in recent years has become popular when considering data assimilation
for nonlinear spatiotemporal models (Aanonsen et al., 2009; Evensen, 2007).
The EnKF is based on the classical Kalman Filter (KF) (Kalman, 1960).
Assuming a Gaussian initial prior, with a linear and Gaussian forward and
likelihood model, termed the Gauss-linear model, the KF provides an ana-
lytical solution for the posterior probability distribution.

The main assumption of the EnKF is that the unconditional distribu-
tion at each timestep approximately follows a Gaussian distribution with
unknown mean and covariance. In the EnKF the idea is therefore to use
an ensemble of realisations to estimate these two unknown statistics. Under
the Gauss-linear model, the EnKF is then consistent with the KF as the
ensemble size approaches in�nity (Mardia et al., 1979).

From multivariate statistics (Anderson, 2003b), we know that the classi-
cal EnKF updating scheme (Evensen, 1994) can be formulated as a multivari-
ate regression problem (Anderson, 2003a). The least squares solution for the
matrix of regression coe�cients is then given as the estimated Kalman gain,
expressed in terms of the estimated unknown covariance matrices. However,
it is not guaranteed that this estimator is good for prediction purposes.
This is especially true for regression models where the predictor variables
are collinear, or when the regression model is computed based on dependent
realisations (Farrer and Glauber, 1967). As shown in Myrseth et al. (2009),
the traditional EnKF updating scheme under the Gaussian approximation
violates the assumption of independent realisations, because they are cou-
pled through the estimated Kalman gain matrix. Hence, we should expect
that improved estimators of the regression coe�cient matrix can be found
in these cases.

In multivariate linear regression, there exist several di�erent approaches
to avoid over�tting a regression model with collinear predictor variables,
known as shrinkage methods. Some introduce regularisation terms, while
others aim to estimate the regression coe�cients based on data in a reduced
order space. In this paper we will consider the following methods: Principal
Component Regression (PCR) (Hotelling, 1933; Jolli�e, 2002) and Partial
Least Squares Regression (PLSR) (Rosipal and Krämer, 2006; Wold, 1975).

Shrinkage estimators in multivariate regression require that a prior hy-
perparameter is selected. For methods based on PCR or PLSR, this means to
select the dimension of a reduced order subspace. The most common method
used to accomplish this task is to look at the total variance explained by
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the selected Principal Components (PC) (Jolli�e, 2002). However, such an
approach does not take into account the predictive capabilities of the esti-
mated regression model, and can lead to situations where we either over�t,
or under�t the model to the data (Seber and Lee, 2003; Cook, 2007). The
method usually applied in shrinkage regression, is therefore to base the selec-
tion of the hyperparameter on Cross-Validation (CV) (Efron, 2004) in order
to avoid this potential problem.

Shrinkage estimators which are based on dimension reduction techniques
are for computational reasons the natural approach to consider when assim-
ilating high dimensional data, such as time-lapse seismic. Shrinkage type es-
timators for the Kalman gain have therefore already been used in an EnKF
setting (Skjervheim et al., 2007). It has also been noted (Evensen, 2007,
Chapter 14) that the results obtained when using shrinkage estimators are
indeed dependent on the selection of the prior hyperparameter used. How-
ever, the importance of the number of components retained in the reduced
order space to avoid over�tting, has seemingly been overlooked in most of
the EnKF literature. Moreover, because PCR is based on an unsupervised
dimension reduction technique, all components that are important for pre-
dictive purposes can potentially be discarded, unless model validation is
performed (Cook, 2007; Hadi and Ling, 1998; Jolli�e, 1982, 2002).

In this paper we have formulated the EnKF using shrinkage-based re-
gression techniques. The suggested procedures have the same computational
complexity and memory requirements as the fastest implementations of the
EnKF (Evensen, 2003). We have further demonstrated the approach on the
following case studies: A Gauss-linear model, a non-linear forward model
with a linear Gaussian likelihood, and a synthetic reservoir example.

2.2 Notation and Model Formulation

Throughout this paper the notation x ∈ Rnx×1 will be used to denote that x
is an nx-dimensional column vector in the real space and xT will denote its
transpose. Similarly, we will write A ∈ Ra×b to denote that A is a matrix in
the real space containing a rows and b columns. Note that the same notation
will be used for both scalars and random variables.

Probability density functions (pdfs) will be denoted by f(x), and the
notation x ∼ f(x), implies that the random vector x follows the pdf f(x).
As a special case we will let a random vector x, following the Gaussian
distribution with mean vector µx and covariance matrix Σx, be denoted by
x ∼ Gaussnx(µx,Σx). Conditional pdfs of x given y will further be denoted
by f(x|y).
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dtK

xtK+1

. . .

xt1

. . .

xt0
xtK

dt0
dt1

Figure 2.1: Stochastic Directed Acyclic Graph (DAG) of the model considered.

Consider the stochastic Directed Acyclic Graph (DAG) (Ripley, 1996)
outlined in Figure 2.1. Here, xtk ∈ Rnx×1 denotes the state of the unknown
random vector of interest at timestep k and time tk, and similarly dtk ∈
Rnd×1 denotes the vector of observed data. For notational convenience we
will from now on drop the subscript tk, and simply write xk, dk. Also note
that we will for simplicity refer to x and d as the state and observation
vector respectively.

Through the Markov property of a stochastic DAG, we have conditional
independence between xk+1 and xl, l = 0, . . . , k − 1 given xk, meaning:

f(xk+1|xk,xk−1, . . . ,x0) = f(xk+1|xk), k = 0, . . . ,K.

In general assume that

xk+1 = ω(xk, εxk
), k = 0, . . . ,K, (2.1)

where ω : (Rnx×1×Rnx×1)→ Rnx×1 is a known, possibly non-linear forward
function. Here εxk

represents random model errors or numerical errors in the
forward model, assumed to follow a known probability distribution. Further
assume that observed data dk is connected to xk by:

dk = ζ(xk, εdk
), k = 0, . . . ,K, (2.2)

where ζ : (Rnx×1 × Rnd×1)→ Rnd×1, is a known, possibly non-linear, func-
tion and εdk

represents the observation error, again assumed to follow a
known pdf.

The aim in this model setting is to solve the spatiotemporal forecast
problem of �nding the unknown state vectors:

xc
k ∼ f(xk|d0:k) and xu

k+1 ∼ f(xk+1|d0:k),

for k = 1, . . . ,K, where we for notational convenience use the notation
d0:l = {d0, . . . ,dl}, l > 0. Bayesian inversion provides a sequential solution
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to this problem. By de�ning a prior probability model for the state vec-
tor at the initial timestep, f(x0), the state of the unknown vectors xc

k and
xu

k+1, can be assessed by sampling from the respective posterior distribu-
tions. Through the use of Bayes rule and the Markov properties of a DAG,
these pdfs are given as:

f(xk|d0:k) ∝ f(xk|d0:(k−1))f(dk|xk)

f(xk+1|d0:k) =
∫

f(xk+1|xk)f(xk|d0:k)dxk. (2.3)

Note that the conditional pdfs f(xk+1|xk) and f(dk|xk) are implicitly de-
�ned through ω(xk, εxk

) and ζ(xk, εdk
) de�ned in Eqs. (2.1) and (2.2)

respectively.
Generally we only know the conditional distributions de�ned in Eq. (2.3)

up to an unknown normalising constant. Computationally demanding tech-
niques such as Markov chain Monte Carlo (McMC) or Rejection Sampling
can therefore be used to assess the correct posterior distribution (Doucet
et al., 2000). For applications such as petroleum reservoir evaluation, us-
ing these techniques are, however, computationally prohibitive because even
a single evaluation of ω(xk, εxk

), known as �uid �ow simulation, can take
several hours, or even days.

An approximative approach can be de�ned by assuming that xu
k and

dk are from a family of probability density functions that ensures analytical
tractability of f(xk|d0:k). As an example, assume that xu

k and dk are jointly
Gaussian. Then the posterior distribution at timestep k will also be Gaus-
sian. These model assumptions are equivalent to those made in the classical
EnKF, which we will consider next.

2.3 Classical Ensemble Kalman Filter

In general assume that the output of the forward- and likelihood model are
distributed as:[

xu
k

dk

]
∼ Gaussny

([
µxk

µdk

]
,

[
Σxk

Σxk,dk

Σdk,xk
Σdk

])
, (2.4)

where ny = nx + nd. For notational convenience, we will from now on omit
the subscript k, as the main focus is a single timestep.

Under the Gaussian assumption above, the posterior pdf f(xc
k) will be

Gaussian (Mardia et al., 1979) with analytically obtainable mean:

µx|d = µx + Σx,dΣ−1
d (d− µd), (2.5)
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and covariance matrix:

Σx|d = Σx −Σx,dΣ−1
d ΣT

x,d. (2.6)

Let y(i) = [xu(i)T
,d(i)T

]T ∈ Rny×1 be a realisation from the Gaussian distri-
bution de�ned in Eq. (2.4). Then,

xc(i) = xu(i) + Σx,dΣ−1
d (d− d(i)), (2.7)

is a realisation from the Gaussian posterior distribution with mean and
covariance given in Eqs. (2.5) and (2.6). This can easily be shown by
recognising that the Gaussian distribution is closed under linear operations
and by computing the mean and covariance of xc(i), because the Gaussian
distribution is completely speci�ed through the �rst and second moments
(Mardia et al., 1979).

Eq. (2.7) involves two model parameters, namely Σx,d and Σd forming
the Kalman gain matrix,

K = Σx,dΣ−1
d ∈ Rnx×nd .

In a general setting such as the one considered here, these model parame-
ters are unknown. The EnKF solution to this problem is therefore to use an
ensemble of realisations to obtain empirical estimates of the unknown covari-
ance matrices. Hence, let X and D be the centred state- and observation
vector ensembles respectively. That is, X = [x(1) − µ̂x, . . . ,x(ne) − µ̂x] ∈
Rnx×ne , where µ̂x denotes the classical estimator of the mean value with
a corresponding expression for D ∈ Rnd×ne . Consistent estimators for the
unknown covariance matrices are then given as

Σ̂d =
1
ne
DDT

and

Σ̂x,d =
1
ne
XDT .

Replacing the unknown covariance matrices in Eq. (2.7) with any consistent
empirical estimates, then ensures that xc(i) is a sample from the Gaussian
posterior distribution above as ne → ∞ (Mardia et al., 1979). Note that
throughout this paper we will for notational convenience let all ensemble
matrices be centred, unless otherwise stated.

Central in the EnKF updating scheme is the estimated Kalman gain
matrix:

K̂ = Σ̂x,dΣ̂
−1
d . (2.8)
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From multivariate statistical theory (Mardia et al., 1979), we know that
this is equivalent to the least squares estimate of the matrix of regression
coe�cients in a multivariate linear regression setting (Seber and Lee, 2003):

K̂ = arg min
K

tr
{
(X −KD)(X −KD)T

}
,

where tr(·) denotes the trace operator. The analytical rank of the Kalman
gain is known to be equal to min{nx, nd, ne−1}. Hence, K̂ will be rank de�-
cient if the number of ensemble members is smaller or equal to min{nx, nd}.
This will have direct consequences for the computation of Σ̂

−1
d , because this

matrix will be positive semi-de�nite.
Although, Σ̂d can be ensured to have full rank either through regularisa-

tion or Monte Carlo simulation (Myrseth et al., 2009), Σ̂x,d may still su�er
from rank de�ciency. Moreover, both matrices are likely to su�er from esti-
mation uncertainty (Furrer and Bengtsson, 2007; Houtekamer and Mitchell,
1998, 1999; van Leeuwen, 1999; Sacher and Bartello, 2008) resulting from
a limited number of ensemble members. Several di�erent approaches have
been suggested in the EnKF literature in order to handle these problems
such as localisation and in�ation (see Myrseth and Omre (2010) or Aanonsen
et al. (2009) and references therein). Most of these methods, however, focus
on improving the estimates of the unknown covariance matrices, and not the
Kalman gain itself. One explanation for this might be that in situations with
a linear likelihood model, having additive Gaussian noise: d = Hx + εd,
the Kalman gain matrix can be written as:

K = ΣxHT
(
HΣxHT + Σεd

)−1
, (2.9)

where Σεd ∈ Rnd×nd is the covariance matrix of the observations errors,
assumed to be known. Hence, the covariance matrix of the state vector
is the only unknown parameter that requires estimation. Note that this
corresponds to the classical estimator used for linear Gaussian likelihood
models in an EnKF setting (Evensen, 1994). Further note that for non-linear
likelihood models with an additive noise term, the state vector can always
be augmented by y = [xT ,dT ]T , so that the EnKF updating scheme can be
written in a similar manner as described in Eq. (2.9). Here d corresponds
to the deterministic part of the likelihood model with additive noise.

In multivariate linear regression there exists several di�erent techniques
that improve the estimated matrix of regression coe�cients in the presence
of collinear data. These are referred to as shrinkage regression methods
(Hastie et al., 2009), and we will use these approaches in an EnKF setting
to obtain alternative estimates of K.
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2.4 Shrinkage Regression Methods

Consider the linear regression problem:

[x|d] = Kd+ εx|d,

where εx|d corresponds to the model error in the regression model. Here,
the goal is to estimate the unknown matrix of multiple linear regression
coe�cients K, based on a set of observed data X and D. An optimal
estimate should then be selected such that a regression model with good
prediction capabilities is provided.

Consider the well known problem of estimating a function based on the
observed data. Fitting the model perfectly to the available data increases the
model complexity and lowers the prediction bias with respect to the training
data. However, when the model is used in a predictive setting when new data
are available, this can lead to poor results with a high variability. On the
other hand, under�tting the model by selecting a too simplistic model will
lower the variability, but increase the bias. Hence, the optimal model should
be selected such that both bias and variability are kept on a tolerable level
as illustrated in Figure 2.2. As we can see from this �gure, the prediction
error for a test data set will tend to increase in situations where the model
is over�tted to the training data.

Shrinkage regression methods focus on the model �tting problem by sac-
ri�cing the unbiasedness of the classical least squares estimator. In this
paper we will consider the following methods: Principal Component Regres-
sion (PCR) and Partial Least Squares Regression (PLSR).

2.4.1 Principal Component Regression

PCR is based on principal component analysis, which aims at explaining the
structure of the data ensemble through a small number of vectors, termed
Principal Components (PC):

z1 = (uT
1D)T , . . . ,zp = (uT

pD)T ∈ Rne×1.

The sample PC are selected based on the following criteria:

zi = (uT
i D)T ←


maxui

{
uT

i Σ̂dui

}
‖ui‖2 = 1
zT

i zj = 0, for all j < i, i = 1, . . . , p,

where ‖·‖2 denotes the Euclidean norm. It can be shown (Anderson, 2003b)
that the ith sample PC direction ui is given as the ith eigenvector of the



2.4 Shrinkage Regression Methods 35

(DTrain,XTrain)

L
ow

H
ig

h

Low High

Low Bias

High Variance
High Bias

Low Variance

P
re

d
ic

ti
on

E
rr

or

Model Complexity

Test Data
(dTest,xTest)

Training Data

Figure 2.2: Tradeo� between Bias and Variance: Over�tting the data by increas-
ing the model complexity tend to increase the variance in model pre-
dictions. Based on a similar �gure found in Hastie et al. (2009).

covariance matrix Σ̂d. Further, it can be shown that the variance explained
by the ith PC is given by the ith eigenvalue λi of Σ̂d, where λ1 > λ2 > . . . >
λp. Under the assumption that the p sample PC, Z = [z1, . . . ,zp]T ∈ Rp×ne ,
su�ciently represents D, the matrix of regression coe�cients can then be
estimated based on Z, which gives:

K̂PCR = XZT
(
ZZT

)−1
.

As shown in Appendix 2-A, PCR can be e�ciently implemented using Sin-
gular Value Decomposition (SVD).

Because the variance of each sample PC is given as the corresponding
eigenvalue of the sample covariance matrix, the criterion often used for se-
lecting p in a PCR setting is to look at the total variance explained by the
�rst p components given as:

p∑
i=1

λi/

r∑
i=1

λi,

where r = rank(Σ̂d). However, as noted above, this criterion does not take
into account the predictive capabilities of the various PC, and we can end
up either over�tting or under�tting the regression model.
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2.4.2 Partial Least Squares Regression

Consider the DAG shown in Figure 2.3, which gives a graphical represen-
tation of the PLSR model assumptions. Similar to PCR, PLSR aims to
represent D in a reduced order space, before �tting the regression model.
The underlying assumption is that T = [t1, . . . , tp] ∈ Rne×p and W =
[w1, . . . ,wp] ∈ Rne×p represent the information in X and D respectively.
It is further assumed that (w1, t1) captures more information than (w2, t2),
and so forth, and that the pairs (wi, ti), i = 1, . . . , p also explain the corre-
lation between X and D (Zeng et al., 2007). Hence, while PCR only does
a dimension reduction on D independent of the values in X, the classical
PLSR algorithm selects the latent variables ti = DTψi ∈ Rne×1 with the
largest dependency on wi = XTυi ∈ Rne×1, that is for i = 1, . . . , p:[

ti = DTψi

wi = XTυi

]
←

 maxψi,υi
{υT

i Σ̂x,dψi}
‖ψi‖2 = 1, ‖υi‖2 = 1
tTi tj = 0, for all j < i.

This problem can be solved sequentially using the Non-linear Iterative
Partial Least Squares (NiPALS) procedure (Rosipal and Krämer, 2006), or
simultaneously by computing the SVD of the estimated covariance matrix
Σ̂x,d (Barker and Rayens, 2003). The matrices of latent variables T and
W can then be obtained using the matrices Ψ ∈ Rnd×p and Υ ∈ Rnx×p,
corresponding to the �rst p left and right singular vectors of Σ̂x,d.

Similarly to PCR, we assume that the latent variables T are good pre-
dictors for D. In addition we assume that W = βT + εT where β is a
diagonal matrix and εT is a residual term. That is, there is a linear rela-
tionship between each element of wi and ti, i = 1, . . . , p (Kaspar and Ray,
1993). As shown in Rosipal and Krämer (Rosipal and Krämer, 2006), the
PLSR estimate of the Kalman gain KPLSR is then given as:

K̂PLSR = XT
(
W TDTDT

)−1
W TDT . (2.10)

2.4.3 Comments

The PCR and PLSR methods have the same computational complexity and
memory requirements as the fastest implementation of the EnKF as ex-
plained in Appendix 2-B. Note also that the PCR and PLSR methods are
in general not scale invariant. This implies that the data ensemble matrix
should be standardised before the dimension reduction, when the data are
collected on di�erent scales (Mardia et al., 1979). Finally it is interesting to
note that the shrinkage estimators of the Kalman gain, previously applied
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Figure 2.3: Graphical presentation of the model assumptions made in PLSR, in-
spired by a similar �gure found in Zeng et al. (2007). Connected lines
implies that there is a direct connection between the variables, while
dashed lines implies an implicit connection.
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in the EnKF literature (Evensen, 2007), can be thought of as hybrid meth-
ods combining Tikhonov regularisation (Tikhonov and Arsenin, 1977) and
PCR. The regularisation term in these approaches is given by the covariance
matrix of the observation errors, or a corresponding low rank representation.

2.4.4 Cross-Validation

The estimated matrix of regression coe�cients will for all three methods
be dependent on the choice of some hyperparameter θ, denoted K ·(θ). For
both PCR and PLSR, this is the dimension of the reduced order space p. As
discussed above, there is a tradeo� between how well a model is �tted to the
training data, and how well it is suited for prediction purposes. To determine
this tradeo�, CV is often used. The idea used in CV is to randomly split the
ensembles into one set used for model �tting: Y Train = [XT

Train,D
T
Train]

T ∈
Rny×nTrain , and one set used for testing the prediction capabilities: Y Test =
[XT

Test,D
T
Test]

T ∈ Rny×nTest . Here nTrain and nTest are used to denote the
number of members in the training and test ensembles respectively. If Y Train

consists of all realisations except y(i), this is referred to as leave-one-out CV,
and a brute implementation will increase the computational time with O(n2

e)
to the regression method used. Splitting the data into m sized portions
randomly, and sequentially using m data points for testing and the remaining
m− 1 part for model �tting purposes, is referred to as m-fold CV. This will
increase the computational e�ort with O(ne). Typical values used for m in
m-fold CV are 5 or 10 (Hastie et al., 2009). The optimal regression model
can then be selected by minimising the Predictive Error Sum of Squares
(PRESS) statistic, de�ned as:

PRESS(θ) =
nTest∑
i=1

‖x(i)
Test − K̂ ·(θ)d

(i)
Test‖

2
2. (2.11)

To avoid over�tting of the regression model to the data when using the
PCR and PLSR technique, a penalised version of the original PRESS statis-
tic is given as:

PRESSpen(p) =
nTest∑
i=1

‖x(i)
Test − K̂ ·(p)d(i)

Test‖22
(min{ne, nd + 1} − p)2

.

Note that PRESSpen is similar to the generalised PRESS statistic, which is
an estimate of the leave one out CV prediction error. This follows because
the e�ective degrees of freedom, de�ned as tr(K̂(p)D) (Hastie et al., 2009),
is equal to p for both PCR and PLSR.
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Finally it should be noted that applying the CV scheme does not nec-
essarily lead to an increase in the computational demands. This follows
because CV can be equally performed in the reduced order space (Hastie
and Tibshirani, 2004). A more thorough discussion regarding the computa-
tional properties of the CV scheme can be found in Appendix 2-B.

2.5 Empirical Study

We consider two test cases similar to the ones used in Myrseth and Omre
(2010), where the unknown vector of interest, xk, k = 0, . . . , 10, with nx =
100. Here xj,k denotes the variable of interest at timestep k and location
j, with j = 1, . . . , 100. Observations are assumed to be made at timesteps
0, . . . , 9, and the objective of this study is to assimilate the observed data,
and predict at timestep 10.

The �rst test case, referred to as the linear case, is de�ned as a Gaussian
prior at timestep zero, a linear forward function, and a linear Gaussian
likelihood model:

x0 ∼ Gaussnx(0,Σx0)
xk = Akxk−1

dk = Hxk + εdk
,

where 0 is the null-vector of proper dimensions. Here Σx0 is constructed
based on an exponential covariance function,

Cov(xi0, xj0) = 20 exp
{
− 3

20
|i− j|

}
, (2.12)

the forward model is de�ned by the sparse matrix Ak, where the elements
Akl,m

for {5(k − 1) < l, m ≤ 5(k + 1)}, are displayed in Figure 2.4 with
Akl,m

= δl,m otherwise, and εdk
∼ Gaussnd

(0, I). H is a sparse matrix with
elements equal to one at the grid locations displayed in Figure 2.5. Here we
also see that observation di =

∑1
l=−1 xj+l, i = 1, . . . , nd, at 13 di�erent grid

locations j.
The second test case, referred to as the non-linear case, considers the

same prior and likelihood as in the linear case de�ned above. Here, however,
the forward model is de�ned as the non-linear function:

xk = cAk(xk−1 + arctan(xk−1)),

where c = 0.8 is a scaling factor which ensures an approximate alignment of
the variances for the non-linear and linear case (Myrseth and Omre, 2010),
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Figure 2.4: Graphical presentation of the elements of the matrix Akl,m
, for 5(k−

1) < l,m ≤ 5(k + 1), for the forward model in the empirical case
study. At all other grid locations Akl,m

= δl,m
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Figure 2.5: Graphical presentation of the non-zero elements of the matrixH, for
the likelihood model in the empirical case study.
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and the functional arctan(·) acts on the argument element-by-element. Note
that because of the construction of Ak, the state vector contains both dy-
namic (elements 1 through 55) and static variables (elements 56 through
100), similar to what we have in a reservoir setting.

2.5.1 Results with Discussion

We have considered the following EnKF updating schemes:

• Classical EnKF: Estimated Kalman gain matrix computed based on
Eq. (2.9) using the correct Σεd .

• PCR-0.99-EnKF: p selected based on the estimated proportion of ex-
plained variance (99 percent)

• PCR-CV-EnKF: p selected based on 10-fold CV and PRESSpen.

• PLSR-CV-EnKF: p selected based on 10-fold CV and PRESSpen.

The same initial ensemble and random numbers were used for all four up-
dating schemes, with two di�erent ensemble sizes: ne = 100 and ne = 20.
We also applied the CV criterion suggested by Hastie et al. (2009), described
in Appendix 2-B, to further avoid the problem of over�tting.

2.5.2 Linear Case

For the linear case, the prediction mean, E [xu
10], and 95% prediction in-

terval are analytically obtainable using the KF recursions, and the results
are displayed in Figure 2.6a. The results obtained when applying the four
di�erent schemes outlined above, are displayed in Figures. 2.6b through i.

As we can see from Figure 2.6b, the result obtained using the classical
EnKF updating scheme is relatively reliable for ne = 100. The classical
EnKF solution matches the KF solution fairly well, although we do not
see the same smooth behaviour in the estimated ensemble mean as seen
in the KF solution. Moreover, there is a tendency of underestimating the
prediction uncertainty. For ne = 20, however, both the estimated mean and
the prediction interval deviates dramatically from the KF solution. This is
particularly true for grid nodes 1 to 35 and 65 to 100, where we have less
observed data.

The estimated posterior mean obtained using the PCR-0.99-EnKF up-
dating scheme matches the KF solution fairly well for ne = 100. However,
the estimated prediction interval is severely underestimated, and we are not
able to capture the reference solution within the prediction interval. For
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Figure 2.6: Results obtained when running four di�erent EnKF updating schemes
on the linear case with two di�erent ensemble sizes. The �gure dis-
plays the reference xTrue

10 (solid), the ensemble mean (dotted, black)
and the estimated 95% con�dence bounds of the prediction interval
(solid, gray).
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the smallest ensemble size, ne = 20 the estimated posterior mean is highly
variable and there is little uncertainty in the predictions as the updated
ensemble has almost collapsed completely.

The obtained posterior mean using the PCR-CV-EnKF updating scheme
appears to be a reliable estimate of the KF posterior mean for ne = 100.
Similarly we see that the estimated prediction interval matches the KF so-
lution reasonably well between grid nodes 35 and 65. In the area where
the data are observed less frequently, however, the PCR-CV-EnKF updat-
ing scheme is not able to reduce the uncertainty at the observation sites.
For ne = 20, the posterior mean deviates more from the KF solution and
is less smooth than for ne = 100. The reference solution is reasonably well
captured within the prediction interval, although the prediction interval is
slightly underestimated relative to the KF solution. However, the results
still appear to be relatively reliable.

The PLSR-CV-EnKF scheme is able to get a good representation of the
KF solution for ne = 100, both in terms of the estimated posterior mean
and prediction interval. By decreasing the ensemble size to ne = 20, the
scheme is still able to obtain reasonable results, even though the prediction
uncertainty is underestimated.

High variability in the estimated posterior mean and underestimation of
the prediction interval are problems occurring in all four schemes when the
ensemble size is only 20. The match with the KF solution is, however, rea-
sonably good when using the PCR-CV-EnKF and PLSR-CV-EnKF schemes.
For the two other schemes, the estimated posterior mean has a high vari-
ability and we see a dramatic underestimation of the prediction uncertainty.

Increasing the ensemble size to ne = 100, improves the estimates of
the posterior mean and prediction intervals for all four updating schemes.
However, the classical EnKF and PCR-0.99-EnKF schemes tend to under-
estimate the prediction uncertainty. The best overall match with the KF
solution is obtained using the PLSR-CV-EnKF updating scheme.

To further quantify the performance of the four updating schemes, the
algorithms are rerun 100 times using di�erent initial ensembles. Here we
consider the Root Mean Squared Error (RMSE), µ̂x|d − µx|d, where µ̂x|d
is the average of the updated ensemble after the �nal updating step and
µx|d is the true posterior mean, and the percentage of the reference solution
covered by the estimated prediction intervals. We calculate the coverage by
estimating the 95%-prediction interval at each grid location and see if the
reference solution is captured. The results are shown in Table 2.1. Here we
also include the estimated RMSE of the posterior mean and coverage when
the initial ensemble is run through the forward model without conditioning
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ne Scheme RMSE Coverage
µ̂x|d %

20 No Updating 9.96 89
20 Classical EnKF 9.96 24
20 PCR-0.99-EnKF 11.4 1
20 PCR-CV-EnKF 7.26 58
20 PLSR-CV-EnKF 6.53 59

100 No Updating 4.39 96
100 Classical EnKF 1.75 84
100 PCR-0.99-EnKF 2.42 53
100 PCR-CV-EnKF 1.74 92
100 PLSR-CV-EnKF 1.49 96

Table 2.1: Estimated Root Mean Squared Error (RMSE) of the posterior mean,
µ̂x|d, and coverage of the reference solution in the estimated 95% pre-
diction intervals for the linear case based on 100 di�erent initial en-
sembles.

on the observed data, referred to as the No Updating scheme. As we can
see from this table, the estimated RMSE of the posterior mean decrease
signi�cantly for all four EnKF schemes when ne = 100. Compared to the
estimated RMSE of the initial ensemble, the PLSR-CV-EnKF scheme shows
the largest improvement with a 66 percent decrease. For ne = 20, however,
the classical EnKF updating scheme is not able to improve the RMSE, while
the PCR-0.99-EnKF scheme leads to an increase in RMSE compared to the
initial ensemble. Again PLSR-CV-EnKF has the smallest RMSE with a
reduction of 34 percent from the initial ensemble.

The coverage of the respective estimated 95% prediction intervals, is seen
to be signi�cantly underestimated for both the classical EnKF, and PCR-
0.99-EnKF schemes. This is especially true for ne = 20, where the prediction
interval based on the PCR-0.99-EnKF solution only covers one percent of
the reference solution. The PCR-CV-EnKF and PLSR-CV-EnKF updating
schemes have similar and more reliable estimates of the prediction intervals,
with the latter being slightly better than the former.

2.5.3 Non-Linear Case

For the non-linear case, analytical tractability is lost, we therefore use the
results obtained with the classical EnKF with ne = 100 000, displayed in
Figure 2.7a, for comparison. The four di�erent EnKF updating schemes
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ne Scheme RMSE Coverage
µ̂x|d %

20 No Updating 10.2 89
20 Classical EnKF 8.07 21
20 PCR-0.99-EnKF 8.95 1
20 PCR-CV-EnKF 6.63 65
20 PLSR-CV-EnKF 5.88 65

100 No Updating 4.48 96
100 Classical EnKF 1.52 79
100 PCR-0.99-EnKF 2.19 56
100 PCR-CV-EnKF 1.76 92
100 PLSR-CV-EnKF 1.25 93

Table 2.2: Estimated Root Mean Squared Error (RMSE) of the posterior mean,
µ̂x|d, and coverage of the reference solution in the estimated 95% pre-
diction intervals for the non-linear case based on 100 di�erent initial
ensembles.

outlined above, provide the results shown in Figures 2.7b through i. Sim-
ilar to the linear case, we see that the estimated posterior mean for the
classical EnKF scheme is highly �uctuating with a severely underestimated
prediction interval when ne = 20. The most severe problems are in the
PCR-0.99-EnKF solution, with a completely collapsed ensemble for ne = 20.
For both the PCR-CV-EnKF and PLSR-CV-EnKF schemes we observe rel-
atively reasonable results when ne = 20 and 100. The PCR-CV-EnKF
scheme, however, tends to overestimate the prediction uncertainty at data
locations for ne = 100.

To quantify the performance the four schemes are rerun using 100 dif-
ferent initial ensembles. The results are shown in Table 2.2. Similar to the
linear case, the PLSR-CV-EnKF scheme show the best performance in terms
of estimated RMSE of the posterior mean and coverage for both ensemble
sizes. Both the classical EnKF, and the PCR-0.99-EnKF schemes fail to
cover the reference solution within their respective 95% prediction intervals
for ne = 20.

2.5.4 Ensemble Size

The number of ensemble members needed to achieve at least a 92% cov-
erage of the reference solution in the respective estimated 95% prediction
intervals are shown in Table 2.3. As we can see from this table, the classical
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Figure 2.7: Results obtained when running four di�erent EnKF updating schemes
on the non-linear case with two di�erent ensemble sizes. The �g-
ure displays the reference xTrue

10 (solid), the ensemble mean (dotted,
black) and the estimated 95% con�dence bounds of the prediction
interval (solid, gray).
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Scheme Linear Case Non-Linear Case

Classical EnKF 300 1 000
PCR-0.99-EnKF 550 1 250
PCR-CV-EnKF 100 100
PLSR-CV-EnKF 60 90

Table 2.3: Ensemble size ne required to achieve at least a 92 percent coverage of
the reference state vector within the estimated 95 percent prediction
interval for the four EnKF updating schemes considered for the em-
pirical case study. Estimates are based on 100 reruns using di�erent
initial ensembles.

EnKF updating scheme requires 5 times as many ensemble members as the
PLSR-CV-EnKF scheme for the linear case, and 11 times as many ensemble
members for the non-linear case.

Note also that the classical EnKF requires three times as many ensemble
members in the non-linear case, compared to the linear case. This e�ect is
believed to be caused by the non-linear forward model, because the Gaussian
assumption made in Eq. 2.4 in this case is violated.

2.5.5 Summary

For both the linear and non-linear case the PLSR-CV-EnKF updating
scheme gave the best representation of the reference posterior mean and pre-
diction intervals. The PCR-CV-EnKF scheme tended to overestimate the
prediction uncertainty at grid locations where data were sparsely observed
for ne = 100. The reason for this behaviour is that the penalised PRESS
statistic ensured that only one component was selected at each updating
step for both the PCR-CV-EnKF and PLSR-CV-EnKF schemes. Hence, the
PCR-CV-EnKF scheme under�tted the model because some of the compo-
nents important for prediction purposes were discarded. This is apparently
not the case for the supervised PLSR-CV-EnKF updating scheme.

The classical EnKF su�ers from estimation uncertainty, model over�tting
and coupling of the ensemble members unless the ensemble size tends to
in�nity. For a small ensemble size this will lead to an ensemble almost
collapsing, as seen in both the linear and non-linear case.

Amongst the four schemes discussed above, the PCR-0.99-EnKF updat-
ing scheme gave the least favourable representation of the prediction un-
certainty for both ensemble sizes. This behaviour is expected since p was
selected based on the estimated proportion of explained variance, so that
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between 10 and 12 components were used at each updating step for both
the linear and non-linear model. As noted in Ledoit and Wolf (2004), the
estimated eigenvalues of the empirical covariance matrix is known to be
severely biased unless nd/ne → 0, and the realisations in the data ensemble
are independent identically distributed. In addition, no validation of the
regression model is performed to evaluate the predictive capabilities, which
in this case led to severe problems of model over�tting.

2.6 Reservoir Example

We consider a small synthetic reservoir model to further evaluate the perfor-
mance of the PLSR-CV-EnKF and the classical EnKF scheme. The example
is similar to the reservoir model used in Hegstad and Omre (2001), although
the prior models for the porosity �elds, φ, and ln-permeability, κ, are dif-
ferent.

2.6.1 Reservoir Description

The reservoir grid domain is of size (10000 x 10000 x 100) ft, discretised into
n = (10 x 10 x 15) regular grid blocks, with the top of the reservoir at depth
8 325 ft shown in Figure 2.8. The reference porosity and ln-permeability
�elds are generated by initially sampling from the Gaussian distribution
described in Appendix 2-C. The ninth vertical and horizontal cross-sections
of the reference ln-permeability and porosity are shown in Figures 2.9 and
2.10. Initially the reservoir is fully saturated with oil, with pressure 5 800
psi at the equilibrium depth of 8 400 ft.

There are two horizontal production wells (P1, P2), and one vertical
gas injection well (I1) at the locations displayed in Figure 2.8, where the
rate of the injection is assumed to be 65 000 Mscf/D. Production data from
the reference model is simulated for 4 000 days using the commercial �uid
�ow simulator ECLIPSETM(GeoQuest, 2009). Observations are made of the
Gas/Oil Ratio (GOR) and Oil Production Rate (OPR) in the two produc-
tion wells and the Bottomhole Pressure (BHP) in both the injection and
production wells. Figures 2.11a through g display the observed reference
production data. As we can see from these �gures, the production wells
switch to BHP control when the pressure reaches 4 100 psi, which happens
approximately after 1 200 days of production.

The purpose of this study is to demonstrate the e�ect of model over�t-
ting. To reduce the computational demands, we therefore start updating the
reservoir model when we start seeing a large variability in the data ensemble,
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Figure 2.8: Description of the synthetic reservoir model discretised into (10 x 10
x 15) grid blocks. The inward pointing arrow indicate the location
of the injection well, while the outward pointing arrows indicate the
locations of the producer wells.
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Figure 2.9: Image plot of one horizontal and vertical cross-section of the reference
ln-permeability used in the synthetic reservoir example.
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Figure 2.10: Image plot of one horizontal and vertical cross-section of the refer-
ence porosity used in the synthetic reservoir example.
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Figure 2.11: Reference production data.
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after 910 days of production, as seen in Figure 2.12. We then proceed by
updating the reservoir model based on the observed production data for the
next 19 timesteps, following the observation schedule de�ned in Hegstad and
Omre (2001). That is, the data is collected every 30 days for the next 540
days of production, and with one �nal update after 1640 days of production.
Measurement errors are assumed to be additive Gaussian with a standard
deviation of one percent of the observed value for the OPR and BHP, while
for the GOR it is assumed to be 20 percent. In this study the reservoir state
vector xk, contains κ, φ, logit-saturation, sk and pressure, pk.

2.6.2 Results with Discussion

The classical EnKF with four di�erent ensemble sizes: ne = 20, 100, 1 000
and 1500, and the PLSR-CV-EnKF scheme with ne = 20 are evaluated. Ini-
tially we generate 1 500 porosity and ln-permeability �elds using the prior
model described in Appendix 2-C. To make the results comparable, the ini-
tial ensemble members for the smaller ensemble sizes are then selected as
the �rst 20, 100 and 1 000 members of the largest initial ensemble respec-
tively. Note that the initial saturation and pressure are assumed to be known
throughout the reservoir.

The forecasted production obtained when we restart the simulator from
timestep zero and predict for 4 000 days, based on the updated κ and φ
values are shown in Figure 2.12. As we can see from this �gure, the initial
ensemble fully spans the reference solution, and there is a relatively high
uncertainty regarding the time of the gas breakthrough. Looking at results
based on the classical EnKF with ne = 20, we see that the average of the
production forecast based on the updated ensemble members are missing
the reference production. Moreover, reduced uncertainty in the production
forecast causes the ensemble members not to span the reference production.
For both the classical EnKF scheme with ne = 1 500 and the PLSR-CV-
EnKF scheme with ne = 20, however, the forecasts are correctly centred at
the reference production and the uncertainty is considerably reduced. Note
that here the CV scheme was based on minimising the PRESS statistic
de�ned in Eq. (2.11), hence not penalising model over�tting. Nevertheless,
the optimal choice of the PLSR subspace dimension was one at all updating
steps.

To further quantify the results obtained using the classical EnKF and
PLSR-CV-EnKF updating schemes, we investigate how well the updated
ensemble members span the reference φ and κ. The estimated posterior
mean and 95 % prediction interval for κ in the 100 grid blocks of horizontal
cross-section nine, are displayed Figure2.13. Note that the results at the
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Figure 2.12: Forecasted production data based on reruns of the ne = 20 �rst
ensemble members from timestep zero compared with the reference
production data (thick line). The �gure shows from left to right the
prediction based on the initial ensemble xc

0, the updated ensemble
xc

19 based on the classical EnKF with ne = 20 (EnKF20), ne = 1500
(EnKF1500), and the updated ensemble x

c
19 based on the PLSR-CV-

EnKF updating scheme with ne = 20 (PLSR20). The production
properties considered are from top to bottom OPR P1, OPR P2,
GOR P1, GOR P2, BHP P1, BHP P2 and BHP I1.
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other 14 cross-sections have the same properties, with similar results for the
porosity. We therefore do not present the results here.

The updated ensemble based on the classical EnKF scheme is not able
to span the true ln-permeability for ne = 20, and the ensemble has almost
collapsed into a single realisation. Increasing the ensemble size to ne =
100, does improve the uncertainty estimates. However, the ensemble mean
appears to be highly variable, and we also see a tendency of overestimating
κ and φ in most of the grid blocks. This leads to a bias in the production
forecasts, not shown here, however. For the two largest ensemble sizes both
the posterior mean, and prediction intervals appear to be similar. However,
when rerunning the reservoir simulator from timestep zero using the updated
κ and φ as input for ne = 1000, we obtain production forecasts that deviates
from the reference production curves, again not shown here. This is not the
case for ne = 1500, as shown in Figure 2.12. The PLSR-CV-EnKF updating
scheme with ne = 20, on the other hand, appears to provide a much better
representation of the prediction uncertainty, although we are not able to
fully cover 95% of the reference solution.

Similar to the empirical study above, the classical EnKF and PLSR-CV-
EnKF updating schemes were rerun 100 times using di�erent initial ensem-
bles of size ne = 20. The results are summarised in Table 2.4, where we
estimate the scaled Residual Sum of Squares (RSS) between the ensemble
members and the reference ln-permeability �eld, 1/ne

∑ne
i=1 ‖xc(i)−xTrue‖22,

and the percentage of the reference solution the estimated prediction inter-
vals cover at each grid location. As we see from these results, the classical
EnKF algorithm clearly underestimates the prediction uncertainty for the
smallest ensemble size, ne = 20.

Fig. 2.14 contains two realisations of ln-permeability from the initial
ensemble and the corresponding realisations after the �nal updating step in
the ninth vertical cross-section, using the classical EnKF updating scheme
with four di�erent ensemble sizes and the PLSR-CV-EnKF scheme with
ne = 20. We also display the estimated posterior means based on the �rst
20 ensemble members, which are equal at the initial timestep for all four
ensemble sizes considered. The two realisations are di�erent at the initial
timestep, although the strong spatial correlation is present in both cases.
From the average of the initial ensemble we see that there appears to be no
particular trend in the initial model.

For the classical EnKF with ne = 20, the realisations have almost col-
lapsed and there appears to be a very high variability between neighbouring
grid blocks. Moreover, the ln-permeability is well outside the range of the
prior model at many of the grid locations. The realisations for ne = 100
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Figure 2.13: Updated ln-permeability values based on the classical EnKF up-
dating scheme (EnKF) using four di�erent ensemble sizes and the
PLSR-CV-EnKF updating scheme (PLSR). The �gure displays the
reference ln-permeability (solid, black), the ensemble mean (dotted,
black) and the estimated 95% con�dence bounds of the prediction
interval (solid, gray), for the grid blocks in the ninth horizontal
cross-section, obtained based on the updated ensemble members at
timestep 19. The subscript denotes the ensemble size used.
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Figure 2.14: The ninth vertical cross-section for two realisations and the esti-
mated ensemble mean based on the �rst 20 ensemble members for
the initial ensemble, for di�erent ensemble sizes using the classical
EnKF updating scheme (EnKF) and the PLSR-CV-EnKF scheme
(PLSR). The subscript denotes the ensemble size and the reference
ln-permeability is shown at the top.
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Scheme Scaled RSS Coverage
%

No Updating κ 24.1 95
Classical EnKF κ 22.0 21
PLSR-CV-EnKF κ 19.1 61
No Updating φ 0.86 96
Classical EnKF φ 0.74 21
PLSR-CV-EnKF φ 0.64 62

Table 2.4: Scaled (1/ne) Residual Sum of Squares (RSS) for the the updated

ensemble members x
(i)c
19 and the reference solution, and coverage of

the reference solution in the estimated 95% prediction intervals for
the two static variables in the reservoir example. Estimates computed
based on 100 di�erent initial ensembles with ne = 20.

appear to give a much better representation of the reference ln-permeability.
However, we see that the ensemble members fail to capture the low perme-
able layers around horizontal cross-section 10 in the reference solution. For
the two largest ensemble sizes, ne = 1000 and 1 500, the spatial structure in
the reference solution appears to be much better preserved in the updated
realisations. We also observe the middle layer of low permeability present in
the reference solution for both the updated realisations and ensemble mean.
Again we see that the PLSR-CV-EnKF updating scheme with ne = 20 pro-
vides updated realisation which appears to have many of the same features
present in the prior model and reference solution.

Note that when the classical EnKF updating scheme with ne = 20 was
rerun several times, we observed that the RSS often became larger at the
�nal updating step than for the initial ensemble. This can be explained
by estimation uncertainty in the unknown covariance matrix Σx for small
ensemble sizes (Evensen, 2007). Note, however, that this problem is also
present in the classical EnKF updating scheme for ne = 100 and ne =
1 000. These results suggest that errors in the EnKF solution are not only
introduced by estimation uncertainty, but also by over�tting the regression
model resulting from collinear ensemble members.

In Figures 2.15a and b, the RSS and the percentage of the reference
ln-permeability located within the estimated 95% prediction interval are
displayed as a function of timestep k. The RSS starts to increase after
k = 10, 12 and 15, for ne = 20, 100 and 1 000 respectively, with the most
dramatic e�ect for the smallest ensemble size. At the same time, we see that
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the coverage decrease as k increases, again with the largest e�ect for ne = 20.
For this particular reservoir model we have to increase ne to 1 500 to have
a decreasing trend in the RSS, while preserving the coverage, applying the
classical EnKF updating scheme.

The PLSR-CV-EnKF scheme with ne = 20 is able to preserve the de-
creasing trend in the RSS, with only a small decrease in the coverage as k
increases. This appears to be caused by the reduced coupling of the updated
ensemble members when using PLSR. Note, however, that both the classical
EnKF and PLSR-CV-EnKF updating scheme with ne = 1500 and 20 respec-
tively, will eventually see the same increase in the RSS if data assimilation
is continued into a distant future.

The increased coupling of the updated ensemble members can be quan-
ti�ed by the estimated rank of the updated ln-permeability ensemble, dis-
played in Figure 2.16. Here we have computed the loss in relative numerical
rank for the updated ensemble at three di�erent timesteps k, de�ned as one
minus the numerical rank of the updated ln-permeability ensemble divided
by the ensemble size). As seen from this �gure the relative loss in rank
for the updated ensemble members based on the classical EnKF updating
scheme increases with timestep k. This is caused by over�tting of the re-
gression model since the ensemble members become more collinear. We also
see that this e�ect is more prominent for smaller ensemble sizes, leading to
a larger increase in the RSS shown in Figure 2.15a. Notice that the relative
rank loss is largest for ne = 1 500 after �ve updating steps for the clas-
sical EnKF updating scheme. This is expected, because there is always a
probability greater than zero that some of the additional ensemble members
will become collinear as we add more realisations to the ensemble. How-
ever, the large ensemble size, relative to the dimension of the data vector,
reduces the e�ect of regression model over�tting in this case. Further note
that by construction the PLSR-CV-EnKF scheme has a rank loss of one for
all timesteps, as explained in Appendix 2-D, which for this case makes the
approach less vulnerable to over�tting.

Finally note that if we compare the e�ective run-time for the reservoir
example with ne = 20 (rerun 100 times with di�erent initial ensembles), the
average run-time for the data assimilation step is 0.007 and 0.068 seconds the
classical EnKF and PLSR-CV-EnKF updating schemes respectively. Run-
ning �uid �ow simulator between two consecutive timesteps, on the other
hand, has an average run-time of 25.5 and 25.0 seconds for the classical
EnKF and PLSR-CV-EnKF updating schemes respectively. The reduction
in the computational time in the �ow simulation, which involves solving a set
of non-linear Partial Di�erential Equations (PDE), is caused by improved
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Figure 2.15: Scaled (1/ne) Residual Sum of Squares (RSS) of the forecasted ln-
permeability ensemble members and the reference, and coverage of
the reference solution in the estimated prediction intervals as a func-
tion of timesteps k. Here EnKF corresponds to the classical EnKF
updating scheme, while PLSR corresponds to the PLSR-CV-EnKF
scheme. The subscript denotes the ensemble size used.
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convergence properties in the iterative PDE solver for the ensemble members
updated using PLSR. Hence, the total run-time is smallest for the PLSR-
CV-EnKF scheme, even if the data assimilation is slightly higher compared
with the classical EnKF updating scheme. Note, however, that these run-
times are based on a MATLAB implementation, where the classical EnKF
updating scheme has been optimised (vectorised), while this is not the case
for the PLSR-CV-EnKF updating scheme. The small di�erence in the e�ec-
tive run-time for the two updating schemes is therefore expected to be even
smaller in reality.

2.7 Conclusion

We have formulated an EnKF updating scheme based on shrinkage re-
gression techniques known from multivariate linear regression. In shrink-
age regression, we replace the unbiased classical estimator of the Kalman
gain matrix with biased alternatives, having improved predictive capabili-
ties. Two of the techniques were considered on small linear and non-linear
toy examples, namely Principal Component Regression (PCR) and Partial
Least Squares Regression (PLSR). When PCR and PLSR are combined with
Cross-Validation (CV), the performance was far superior to the classical
EnKF updating scheme for small ensemble sizes, with the supervised PLSR
scheme providing slightly better results. However, when the subspace dimen-
sion used in PCR was selected based on the commonly applied theoretical
criterion, the scheme su�ered from similar problems as the classical EnKF.
That is, low forecast precision and severe underestimation of the prediction
uncertainty for small ensemble sizes.

We further compared the classical EnKF and PLSR updating schemes
on a synthetic reservoir case study. Using the PLSR scheme we were able to
obtain reasonable estimates of the prediction uncertainty for the porosity and
permeability �elds using only 20 ensemble members. The classical EnKF,
on the other hand, required 75 times as many ensemble members to obtain
similar results. This was caused by increasingly collinear ensemble members
as reservoir production data was sequentially assimilated, leading to severe
problems of model over�tting.
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APPENDIX

Appendix 2-A, Use of Singular Value Decomposition

The eigenvectors of the empirically estimated covariance matrix of the data
vector, Σ̂d, are given as the column vectors U ∈ Rnd×nd obtained when per-
forming Singular Value Decomposition (SVD) on 1√

ne
D = USV T (Strang,

1988). Moreover, the eigenvalues are given as λi = s2
ii, where sii is the ith

singular value, given as the ith diagonal element of the matrix S ∈ Rnd×r

where r is the rank of D. Hence, the ensemble matrix D can be approxi-
mated by a truncated version:

Dp = UpSpV
T
p , (A-1)

where Up = [u1, . . . ,up] ∈ Rnd×p, Sp = diagp(sp) ∈ Rp×p, and V p =
[v1, . . . ,vp] ∈ Rne×p, with vi given as the ith eigenvector of the matrix
Gd = DTD ∈ Rne×ne . Here the notation Sp = diagp(sp) is used to denote
that the p dimensional matrix Sp is a diagonal matrix with the vector sp on
the main diagonal.

By use of the truncated SVD, the PCR estimate for the matrix of re-
gression coe�cient is given as:

K̂PCR = XV pS
−1
p UT

p . (A-2)

Thus, the computation of K̂PCR is e�cient, both in terms of speed and
memory use, compared to working with full dimensional covariance matrices.



APPENDIX 65

This is especially true when nd is larger than ne. It should be noted that
setting p = ne − 1, K̂PCR minimises the mean squared error in the rank
de�cient case.

Appendix 2-B, Computational Properties

The classical EnKF can be modi�ed by simply replacing the estimated
Kalman gain with either the PCR or PLSR estimates. For both meth-
ods the computational complexity is O(max{nd, nx} · n2

e). For the PCR
estimate this corresponds to the cost of performing a SVD on D and the
matrix-matrix multiplication XV T , while for the PLSR estimate this is
caused by the computation of the two matrices Gx = XTX ∈ Rne×ne and
Gd = DTD ∈ Rne×ne .

When computing the PLSR estimate of the Kalman gain, we see from
Eq. (2.10) that this requires the inversion of a p × p dimensional matrix,
which in the general case requires O(p3) �oating point operations (�ops).
However, it can be shown (Höskuldsson, 1988; Ränner et al., 1994), that this
matrix is lower triangular, reducing the number of �ops required to O(p2). If
both nx and nd are large, the classical NiPALS algorithm and computing the
SVD of Σ̂x,d, will be computationally demanding. Note, however, that this
problem can be avoided by the algorithm outlined in Ränner et al. (1994).

When m-fold CV is applied to select the optimal number of components
for PCR and PLSR, the computational complexity is O(max{ne · nx, (m −
1) ·nd}n2

e), when the PRESS statistic is computed for all possible values for
p in the truncation. Note that the computational complexity can be further
reduced when nd > ne − 1. As explained in Hastie and Tibshirani (2004),
the same results will be obtained if we perform the m-fold CV based on the
ne − 1 latent vectors, instead of the data ensemble. Hence, only a single
projection into the reduced order space using the PCR or PLSR techniques
will be necessary. Further note that if we replace the Euclidean norm used
in the PRESS statistic in Eq. (2.11), with the (pseudo) norm:

‖a‖2
Σ̂x

= nea
T Σ̂xa = aTXXTa,

we can further reduce the computational complexity to
O(max{nx, n2

e, nd}n2
e). For large dimensional state vectors, we therefore see

that the additional computational demands caused by m-fold CV can be
negligible as long as n2

e < max{nx, nd}.
When over�tting is a severe problem for PCR or PLSR, the CV rule

described in Hastie et al. (2009) can be applied. Rather than selecting
p at the global minimum of the PRESS statistic, the optimal number of
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components, p∗, should be given as the smallest number of components
such that PRESS(p∗) ≤ PRESS (pG) + σ̂PRESS(pG). Here PRESS(pG) and
σ̂PRESS(pG) corresponds to the estimated value and standard deviation of the

PRESS statistic at the global minimum pG respectively.
Although CV can lead to higher computational demands if an exhaustive

search for the optimal number of components is carried out, it should be
noted that testing for all possible combinations of p is often not required.
This is especially true when using the PLSR approach because this tend to
require a smaller number of components than PCR (Kalivas, 1999; Helland,
2001).

Finally note that a multivariate multiple linear regression problem can be
equally treated as a sequence of multivariate linear regression problems with
a univariate response variable (Hastie et al., 2009). The EnKF updating
schemes based on shrinkage regression techniques is therefore straightfor-
ward to both scale and parallelise when considering high dimensional state-
and data vectors with nx and nd in the order of O(106)-O(108).

Appendix 2-C, Prior Distribution

For the reservoir example the porosity and ln-permeability �elds are de-
scribed by the following prior distribution: Initially, a realisation z(i) ∈ Rn×1

is generated from a Gaussian distribution with mean 0.25 and covariance ma-
trix Σz ∈ Rn×n, with Σz∆ de�ned by an exponential covariance function:

c(∆) = σ2
z exp

{
−
√
‖∆‖2l

}
.

Here σz = 0.02 and

‖∆‖2l =
(

∆x

lx

)2

+
(

∆y

ly

)2

+
(

∆z

lz

)2

,

with lx = ly = 10 000 and lz = 100. We further assume that

[w|z] = 25z + εw|z,

where εw|z ∼ Gaussn(0, I). A convolution between the realisations and a
three dimensional standard Gaussian kernel over a (5 x 5 x 5) neighbourhood
is then applied to generate porosity and ln-permeability �elds. This entails
that φ(i) = Cz(i) and κ(i) = Cw(i), where C ∈ Rn×n is the convolution
matrix. Note that the purpose of this convolution is simply to increase
the spatial continuity in the realisations. Further note that in practise the
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Figure 2-C-1: Estimated variogram based on realisations of the ln-permeability
�elds from the initial prior distribution.

MATLAB function smooth3(·) is used. The estimated variogram, based on
realisations of the ln-permeability from the prior distribution, is shown in
Figure 2-C-1. Because we assume that there is a linear relationship
between the porosity and ln-permeability �elds, the estimated correlation
coe�cient based on realisations from the prior model is approximately 0.8.
We acknowledge that this linear assumption is not valid for reservoir models
in general. Note, however, that the prior model ensures that there is a
smooth trend in the realisations from the prior model and that they in
practise are restricted to κ ∈ [4, 8] and φ ∈ [0.2, 0.32], which might make
the model violation less severe.

Appendix 2-D, Rank of the Updated Ensemble

Let Xu ∈ Rnx×ne and D ∈ Rnd×ne be two non-centred ensemble matrices.
Further let C = I − 1

ne
11T denote the centring matrix, where 1 is a ne-

dimensional column vector with all entries equal to one. The EnKF updating
scheme based on PLSR can then be written as:

Xc = Xu
[
I + TA−1W TDT (d1T −D)

]
, (D-1)

where

A =
(
WDTDT

)
.

This follows from the de�nition of K̂PLSR and the identities:

T = CDTΨ = CCDTΨ = CT (D-2)
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and W = CW , where we have used that C is an idempotent matrix.
For the EnKF updating scheme de�ned in Eq. (D-1) using p components,

assuming rank(Xu) = ne, the following result then holds:

Result 1. Assuming rank(Xu) = ne, the rank of the updated state vector
ensemble for the EnKF updating scheme based on PLSR and PCR is equal
to ne − p.

Proof. Consider the matrix:

H = I + TA−1W TDT (d1T −D) ∈ Rne×ne .

By use of Eq. (D-2) and the property that 1TC = 0, we obtain the identity
H = H2. Let (λi, ei), i = 1, . . . , ne be an eigenvalue, -vector pair of H.
From the identity

λiei = Hei = HHei = λ2
i ei,

we then see that all eigenvalues of the idempotent matrix H are equal to
zero or one. Hence, the result follows from the identity:

rank(Xc) = rank(XuH) = rank(H) = tr(H),

where second equality holds because rank(Xu) = ne (Adabir and Magnus,
2005) and the third equality holds because H is idempotent. The proof for
the EnKF updating scheme based on PCR is along the same lines.
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Chapter 3

Ensemble Kalman �ltering for

non-linear likelihood

models using kernel-shrinkage

regression techniques

Abstract. One of the major limitations of the classical Ensemble Kalman
Filter (EnKF) is the assumption of a linear relationship between the state
vector and the observed data. Thus, the classical EnKF algorithm can
su�er from poor performance when considering highly non-linear and non-
Gaussian likelihood models. In this paper, we have formulated the EnKF
based on kernel-shrinkage regression techniques. This approach makes it
possible to handle highly non-linear likelihood models e�ciently. Moreover,
a solution to the pre-image problem, essential in previously suggested EnKF
schemes based on kernel methods, is not required. Testing the suggested pro-
cedure on a simple, illustrative problem with a non-linear likelihood model,
we were able to obtain good results when the classical EnKF failed.

71
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3.1 Introduction

In recent years, Bayesian methods have become attractive to use when con-
sidering geophysical inverse problems (Scales and Snieder, 1997). The En-
semble Kalman Filter (EnKF) is a Bayesian method that provides a solution
to highly non-linear and high dimensional spatiotemporal data assimilation
problems (Aanonsen et al., 2009; Evensen, 2007). The EnKF is de�ned in
the spirit of the classical Kalman Filter (KF) (Kalman, 1960), that provides
the analytical solution of the posterior probability distribution when the
prior, forward and likelihood models are Gaussian and linear, termed the
Gauss-linear model.

Analytical tractability of the posterior distribution will be lost in a gen-
eral model setting. Thus, we may apply techniques such as Markov chain
Monte Carlo (McMC) or rejection sampling to generate realisations from the
posterior distribution of interest (Doucet et al., 2000). For high dimensional
problems, however, these methods tend to be computationally prohibitive.

The EnKF approach is based on the approximation that the output of the
forward and likelihood models are jointly Gaussian, with unknown mean and
covariance. Using an ensemble of independent realisations to estimate the
model parameters empirically, ensures that the EnKF is consistent with the
KF for Gauss-linear models as the ensemble size tends to in�nity (Evensen,
2007; Mardia et al., 1979).

As shown in Anderson (2003), we can equally formulate the classical
EnKF updating scheme as a multivariate linear regression problem, where
the Kalman gain matrix de�nes the unknown matrix of regression coe�-
cients. Hence, the classical EnKF can have poor performance when con-
sidering highly non-linear likelihood models. Methods such as the Ran-
domised Maximum Likelihood Filter (RMLF) (Oliver, 1996) can improve
on the EnKF updating scheme for non-linear likelihood models. However,
the RMLF algorithm requires an optimisation step making the method more
computationally demanding than the traditional EnKF. This is especially
true when considering high dimensional data such as time-lapse seismic. In
addition, it is unclear how to use the RMLF if the error term is not additive
(Myrseth and Omre, 2010).

The classical EnKF tends to underestimate the prediction uncertainty for
small ensemble sizes (Furrer and Bengtsson, 2007; Houtekamer and Mitchell,
1998; Myrseth et al., 2010; Sacher and Bartello, 2008; van Leeuwen, 1999).
This can potentially lead to an ensemble collapsing into one single realisa-
tion. In a recent paper, Sætrom and Omre (2010), reformulated the classical
EnKF updating scheme using shrinkage regression techniques known from
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multivariate statistics. It is well known from statistical literature that the
unbiased classical least squares estimator for the matrix of regression coe�-
cients is not optimal in the presence of collinear data, and can lead to severe
problems of model over�tting (Hastie et al., 2009). The purpose of shrinkage
regression techniques is therefore to replace the classical, unbiased estima-
tor of the unknown matrix of regression coe�cients with biased alternatives
having improved predictive capabilities; e.g. using dimension reduction tech-
niques on the predictor variables, or by regularising the estimated matrix of
regression coe�cients. Because the updated ensemble members will be cou-
pled through the estimated Kalman gain matrix, collinearities between the
ensemble members will eventually occur (Houtekamer and Mitchell, 1998).
Hence, it is not surprising that applying shrinkage regression techniques can
lead to signi�cant improvements compared with the classical EnKF updat-
ing scheme, as illustrated in the examples considered in Sætrom and Omre
(2010).

In recent years, kernel methods have become popular within the �eld of
machine learning (Smola and Schölkopf, 2002; Taylor and Cristianini, 2004).
The aim of these methods is to transform data from the original vector space
into a possibly high dimensional feature space, where we assume that the
underlying model assumptions, such as linear dependencies in a regression
setting, are valid. Kernel methods are frequently used in non-linear Principal
Component Analysis (PCA) (Sarma et al., 2008; Schölkopf et al., 1998), data
mining (Huang et al., 2006), classi�cation (Vapnik, 1998) and non-linear
regression (Rosipal and Trejo, 2002). Common for these methods is that
the algorithms can be reformulated through inner products in the original
space. Because we can de�ne inner products in a feature space through
positive de�nite functions, known as kernel functions, there is no need to
generate realisations in the feature space (Hofmann et al., 2008; Smola and
Schölkopf, 2002).

In the current paper, we extend the EnKF updating scheme to a non-
linear setting using previously de�ned kernel-based shrinkage regression tech-
niques (Rosipal and Trejo, 2002; Taylor and Cristianini, 2004). We demon-
strate the suggested approach on a simplistic example with a non-linear,
non-Gaussian likelihood model. The procedure has the same computational
complexity and memory requirements as the fastest implementations of the
traditional EnKF.

We are not the �rst to recognise the potential of kernel methods in an
EnKF setting (Caers and Park, 2008; Sarma and Chen, 2009). However,
the focus of these studies is to incorporate highly non-Gaussian features of
the state vector into the EnKF, which require a solution to the pre-image
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dtK

xtK+1

. . .

xt1

. . .

xt0
xtK

dt0
dt1

Figure 3.1: Stochastic Directed Acyclic Graph (DAG) of the model considered.

problem of mapping the state vector from the feature space back to the
original space. Solving this problem using traditional approaches requires
non-linear optimisation techniques (Kwok and Tsang, 2004; Mika et al., 1998;
Smola and Schölkopf, 2002), which can lead to high computational demands.
In the current study we use kernel methods for handling non-linearities in
the likelihood model, which do not require this back-transformation.

3.2 Notation and Model Formulation

Throughout the paper, we use the notation x ∈ Rnx×1 to denote that x is
an nx-dimensional column vector in the real space and xT will denote its
transpose. Similarly, we will write X ∈ Rm×n to denote that X is a matrix
in the real space containing m rows and n columns. Note that we will use
that the same notation for both scalars and random variables. Probability
density functions (pdf) will be denoted by f(x), and the notation x ∼ f(x),
implies that the random vector x follows the pdf f(x). Further we will
denote the conditional pdf of x given y by f(x|y). As a special case the
notation x ∼ Gaussnx(µx,Σx) will be used to denote that x follows the nx-
dimensional multivariate Gaussian distribution with mean vector µx and
covariance matrix Σx.

Consider the sequence of stochastic vectors xt0 , . . . ,xtK+1 ; xti ∈ Rnx×1

and dt0 , . . . ,dtK ; dti ∈ Rnd×1, outlined in Fig. 3.1. Here, xtk denotes the
state of the unknown random vector of interest at time step k and time
tk, and similarly dtk denotes the vector of observed data. For notational
convenience, we will from now on drop the subscript tk, and simply write xk

and dk. Also note that we will for simplicity refer to x and d as the state
and observation vector respectively.

Let f(x0) denote the pdf of the state vector at the initial time step. The
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Markov property of the Directed Acyclic Graph (DAG) in Fig. 3.1 entails

f(xk+1|xk,xk−1, . . . ,x0) = f(xk+1|xk), k = 0, . . . ,K.

We de�ne the pdf, f(xk+1|xk), through a known, possibly highly non-linear
forward function, ω : (∈ Rnx×1× ∈ Rnx×1)→∈ Rnx×1, which implies

xk+1 = ω(xk, εxk
), k = 0, . . . ,K. (3.1)

Here εxk
∈ Rnx×1 represents random model errors or numerical errors in the

forward model, assumed to follow a known probability distribution. Thus,
f(x0) and ω(·, ·) implicitly de�nes the prior pdf f(x0, . . . ,xK+1). We de�ne
the likelihood function, f(dk|xk), through a known, non-linear function
ζ : (Rnx×1 × Rnd×1)→ Rnd×1, that is,

dk = ζ(xk, εdk
), k = 0, . . . ,K. (3.2)

Again, εdk
∈ Rnd×1, represents the random observation error following a

known pdf.
For notational convenience, we from now on let

xc
k ∼ f(xk|d0:k)
xu

k ∼ f(xk|d0:k−1), k = 1, . . . ,K + 1,

where d0:l denotes the sequence d0, . . . ,dl for l > 0. Bayesian inversion pro-
vides a sequential solution to the spatiotemporal forecast problem of predict-
ing xc

k, for k = 1, . . . ,K +1. With such an approach, we assess the unknown
vectors xc

k and x
u
k+1 by sampling from the respective posterior distributions,

f(xk|d0:k) and f(xk+1|d0:k). Using Bayes rule and the Markov property
of the DAG in Fig. 3.1, which entails f(dk|xk,d0:(k−1)) = f(dk|xk), for
k = 1, . . . ,K, we get

f(xk|d0:k) ∝ f(xk|d0:(k−1))f(dk|xk)

f(xk+1|d0:k) =
∫

f(xk+1|xk)f(xk|d0:k)dxk. (3.3)

Generally, we only know the conditional distributions de�ned in Eq.
(3.3) up to an unknown normalising constant. One possibility is to use com-
putationally demanding techniques such as McMC or rejection sampling to
generate realisation from the correct posterior distribution (Doucet et al.,
2000). However, for applications such as petroleum reservoir evaluation,
these techniques are computationally prohibitive (Evensen, 2007). An ap-
proximate solution can be obtained by assuming that xu

k and dk follows a
distribution that ensures analytical tractability of f(xk|d0:k), such as the
Gaussian. These model assumptions are equivalent to those made in the
EnKF (Evensen, 1994).
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3.3 Classical Ensemble Kalman Filter

Let

x
u(i)
k = ω(xc(i)

k−1, ε
(i)
xk−1)

and

d
(i)
k = ζ(xu(i)

k , ε
(i)
dk

),

for i = 1, . . . , ne, and de�ne Xk =
[
x

u(1)
k , . . . ,x

u(ne)
k

]
∈ Rnx×ne and

Dk =
[
d

(1)
k , . . . ,d

(ne)
k

]
∈ Rnd×ne as the state ensemble and data ensembles

matrices respectively. For notational convenience, we will from now on omit
the subscript k because the focus will be on a single time step.

If we assume that the joint distribution of (xu,d) is Gaussian, a classical
updating scheme for each ensemble member would be:

xc(i) = xu(i) + K̂(d− d(i)), (3.4)

where

K̂ = XHDT
(
DHDT

)−1 ∈ Rnx×nd . (3.5)

We refer to this as the classical EnKF updating scheme, where we denote
the estimated Kalman gain matrix by K̂. Here

H = I − 1
ne

11T ∈ Rne×ne (3.6)

is the idempotent centring matrix, where I is the identity matrix, and 1 is a
vector with each entry equal to one, both having proper dimensions. Under

the Gaussian assumption stated above, x
c(i)
k will tend towards a realisation

from the Gaussian posterior distribution f(xk|d0:k) as ne →∞.

From multivariate statistical theory, we know that the estimated Kalman
gain matrix is equal to the least squares estimate of the matrix of regression
coe�cients in a multivariate linear regression setting (Seber and Lee, 2003):

K̂ = arg min
K

tr
{
(XH −KDH)(XH −KDH)T

}
, (3.7)

where tr{·} denotes the trace operator. Hence, it is not surprising that the
classical EnKF can perform poorly for highly non-linear functions in the
likelihood model.

Note that for situations where nd ≥ ne, the matrix DHDT in Eq. (3.5)
will be singular, meaning that its inverse does not exist. To avoid this prob-
lem we can add a positive de�nite matrix, (ne− 1)Σr, which corresponds to
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adding a regularisation term, (ne−1)tr{KΣrK
T }, to the objective function

in Eq. (3.7). This gives

K̂ = XHDT
(
DHDT + (ne − 1)Σr

)−1
, (3.8)

which is an extension of the standard EnKF updating scheme to non-linear
likelihood models, similar to the approach in Evensen (2007, Appendix A.2).
Assuming the following likelihood model, d = ζ(xu) + εd, where the inde-
pendent Gaussian noise term has zero mean and covariance, Σr, the Kalman
gain estimate de�ned in Eq. (3.8) is natural to consider. If we replace the
data ensemble matrix used in Eq. (3.8), with an alternative data ensemble
matrix, D̃ = [ζ(xu(1)), . . . , ζ(xu(ne))], the estimator

K̂ = XHD̃
T
(
D̃HD̃

T
+ (ne − 1)Σr

)−1
, (3.9)

will indeed be consistent with the estimator de�ned in Eq. (3.5). This follows
because the data ensemble matrix can be split into two parts, D = D̃ +E,
where E = [ε(1)d , . . . , ε

(ne)
d ] is error perturbation ensemble matrix. However,

in the general model setting with d = ζ(x, εd), the two estimators will not
be consistent.

Another potential problem with the classical least squared estimate of
the Kalman gain is model over�tting. This is especially true in the presence
of collinear data (Farrer and Glauber, 1967). Because we couple the up-
dated ensemble members through the estimated Kalman gain matrix, they
can become increasingly collinear with time (Myrseth et al., 2010). This
can potentially lead to an ensemble collapsing into a single realisation, and
certainly lead to an underestimation of the prediction uncertainty (Sætrom
and Omre, 2010).

Fortunately, we can handle the problems described above e�ciently using
kernel shrinkage regression techniques known from multivariate non-linear
regression, which we will consider next.

3.4 Kernel-Shrinkage Regression

To motivate the use of kernel methods, we start this section with a probabilis-
tic discussion of a non-linear regression problem with multivariate predictor
variables:

x = γ(d) + εx|d. (3.10)

Here x is a univariate, centred response variable; d is a centred multivariate
predictor variable; γ(d) is the non-linear regression function; and εx|d is a
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univariate Gaussian error term having zero mean and variance σ2
x|d. For

notational simplicity we only consider one-dimensional response variables,
because it can be shown (Hastie et al., 2009) that we under certain assump-
tions obtain corresponding solutions for each component in the multivariate
case.

Following Williams (1998), let the non-linear function γ(·) be decom-
posed into L terms

x = βTϕ(d) + εx|d,

where β = [β1, . . . , βL]T ∼ GaussL(0, I) is an unknown random vector. Here
0 is the zero vector of proper dimensions, and the L-dimensional vector
ϕ(d) = [ϕ1(d), . . . , ϕL(d)]T , is a collection of known link functions. Two
examples of link functions are

ϕk(d) = a0k
+ a1k

dk + a2k
d2

k

ϕk(d) = σϕk
exp

{
−

nd∑
l=1

(dl − τk,l)2

∆2
k,l

}
, (3.11)

k = 1, . . . , L, where ai,k, σϕk
, τk,l and ∆k,l are model parameters. Under

the assumption of independent observation errors for εx|d this entails:

E[x] = 0

Cov(x, x′) = ϕ(d)Tϕ(d′) + δ(d,d′)σ2
x|d,

with δ(·, ·) being the Dirac function taking value one when the arguments
are identical and zero otherwise.

Consider a set of centred realisations {(x(i),d(i)), i = 1, . . . , ne} and de-
�ne the corresponding univariate, centred state vector x̃ = [x(1), . . . , x(ne)] ∈
Rne×1 with associated centred data ensemble matrix D. In addition, let d∗

be a new, centred data vector, with unknown centred state variable x∗.
Under the Gaussian assumption above we have[

x∗

x̃

]
∼ Gauss1+ne

([
0
0

]
,

[
Cov(x∗) Cov(x∗, x̃)

Cov(x̃, x∗) Cov(x̃)

])
,

where Cov(x∗) = ϕ(d∗)Tϕ(d∗)+σ2
x|d, Cov(x∗, x̃) = ϕ(d∗)TΦ and Cov(x̃) =

ΦTΦ + σ2
x|dI, with Φ = [ϕ(d(1)), . . . ,ϕ(d(ne))] ∈ RL×ne . The conditional

expectation of x∗ given x̃, E[x∗|x̃], minimises the Mean Squared Prediction
Error (MSPE), E[(x∗ − g(x̃))2], for any function g : Rne → R (Rao, 1973).
Hence,

x̂∗ = x̃T
(
ΦTΦ + σ2

x|dI
)−1

ΦTϕ(d∗) (3.12)
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is the optimal predictor of x∗ in terms of the MSPE.
An alternative formulation of the non-linear regression problem is to

parametrise γ(d) by a Gaussian Random Field (GRF), as de�ned in Ap-
pendix 3-A, with mean E[γ(d)] = 0, and covariance function
Cov

(
γ(d), γ(d′)

)
= c(d,d′). Using the de�nition of a GRF together with

well-known results from multivariate Gaussian theory, the predictive mean
of x∗ given x̃ is:

E[x∗|x̃] = x̃T
(
C + σ2

x|dI
)−1

c∗ (3.13)

with c∗ = [c(d(1),d∗), . . . , c(d(ne),d∗)]T ∈ Rne×1, and

C =

 c(d(1),d(1)) . . . c(d(1),d(ne))
...

. . .
...

c(d(ne),d(1)) . . . c(d(ne),d(ne))

 ∈ Rne×ne .

Comparing Eq. (3.12) and (3.13), we see that there is a dual formulation
of the non-linear regression problem, where we can interpret inner products
between vectors ϕ(·) ∈ RL×1 as covariance functions c(·, ·) of a GRF. For
the link-function de�ned in Eq. (3.11) this can be realised by letting L→∞
and selecting ∆k,l = ∆ for all k and l, which entails (Gibbs, 1997):

c(d,d′) = ϕ(d)Tϕ(d′) = σ2
ϕ exp

{
− 1

2∆
‖d− d′‖22

}
(3.14)

which we recognise as the second-order exponential covariance function. The
assumption that we can describe inner products between vectors ϕ(d) and
ϕ(d′) through symmetric, positive de�nite functions, c(d,d′), is the founda-
tion of kernel methods known from the machine learning literature (Smola
and Schölkopf, 2002).

3.4.1 Kernel Methods

We now generalise the mapping ϕ(·), and let ϕ : Rnd → F , where F is some
unspeci�ed inner product space (Young, 1988), which we for simplicity will
refer to as the feature space. In the non-linear regression setting this entails
transforming the predictor variable, d, into a feature space where the linear
relationship with the response variable, x, is valid, as described in Fig. 3.2.

In Eq. (3.12), we express x̂∗ through inner products in the feature space,
which we can equally describe through values of the covariance function,
c(·, ·), under the GRF assumption. In general, this will hold for any symmet-
ric, positive de�nite function, c(·, ·), also known as kernel functions (Smola
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Figure 3.2: Transformation of d into a feature space F , where there is a linear
relationship with the response x.

and Schölkopf, 2002). In the machine learning literature, this is known as the
"kernel-trick� (Smola and Schölkopf, 2002), which in practise means that we
can reformulate any algorithm involving inner products in the input space
(here Rnd) into a feature space , F , using kernel functions. The formal condi-
tions for which the assumption, c(d,d′) = 〈ϕ(d),ϕ(d′)〉 holds are described
in Hofmann et al. (2008), namely symmetry and positive de�niteness. The
interested reader can �nd further details in Smola and Schölkopf (2002) or
Taylor and Cristianini (2004).

Sætrom and Omre (2010), reformulated the classical EnKF updating
scheme using Principal Component Regression (PCR) (Hotelling, 1933) and
Partial Least Squares Regression (PLSR) (Wold, 1975), known from shrink-
age regression. Both methods can be transformed into a non-linear setting
using kernelised versions; see Rosipal et al. (2001) and Rosipal and Trejo
(2002) for PCR and PLSR respectively. Common to the kernel versions of
the three shrinkage regression techniques is that we perform a dimension re-
duction in the feature space. Moreover, given a new observation vector, d∗,
we predict the state variable, x∗, by evaluating the kernel function. Hence,
the methods does not require an inverse mapping, avoiding the pre-image
problem occurring when using the kernel approach on the state variables
(Caers and Park, 2008; Sarma and Chen, 2009).

3.4.2 Comments

An early reference to the Bayesian formulation of the non-linear regression
problem is O'Hagan (1978). However, the connection with kernel methods
known from the machine learning literature was not realised until recently
(Rasmussen and Williams, 2006; Williams, 1998). Moreover, readers fa-
miliar with Geostatistics will surely recognise the connection between the
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probabilistic formulation above and a generalisation of kriging using non-
stationary covariance models (Chiles and Del�ner, 1999; Journel and Hui-
jbregts, 1978).

The decoupling of the state vector into univariate components, as done
in the decomposition above, is theoretically only valid if the elements in the
stochastic error term, εx|d, are independent, which implies that the covari-
ance Σεx|d is proportional to the identity matrix, I. Note, however, that
the methods considered in this paper will not be a�ected by this model as-
sumption because we are solving the regression problem using a least squares
approach. This entails that the obtained regression models are independent
of the model parameter Σεx|d (Hastie et al., 2009).

3.5 Ensemble Kalman Filtering Using Kernel-

Shrinkage Regression

We will now present the kernelised versions of the EnKF updating scheme
based on three common shrinkage regression techniques; Ridge Regression
(RR) (Hoerl and Kennard, 1970), PCR and PLSR. However, we will only
consider kernel RR in detail. The interested reader can �nd a thorough de-
scription of the PCR and PLSR shrinkage regression techniques in Sætrom
and Omre (2010). For simplicity, we de�ne kernel matrices
C∗ = [c∗, . . . , c∗] ∈ Rne×ne , with c∗ = [c(d(1),d∗), . . . , c(d(ne),d∗)]T ∈
Rne×1, and

C =

 c(d(1),d(1)) . . . c(d(1),d(ne))
...

. . .
...

c(d(ne),d(1)) . . . c(d(ne),d(ne))

 . (3.15)

For all three methods, we �nd the estimated Kalman gain matrix by solving
the following multivariate linear regression problem in a feature space, F :

x = Kϕ(d) + εx|d,

where εx|d ∈ Rnx×1 represents the regression model error. Similar to above,

Φ = [ϕ(d(1)), . . . ,ϕ(d(ne))], and we assume that all vectors and ensemble
matrices are centred, unless otherwise stated.

3.5.1 Kernel Ridge Regression

Kernel Ridge Regression (RR) is a regularisation method where we select
the estimated regression coe�cients by minimising the mean squared error
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with additional constraints, that is:

K̂KerRR = arg min
K

{
tr{(X −KΦ)(X −KΦ)T }

+ξtr{KKT }
}

.

Solving this minimisation problem analytically gives (Seber and Lee, 2003):

K̂KerRR = XΦT
(
ΦΦT + ξI

)−1

= X
(
ΦTΦ + ξI

)−1
ΦT .

Thus, we obtain kernel RR predictions for an unknown x∗, with associated
d∗, based on

x∗ = X (C + ξI)−1 c∗ (3.16)

Comparing this expression with Eq. (3.13), we see that the two predictors,
x∗ and E[x∗|X] are identical for σ2

x|d = ξ. This follows because each variable
x∗i , for i = 1, . . . , nx, can be computed independently. Thus, applying kernel
RR in an EnKF setting leads to the following updating scheme:

Xc = Xu +XuH (HCH + ξI)−1H(C∗ −C). (3.17)

Here Xc and Xu are the state ensemble matrices, conditioned and uncondi-
tioned respectively andHCH is the centred kernel matrix (Schölkopf et al.,
1998), with the centring matrix, H, de�ned in Eq. (3.6).

3.5.2 Kernel Principal Component Regression

PCR is based on the assumption that most of the variability in the predictor
variables can be explained through a small set of random variables, termed
principal components. The estimated matrix of regression coe�cients is then
constructed using the principal components as predictor variables. Hence,
we de�ne a matrix of regression coe�cients in a reduced order space. Kernel
PCR follows directly by applying kernel PCA (Rosipal et al., 2001; Schölkopf
et al., 1998) to ϕ(d). The resulting expression for the estimated Kalman
gain matrix is

K̂KerPCR = XEpΛ−1
p ET

p ΦT . (3.18)

Here Ep ∈ Rne×p contains the p eigenvectors of the centred kernel matrix,
HCH, with the p largest corresponding eigenvalues given in the diagonal
matrix, Λp ∈ Rp×p. The following expression then forms an EnKF updating
scheme based on kernel PCR:

Xc = Xu +XuEpΛ−1
p ET

p (C∗ −C). (3.19)
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3.5.3 Kernel Partial Least Squares Regression

Similar to PCR, PLSR applies dimension reduction techniques to the predic-
tor variables. The main di�erence between the two methods is that, PLSR
uses the information available from both the response and predictor vari-
ables when projecting into the p-dimensional subspace, which entails that
PLSR is based on a supervised dimension reduction technique. The ker-
nelised version of the PLSR algorithm follows from the algorithm presented
in Ränner et al. (1994). This results in the following estimate of the Kalman
gain matrix:

K̂KerPLSR = XTA−1W TΦT .

Here A =
(
W TCT

)
∈ Rp×p, with latent variables T = [t1, . . . , tp] ∈

Rne×p and W = [w1, . . . ,wp] ∈ Rne×p given by solving sequentially for
i = 1, . . . , p:

[
ti = HΦTψi

wi = HXTυi

]
←


maxψi,υi

{υT
i XHΦTψi}

‖ψi‖2 = 1, ‖υi‖2 = 1
tTi tj = 0, for all j < i.

Ränner et al. (1994) outline an e�cient procedure for solving this problem
when nx and nd are larger than ne. This gives the following EnKF updating
scheme based on kernel PLSR:

Xc = Xu +XuTA−1W T (C∗ −C), (3.20)

with A de�ned above. Note that centring of the ensemble matrices is un-
necessary because of the identities T = HT and W = HW (Sætrom and
Omre, 2010).

3.5.4 Comments

Although the three shrinkage regression techniques presented above, and
their kernelised versions, all reduce the problems caused by collinearities in
the data ensemble, they accomplish this di�erently. Note that collinearities
in the data ensemble will result in small eigenvalues in the estimated data
covariance matrix, Σ̂d, or the corresponding centred kernel matrix, HCH,
which can result in large weights in the respective Kalman gain matrices.
Whilst the RR technique reduces the weight caused by smallest eigenval-
ues by adding a positive constant to all eigenvalues, the PCR technique
eliminates small eigenvalues, whilst retaining the p dominant. The PLSR
technique works in a similar manner as the PCR, although the analysis is
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slightly more complicated (see Hastie et al. (2009) for a detailed descrip-
tion). However, it has been noted that because the PLSR technique uses
the information from both the state and data ensemble matrices in the di-
mension reduction, a small number of components, p, is often required in
PLSR compared with PCR (Kalivas, 1999; Helland, 2001).

It should be noted that the optimality of the di�erent shrinkage regres-
sion techniques appears to be problem dependent. That is, whilst RR leads
to the smallest prediction error in one study, PCR or PLSR can be optimal
in other studies. It is therefore advisable to test the predictive performance
of the di�erent methods based on the prior and likelihood model, before se-
lecting which method to use in an EnKF setting. Finally it is important to
note that the performance of all three schemes are highly dependent on the
model hyperparameters used. Thus, schemes which enables an automatic
selection of these model parameters are called for.

3.5.5 Model Hyperparameter Selection

The results obtained using the kernel-shrinkage regression techniques de-
scribed above, will in general depend on one or more hyperparameters, θ.
For kernel RR this involves selecting the size of the regularisation parame-
ter, ξ, whilst for kernel PCR and PLSR the dimension of the reduced order
space, p, is required. In addition, we need to select the kernel function,
c(·, ·), which implicitly de�nes ϕ(·). This can be challenging if all symmet-
ric, positive de�nite kernel functions are considered.

The usual approach for selecting c(·, ·) is to consider only certain families
of kernel functions. An example is translation and rotation invariant func-
tions c(d,d′) = c(‖d − d′‖22), referred to as Radial Basis Function (RBF)
kernels, where ‖ · ‖2 is the Euclidean norm (Smola and Schölkopf, 2002).
The second order exponential kernel function, de�ned in Eq. (3.11), is an
example of such a kernel function. Another example of a kernel function is
the polynomial, de�ned as c(d,d′) = (1 + dTd′)ν , ν > 1, which entails that
ϕ(·) represents polynomials. Common for most of the kernel functions in
the literature, however, is that we only need to specify one or two hyperpa-
rameters.

To avoid over�tting the regression model to the data, we can apply
Cross-Validation (CV), as discussed in Sætrom and Omre (2010). CV works
by sequentially splitting the state vector and data ensembles into training
ensemble matrices, (XTrain,DTrain), used for model estimation, and test
ensembles matrices, (XTest,DTest), used for model validation. Using the
training ensemble matrices to estimate the Kalman gain matrix for model
parameters θ, K̂Train(θ), we can predict the state vectors based on the test
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Algorithm 1: Work�ow for the EnKF updating scheme based on
kernel PCR.
Input: Ensemble matrices, (X, D); set of hyperparameters,

Θ = {θ1, . . . ,θr}; number CV folds, m
Randomly select indices I1, . . . , Im so that ∪m

i=1Ii = {1, . . . , ne} and1

∩m
i=1Ii = ∅

for i = 1 to r do2

PRESS(i) = 03

for i = 1 to m do4

for j = 1 to r do5

Estimate K̂KerPCR(θj) using Eq. (3.18), based on centred6

ensemble members (x(k),d(k)), for indices k /∈ Ii

for k ∈ Ii do7

Predict: x̂(k) = K̂KerPCR(θj)ϕ(d(k))8

PRESS(j) + = ‖x̂(k) − x(k)‖229

j∗ = arg minj PRESS(j)10

Estimate K̂KerPCR(θj∗) using Eq. (3.18), based on full ensemble11

matrices X, D
EnKF update using Eq. (3.19)12

data, X̂Test = K̂Train(θ)DTest. Computing the sum of squares of the mis-
match between X̂Test and XTest, referred to as the Predictive Error Sum of
Squares (PRESS) statistic, can be used to measure of the predictive power
for the chosen model. Note, however, that it is straightforward to use other
objective functions than the sum of squares. We can then select the model
hyperparameters by minimising the PRESS statistic for di�erent values of
θ, as discussed below. A pseudo code describing the work�ow of the EnKF
updating scheme based on kernel PCR, using m-fold CV to select the model
parameters is given in Algorithm 1. Note that we here use the notation Ii to
denote the set of indices for members of test ensemble i. A similar work�ow
can be used for the RR and PLSR techniques as well.

The model parameters, θ, will for most applications of kernel-shrinkage
regression contain two parameters, which can be both discrete and continu-
ous. Alternative methods for solving this problem are gradient based opti-
misation techniques (Nocedal and Wright, 2006), or stochastic optimisation
techniques such as particle swarm optimisation (Kennedy and Eberhart,
1995) and simulated annealing (Kirkpatrick et al., 1983). In practise, how-
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ever, it is often su�cient to consider a limited number discrete values for the
continuous model parameters, for example ∆ ∈ {1, 2, . . . , 20} for the second
order exponential covariance function, rather than searching for the global
optimum (Smola and Schölkopf, 2002). Hence, we do not necessarily su�er
from high computational demands if we select the model parameters based
on an exhaustive search rather than sophisticated optimising schemes. Also
note that for applications of the EnKF where it is extremely time consuming
to evaluate the forward model ω(·), such as petroleum reservoir character-
isation, the use of CV for model parameter selection will not increase the
total computational time signi�cantly. In addition, we emphasise that the
CV scheme is straightforward to run in parallel. A discussion regarding the
computational properties of the EnKF updating scheme based on kernel-
shrinkage regression techniques can be found in Appendix 3-B.

Finally, because the likelihood model is known, selection of the kernel
function is easier in this setting, compared to non-linear regression problems
where the relation between d and x is unknown. An alternative approach is
therefore to select the kernel function based on prior knowledge of the state
vector and the likelihood model. That is, we select the hyperparameters of
the kernel function based on the predictive power of the non-linear regression
model created using realisations from the initial prior model.

3.6 Empirical Study

We de�ne the state vector xk ∈ R100×1, k = 0, . . . , 19 on a (10× 10) regular
grid domain. Here xi,j,k denotes the value of the state vector at location
(i, j), i = 1, . . . , 10, j = 1, . . . , 10 and time step k. We assume that the state
vector is static, meaning xk+1 = xk, k = 0, . . . , 19, with a reference model
generated from the Gaussian prior model:

xTrue ∼ Gaussnx(µx,Σx).

Here µx = 5 × 1 and we construct Σx based on an exponential covariance
function,

Cov(xi,j,0, xl,m,0) = exp
{
−3(∆)1.2

}
, (3.21)

where

∆ =

√(
∆x

lx

)2

+
(

∆y

ly

)2

.

The range parameters lx and ly are one and 10 respectively.
We use the non-linear likelihood model:

dk = ζ(x, εd), (3.22)
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Figure 3.3: Reference state vector used in the empirical case study generated from
a Gaussian prior distribution with an anisotropic covariance function.

to connect the observations dk to the state vector. Here each element ζi,j,k =
g(xi,j,k, 5) + σdε

2
i,j,k, with g(·) de�ned as:

g(x, β) =

{
sin(|x−β|) cos(d)

|x−β| , x 6= β

1, x = β.
, (3.23)

and εi,j,k ∼ Gauss1(0, 1). Hence, we have an additive error term εd/σd ∼ χ2
1,

where χ2
ν denotes the χ2-distribution with ν-degrees of freedom (Casella and

Berger, 2002), which makes the likelihood function both non-Gaussian and
non-linear. Here σd = 0.25, which implies that the mean and variance of
the error term are equal to 0.250 and 0.125 respectively. Fig. 3.3 shows
an image plot of the reference state vector. The scatter plot of xTrue and
the corresponding observed data at the initial time step, d0, in Fig. 3.4,
displays the non-linear structure of the likelihood model. At each time step
k = 0, . . . , 19, we make new observations, dk.

3.6.1 Non-Linear Regression

To demonstrate the e�ect of the suggested kernel regression techniques we
initially consider a univariate non-linear regression problem, with a bivariate
predictor variable, based on the function de�ned in Eq. (3.23) as follows:
De�ne the date ensemble matrix, D, through ne = 91 uniformly spaced
points, d ∈ R2×1, with d1 and d2 having values between -4 and 4. Assume
that at each of these 91 locations, we observe values of the function,

x = γ(d) + εx|d = 1 + g(d1, 0) + g(d2, 0) + εx|d,
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Figure 3.4: Scatter plot between the elements of xTrue and corresponding obser-
vations, do,based on the non-linear, non-Gaussian likelihood model.

where the noise term, εx|d, is Gaussian having zero mean and standard de-
viation 0.5. Fig. 3.5 and 3.6 display the reference solution and the observed
data.

Using the ensemble matrices D and X, the task is to �t a regression
model based on the classical linear least squares approach and the three
kernel-shrinkage regression models discussed above. Because the Gaussian
kernel function, described in Eq. (3.14), is a robust choice when no prior
information is available regarding the data (Smola, 1998; Smola et al., 1998),
we use it to map d into the feature space F . To select the scaling factor in
the kernel function and shrinkage factor for the three regression methods, we
apply 10-fold CV. Fig. 3.7 display the results. Note that because the prior
and likelihood models are fully speci�ed, another alternative is to tailor the
kernel function based on this known prior information. How this task can be
accomplished in an automatic manner is, however, somewhat unclear and is
a topic for further research. Hence, we apply the Gaussian kernel function
for the case studies considered in this paper, even if this selection might be
sub-optimal.

As expected, the plane resulting from the linear least squares method,
does not provide a good prediction of the non-linear function. The three
kernel methods, on the other hand, are able to capture the non-linear trend
of the function, thus providing reasonable predictions. Fig. 3.8 display
the absolute deviance between the reference and predicted solution for the
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Figure 3.5: Reference solution for the non-linear regression problem considered,
x = γ(d), for locations, d in the plane.
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Figure 3.6: Observed data of the function x = γ(d)+ εx|d at 81 uniformly spaced
locations d in the plane.
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Figure 3.7: Predicted outcome based on least squares linear regression (LSQ),
kernel RR (KerRR), kernel PCR (KerPCR) and kernel PLSR (Ker-
PLSR). 10-fold CV was used to select the prior hyperparameters θ.
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Figure 3.8: Absolute deviance between the true solution and the predicted out-
come based on least squares linear regression (LSQ), kernel RR
(KerRR), kernel PCR (KerPCR) and kernel PLSR (KerPLSR). 10-
fold CV was used to select the prior hyperparameters θ.
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four methods. Except for the larger error occurring at the origin for the
kernel RR method, the deviance is within one standard deviation of the
observation error at all predicted locations using the three kernel methods.
The main di�erence between the PCR and PLSR approaches is, however,
that the former requires p = 13 components, whilst the latter only requires
p = 1. Note that this behaviour is in accordance with the discussion above,
because PLSR uses information from both the state- and data vector in the
dimension reduction.

3.6.2 Results

Based on the results seen in the non-linear regression based on the likelihood
model, we proceed using the EnKF based on kernel PCR and PLSR tech-
niques on the �ltering problem with the Gaussian kernel function de�ned in
Eq. (3.14). We use the following sampling scheme to generate the initial
ensemble with ne = 100:

xu(1) = 10× 1

xu(2), . . . ,xu(25) ∼ Gaussnx

(
1

1.5
µx, 2Σx

)
xu(26), . . . ,xu(50) ∼ Gaussnx

(
1
2
µx, 2Σx

)
xu(51), . . . ,xu(75) ∼ Gaussnx (2µx, 2Σx)

xu(76), . . . ,xu(100) ∼ Gaussnx (1.5µx, 2Σx) ,

with µx and Σx de�ned above. Hence, there is a high uncertainty regarding
the mean of the true underlying distribution. The purpose of this study
is to assimilate observed data using the standard EnKF updating scheme
for non-linear observations (Evensen, 2007, Appendix A.2) and the EnKF
updating schemes based on kernel-shrinkage regression. Because nd = ne,
Σ̂d will be singular. We therefore add a positive de�nite regularisation term
before inverting the matrix, as explained in Section 3.3, with Σr = 2σ2

dI.
When selecting the prior the hyperparameters in the kernel-shrinkage

regression techniques, θk, we consider the following two approaches:

• Automatic: θ = (σ2, p) selected based on 10-fold CV at each time
step, minimising the PRESS statistic.

• Supervised: θ = (σ2, p) selected based is based on 10-fold CV at the
initial time step, minimising the PRESS statistic, and remain �xed for
all time steps k = 0, . . . , 19.
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Hence, we consider �ve di�erent EnKF updating schemes in total:

• Classical EnKF: The non-linear formulation of the EnKF updating
scheme using the estimated Kalman gain matrix given in Eq. (3.9),
assuming a Guassian additive noise term: d = ζ(x) + εd, where
εd ∼ Gaussnd

(0, 2σ2
dI). This implies that the covariance of the noise

term, Σr, is equal to the true variance of the likelihood model (Casella
and Berger, 2002), although we do not account for the non-zero mean.

• EnKF-KerPLSR1: EnKF based on the kernelised PLSR method. The
dimension of the reduced order space, and the scaling parameter in the
Gaussian kernel function selected based on the automatic approach

• EnKF-KerPCR1: EnKF based on the kernelised PCR method. The
dimension of the reduced order space, and the scaling parameter in the
Gaussian kernel function selected based on the automatic approach

• EnKF-KerPLSR2: EnKF based on the kernelised PLSR method. The
dimension of the reduced order space, and the scaling parameter in the
Gaussian kernel function selected based on the supervised approach.

• EnKF-KerPCR2: EnKF based on the kernelised PCR method. The
dimension of the reduced order space, and the scaling parameter in the
Gaussian kernel function selected based on the supervised approach

Fig. 3.9a through e, displays the results obtained in grid nodes 81 through
100 using the �ve di�erent EnKF updating schemes. The results are similar
for the remaining locations, and are therefore not included. Note that the
initial ensembles are identical for all �ve schemes.

As we can see from Fig. 3.9a, the classical EnKF is not able to get a good
representation of the state vector at the �nal updating step. The estimated
posterior mean is farther from the reference state vector than at the initial
time step and the ensemble has collapsed into a single realisation. Because
we are using a linear updating scheme on a non-linear likelihood model,
we expect that the ensemble mean is missing the reference state vector.
However, it is more troubling that we are not able to obtain estimates of
the prediction uncertainty. Ideally, the estimated prediction interval based
on the updated ensemble, should cover 95% of the reference state vector. In
this case, however, the coverage is zero percent.

The EnKF-KerPLSR1 method is able to obtain reasonable estimates of
the reference state vector, xTrue. The estimated posterior mean is centred
around xTrue, and the estimated prediction interval is giving a good descrip-
tion of the solution uncertainty. The EnKF-KerPCR1, EnKF-KerPLSR2
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Figure 3.9: Results obtained when running �ve di�erent EnKF updating schemes
on a problem with a highly non-linear likelihood model. The �gure
displays, for grid nodes 81 through 100, the reference xTrue

10 (solid), the
ensemble average (dotted) and the estimated 95% con�dence bounds
of the prediction interval (solid, light gray) at the �nal time step.
The ensemble mean at the initial time step is shown as the dashed,
dark gray line.
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and EnKF-KerPCR2 updating schemes have a similar behaviour, as shown
in Fig. 3.9c to e.

Fig. 3.10 contains two realisations of the state vector in the initial ensem-
ble and the corresponding realisations after the �nal updating step, using
the �ve di�erent EnKF updating schemes. We also display the ensemble
mean. At the initial time step, the realisations and the ensemble mean do
not resemble the reference state vector, as expected from the prior distribu-
tion described above. Again, we notice that the realisations obtained using
the Classical EnKF scheme has collapsed, and are farther from xTrue, than
they were initially. The four kernel-shrinkage regression techniques, on the
other hand, appear to give a good representation of the reference state vec-
tor. We especially note that the anisotropic behaviour in xTrue is captured
in both the realisations and the ensemble mean for all of the four schemes
based on kernel-shrinkage regression.

It is interesting to note that the results obtained using the automatic
and supervised methods to select θ produces similar results. For the su-
pervised parameter selection approach θ was selected as: θPCR = (10, 5)
and θPLSR = (10, 1), whilst for the CV based selection scheme θPCR ∈
{[1, 7](5), [5, 30](20)} and θPLSR ∈ {[1, 5](1), [5, 30](20)}. Here the notation
[1, 5](5) is used to denote the smallest, largest and median value of the se-
lected parameters respectively.

To quantify the performance of the �ve updating schemes the model
is rerun 100 times using di�erent initial ensembles. We then compute the
scaled Total Sum of Squares (TSS), given as 1/ne

∑ne
i=1 ‖µ̂xc −xTrue‖22, and

the coverage of the reference solution within the estimated 95% prediction
intervals. The results are summarised in Table 3.1. Here we have included
the results obtained using PLSR regression in the Euclidean space, rather
than the feature space, selecting the subspace dimension p using 10-fold CV
(EnKF-PLSR1). As we can see from this table, the TSS increase with 412
percent from the initial updating step when using the classical EnKF updat-
ing scheme. On average, the prediction interval only covers 6.2 percent of
the reference state vector. Note, however, that the coverage for the majority
of the reruns is zero percent.
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Figure 3.10: Two realisations and the estimated ensemble mean for the initial
ensemble, the classical EnKF updating scheme (C-EnKF) and the
four kernel-shrinkage regression techniques.
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ne Scheme TSS Coverage
(%)

100 No Updating 70.6 100.0
100 Classical EnKF 311.5 6.1
100 EnKF-KerPLSR1 9.3 92.2
100 EnKF-KerPCR1 9.0 96.6
100 EnKF-KerPLSR2 7.5 93.6
100 EnKF-KerPCR2 6.2 95.6
100 EnKF-PLSR1 60.5 19.3

Table 3.1: Scaled (1/ne) Total Sum of Squares (TSS) of the estimated posterior
mean to the reference solution, and coverage of the reference solution
in the estimated 95% prediction intervals based on 100 di�erent initial
ensembles.

Using the kernelised shrinkage regression techniques reduces the TSS
with between 87 and 91 percent, with the largest decrease when we use
the supervised parameter selection scheme. This suggests that the PRESS
statistic is not the optimal measure of the goodness-of-�t for this model.
Replacing the PRESS statistic with alternative measures, is a topic for future
research. The estimated mean coverage is close to the theoretical value of
95 percent for all four schemes.

Contrary to the classical EnKF updating scheme, using the EnKF-PLSR1
scheme does not lead to an increase in the TSS compared to the initial en-
semble. As explained in Sætrom and Omre (2010), we expect to see this
behaviour because we reduce the problem of regression model over�tting
caused by collinear ensemble members, when using shrinkage regression tech-
niques. However, the estimated prediction interval is not able to capture the
reference state vector, which we expect when using a linear updating scheme
on a highly non-linear likelihood model.

Fig. 3.11a and b, further illustrates the negative e�ect of model over�t-
ting. Here the scaled Residual Sum of Squares (RSS) between the ensemble
members and the reference solution, 1/ne

∑ne
i=1 ‖xc(i)−xTrue‖22, and the cov-

erage as a function of k = 0, . . . , 19 are displayed. As we can see from these
�gures, the RSS for the classical EnKF is increasing rapidly for the �rst two
updating steps. At the same time, the coverage is rapidly decreasing and
after two assimilation steps it is down to zero percent. A similar trend can
be seen for the EnKF-PLSR1 updating scheme. However, the e�ect of model
over�tting is not as prominent as for the classical EnKF. This illustrates the
usefulness of applying shrinkage regression techniques in an EnKF updating
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scheme.

For the kernelised shrinkage regression techniques, the behaviour of the
RSS and coverage is similar for all of the four updating schemes consid-
ered. Initially the RSS decrease rapidly before it stabilises at the later time
steps. Similarly, the coverage is slowly converging towards the expected
value of 95%, where it appears to stabilise. In addition, note that we are
better able to preserve the spread of the updated ensemble members using
the kernel-shrinkage regression techniques compared with the EnKF-PLSR1
updating scheme. We believe that the additional non-linearities introduced
when mapping the data vector into the feature space is the cause of this be-
haviour. Hence, we reduce the collinearities between the updated ensemble
members, which potentially can lead to model over�tting.

3.7 Conclusions

We have formulated an EnKF updating scheme based on kernel-shrinkage
regression techniques to handle highly non-linear and non-Gaussian likeli-
hood models. Contrary to previously suggested EnKF updating schemes
based on kernel methods, the approach does not require solving a pre-image
problem. Moreover, the computational complexity is equal to the fastest
EnKF algorithms previously suggested.

We presented kernel regression as a natural extension of the classical
EnKF to the non-linear case using Gaussian Random Fields (GRF). Under
the assumption that the response variable is a GRF, we obtained a pre-
diction scheme de�ned through the inner product between data vectors in
the feature space. We can equally describe these inner products through
symmetric, positive de�nite kernel functions in the Euclidean space, which
corresponds to covariance functions for a GRF. Hence, we gave an extension
of the Bayesian formulation of the classical EnKF to a non-linear setting,
from which kernel Ridge Regression (RR) is a special case. In addition, we
considered two additional kernel shrinkage regression techniques based on di-
mension reduction, namely kernel Principal Component Regression (PCR)
and Partial Least Squares Regression (PLSR).

We evaluated the performance of the three kernel-shrinkage regression
techniques for a non-linear regression problem. Here we used a Cross-
Validation (CV) scheme to select the prior hyperparameters of the regression
models. When we applied the estimated models for prediction purposes, we
obtained similar results for the kernel PCR and PLSR methods. However,
the dimension of the respective reduced order models was smaller for the
kernel PLSR, because this method uses both the predictor and response
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Figure 3.11: Scaled (1/ne) Residual Sum of Squares (RSS), for the forecasted
state vector ensemble members and the reference solution, and cov-
erage of the reference solution in the estimated 95% prediction in-
tervals as a function of time steps k.
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variables in the dimension reduction. Kernel RR gave slightly larger errors
in the predictions.

EnKF updating schemes based on kernel PCR and PLSR were further
tested on a hidden Markov model with a non-linear, non-Gaussian likeli-
hood model. For comparison, we considered the standard EnKF updating
scheme for non-linear likelihood models. The kernelised shrinkage regression
techniques provided good estimates of unknown reference state vector, with
uncertainty estimates close to the theoretical bounds. On this model, the
updating scheme based on kernel PCR performed slightly better than kernel
PLSR, although the subspace dimension tended to be smaller when using
the supervised PLSR approach. The standard EnKF, on the other hand,
completely missed the reference solution, with an ensemble collapsing after
a few updating steps.
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APPENDIX

Appendix 3-A, Gaussian Random Field

The collection of random variables {r(x1), . . . , r(xne)} is a Gaussian Ran-
dom Field (GRF) if any subset of the random variables {r(xi)} has a joint
Gaussian distribution. A GRF is completely speci�ed through a mean and
covariance function, denoted m(x), and c(x,x′) respectively, for any vectors
x and x′ ∈ Rnx×1. Here m(x) = E[r(x)]] and

c(x,x′) = E
[
(r(x)−m(x))

(
r(x′)−m(x′)

)T ]
Whilst m : Rnx → R can be any function, the following criteria must be

satis�ed for the covariance function c : (Rnx×1 × Rnx×1)→ R:

1. Symmetric: c(x,x′) = c(x′,x).

2. Positive semide�nite:∫
c(x,x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0, (A-1)

for all x and x′ ∈ Rnx×1 and f ∈ L2(Rnx , µ).
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Within the class of valid covariance functions are the stationary and isotropic:

c(x,x′) = c(‖x− x′‖2),

where ‖ · ‖2 is the Euclidean norm.

Appendix 3-B, Computational Properties

If the model parameters, θ are speci�ed, the computational complexity of
the EnKF updating schemes based on kernel RR, kernel PCR and kernel
PLSR is O(max{nd, nx, ne}n2

e). Hence, we have the same computational
complexity and memory requirements as the fastest EnKF algorithms pre-
viously suggested when ne < max{nx, nd}. Further note that we can write
the updating scheme based on kernel RR, similarly to kernel PCR, using
the ne estimated eigenvectors and values of the centred kernel matrix. This
follows because HCH by construction is symmetric, positive semide�nite.

When the model parameters, θ are selected based on a CV scheme, as
outlined in Algorithm 1, the computational complexity of the respective ker-
nelised EnKF updating schemes is O(r max{nx, nd, ne}n2

e). In the example
considered in this paper, r = nσne, where nσ denotes the number of discrete
values of σ we consider in the Gaussian kernel function, which in this study
is ne/4. Hence, in terms of the computational complexity, it is preferable
to pre-select the model parameters because the computational demands de-
crease by a factor n2

e. However, in the general case we expect that using
pre-selected model parameters will be a less robust choice, compared with
the alternative of selecting the model parameters at each updating step using
CV.
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Chapter 4

Improved uncertainty

quanti�cation in the Ensemble

Kalman Filter using statistical

model selection techniques

Abstract. The Ensemble Kalman Filter (EnKF) is a sequential Monte
Carlo method for solving non-linear spatiotemporal inverse problems in high
dimensions, such as petroleum reservoir evaluation. Although the EnKF
has seen successful applications in numerous areas, the classical EnKF al-
gorithm can severely underestimate the prediction uncertainty. This can
lead to biased production forecasts and an ensemble collapsing into a single
realisation.

In this paper we combine a previously suggested EnKF scheme based on
dimension reduction in the data space, with an automatic Cross-Validation
(CV) scheme to select the subspace dimension. The properties of both the
dimension reduction and the CV scheme, are well known in the statistical
literature. In an EnKF setting, the former can reduce the e�ects caused
by collinear ensemble members, whilst the latter can guard against model
over�tting by evaluating the predictive capabilities of the EnKF scheme.
The model selection criterion traditionally used for determining the subspace
dimension, on the other hand, does not take the predictive power of the
EnKF scheme into account, and can potentially lead to severe problems of
model over�tting. A reservoir case study is used to demonstrate that the CV
scheme can substantially improve the reservoir predictions with associated
uncertainty estimates.

107



 
Is not included due to copyright 



Paper IV

Resampling the Ensemble Kalman Filter

Inge Myrseth, Jon Sætrom and Henning Omre

Paper submitted for publication





Chapter 5

Resampling the Ensemble

Kalman Filter

Abstract. Ensemble Kalman �lters (EnKF) based on a small ensemble
tend to provide collapse of the ensemble over time. It is shown that this
collapse is caused by positive coupling of the ensemble members due to use
of one common estimate of the Kalman gain for the update of all ensemble
members at each time step. This coupling can be avoided by resampling the
Kalman gain from its sampling distribution in the conditioning step. In the
analytically tractable Gauss-linear model �nite sample distributions for all
covariance matrix estimates involved in the Kalman gain estimate are known
and hence Kalman gain resampling can be done. For the general nonlinear
case we introduce the resampling ensemble Kalman �lter (ResEnKF) algo-
rithm. The resampling strategy in the algorithm is based on bootstrapping
of the ensemble and Monte Carlo simulation of the likelihood model. An
empirical study demonstrates that ResEnKF provides more reliable predic-
tion intervals than traditional EnKF, on the cost of somewhat less accuracy
in the point predictions. In a synthetic reservoir study, it is shown the the
hierarchical ensemble Kalman �lter (HEnKF) provides more reliable predic-
tions and prediction intervals than both ResEnKF and traditional EnKF.
The HEnKF requires additional modelling, however.
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Chapter 6

Ensemble Kalman �ltering in a

Bayesian regression

framework

Abstract. Bayesian methods have in recent years become popular when
considering problems in geosciences, such as sequential data assimilation in
high dimensions. Ensemble based Monte Carlo methods, such as the Ensem-
ble Kalman Filter (EnKF), are attractive to use because they are easy to im-
plement and computationally fast. However, high computational demands
will often restrict the ensemble size. Problems resulting from estimation
uncertainty and dependencies between the ensemble members can therefore
occur. As a result, the traditional EnKF updating schemes can lead to unre-
liable predictions with a severe underestimation of the prediction interval. In
this paper, we present analytical expressions for the prediction variance and
the downward bias of the prediction intervals. Furthermore, we introduce al-
ternative EnKF updating schemes based on Bayesian regression techniques.
The main idea is to replace the traditional plug-in estimate of the Kalman
gain matrix with individual realisations from a matrix-variate distribution
for each updated ensemble member. We evaluate the performance of the
suggested schemes through simulation on synthetic case studies. The re-
sults reveal that we can dramatically improve the accuracy of the forecast
and predictions intervals, especially for small ensemble sizes.
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6.1 Introduction

The Ensemble Kalman Filter (EnKF) is a Monte Carlo method for solving
non-linear spatiotemporal inverse problems in high dimensions (Evensen,
2007). Applications include numerical weather prediction (Houtekamer et al.,
1996; Houtekamer and Mitchell, 2001), oceanography (Keppenne and Rie-
necker, 2003; Leeuwenburgh et al., 2005), hydrology (Moradkhani et al.,
2005) and petroleum reservoir characterisation (Aanonsen et al., 2009). The
EnKF is based on the traditional Kalman Filter (KF) (Kalman, 1960), which
provides an analytical solution for the posterior probability density function
(pdf) of interest, assuming linear system dynamics and linear, Gaussian as-
sumptions, termed the Gauss-linear model.

Analytical tractability of the posterior pdf will be lost for non-linear sys-
tem dynamics and non-Gaussian distributions. Techniques such as Markov
chain Monte Carlo or importance sampling can therefore be used to gener-
ate realisations correctly from the posterior pdf (Doucet et al., 2000; Liu,
2001; West and Harrison, 1999). High dimensional problems will, however,
restrict the tractability of these methods because of high computational de-
mands. Moreover, approximate solutions such as the extended KF (Gelb,
1974; Jazwinski, 1970), where the forward model is linearised, can lead to
an unstable solution, in addition to potentially high computational demands
(Evensen, 1992).

The EnKF solution to the spatiotemporal forecast problem is based on a
Monte Carlo approach with sequential forecasting and assimilation of avail-
able observations. The updating step is based on a linearisation where the
required unknown covariances are assessed from the Monte Carlo ensemble.
From these estimates we can estimate the weights in the linearisation, re-
ferred to as the Kalman gain matrix. This entails that for the Gauss-linear
model, the EnKF will be consistent with the KF as the ensemble size tends
to in�nity (Mardia et al., 1979). When the ensemble size is �nite, however,
problems resulting from estimation uncertainty and ensemble collinearities
are known to occur (Furrer and Bengtsson, 2007; Houtekamer and Mitchell,
1998; Sacher and Bartello, 2008). As a consequence, the updated ensem-
ble members will fail to correctly represent the statistical properties of the
posterior distribution.

From classical multivariate statistics (Anderson, 2003b), it is well known
that estimation of the unknown Kalman gain matrix can be equally formu-
lated as a multivariate linear regression problem (Anderson, 2003a; Sætrom
and Omre, 2010). Hence, the EnKF updating scheme can be reformulated
based on known regression techniques aiming at improving both the accuracy
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and variance estimates of the forecasts. Examples are shrinkage regression
techniques for collinear data, where the unbiased least squares estimator
is replaced by biased alternatives having improved predictive capabilities
(Farrer and Glauber, 1967; Hastie et al., 2009). Indeed, such an approach
can lead to considerable improvements compared to the classical EnKF al-
gorithm for small ensemble sizes (Sætrom and Omre, 2010). However, the
ensemble members will, similar to the classical EnKF, be coupled over time
because the same Kalman gain estimate is used to update every ensemble
member.

In the current paper we present theoretical results for the bias and co-
variances in the forecast based on the classical updating scheme, taking
into account the uncertainty of the unknown Kalman gain matrix. Further-
more, we have formulated an alternative EnKF updating scheme based on
Bayesian regression techniques. In this scheme, each ensemble member is
updated based on a Kalman gain matrix independently generated from a
matrix variate distribution, rather than using one common plug-in estimate.
We consider both conjugate and non-informative prior distributions, and
an approximate dimension reducing scheme for high dimensional models is
suggested. Synthetic examples inspired by petroleum reservoir evaluation
problems are used to empirically evaluate the performance of the suggested
procedures.

6.2 Notation and problem formulation

Throughout this paper the notation x ∈ Rnx×1 will be used to denote that
x is an nx-dimensional column vector in the real space and xT will denote
its transpose. Similarly, a matrix A in the real space containing a rows and
b columns will be denoted by A ∈ Ra×b. For simplicity, the same notation
will be used for random vectors and matrices.

Consider the stochastic Directed Acyclic Graph (DAG) outlined in Fig-
ure 6.1. Here xtk ∈ Rnx×1 denotes the state of the unknown random vector
of interest at time step k and time tk, and similarly do

tk
∈ Rnd×1 denotes the

vector of observed data. For notational convenience, we will from now on
drop the subscript tk, and write xk, d

o
k. Moreover, x and d will be referred

to as the state and observation vector respectively.

Let f(x0) denote the prior pdf of the state vector at the initial time step.
Through the Markov properties of a stochastic DAG, we have conditional
independence between xk+1 and xl, l = 0, . . . , k−1 given xk, which implies

f(xk+1|xk, . . . ,x0) = f(xk+1|xk).



164

Ensemble Kalman �ltering in a Bayesian regression

framework

d
o

t0

xtK+1

. . .

xt1

. . .

xt0
xtK

d
o

t1
d

o

tK

Figure 6.1: Stochastic Directed Acyclic Graph (DAG) of the model considered.

In general assume that

xk+1 = ω(xk, εxk
), k = 0, . . . ,K, (6.1)

where ω : (Rnx×1 × Rnx×1) → Rnx×1 is a known, possibly non-linear for-
ward function. Here εxk

represents random model errors and/or numerical
errors in the forward model, assumed to follow a known probability distri-
bution. This implies that we implicitly get a fully speci�ed prior model of
the unknown state vector through f(x0) and ω(·, ·). The function:

do
k = ζ(xk, εdk

), k = 0, . . . ,K, (6.2)

connecting the observed data do
k to xk, where ζ : (Rnx×1×Rnd×1)→ Rnd×1,

is a known, possibly non-linear, function and εdk
represents the likelihood

model and observation errors, again assumed to follow a known pdf.

For notational convenience, let xc
k ∼ f(xk|do

0:k) and x
u
k+1 ∼ f(xk+1|do

0:k),
for k = 1, . . . ,K, where we use do

0:l to denote the sequence do
0, . . . ,d

o
l . The

objective in this model setting is to solve the spatiotemporal forecast problem
of predicting xk given observations do

0:(k−1), for k = 1, . . . ,K + 1. Bayesian
inversion provides a sequential solution to this problem. Through Bayes rule
and the Markov properties of the prior model, we have:

f(xk|do
0:k) ∝ f(xk|do

0:(k−1))f(dk|xk)

f(xk+1|do
0:k) =

∫
f(xk+1|xk)f(xk|do

0:k)dxk. (6.3)

Note that the conditional pdf f(xk+1|xk) and f(dk|xk) are implicitly de�ned
through ω(xk, εxk

) and ζ(xk, εdk
) de�ned in Eq. (6.1) and (6.2) respectively.
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In the general case, we only know the conditional distributions de�ned
in Eq. (6.3) up to an unknown normalising constant. Computationally
demanding techniques, such as Markov chain Monte Carlo (McMC) or re-
jection sampling, can then be used to generate realisations correctly from
the posterior distribution (Doucet et al., 2000). However, for spatiotempo-
ral problems in high dimensions, such as petroleum reservoir evaluation and
weather forecasting, these techniques are computationally prohibitive. This
follows because even a single evaluation of ω(xk, εxk

), which involves solving
non-linear partial di�erential equations in dimensions of order 106−109, can
take several hours or even days. An approximate solution can be de�ned
by assuming that xu

k and do
k follow a distribution that ensures analytical

tractability of f(xk|do
0:k), for example the multivariate Gaussian distribu-

tion. These model assumptions are equivalent to those made in the classical
EnKF (Evensen, 2007), which we will consider next.

6.2.1 Classical Ensemble Kalman Filter

Let x
c(i)
0 be a realisation from the unspeci�ed conditional distribution at the

initial time step, f(x0|do
0). Further let x

u(i)
k = ω(xc(i)

k−1, ε
(i)
xk) and

d
(i)
k = ζ(xu(i)

k , ε
(i)
dk

), for k > 0, where we at each time step, as an approxi-
mation, assume:[

x
u(i)
k

d
(i)
k

]
∼ Gaussny

([
µxu

k

µdk

]
,

[
Σxu

k
Σxu,dk

Σd,xu
k

Σdk

])
, (6.4)

with ny = nx+nd. Here the notation y ∼ Gaussny(µy,Σy) is used to denote
that y ∈ Rny×1 follows the multivariate Gaussian distribution with mean
µy and covariance matrix Σy as de�ned in Appendix 6-A. For notational
convenience, we will from now on omit the subscript k, because the focus is
on updating at a single time step.

Under the Gaussian assumption in Eq. (6.4), the posterior pdf f(xk|do
0:k)

is Gaussian with analytically obtainable mean:

µxu|d = µxu + Σxu,dΣ−1
d (do − µd), (6.5)

and covariance matrix:

Σxu|d = Σxu −Σxu,dΣ−1
d Σd,xu , (6.6)

where do is the vector of observed data. Furthermore, it is straightforward
to show that

xc(i) = xu(i) + Σxu,dΣ−1
d (do − d(i)), (6.7)
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is one realisation from the Gaussian posterior distribution with mean and
covariance given in Eq. (6.5) and (6.6) (Evensen, 2007).

Eq. (6.7) involves two model parameters, namely Σxu,d and Σd forming
the Kalman gain matrix,

K = Σxu,dΣ−1
d ∈ Rnx×nd . (6.8)

For the Gauss-linear model, K will be analytically tractable and given by
the Kalman recursions (Furrer and Bengtsson, 2007; Kalman, 1960). Ana-
lytical tractability is, however, lost in the general model setting we consider
here. The EnKF solution to this problem is to use an ensemble of ne realisa-
tions {(xu(1),d(1)), . . . , (xu(ne),d(ne))}, from which we can obtain empirical
estimate of the unknown covariance matrices.

LetX = [xu(1), . . . ,xu(ne)] ∈ Rnx×ne andD = [d(1), . . . ,d(ne)] ∈ Rnd×ne

denote the ensemble matrices for the state- and observation vector respec-
tively. Thus, the expression

K̂ = Σ̂xu,dΣ̂
−1
d = XHneD

T
(
DHneD

T
)−1

, (6.9)

de�nes the classical estimate of the Kalman gain matrix in a general setting
(Anderson, 2003b), where Hne = Ine − 1/ne1ne,11T

ne,1 ∈ Rne×ne is the
idempotent centring matrix. Here Ine is the ne-dimensional identity matrix
and 1ne,1 is a ne-dimensional vector where all the entries are equal to one.

Replacing the unknown Kalman gain matrix in Eq. (6.7), with the em-
pirical estimate in Eq. (6.9), thus de�nes the standard EnKF updating
scheme in a general form:

xc(i) = xu(i) + K̂(do − d(i)), for i = 1, . . . , ne. (6.10)

We will from now on refer to the replacement of the unknown Kalman gain
matrix with the empirical estimate in Eq. (6.9) as the standard EnKF. Note
that we here motivate the EnKF updating scheme by a Gaussian prior model
assumption. However, because the conditioned state vector, xc(i), at each
updating step is given as a linear combination of xu(i), do and d(i), with
the model parameters only involved in the Kalman gain matrix, we can still
capture non-Gaussian properties present in the general posterior distribution
at the initial time step, f(x0|do

0), at the later time steps (Evensen, 2007).
Under the Gauss-linear model, we have convergence in distribution of

the EnKF updating scheme based on K̂ towards the classical KF scheme as
ne → ∞ (Furrer and Bengtsson, 2007). However, for �nite ensemble sizes
the standard EnKF updating scheme will produce a conditional ensemble
which underrepresents the variability of xc (Furrer and Bengtsson, 2007;



6.2 Notation and problem formulation 167

van Leeuwen, 1999; Sacher and Bartello, 2008). In the following section
we will use classical multivariate statistics to establish theoretical results
regarding properties of the mean and covariance of the conditioned state
vector ensemble.

6.2.2 Properties of the Conditioned State Vector Ensemble

Following Myrseth et al. (2009), we assume that the estimated Kalman gain
matrix, K̂, follows a matrix variate distribution, thus accounting for both
the model and parameter uncertainty. Consider the standard EnKF updat-
ing scheme de�ned in Eq. (6.10). Using known results for the conditional
expectation and covariance we get:

E[xc(i)] = µxu|d + (ΓK̂ −K)(do − µd)

Cov(xc(i)) = Σxu|d + (ΓK̂ −K)Σd(ΓK̂ −K)T

+ E
[
(K̂ − ΓK̂)(Σd + ∆do)(K̂ − ΓK̂)T

]
, (6.11)

for i = 1, . . . , ne. Furthermore, the covariance between ensemble members
xc(i) and xc(j) for i, j = 1, . . . , ne, i 6= j is

Cov(xc(i),xc(j)) = E
[
(K̂ − ΓK̂)∆do(K̂ − ΓK̂)T

]
. (6.12)

Here E[K̂] = ΓK̂ , K is the true Kalman gain matrix, de�ned in Eq. (6.8),
and ∆do = (do − µd)(do − µd)T ∈ Rnd×nd is a matrix with rank equal to
one. The details are given in Appendix 6-B.

Under the Gaussian assumption in Eq. (6.4), with ne > nx + nd, the
�nite sampling distribution of the estimated Kalman gain in Eq. (6.9) is
analytically tractable, and given as (Kabe, 1968; Kaufman, 1969; Kshirsagar,
1961; Wegge, 1971):

K̂ ∼ MatrixTnx,nd
(K,Σ−1

d ,Σxu|d, ne − nd), (6.13)

with Σxu|d de�ned in Eq. (6.6), and the matrix−t distribution de�ned
in Appendix 6-A. Consider the Kalman gain estimate in Eq. (6.9) as one
realisation from the matrix−t distribution in Eq. (6.13). Gupta and Nagar
(2000, Theorem 4.3.2) then yields:

E[xc(i)] = µxc = µxu|d

Cov(xc(i)) = Σxc = Σxu|d

(
1 +

nd

ne − nd − 2
+

tr{Σ−1
d ∆do}

ne − nd − 2

)
, (6.14)
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for i = 1, . . . , ne, and further for i, j = 1, . . . , ne i 6= j

Cov(x(c(i),xc(j)) =
tr{Σ−1

d ∆do}
ne − nd − 2

Σxu|d. (6.15)

Notice that the posterior mean, µxc , coincides with the conditional mean
µxu|d, whilst the posterior covariance, Σxc , is larger than Σxu|d, thus taking
into account the additional uncertainty when estimating the unknown model
parameters. However, as we increase the ensemble size, the uncertainty in
the Kalman gain estimate is reduced and Σxc tends to Σxu|d. The prob-
lematic result appears in Eq. (6.15), which demonstrates that the updated
ensemble members are coupled.

Assume that the single joint realisation {xu(i), d(i)} is independent of
K̂. Although this assumption is strictly not valid for the standard EnKF for
small ensemble sizes, we can accomplish this using two separate ensembles;
one used for estimation and one used for prediction, similar to the double
EnKF introduced in Houtekamer and Mitchell (1998).

Proceeding with the EnKF updating scheme in Eq. (6.10), we obtain an
updated ensemble {xc(1), . . . ,xc(ne)}. Let the posterior mean and covariance
be estimated from the updated ensemble by µ̂xc = 1

ne

∑ne
i=1 x

c(i) and Σ̂xc =
1/(ne− 1)

∑ne
i=1(x

c(i)− µ̂xc)(xc(i)− µ̂xc)T . The expectation and covariance
of the posterior empirical mean become

E[µ̂xc ] = µxc

Cov(µ̂xc) = Σxu|d

(
1
ne

+
nd

ne(ne − nd − 2)
+

tr{Σ−1
d ∆do}

ne − nd − 2

)
. (6.16)

Hence, the posterior empirical mean will be an unbiased estimator for the
prediction mean, µxc . Note, however, that for small values of ne − nd we
expect to see a relatively large variability in the posterior empirical mean, re-
sulting from the last term in Eq. (6.16), which increases with the dimension
of the data vector, nd.

The expected value of the estimated posterior covariance matrix becomes

E
[
Σ̂xc

]
= Σxu|d

(
1 +

nd

ne − nd − 2

)
,

and hence

E
[
Σ̂xc −Σxc

]
= −

tr{Σ−1
d ∆do}

ne − nd − 2
Σxu|d. (6.17)

That is, if we use a common Kalman gain matrix in the EnKF updating
scheme, the ensemble members will be positively correlated, which leads to
an underestimation of the prediction covariance matrix.
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Note that if we instead use independent realisations of the Kalman gain
matrices generated from the matrix-t distribution in Eq. (6.13), the ensem-
ble members {xc(1), . . . ,xc(ne)}, will remain independent and consequently

E
[
Σ̂xc

]
= Σxc .

Consider a special case where the likelihood model is Gauss-linear,
d = Bx + εd, with B ∈ Rnd×nx known and εd ∼ Gaussnd

(0nd,1,Σεd)
independent of x. The estimated Kalman gain matrix can then be given as:

K̂GL = Σ̂xuBT
(
BΣ̂xuBT + Σεd

)−1
, (6.18)

which corresponds to the original formulation in Evensen (1994). Here
Σ̂xu is the unbiased estimate of the covariance matrix Σxu and 0a,b is
used to denote a a × b-dimensional matrix containing only zeros. Because
the mean and covariance of K̂GL is analytically intractable we, similar
to Furrer and Bengtsson (2007), further assume BTB = Inx and εd ∼
Gaussnd

(0nd,1, σ
2Ind

). Consider the estimated posterior covariance matrix

based on the standard EnKF, Σ̂xu|d = Σ̂xu−K̂GL

(
BΣ̂xuBT + Σεd

)
K̂

T
GL,

with K̂GL de�ned in Eq. (6.18), then Result 2 in Appendix 6-C gives a
bound for the negative bias:

tr
{

E
[
Σ̂xu|d −Σxu|d

]}
< − 2

ne − 1
σ4

(λ1 + σ2)3

nd∑
i=1

λ2
i +O

(
n−2

e

)
, (6.19)

where λ1 > . . . > λnd
are the eigenvalues of BΣxuBT . As explained in

Furrer and Bengtsson (2007), we can generalise the result through a trans-
formation of the variables x and d.

It is worth noting that the predictions of the EnKF scheme are charac-
terised by the parameters (µxc ,Σxc) while Σxu|d is merely a model param-
eter. Consequently the former parameters and the result in Eq. (6.17) are
of primary interest in a predictive setting as de�ned here. Finally note that
it is straightforward to verify both the bias under the �nite sampling distri-
bution in Eq. (6.17), and the lower bound in Eq. (6.19) for the standard
EnKF through exhaustive simulation.

The results above illustrates a critical weakness with the standard EnKF
scheme: Using the same estimated Kalman gain matrix to update all ensem-
ble members, leads to correlated ensemble members after one updating step.
Consequently, by using the classical covariance matrix estimates based on
the updated ensemble, we underestimate the posterior covariance matrix.
More troubling, however, is that we amplify the ensemble coupling as we
perform sequential data assimilation. Hence, it is not surprising that the



170

Ensemble Kalman �ltering in a Bayesian regression

framework

updated ensemble can ultimately collapse into one single realisation when
the standard EnKF updating scheme is applied.

Myrseth and Omre (2010a), suggested a hierarchical Bayesian approach,
termed the Hierarchical EnKF (HEnKF), as an alternative to using empirical
estimates of the covariance matrix. The HEnKF replace the estimated co-
variance matrices with realisations from the analytically tractable posterior
distribution, assuming conjugate prior distributions for the mean and covari-
ance in Eq. (6.4). Hence, the coupling between the updated ensemble will
be reduced, leading to an improved representation of the prediction uncer-
tainty. In the current paper, we have extended the HEnKF to a more general
setting, using results known from Bayesian regression (Box and Tiao, 1992;
Press, 1982). This entails sampling the Kalman gain matrix directly for each
ensemble member through analytically tractable matrix variate pdfs.

6.3 Bayesian regression

We will now consider the posterior distribution of the Kalman gain matrix,
K, through a hierarchical Bayesian approach using both a natural conjugate
prior, similar to Myrseth and Omre (2010a), and a non-informative Je�reys'
prior (Press, 1982).

6.3.1 Informative prior distribution

Consider the prior model assumption in Eq. (6.4), and let in addition
[µy|Σy] ∼ Gaussny(ηy, ξ−1Σy) and Σy ∼W−1

ny
(Ψ−1

y , ν), where

y = [xuT
,dT ]T ∈ Rny×1. Here, the inverse Wishart distribution is de�ned

in Appendix 6-A, and ηy, Ψy, ξ and ν are known prior hyperparameters.
Let Y = [X;D] ∈ Rny×ne denote the ensemble matrix for the combined
state- and observation vector, y, then (Anderson, 2003b):

[µy|Σy,Y ] ∼ Gaussny

(
ηy

c,
1
ξc

Σy

)
[Σy|Y ] ∼W−1

ny
(Ψc−1

y , νc),

with

ηc
y =

[
ηc
xu

ηc
d

]
=

neµ̂y + ξηy
ξc

Ψc
y =

[
Ψc
xu Ψc

xu,d

Ψc
d,xu Ψc

d

]
= Ψy + (ne − 1)Σ̂y +

neξ

ξc
(µ̂y − ηy)(µ̂y − ηy)T ,

(6.20)
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νc = ν+ne and ξc = ξ+ne. Here, µ̂y is the average and Σ̂y is the traditional
unbiased estimate of the covariance matrix Σy of the ensemble Y . Hence,
by Result 5, Appendix 6-D, the Kalman gain matrix given the joint ensemble
is distributed as

[K|Y ] ∼ MatrixTnx,nd

(
Γc
K , (Ψc

d)
−1,Ψc

xu|d, ν
c − nx + 1

)
, (6.21)

where

Γc
K = Ψc

xu,dΨ
c−1

d (6.22)

Ψc
xu|d = Ψc

xu − Γc
KΣc

dΓ
cT

K . (6.23)

Replacing the estimated Kalman gain matrix, K̂ in Eq. (6.10) with inde-
pendent realisations from the matrix-t distribution in Eq. (6.21) thus de�nes
the EnKF updating scheme.

6.3.2 Non-Informative Prior Distribution

In the hierarchical Bayesian approach outlined above, we need to select
prior hyperparameters for both the unknown mean and covariance. When
considering high dimensional spatiotemporal inverse problems, this task can
be far from trivial. A non-informative prior distribution can be used to avoid
this problem.

Consider the multivariate linear regression problem:

X = KD +R, (6.24)

where we for notational convenience assume that X ∈ Rnx×ne and D ∈
Rnd×ne are centred ensemble matrices, K ∈ Rnx×nd is the matrix of re-
gression coe�cients, or the Kalman gain, and R ∈ Rnx×ne is the matrix of
regression model error independent of K and D. Under the EnKF model
assumptions in Eq. (6.4):

D ∼ MatrixGnd,ne(0nd,ne , Ine ,Σd).

Further let the regression error term be

R ∼ MatrixGnx,ne(0nx,ne , Ine ,Σr),

where the matrix-variate Gaussian distribution is de�ned in Appendix 6-A.
As shown in Mardia et al. (1979), the conditional likelihood of X given D
can be written as:

f(X|D,K,Σr) ∝ |Σr|−ne/2 exp
{
−1

2
tr
(
ΨKΣ−1

r

)}
, (6.25)
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where

ΨK = ne

[
(K − K̂)Σ̂d(K − K̂)T + Σ̂r

]
. (6.26)

Here K̂, given in Eq. (6.9), and Σ̂r = 1/ne(X − K̂D)(X − K̂D)T are the
maximum likelihood estimates of the Kalman gain and residual covariance
matrix respectively, while Σ̂d = 1/neDD

T .
We will now consider the posterior distribution of K for the non-

informative Je�reys' prior (Je�reys, 1946; Press, 1982):

f(K,Σr) ∝ |Σr|−(nx+1)/2. (6.27)

By Bayes' rule using the pdfs in Eq. (6.25) and (6.27) we get (Press, 1982):

[K|Y ] ∼ MatrixTnx,nd

(
K̂, Σ̂

−1
d , Σ̂r, ne − (nx + nd − 1)

)
(6.28)

An EnKF updating scheme is then de�ned by replacing the Kalman gain
matrix in Eq. (6.10) with independent realisations from the matrix−t dis-
tribution in Eq. (6.28).

6.3.3 The Kalman Gain Posterior Distributions

Similar to the approach in Section 6.3.2, we can derive the posterior distri-
bution based on a fully speci�ed conjugate prior model forK and Σr. That
is (Press, 1982):

f(K,Σr) = f(K|Σr)f(Σr),

with [K|Σr] ∼ MatrixGnx,nd
(ΓK ,Θ,Σr), and Σr ∼ W−1

nx
(Ψr, ν). Such an

approach does, however, make it is less clear how the unknown hyperpa-
rameters should be speci�ed. In addition, the approach outlined in Section
6.3.1 makes the posterior distribution consistent with the posterior distribu-
tion using a non-informative prior when ne → ∞. Moreover, the presented
approach increases the degrees of freedom in the prior covariance matrix of
K from 1

2(nx(nx + 1) + nd(nd + 1) to 1
2(nx + nd)(nx + nd + 1) when di-

rectly de�ning a prior distribution for the Kalman gain. This is due to the
structure of the Kronecker product (Drèze and Richard, 1983; Press, 1982).

It should be noted that choosing conjugate or Je�reys' prior distributions
in Bayesian linear regression is not without issues (Broemeling, 1985; Brown,
1993; Dawid, 1988; Press, 1982; Robert, 2001). In this study, however, we
have adopted these priors mainly because of their analytical properties. Of
course we might instead consider approaches based on generalised natural
conjugate priors (Press, 1982), or selecting non-conjugate prior distributions
(Brown et al., 1999).
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Because the same prior distributions are used in the HEnKF (Myrseth
and Omre, 2010a) and the approach outlined in Section 6.3.1, we should
expect that there is a close connection between the Bayesian regression ap-
proach based on the informative prior and the HEnKF. Indeed, there are
many similarities between the two approaches because the covariance hyper-
parameter matrix, Ψc

y, is used in both posterior distributions. The major
di�erence, however, lies in the sampling of the respective Kalman gain ma-
trices. For the HEnKF we start by sampling Σy(i) ∼ W−1

ny
(Ψc

y, ν
c), thus

generating a realisation of the Kalman gain as K(i) = Σ(i)
x,dΣ

(i)−1

d . For K ∼
MatrixTnx,nd

(
Γc
K , (Ψc

d)
−1,Ψc

x|d, ν
c − nx + 1

)
, however, K(i) = Γc

K +Γ(i)
K ,

where Γc
K is the posterior mean E[K(i)], and Γ(i)

K ∈ Rnx×nd is a random ma-
trix, given as a product of the square root of a matrix following the inverted
Wishart distribution and a matrix following the matrix Gaussian distribu-
tion as explained in Result 6, Appendix 6-E. Hence, the latter approach will
have improved computational properties compared with the HEnKF in the

general case, because we do not need to invert the matrix Σ(i)
d for each real-

isation. Note, however, that the updated realisations based on the HEnKF
updating scheme are expected to be less coupled. This follows because we
avoid using the constant matrix Γc

K for all updated ensemble members,
which for the Bayesian approaches considered here involves the empirically
estimated covariance matrix Σ̂y.

6.3.4 Approximate Matrix−t Distribution

When we consider a non-informative prior distribution, the posterior distri-
bution ofK, de�ned in Eq. (6.28), will not exist for ne < nx+nd. Moreover,
if we consider high dimensional reservoir models, generating realisations from
the matrix-t distribution can be highly computationally demanding. We will
therefore consider an approximate version of the singular matrix-t distribu-
tion, inspired by Principal Component Analysis (PCA) (Mardia et al., 1979)
and shrinkage methods in a multivariate regression setting (Brown, 1993;
Hastie et al., 2009). This is motivated by the property that the matrix−t
distribution is closed under linear transformations U = ATB, for constant
matrices A and B of proper dimensions (Gupta and Nagar, 2000).

As shown in Díaz-García and Gutiérrez-Jáimez (2006), for the case with
the Je�reys' prior distribution with rank(Σ̂d) = rank(Σ̂r) = ne−1, [K|Y ] ∼
MatrixTne−1,ne−1

nx,nd

(
K̂, Σ̂

−
d , Σ̂r, 1

)
, where the singular matrix−t distribution

is de�ned in Appendix 6-F and (Σ̂d)− is the Moore-Penrose inverse (Strang,
1988). To ensure that the degrees of freedom is larger than one, we there-
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fore propose to approximate the singular matrix-t variate distribution by
selecting the dimension of the respective reduced order subspaces p and q,
smaller than the rank of Σ̂d and Σ̂r. This corresponds to PCA, where
the assumption is that a small set of variables, termed principal compo-
nents, explain most of the variability in the data (Mardia et al., 1979). To
improve the predictive capabilities of the regression model (Sætrom and
Omre, 2010), we can replace the MLE estimate of the Kalman gain matrix
in Eq. (6.18) with e.g. the Principal Component Regression (PCR) esti-

mate: K̂PCR = XV q
DS

q−1

D U qT

D . Here D ≈ U q
D Sq

D V qT

D is the truncated
Singular Value Decomposition (SVD) of D, keeping only the �rst q compo-
nents corresponding to the q largest singular values (Golub and van Loan,
1996). This implies that for the approximate matrix−t distribution based
on PCR,

K ∼ MatrixTp,q
nx,nd

(
K̂PCR,

(
Σ̂

q
d

)−
, Σ̂

p
r, ne − (q − p− 1)

)
, (6.29)

where Σ̂
q
d and Σ̂

p
r denotes the low rank approximation of the two matrices

based on a truncated eigenvalue decomposition keeping q ≤ min{nd, ne− 1}
and p ≤ min{nx, ne− 1} non-zero eigenvalues respectively. Alternative esti-
mators for the Kalman gain matrix based on dimension reduction techniques
such as Partial Least Squares Regression (PLSR) (Ränner et al., 1994; Wold,
1975), can be used as well. Finally note that we use Cross-Validation (CV)
to select the subspace dimensions p and q (Seber and Lee, 2003; Sætrom and
Omre, 2010).

6.3.5 Computational Properties

As shown in Appendix 6-E, we can generate a realisation from the matrix-t
distribution using n2

xnd/2 + n2
dnx/2 + (2/3 + 1/3)n3

x + O(nx max{nx, nd})
�oating point operations (�ops), when the Cholesky factorisation of the re-
spective matrices are given. Here the �rst two terms are the number of
�ops required for multiplying an upper diagonal matrix with a full matrix
of dimension nx × nd, and (2/3 + 1/3)n3

x are the leading terms for com-
puting the matrix inverse based on back substitution and multiplication
of two upper triangular matrices (Golub and van Loan, 1996). For a sin-
gular matrix-t distributed random matrix, the computational demands are
O(nxnd max{p, q}), given the SVD of the respective matrices and the esti-
mated Kalman gain matrix.

When considering the suggested procedure in an EnKF setting, how-
ever, only n2

d + 2nxnd + 2n2
x +O(max{nx, nd}) �ops are required to update
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one realisation in the fully speci�ed prior setting. For the singular matrix-t
distributed Kalman gain, the computational demand is O(ne max{nx, nd})
�ops, which is the same as for the classical EnKF scheme presented in Section
6.2.1 for the rank de�cient case (Evensen, 2003). The memory requirement
for the informative prior case is O(max{n2

x, n2
d}), which implies that approx-

imate techniques such as localisation (Evensen, 2007) must be used when nx

or nd is large. For the singular matrix-t distribution de�ned through the non-
informative Je�reys' prior, the memory requirement is O(ne max{nx, nd}),
which corresponds to the memory requirement of the classical EnKF.

6.4 Empirical study

To evaluate the performance of the EnKF updating schemes based on the
Bayesian regression techniques presented in Sections 6.3.1 and 6.3.2, we
consider two synthetic case studies, similar to the ones used in Myrseth
and Omre (2010b). Here the unknown state vector of interest xk ∈ R100×1,
is de�ned for k = 0, . . . , 10, where xj,k denotes the variable of interest at
time step k and location j ∈ {1, . . . , 100}. The purpose of this study is to
assimilate observed data, do

k made at time steps 0, . . . , 9, and predict at time
step 10.

The �rst test case, referred to as the linear case, considers a Gaussian
prior at the initial time step, a linear forward function and a linear Gaussian
likelihood model:

x0 ∼ Gaussnx(0nx,1,Σx0)
xk = Akxk−1

dk = Bxk + εdk
.

Here an exponential covariance function de�nes Σx0 , andAk de�nes a linear
smoothing envelope moving from left to right in time over the grid domain.
The error term of the likelihood model is Gaussian, εdk

∼ Gaussnd
(0nd,1, Ind

)
and B ∈ Rnd×nx is de�ned as a sparse matrix, so that di =

∑1
l=−1 xj+l, i =

1, . . . , nd, at nd = 13 di�erent grid locations j ∈ {1, . . . , 100}. Further
details can be found in Sætrom and Omre (2010).

The second test case, referred to as the non-linear case, has the same
prior and likelihood model as the linear case above, with a forward model
de�ned through the non-linear function:

xk = cAk(xk−1 + arctan(xk−1)).
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Here c = 0.8 is a scaling factor which ensures approximate alignment of the
variances for the non-linear and linear case, and the functional arctan(·) acts
on the argument element by element (Myrseth and Omre, 2010b).

Figure 6.2, displays the reference state vectors, xTrue
9 and xTrue

10 , for the
two test cases. Notice the smoother behaviour in the left part of the grid
nodes owing to the construction of Ak. Furthermore, the state vector con-
tains both dynamic and static variables, where the dynamic variables are
located in grid nodes 1− 55 and the static variables are at nodes 56-100.
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(a) Linear
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(b) Non-Linear

Figure 6.2: Reference xTrue
9 (dashed, black) and xTrue

10 (solid, grey) for the linear
and non-linear models considered.

For both the linear and non-linear case the following EnKF updating
schemes are considered:

• Classical EnKF: Estimated Kalman gain matrix computed based on
Eq. (6.18), using the correct Σεd .

• CP-EnKF: Kalman gain matrix generated independently for each en-
semble member based on the matrix-t distribution in Eq. (6.21), ob-
tained using a Conjugate Prior (CP) distribution on the mean and
covariance as described in Section 6.3.1.

• JP-PLSR-EnKF: Kalman gain matrix generated independently for
each ensemble member using the approximate matrix-t distribution
based on the non-informative Je�reys' prior, described in Section 6.3.4.
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In addition, K̂ is replaced with a shrinkage regression estimate based
on PLSR, where the dimension of the respective subspaces p and q are
selected based on 10-fold CV, minimising the Predictive Error Sum of
Squares (PRESS) (Hastie et al., 2009).

We consider two di�erent ensemble sizes, ne = 20 and ne = 100. In addition,
the initial ensembles are identical for all three updating schemes. For the CP-
EnKF updating scheme we select the prior model hyperparameters ηx = µx,
ξ = 0.0001, Ψx = 10 ×Σx and ν = nx + nd + 3, with Ψx,d = ΨxB

T and
Ψd = 10×Σd. Thus, preserving the structure of the reference model in ηy
and Ψy, although the uncertainty regarding the size of ηy and Ψy is high.

6.4.1 Linear Case

Because we consider a Gauss-linear model, the prediction mean E[xu
10], and

95% prediction interval are analytically obtainable using the KF recursions,
see Figure 6.3a. Notice that the reference state vector is centred around the
prediction mean, with reduced uncertainty in the 95% prediction intervals
in the neighbourhood of the observation sites. The results for the three
di�erent EnKF updating schemes are shown in Figures 6.3b through g.

As seen from Figure 6.3b, the Classical EnKF is able to produce reliable
results for ne = 100. Both the estimated posterior mean and prediction
interval matches the analytical KF solution fairly well, albeit the ensemble
average is not as smooth as the theoretical one. Moreover, there is a tendency
to underestimate the prediction variance, as expected from Eq. (6.19). For
ne = 20, the e�ects caused by increased estimation uncertainty and coupling
of the ensemble members are more prominent. This results in an estimated
posterior mean and prediction interval deviating dramatically from the KF
solution, as expected from the discussion in Section 6.2.2.

The CP-EnKF updating scheme provides reasonable estimates of the
posterior mean and prediction interval for ne = 100, as seen in Figure 6.3.
However, the bounds of the prediction interval is slightly increased at certain
grid locations compared with the KF solution based on Σxu|d. Because we
are sampling the Kalman gain matrix, rather than using a common plug-in
estimate, we should expect to see this behaviour for Σ̂xc , in light of the
theoretical results in Section 6.2.2. For ne = 20 the width of the estimated
prediction interval is reduced, and appears more narrow than the KF predic-
tion interval. Because the matrix−t distribution for the Kalman gain matrix
in Eq. (6.21) requires the empirical covariance matrix as a model parameter,
the ensemble members will be somewhat coupled. However, this coupling
is reduced compared with the Classical EnKF updating scheme, leading to
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(b) Classical EnKF, ne = 100
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(c) Classical EnKF, ne = 20
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(d) CP-EnKF, ne = 100

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

(e) CP-EnKF, ne = 20
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(f) JP-PLSR-EnKF, ne = 100
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(g) JP-PLSR-EnKF, ne = 20

Figure 6.3: Results obtained when running four di�erent EnKF updating schemes
on the linear case with two di�erent ensemble sizes. The �gure dis-
plays the reference xTrue

10 (solid), the ensemble mean (dotted, black )
and the estimated 95% con�dence bounds of the prediction interval
(solid, grey).
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improved estimates of both the prediction mean and interval.

Both the estimated posterior mean and prediction interval resembles
the analytical KF solution for the JP-PLSR-EnKF updating scheme with
ne = 100, as seen in Figure 6.3f. The smooth behaviour of the posterior
mean, µxc is present, with reduced uncertainty in the prediction variance
around the observation sites. For ne = 20, however, the ensemble average
appears to be less smooth, and the prediction intervals are reduced. The
results are comparable to the CP-EnKF results, and appears to be much
better than the ones obtained with the Classical EnKF scheme.

To further quantify the performance of the three EnKF updating schemes,
the case study is rerun 100 times with di�erent initial ensembles. We con-
sider the Root Mean Squared Error (RMSE) of the ensemble average to
the analytical posterior mean and the percentage of the reference solution
covered by the estimated prediction interval. Table 6.1 displays the results,
together with the estimated RMSE and coverage computed when the ini-
tial ensemble is run through the forward model without conditioning on the
observed data, referred to as the No Updating scheme. Ideally, the RMSE
should be small and the Coverage should be close to 95 %. The former
represents accuracy while the latter is a measure for the reliability of the
empirically estimated prediction intervals. For ne = 100, the RMSE de-
creases signi�cantly for all three updating schemes, relative to the RMSE of
the No Updating scheme. The CP-EnKF updating scheme shows the largest
improvement with a 62% decrease in the RMSE, although it is not found
to be signi�cantly better than the Classical EnKF updating scheme with a
p-value of 0.92. The hypothesis test is based on the traditional two sample
t-statistic with unequal variance (Casella and Berger, 2002). The RMSE of
the JP-PLSR-EnKF updating scheme is slightly larger compared with the
RMSE of the other two methods.

As expected from the discussion in Section 6.2.2, sampling the Kalman
gain matrix, as done in the CP-EnKF and JP-PLSR-EnKF updating schemes,
will increase the width of the prediction intervals, whilst it will be narrower
for the Classical EnKF updating scheme. For this case with ne = 100 we �nd
the coverage the CP-EnKF updating scheme and the No Updating scheme
to be almost equal, and the value is close to 95% as it should be. Testing
for equivalence between the coverage of the CP-EnKF and JP-PLSR-EnKF
updating schemes, leads to a p-value of 0.007, and hence should be rejected
at a 99% level of con�dence.

For ne = 20, the CP-EnKF updating scheme again leads to the largest
improvement in the RMSE relative to the No Updating scheme with a 63
percent decrease. The JP-PLSR-EnKF updating scheme shows the second



180

Ensemble Kalman �ltering in a Bayesian regression

framework

ne Scheme RMSE Coverage
(%)

100 No Updating 4.60 ± 0.14 95.1 ± 2.2
100 Classical EnKF 1.77 ± 0.30 81.1 ± 5.8
100 CP-EnKF 1.74 ± 0.28 95.3 ± 3.2
100 JP-PLSR-EnKF 1.91 ± 0.25 88.4 ± 3.8
20 No Updating 4.68 ± 0.27 82.3 ± 4.2
20 Classical EnKF 3.89 ± 1.05 23.1 ± 6.3
20 CP-EnKF 1.73 ± 0.29 85.0 ± 4.3
20 JP-PLSR-EnKF 3.02 ± 0.52 63.8 ± 9.4

Table 6.1: Estimated Root Mean Squared Error (RMSE) of the posterior mean
and coverage of the reference solution in the estimated 95% prediction
intervals, plus-minus one standard deviation, for the linear case based
on 100 di�erent initial ensembles.

largest improvement with a 35 percent decrease, whilst the Classical EnKF
updating scheme has a 17 percent decrease in the RMSE. We �nd all three
updating schemes to give signi�cantly di�erent RMSE values at a 99.999%
level of con�dence.

The Classical EnKF updating scheme has a coverage of only 23%, which
demonstrates a dramatic underestimation of the prediction intervals caused
by the coupling of the ensemble members. Furthermore, we observe that
the coverage of the CP-EnKF updating scheme is found to be signi�cantly
larger than the coverage of the Classical EnKF and JP-EnKF updating
schemes. However, the coverage of the No Updating scheme is not found
to be signi�cantly di�erent from the CP-EnKF updating scheme with a
p-value of 0.37. It is worth noticing that the coverage for both schemes
is signi�cantly smaller than the ideal value of 95%. This illustrates the
importance of carefully selecting the initial ensemble for small ensemble
sizes, ne. The methods described in Evensen (2007) and Oliver and Chen
(2009) outline remedies for this problem. However, we do not pursue these
approaches in this paper.

We obtain the best results for the linear problem using the CP-EnKF up-
dating scheme, but the results appear to rely heavily on the selected prior hy-
perparameters. If the model is rerun with a poorly selected prior model, the
CP-EnKF updating scheme provides terrible results, with a large increase in
the RMSE and large decrease in the coverage. This is particularly true for
ne = 20, although we do not show these results here. For high dimensional
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reservoir evaluation problems, the task of selecting the prior hyperparam-
eters is far from trivial. In addition, because of high computational and
memory demands, the CP-EnKF updating scheme will require additional
approximations, such as enforcing sparsity in the model parameters through
localisation (Evensen, 2007). This suggests that the JP-PLSR-EnKF updat-
ing scheme is the most robust alternative, although the CP-EnKF scheme
with a carefully chosen prior model performed best for the empirical evalu-
ation considered here.

6.4.2 Non-Linear Case

For the non-linear case, analytical tractability of the posterior distribution is
lost. Hence, the results obtained with the Classical EnKF with ne = 100000,
displayed in Figure 6.4a, are used for comparison. Again, we consider the
three updating schemes outlined above, with results shown in Figure 6.4b
through g.

Similar to the linear case, the Classical EnKF produces fairly good results
for ne = 100, whilst the results are considerably poorer for ne = 20, with
a highly �uctuating posterior mean and an ensemble almost collapsing into
a single realisation. For both the CP-EnKF and JP-PLSR-EnKF updating
schemes we observe reasonably good estimates of the posterior mean and
prediction interval, with similar characteristics as seen in the linear case.

To quantify the performance, the three schemes are rerun 100 times us-
ing di�erent initial ensembles. The results are summarised in Table 6.2 in a
similar format as Table 6.1. For ne = 100, all three updating schemes shows
a signi�cant improvement in the RMSE compared with the initial ensemble.
The Classical EnKF scheme produce the best results with a 68 percent de-
crease. However, we do not �nd the RMSE to be signi�cantly better than
the RMSE of the other two updating schemes at a 99% level of con�dence.
The CP- and JP-PLSR-EnKF schemes have a coverage signi�cantly lower
than the No Updating scheme and 95% with p-values of 0.03 and 0.02 re-
spectively. In addition, the Classical EnKF scheme has a coverage which is
signi�cantly smaller than all the other schemes.

For ne = 20, the CP-EnKF scheme has by far the largest decrease in
RMSE compared to the No Updating scheme, with a 62% reduction. The
JP-PLSR-EnKF scheme shows a 41% reduction, whilst the Classical EnKF
scheme has a 30% reduction. We �nd all RMSE values to be signi�cantly dif-
ferent at a 99% level of con�dence. The coverage of the CP-EnKF scheme is
smaller than the coverage of the No Updating scheme, but not signi�cantly
so. However, both schemes have a coverage which is signi�cantly smaller
than the ideal value of 95%. The JP-PLSR-EnKF scheme displays a cover-



182

Ensemble Kalman �ltering in a Bayesian regression

framework

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

(a) Classical EnKF, ne = 100 000

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

(b) Classical EnKF, ne = 100

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

(c) Classical EnKF, ne = 20

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

(d) CP-EnKF, ne = 100

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

(e) CP-EnKF, ne = 20
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(g) JP-PLSR-EnKF, ne = 20

Figure 6.4: Results obtained when running four di�erent EnKF updating schemes
on the linear case with two di�erent ensemble sizes. The �gure dis-
plays the reference xTrue

10 (solid), the ensemble mean (dotted, black)
and the estimated 95% con�dence bounds of the prediction interval
(solid, grey).
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ne Scheme RMSE Coverage
(%)

100 No Updating 4.45 ± 0.15 95.0 ± 1.9
100 Classical EnKF 1.42 ± 0.28 81.8 ± 5.1
100 CP-EnKF 1.50 ± 0.24 90.2 ± 2.7
100 JP-PLSR-EnKF 1.57 ± 0.21 90.0 ± 2.9
20 No Updating 4.57 ± 0.32 83.2 ± 4.5
20 Classical EnKF 3.21 ± 0.59 28.3 ± 7.4
20 CP-EnKF 1.73 ± 0.32 80.1 ± 4.0
20 JP-PLSR-EnKF 2.72 ± 0.46 70.4 ± 8.7

Table 6.2: Estimated Root Mean Squared Error (RMSE) of the posterior mean
and coverage of the reference solution in the estimated 95% prediction
intervals, plus-minus one standard deviation, for the non-linear case
based on 100 di�erent initial ensembles.

age of 70%. As expected, the Classical EnKF scheme has a dramatically low
coverage of 28%. The poor performance of the Classical EnKF scheme is
caused by the coupling of the ensemble members, which increase the variance
of the ensemble average and make the empirical variance biased downward
compared with prediction variance. Note that small ensemble sizes is a rela-
tive statement, it is actually the size of the di�erence between the ensemble
size and number of observations, ne − nd, that is important. Again note
that the apparent success of the CP-EnKF updating scheme is highly de-
pendent on the prior hyperparameters selected, similar to what was seen in
the linear case. This leave the JP-PLSR-EnKF updating scheme as the most
promising one.

6.5 Conclusions

In this paper we have formulated alternative EnKF updating schemes based
on classical results known from Bayesian regression. Rather than using a
common estimate of the Kalman gain matrix in the update, each ensemble
member is updated using a unique Kalman gain matrix generated from an
analytically tractable matrix variate probability distribution. Furthermore,
we have developed theoretical results valid for the EnKF updating scheme on
a Gauss-linear model, where we prove that the updated ensemble members
will be positively correlated. This will necessarily lead to an underestimation
of the empirical prediction variance when the conditioned ensemble is used
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for estimation. Explicit expressions for the bias in �nite sample cases have
been developed. Moreover, the results explain why we tend to see a large
variability in the posterior empirical mean for small ensemble sizes. These
results are troubling, because the ensemble coupling will amplify during
data assimilation, and potentially lead to an ensemble collapsing into a sin-
gle realisation. The suggested EnKF updating schemes based on Bayesian
regression reduces the coupling between the updated ensemble members,
which leads to improved predictions and associated prediction intervals.

Two alternative EnFK updating schemes are de�ned and empirically
tested. The �rst one is based on a conjugate prior distribution on the
unknown mean and covariance matrix (CP-EnKF). The second one uses
a non-informative Je�reys' prior distribution on a multivariate regression
model combined with Partial Least Squares Regression (JP-PLSR-EnKF),
leading to a singular matrix−t distributed Kalman gain matrix de�ned in
a reduced order space. The main objective of this additional dimension re-
duction is to improve the Kalman gain matrix estimate and to handle large
dimensional problems with small ensemble sizes. Cross-validation is used to
select the subspace dimension by evaluating the predictive strength of the
regression model.

The two suggested schemes were tested on two synthetic models, inspired
by reservoir evaluation problems, and compared with the results obtained
using the classical EnKF updating scheme. With a small ensemble size of 20,
both the CP-EnKF and JP-PLSR-EnKF updating schemes performed sig-
ni�cantly better than the classical EnKF updating scheme. The coupling of
the ensemble members in the classical EnKF scheme caused the predictions
and associated prediction intervals to be highly unreliable. In accordance
with the theoretical results presented in this paper, increasing the ensemble
size to 100 improved the results for classical EnKF updating scheme and
made it comparable to the results obtain with the alternative EnKF scheme
based on Bayesian regression.

The CP-EnKF scheme appeared as the most reliable EnKF approach in
the empirical study, closely followed by the JP-PLSR-EnKF scheme. The
classical EnKF scheme produced unreliable predictions and associated pre-
diction intervals for small ensemble sizes relative to the number of observa-
tions. The CP-EnKF scheme is, contrary to the JP-PLSR-EnKF scheme,
computationally demanding to perform and highly dependent on the speci-
�cation of a representative prior model. Consequently, we recommend using
the JP-PLSR-EnKF scheme for high dimensional spatiotemporal problems
with a large number of observations.
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APPENDIX

Appendix 6-A, Multivariate vector and matrix prob-

ability distributions

De�nition 1 (Gaussian distribution). Consider a random vector y ∈ Rk×1.
Then

y ∼ Gaussk(µy,Σy),

means that y has a multivariate Gaussian probability density function (pdf)

f(y) =
1

(2π)k/2|Σy|1/2
exp

{
−1

2
(y − µy)TΣ−1

y (y − µy)
}

. (A-1)

The mean and covariance of y are E[y] = µy and Cov(y) = Σy respectively.

De�nition 2 (Matrix Gaussian distribution). Consider the random matrix
X ∈ Ra×b. Then

X ∼ MatrixGa,b(M ,Ω,Σ),

where M ∈ Ra×b, Ω ∈ Rb×b and Σ ∈ Ra×a, means that X follows the
multivariate matrix Gaussian distribution, with corresponding pdf (Gupta
and Nagar, 2000)

f(X) =
|Σ|−b/2|Ω|−a/2

(2π)ab/2
exp

{
−1

2
tr
(
Ω−1(X −M)TΣ−1(X −M)

)}
,

(A-2)
where tr(·) denotes the trace operator. The mean ofX is E[X] = M and the
covariance matrix of the stacked matrix, Vec(X), is Cov(Vec(X)) = (Ω⊗Σ),
where (⊗) is the Kronecker product (Gupta and Nagar, 2000).

De�nition 3 (Wishart distribution). Let

x(1), . . .x(ν) i.i.d∼ Gaussp(0p,1,Σ)

with ν > p. Then

M =
ν∑

i=1

xix
T
i ,

is said to have the Wishart distribution, M ∼Wp(Σ, ν), with pdf:

f(M) =
|M |(ν−p−1)/2 exp

{
−1

2tr(Σ−1M)
}

2νp/2|Σ|ν/2Γp(ν)
.
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Here

Γp(ν) = πp(p−1)/4
p∏

i=1

Γ ((ν + 1− i)/2) , (A-3)

with

Γ(α) =
∫ ∞

0
xα−1e−xdx. (A-4)

The mean of M is E[M ] = νΣ (Mardia et al., 1979).

De�nition 4 (Inverse Wishart distribution). Let M ∼ Wk(Σ, ν), then
Z = M−1 is said to have the inverse Wishart distribution, Z ∼W−1

k (Σ, ν),
with pdf (Mardia et al., 1979):

f(Z) =
|Z|−(ν+k+1)/2 exp

{
−1

2tr(Σ−1Z−1)
}

2νk/2|Σ|ν/2Γk(ν)
. (A-5)

The mean of Z is E[Z] = Σ−1/(ν − k − 1) (Gupta and Nagar, 2000).

De�nition 5 (Matrix-t distribution). Consider the random matrix T ∈
Ra×b. Then

T ∼ MatrixTa,b(M ,Ω,Σ, ν),

where M ∈ Ra×b, Ω ∈ Rb×b and Σ ∈ Ra×a, means that T follows the mul-
tivariate matrix-t distribution, with corresponding pdf (Gupta and Nagar,
2000)

f(T ) = Ct

∣∣Ib + Ω−1(T −M)TΣ−1(T −M)
∣∣−(ν+a+b−1)/2

, (A-6)

where

Ct =
Γa ((ν + a + b− 1))
πab/2Γa ((ν + a− 1))

|Σ|−b/2|Ω|−a/2.

The mean of T is E[T ] = M and the covariance matrix of the stacked
matrix, Vec(T ), is Cov(Vec(T )) = (Ω ⊗ Σ)/(ν − 2) (Gupta and Nagar,
2000).

Appendix 6-B, Expectation, covariance and coupling

of the ensemble

The EnKF updating scheme is de�ned as: xc(i) = xu(i) + K̂(do − d(i)).
Using Results 3 and 4 in Appendix 5-D, the posterior mean and covariance
of xc(i) are then given as:

E[xc] = E
[
E[xc|K̂]

]
= µx|d + (ΓK −K)(do − µd) (B-1)
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and

Cov(xc) = Cov
(
E[xc|K̂]

)
+ E

[
Cov(xc|K̂)

]
= Σx|d + (ΓK −K)Σd(ΓK −K)T

+ E
[
(K̂ − ΓK)(Σd + ∆do)(K̂ − ΓK)T

]
. (B-2)

Here µx|d = µx +K(do − µd), E[K̂] = ΓK , Σx|d = Σx −KΣdKT and

∆do = (do −µd)(do −µd)T , where K = Σx,dΣ−1
d is the true Kalman gain

matrix. The covariance between two ensemble members xc(i) and xc(j) is:

Cov(xc(i),xc(j)) = E
[
E
[
(xc(i) − E[xc(i)])(xc(j) − E[xc(j)])

]∣∣∣ K̂]
= E

[
(K̂ − ΓK)∆do(K̂ − ΓK)T

]
. (B-3)

Appendix 6-C, Underestimation prediction

uncertainty

Result 2. Let X ∈ Rnx×ne be a centred ensemble of realisations from a
Gaussian distribution and Σ̂x = 1

ne−1XX
T be the unbiased estimate of the

covariance matrix of x. Assuming a Gauss-linear likelihood model, d =
Bx+εd, where BTB = Inx and εd ∼ Gaussnd

(0, σ2Ind
), and BΣxBT has

nd distinct eigenvalues, λ1 > . . . > λnd
> 0, then:

tr
{

E
[
Σ̂x|d −Σx|d

]}
< − 2

ne − 1
σ4

(λ1 + σ2)3

nd∑
i=1

λ2
i +O

(
n−2

e

)
,

where

Σ̂x|d = Σ̂x − Σ̂xBT
(
BΣ̂xBT + σ2Ind

)−1
BΣ̂x.

Proof. Using well known matrix algebra (Furrer and Bengtsson, 2007; Searle,
1982):

tr
{
Σ̂x|d −Σx|d

}
= tr

{(
BΣ̂xBT + σ2Ind

)−1
}

− tr
{(
BΣxB

T + σ2Ind

)−1
}

.

Because BΣ̂xBT is a symmetric, positive de�nite matrix, we can write:

BΣ̂xBT = UΛ̂UT ,
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where U ∈ Rnd×nd contains the nd eigenvector of BΣ̂xBT and Λ̂ ∈ Rnd×nd

is a diagonal matrix containing the nd corresponding eigenvalues, λ̂1, . . . , λ̂nd
.

Because BΣ̂xBT share the same eigenvectors as
(
BΣ̂xBT + σ2Ind

)−1
, we

have:

tr
{(
BΣ̂xBT + σ2Ind

)−1
}

=
nd∑
i=1

1

λ̂i + σ2
.

Proceeding with a Taylor expansion of 1/(λ̂i +σ2) around the ith eigenvalue
of BΣxBT yields:

tr
{
Σ̂x|d −Σx|d

}
=

nd∑
i=1

σ4

(λi + σ2)2
(
λ̂i − λi

)
−

nd∑
i=1

σ4

(λi + σ2)3
(
λ̂i − λi

)2

+
nd∑
i=1

σ4

(λi + σ2)4
(
λ̂i − λi

)3

−O(max
i

(λ̂i − λi)4)

<

nd∑
i=1

σ4

(λnd
+ σ2)2

(
λ̂i − λi

)
−

nd∑
i=1

σ4

(λ1 + σ2)3
(
λ̂i − λi

)2

+
nd∑
i=1

σ4

(λnd
+ σ2)4

(
λ̂i − λi

)3

−O(max
i

(λ̂i − λi)4).

The empirical covariance matrix, Σ̂x, is an unbiased estimator of Σx, thus

E

[
nd∑
i=1

(λ̂i − λi)

]
= 0.

The result then follows from Girshick (1939):

E
[
(λ̂i − λi)2

]
=

2λ2
i

ne − 1
+O(n−2

e )
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and

E
[
(λ̂i − λi)j

]
= O(n−2

e ), j ≥ 3.

Remark. This result is similar to Corollary 2 in Furrer and Bengtsson (2007).
However, a lower bound for the bias was not given for the multivariate case,
in addition to some unclear elements in the proof (R. Furrer, personal com-
munication, 2010). Finally note that the assumption of nd distinct eigen-
values can be relaxed using the results in Anderson (1963). However, these
results are only valid for su�ciently large ensemble sizes, ne, contrary to the
proof above which holds for any ne.

Appendix 6-D, Properties of some multivariate

distributions

Result 3.

E[X] = E [E[X|Y ]] . (D-1)

Proof. For the univariate case, this is shown in Ross (2003, Chapter 3).
From the de�nition of the expectation of a vector, or matrix (Gupta and
Nagar, 2000), the result follows.

Result 4.

Cov(X) = E [Cov(X|Y )] + Cov (E[X|Y ]) . (D-2)

Proof. The result follows using the de�nition of the covariance (Gupta and
Nagar, 2000) of a vector or matrix together with Result 3.

Result 5. Consider the random matrix Σ ∼W−1
n (Ψ−1, ν), where Σ and Ψ

are decomposed into submatrices:

Σ =
[

Σ1 Σ12

ΣT
12 Σ2

]
, Ψ =

[
Ψ1 Ψ12

ΨT
12 Ψ2

]
.

Further de�ne

Σ1|∗ = Σ1 −Σ12Σ−1
2 ΣT

12 ∈ Rn1×n1

T = Σ12Σ−1
2 ∈ Rn1×n2

Σ∗ = Σ2 ∈ Rn2×n2 .
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Then

Σ1|∗ ∼W−1
n1

(Ψ−1
1|∗, ν)

T ∼ MatrixTn1,n2(Γ, (Ψ∗)−1,Σ1|∗, ν − n1 + 1)

Σ∗ ∼W−1
n2

(Ψ−1
∗ , ν − n1),

where

Ψ1|∗ = Ψ1 −Ψ12Ψ−1
2 ΨT

12

Γ = Ψ12Ψ−1
2

Ψ∗ = Ψ2.

Proof. Because the block matrix Σ only depends on the three matrices
Σ1, Σ12 and Σ2, we can write

f(Σ) = f(Σ1,Σ12,Σ2).

As shown in Caselton et al. (1992), we can express Σ and Ψ as:

Σ =
[
In1 T

0n2,n1 In2

] [
Σ1|∗ 0n1,n2

0n2,n1 Σ∗

] [
In1 T

0n2,n1 In2

]T

=
[

Σ1|∗ + TΣ∗T
T TΣ∗

Σ∗T
T Σ∗

]
Ψ =

[
In1 Γ

0n2,n1 In2

] [
Ψ1|∗ 0n1,n2

0n2,n1 Ψ∗

] [
In1 Γ

0n2,n1 In2

]T

,

where the di�erent matrices are de�ned above. Now, by general properties
of the determinant and the trace operator (Mardia et al., 1979, Appendix
A),

Σ−1 =

[
Σ−1

1|∗ −Σ−1
1|∗T

−T TΣ−1
1|∗ Σ−1

∗ + T TΣ−1
1|∗T

]
,

and

|Σ| = |Σ∗| · |Σ1|∗|.
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Thus,

f (Σ1(·),Σ12(·),Σ2(·)) ∝ |Σ|−(ν+n+1)/2 exp
{
−1

2
tr
(
ΨΣ−1

)}
∝ |Σ∗|−(ν+n+1)/2 × |Σ1|∗|−(ν+n+1)/2×

exp
{
−1

2
tr
(
Ψ1|∗Σ

−1
1|∗ + Ψ∗Σ−1

∗

)}
×

exp
{
−1

2
tr
(
Ψ∗(T − Γ)TΣ−1

1|∗(T − Γ)
)}

.

Then,

f(Σ1|∗,T ,Σ∗) = f (Σ1(·),Σ12(·),Σ2(·)) |J |,

where by Deemer and Olkin (1951) and Mardia et al. (1979, Appendix B)

J =

∣∣∣∣∣∣∣∣
∂Σ1(·)
∂Σ1|∗

∂Σ1(·)
∂T

∂Σ1(·)
∂Σ∗

∂Σ12(·)
∂Σ1|∗

∂Σ12(·)
∂T

∂Σ12(·)
∂Σ∗

∂Σ2(·)
∂Σ1|∗

∂Σ2(·)
∂T

∂Σ2(·)
∂Σ∗

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
In2

1
(?) (??)

0n1n2,n2
1

diagn1
(Σ∗) (? ? ?)

0n2
2,n2

1
0n2

2,n1n2
In2

2

∣∣∣∣∣∣∣
= |In2

1
||diagn1

(Σ∗)||In2
2
|

= |Σ∗|n1 .

Here diagn1(W ) is a diagonal block matrix, where the n1 diagonal ele-
ments are the matrices W . Hence,

f(Σ1|∗,T ,Σ∗) ∝ |Σ∗|−(ν−2n1+n+1)/2 × |Σ1|∗|−(ν+n+1)/2

exp
{
−1

2
tr
(
Ψ1|∗Σ

−1
1|∗ + Ψ∗Σ−1

∗ + Ψ∗(T − Γ)TΣ−1
1|∗(T − Γ)

)}
.

(D-3)

From this last expression we see that

f(Σ∗) ∝ |Σ∗|−(ν−n1+n2+1)/2 × exp
{
−1

2
tr
(
Ψ∗Σ−1

∗
)}

,

which we recognise as the kernel of the inverted Wishart pdf, thus

Σ∗ ∼W−1
g (Ψ−1

∗ , ν − n1).
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Using Eq. (D-3) we see that

f(Σ1|∗,T ) ∝ |Σ1|∗|−(ν+n+1)/2×

exp
{
−1

2
tr
([

Ψ1|∗ + (T − Γ)Ψ∗(T − Γ)T
]
Σ−1

1|∗

)}
.

Thus, by using the property of the sum of determinants (Mardia et al., 1979),

f(T ) ∝
∫
|Σ1|∗|−(ν+n+1)/2

exp
{
−1

2
tr
([

Ψ1|∗ + (T − Γ)Ψ∗(T − Γ)T
]
Σ−1

1|∗

)}
dΣ1|∗

∝
∣∣Ψ1|∗ + (T − Γ)Ψ∗(T − Γ)T

∣∣−(ν+n2)/2

∝
∣∣∣In2 + Ψ∗(T − Γ)TΨ−1

1|∗(T − Γ)
∣∣∣−(ν̃+n1+n2−1)/2

,

where ν̃ = ν − n1 + 1, which entails

T ∼ MatrixTn1,n2(Γ,Ψ−1
∗ ,Ψ1|∗, ν − n1 + 1).

Similarly,

f(Σ1|∗) ∝ |Σ1|∗|−(ν+n+1)/2 exp
{
−1

2
tr
(
Ψ1|∗Σ

−1
1|∗

)}
×
∫

exp
{
−1

2
tr
(
(T − Γ)Ψ∗(T − Γ)TΣ−1

1|∗

)}
dT .

∝ |Σ1|∗|−(ν+n+1)/2 exp
{
−1

2
tr
(
Ψ1|∗Σ

−1
1|∗

)}
|Σ1|∗|n2/2

∝ |Σ1|∗|−(ν+n1+1)/2 exp
{
−1

2
tr
(
Ψ1|∗Σ

−1
1|∗

)}
,

where we have used T |Σ1|∗ ∼ MatrixGn1,n2(Γ,Ψ−1
∗ ,Σ1|∗), which completes

the proof.

Appendix 6-E, Sampling from the matrix-t
distribution

Result 6 (Realisation from the Matrix t-distribution). Let

Σ ∼W−1
u (Ψ−1, ν + u− 1)

independent of X ∼ MatrixGu,g(0u,g,Ω, Iu). Then

T = Σ1/2X + Γ ∼ MatrixTu,g(Γ,Ω,Ψ, ν). (E-1)
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Proof. By De�nitions 4 and 2 in Appendix 6-A

f(Σ,X) ∝ |Σ|−(ν+u−1+u+1)/2 exp
{
−1

2
tr
(
Σ−1Ψ + Ω−1XTX

)}
,

Following Gupta and Nagar (2000), let T = g(X,Σ) = Σ1/2X + Γ. A
transformation of the variables gives,

f(Σ,T ) = f
(
Σ, g−1(T ,Σ)

)
|Jxt|,

where by Deemer and Olkin (1951),

Jxt =
∂Σ−1/2(T − Γ)

∂T

= |Σ|−g/2.

Hence,

f(T ) ∝
∫
|Σ|−(ν+u−1+u+1+g)/2

exp
{
−1

2
tr
([

Ψ + (T − Γ)Ω−1(T − Γ)T
]
Σ−1

)}
dΣ

∝
∣∣Ψ + (T − Γ)Ω−1(T − Γ)T

∣∣−(ν+u+g−1)/2
,

and the result follows by the general properties of the determinant and trace
operators (Mardia et al., 1979).

Result 7 (Fast sampling from the matrix-t distribution). Let UΩ ∈ Rb×b

and UΣ ∈ Ra×a be the upper triangular Cholesky factors of the positive
de�nite matrices Ω and Σ respectively. Further let

A =



u1,1 z1,2 z1,3 . . . z1,a−1 z1,a

0 u2,2 z2,3 . . . z2,a−1 z2,a

0 0 u3,3 . . . z2,a−1 z2,a
...

. . .
. . .

. . .
...

...
0 0 . . . 0 ua−1,a−1 za−1,a

0 0 . . . 0 0 ua,a


∈ Ra×a, (E-2)

where ui,i =
√

vi, with vi
iid∼ χ2(ν + a − i), and zi,j

iid∼ Gauss1(0, 1), and let

W ∈ Ra×b, have elements wi,j
iid∼ Gauss1(0, 1). Then

T = UT
ΣA

−1WUΩ +B ∼ MatrixTa,b(B,Ω,Σ, ν). (E-3)
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Proof. By Smith and Hocking (1972) and Jones (1985),

A−1AT−1 ∼W−1
a (Ia, ν + u− 1). Thus, by Result 6,

X = A−1W ∼ MatrixTa,b(0a,b, Ib, Ia, ν).

The result then follows by Theorem 4.3.8 in Gupta and Nagar (2000).

Appendix 6-F, Singular matrix variate probability

distributions

De�nition 6 (Singular matrix Gaussian distribution). Let Σ ∈ Ra×a and
Ω ∈ Rb×b be positive semide�nite matrices with rank p and q respec-
tively. Then W follows the singular matrix Gaussian distribution, W ∼
MatrixGp,q

a,b(M ,Ω,Σ), if

W = UΣZU
T
Ω +M , (F-1)

where Z ∼ MatrixGp,q(0p,q,ΛΩ,ΛΣ), and

Σ = UΣΛΣU
T
Σ

Ω = UΩΛΩU
T
Ω.

Here UΣ ∈ Ra×p is the matrix containing the p �rst eigenvectors of Σ
corresponding to the p non-zero eigenvalues given as the p elements of the
diagonal matrix ΛΣ ∈ Rp×p, with a similar notation for UΩ ∈ Rb×q and
ΛΩ ∈ Rq×q. The pdf can be found in Díaz-García et al. (1997).

De�nition 7 (Singular Wishart distribution). LetZ ∼ MatrixGp,ν
u,ν(0u,ν , Iν ,Σ)

with ν < u, then
M = ZZT (F-2)

follows the singular Wishart distribution,M ∼W r
u(Σ, ν), with r = min{p, ν}.

The pdf can be found in Díaz-García et al. (1997).

De�nition 8 (Singular inverse Wishart distribution). Assume V ∼W p
u (Σ, ν),

and let UV ∈ Ru×p be the matrix containing the p left singular vectors of
V corresponding to the p non-zero singular values in the diagonal matrix
SV ∈ Rp×p. Then

W = UV S
−2
V U

T
V (F-3)

follows the singular inverse Wishart distribution, W ∼ W−p
u (Σ, ν), where

the pdf can be found in Bodnar and Okhrin (2008).
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De�nition 9 (Singular matrix-t distribution). Let UΣ ∈ Ra×p be the
matrix containing the p �rst eigenvectors of Σ ∈ Ra×a corresponding to
the p non-zeros eigenvalues given as the p elements of the diagonal matrix
ΛΣ ∈ Rp×p, with a similar notation for the matrix Ω ∈ Rb×b, UΩ ∈ Rb×q

and ΛΩ ∈ Rq×q. Assume Z ∼ MatrixGp,q
p,q(0p,q,ΛΩ, Ip) independent of

V ∼W−1
p (Λ−1

Σ , ν + p− 1), then

T = UΣW
1/2ZUT

Ω +M (F-4)

follows the singular matrix−t distribution, T ∼ MatrixTp,q
a,b(M ,Ω,Σ, ν).

Remark. This de�nition is di�erent from the one used in Díaz-García and
Gutiérrez-Jáimez (2009), where they de�ne the singular matrix−t distribu-
tion through Y = (W 1/2)−X +M , where W ∼ W p̃

a (Σ, ν) independent of
X ∼ MatrixGa,q

a,b(0a,b,Ω, Ip), p̃ = min{p, ν} and the superscript (−) denotes
the Moore-Penrose inverse of a matrix (Strang, 1988).

Result 8 (Probability density function of the singular matrix-t distribu-
tion). The pdf of T ∼ MatrixTp,q

a,b(M ,Ω,Σ, ν) is

f(T ) = c(p, q, ν)

∣∣Ib + Ω−(T −M)TΣ−(T −M)
∣∣(ν+p+q−1)/2

|ΛΣ|q/2|ΛΩ|p/2
, (F-5)

where

c(p, q, ν) =
Γp(ν + p + q − 1)
πpq/2Γp(ν + p− 1)

,

with Γ·(·) de�ned in Eq. (A-3) and the superscript (−) denotes the Moore-
Penrose inverse of a matrix.

Proof. Using Eq. (F-4) and the results in Díaz-García (2007),

T |W ∼ MatrixGp,q
a,b(M ,Ω,UΣWUT

Σ).

Hence, the joint pdf of T and W is:

f(T ,W ) = c1|W |−(ν+2p+q)/2 exp
{
−1

2
tr
(
Θ−1W−1

)}
, (F-6)

where

c1 =
(2π)−pq/2|ΛΣ|(ν+p−1)/2

|ΛΩ|p/22(ν+p−1)p/2Γp(ν + p− 1)
and

Θ−1 = ΛΣ +UT
Σ(T −M)Ω−(T −M)TUΣ.

The result follows by integrating Eq. (F-6) with respect to W and using
general properties of the determinant (Mardia et al., 1979).
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Chapter 7

Enhanced linearised

reduced-order models for

subsurface �ow simulation

Abstract. Trajectory piecewise linearisation (TPWL) represents a promis-
ing approach for constructing reduced-order models. Using TPWL, new
solutions are represented in terms of expansions around previously simu-
lated (and saved) solutions. High degrees of e�ciency are achieved when
the representation is projected into a low-dimensional space using a basis
constructed by proper orthogonal decomposition of snapshots generated in
a training run. In recent work, a TPWL procedure applicable for two-phase
subsurface �ow problems was presented. The method was shown to perform
well for cases with no density di�erences between phases, though accuracy
and robustness were found to degrade when there were substantial di�erences
in phase densities. In this work, these limitations are shown to be related to
model accuracy at key locations and model stability. Enhancements address-
ing both of these issues are introduced. A new TPWL procedure, referred to
as local resolution TPWL, enables key grid blocks (such as those containing
injection or production wells) to be represented at full resolution; i.e., these
blocks are not projected into the low-dimensional space. This leads to high
accuracy at selected locations, and will be shown to improve the accuracy
of important simulation quantities such as injection and production rates.
Next, two techniques for enhancing the stability of the TPWL model are pre-
sented. The �rst approach involves a basis optimisation procedure in which
the number of columns in the basis matrix is determined to minimise the
spectral radius of an appropriately de�ned ampli�cation matrix. The second
procedure incorporates a basis matrix constructed using snapshots from a
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simulation with equal phase densities. Both approaches are compatible with
the local resolution procedure. Results for a series of test cases demonstrate
the accuracy and stability provided by the new treatments. Finally, the
TPWL model is used as a surrogate in a direct search optimisation algo-
rithm, and comparison with results using the full-order model demonstrate
the e�cacy of the enhanced TPWL procedures for this application.
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7.1 Introduction

Optimisation and uncertainty quanti�cation are essential components in
many model-based design procedures. The associated computations, which
typically require large numbers of simulations, can be extremely time-
consuming if highly resolved models are used. This may be the case even
if parallel processing is applied, as multiobjective optimisation and optimi-
sation under uncertainty, in which simulations are performed over a large
number of models, can quickly occupy multiple cores.

The use of reduced-order models provides a means for accelerating these
simulations. Our interest here is in subsurface �ow modelling, which includes
simulation of oil reservoirs, aquifers, and carbon sequestration operations.
Several reduced-order modelling procedures based on proper orthogonal de-
composition have been previously applied within this context; see, e.g., (Ver-
meulen et al., 2004; van Doren et al., 2006; Heijn et al., 2004; Cardoso et al.,
2009). For the nonlinear problems associated with oil reservoir simulation,
the speedups achieved by these procedures were, however, relatively modest,
at most about a factor of 10.

Trajectory piecewise linearisation (TPWL) is a promising approach for
model-order reduction that can potentially provide much larger speedups.
TPWL represents new solutions of the governing equations in terms of linear
expansions around previously simulated (saved) states. This requires that
we perform one or more training simulations, from which the states and
converged Jacobian matrices at each time step are saved. High degrees of
e�ciency are achieved by projecting the saved states and matrices into a
low-dimensional subspace. This projection can be accomplished in di�erent
ways. In the implementation discussed in this paper, the projection matrix is
constructed by proper orthogonal decomposition (POD) of the saved states.
The TPWL approach was �rst introduced in Rewienski (2003) and Rewien-
ski and White (2003) for the modelling of nonlinear circuits and microma-
chined devices. Since then it has been applied in a number of disciplines
including computational �uid dynamics (Gratton and Willcox, 2004), non-
linear heat-transfer modelling (Yang and Shen, 2005) and electromechanical
systems (Vasilyev et al., 2006; Bond and Daniel, 2007b).

In recent work Cardoso and Durlofsky (2010b) applied trajectory piece-
wise linearisation (TPWL) procedures for oil reservoir simulation. Systems
involving two �uid components and two phases � oil and water � were con-
sidered. For test runs involving equal density �uids, TPWL results were
shown to be in close agreement with reference (full-order) simulations for
control schedules that were within the general range of those used in the
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training runs. Runtime speedups of a factor of 200-1000 were observed for
the examples considered. For cases in which the �uid densities di�ered con-
siderably, however, instabilities were observed in some runs. This can lead
to inaccuracy or, in some instances, to the blowup of the TPWL solution.
This is of concern as oil and water phases often display density di�erences
in practical cases.

Our goal in this work is to enhance the TPWL procedure presented
in Cardoso and Durlofsky (2010b) to address the limitations noted above.
We proceed in two important directions. First, we introduce a localisation
treatment in which key grid blocks, such as those containing injection or
production wells, are represented at full resolution; i.e., the states in these
blocks are not projected into the low-dimensional subspace. A missing point
estimation procedure (Astrid and Verhoeven, 2006) is used to determine
which grid blocks (in addition to well blocks) to represent explicitly. This
localisation will be shown to improve the accuracy of the overall TPWL
representation and to have relatively little impact on run times (assuming
the number of resolved blocks is not too large). The second enhancement is
the use of stabilisation procedures. Two such approaches are investigated.
In one approach, a stabilised basis is determined in a prepossessing step in
which various combinations of basis vectors are considered, with the goal of
minimising the spectral radii of the ampli�cation matrices that appear in the
TPWL representation. In the other stabilisation approach, the POD basis
is determined using simulations involving equal density �uids. Accuracy is
restored through use of the localisation treatment. Both procedures will be
shown to greatly improve TPWL stability and performance.

The stability of TPWL models has been studied previously and our de-
velopment here builds on earlier work. Rather than use the traditional
Galerkin projection, Bond and Daniel (Bond and Daniel, 2007a, 2008, 2009)
computed a left projection matrix that stabilises the system. This new left
projection matrix is based on Lyapunov stability theory. However, if only
stability is considered, the accuracy of the reduced-order model can degrade
considerably. Thus, in Bond and Daniel (2008), a stabilisation procedure
was proposed where the left projection matrix is constrained by Lyapunov
theory to guarantee stability and the di�erence between the basis matrix and
this new left projection matrix is optimised to recover accuracy. Bui-Thanh
et al. (2004, 2007) formulated a goal-oriented, model-constrained optimi-
sation problem to determine the optimal basis under Galerkin projection.
This approach was also shown to improve stability. This method di�ers from
that of Bond and Daniel (2008) in that it retains the Galerkin projection and
optimises both the basis matrix and the left projection matrix. However,
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when both accuracy and stability are considered, both of these approaches
can lead to high computational demands.

This paper proceeds as follows. In Section 7.2, the equations for the
subsurface �ow of oil and water are presented, followed by a brief descrip-
tion of the �nite volume approach used for their solution. The POD-based
TPWL representation is then described. In Section 7.3 we present the local
resolution approach in which key grid blocks are resolved explicitly. The en-
hanced accuracy provided by this treatment is illustrated with an example.
The two approaches for stabilising the TPWL representation are presented in
Section 7.4. The impact of the local resolution and stabilisation procedures
is demonstrated through two examples, both of which contain O(105) grid
blocks, in Section 7.5. Next, in Section 7.6, the enhanced TPWL method is
combined with a generalised pattern search (GPS) optimisation technique
and applied to a production optimisation problem. Finally, in Section 7.7,
we present conclusions and suggestions for future work.

7.2 Problem Formulation

The governing equations for oil-water �ow and the basic TPWL formulation
were presented in detail in Cardoso and Durlofsky (2010b). For the sake of
completeness, an abbreviated description is also included here.

7.2.1 Oil-Water Flow Equations

The equations governing the two-phase �ow of oil and water in porous for-
mations are derived by combining expressions for mass conservation with
Darcy's law. Using the subscript j to designate component/phase (j=o for
oil and w for water), these equations can be written as:

∂

∂t
(φρjSj)−∇ · [ρjλjk (∇pj − ρjg∇D)] + qw

j = 0, (7.1)

where k is the (diagonal) absolute permeability tensor, λj = krj/µj is the
phase mobility, with krj the relative permeability to phase j and µj the
phase viscosity, pj is phase pressure, ρj is the phase density, g is gravita-
tional acceleration, D is depth, t is time, φ is porosity, Sj is saturation and
qw
j is the source/sink term. Eq. 7.1 is written slightly di�erently here than in
Cardoso and Durlofsky (2010b). Speci�cally, the source term qw

j here di�ers

by a constant factor of ρ0
j (where ρ0

j is the reference density of phase j) from
that in Cardoso and Durlofsky (2010b), and the de�nition of λj di�ers by
a factor of ρj/ρ0

j . The general oil-water model is completed by enforcing
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the saturation constraint (So + Sw = 1) and by specifying a capillary pres-
sure relationship pc(Sw) = po − pw. Eq. 7.1 is nonlinear since functions of
unknowns (e.g., krj(Sj)) multiply unknowns.

We take po and Sw to be primary variables (pw and So can be immedi-
ately computed once these are known). Eq. 7.1 is solved numerically using
a fully-implicit �nite volume procedure. Discredited forms for all terms are
discussed in Cardoso and Durlofsky (2010b) and Aziz and Settari (1986).
Basically, the �ow from block to block is given by the interface transmissi-
bility multiplied by the di�erence in block pressures, the accumulation term
is handled using a �rst-order implicit (backward Euler) method, and the
source term is treated using a well index representation, in which well rates
are expressed in terms of an appropriately de�ned transmissibility times the
pressure di�erence between the well block and the well. Using these repre-
sentations, and de�ning x = [po, Sw] as the state vector and u as the well
controls (in this case the wells are controlled by specifying bottom hole pres-
sure or BHP), the discrete system for the fully-implicit formulation can be
written as:

g
(
xn+1,xn,un+1

)
= A

(
xn+1,xn

)
+ F

(
xn+1

)
+Q

(
xn+1,un+1

)
. (7.2)

Here g is the residual we seek to drive to zero, n and n + 1 designate time
level, and A, F and Q are the discredited accumulation, �ux and source/sink
terms, respectively.

Typically, a full-order reservoir simulator is used to solve Eq. 7.2. New-
ton's method, with the Jacobian matrix given by ∂g/∂x, is applied. This
is computationally expensive because Eq. 7.2 can be highly nonlinear and
practical models may contain on the order of 105 or 106 grid blocks. We now
describe the application of the TPWL approach for the e�cient solution of
Eq. 7.2.

7.2.2 Solution of Discretised System using TPWL

The idea of trajectory piecewise linearisation is to linearise the residual equa-
tion around states saved from previous (training) simulations. Here, at any
given time, we linearise around a single point on the training trajectory.
Methods that involve weighted linearisations around multiple points also
exist (e.g., Rewienski and White (2003)), though optimal weights can be
di�cult to determine and improper weighting can lead to stability prob-
lems.

Given the current state xn, we designate the closest saved state encoun-
tered during the training run as xi. To determine xn+1, we linearise Eq. 7.2



7.2 Problem Formulation 209

around the state (xi+1,xi,ui+1). This gives

gn+1 = gi+1+
∂gi+1

∂xi+1

(
xn+1 − xi+1

)
+

∂gi+1

∂xi

(
xn − xi

)
+

∂gi+1

∂ui+1

(
un+1 − ui+1

)
,

(7.3)
where gn+1 = g(xn+1,xn,un+1) and gi+1 = g(xi+1,xi,ui+1). Here gi+1 = 0
because it is the residual of the training simulation. De�ning the Jacobian
matrix as the derivative of the residual with respect to the state,

Ji+1 =
∂gi+1

∂xi+1
, (7.4)

and using the fact that, upon solution gn+1 = 0, Eq. 7.3 can be expressed
as

Ji+1
(
xn+1 − xi+1

)
= −

[
∂Ai+1

∂xi

(
xn − xi

)
+

∂Qi+1

∂ui+1

(
un+1 − ui+1

)]
.

(7.5)
Given xn and saved information, Eq. 7.5 allows us to linearly compute xn+1;
i.e., no iteration is required. This equation is, however, still in a high-
dimensional space.

In order to reduce the dimension of Eq. 7.5, we employ linear order
reduction. This entails representing the state x in terms of a reduced state
z and a basis matrix Φ using

x ≈ Φz. (7.6)

There are many ways to constructΦ including optimal Hankel model (Adam-
jan et al., 1971; Bettayeb et al., 1980), balanced truncation (Moore, 1981),
Krylov subspace methods (Feldmann and Freund, 1995), and proper orthog-
onal decomposition (POD) (Lumley, 1967). Within the context of TPWL,
previous researchers have used Krylov subspace methods (e.g., (Rewienski,
2003; Vasilyev et al., 2006; Yang and Shen, 2005)) and POD (e.g., (Grat-
ton and Willcox, 2004)). The POD method was applied successfully for our
problem in Cardoso and Durlofsky (2010b) and will be used again here.

In POD, the high-dimensional space is represented by a set of orthogonal
basis vectors, which are the singular vectors of a snapshot matrix X. Each
column of X is simply the pressure or saturation state at a particular time
step saved from a training simulation. POD is optimal in the sense that it
minimises the mean squared reconstruction error for the snapshots (Pearson,
1901). Therefore, it is reasonable to assume that POD can represent the
states of other (test) simulations if these states are somewhat similar to those
encountered during training runs. In this work, consistent with van Doren
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et al. (2006), Cardoso and Durlofsky (2010b) and Cardoso and Durlofsky
(2010a), POD is used to reduce pressure and saturation separately. As
discussed in Cardoso and Durlofsky (2010b), to generate the pressure basis
matrix we use oil potential ϕo (ϕo = po/ρo−gD) rather than pressure. This
was found to improve TPWL stability in Cardoso and Durlofsky (2010b).

If we denote the number of simulation grid blocks as Nc and the number
of reduced pressure and saturation basis vectors as lp and ls respectively,
the dimension of the problem can be reduced from 2Nc to lp + ls. This is
accomplished by expressing x in Eq. 7.5 using Eq. 7.6 and by premultiplying
both sides of Eq. 7.5 by ΦT (also called Galerkin projection (Berkooz and
Titi, 1993)), which gives

Ji+1
r

(
zn+1 − zi+1

)
= −

[(
∂Ai+1

r

∂xi

)
r

(
zn − zi

)
+
(

∂Qi+1
r

∂ui+1

)
r

(
un+1 − ui+1

)]
,

(7.7)
where

Ji+1
r = ΦTJi+1Φ,(

∂Ai+1

∂xi

)
r

= ΦT

(
∂Ai+1

∂xi

)
Φ,(

∂Qi+1

∂ui+1

)
r

= ΦT

(
∂Qi+1

∂ui+1

)
. (7.8)

Rearranging Eq. 7.7 we have

zn+1 = zi+1−
(
Ji+1

r

)−1
[(

∂Ai+1

∂xi

)
r

(
zn − zi

)
+
(

∂Qi+1

∂ui+1

)
r

(
un+1 − ui+1

)]
.

(7.9)
Eq. 7.9 can be solved e�ciently for two reasons. First, as a result of linearisa-
tion, the new reduced state zn+1 can be calculated directly from zn without
any iteration. Second, all of the terms in Eq. 7.9 are in low-dimensional
space, which means that the matrix operations are fast to compute. Specif-
ically, the evaluation of Eq. 7.9 basically involves only two matrix-vector
products and four vector additions in the reduced space, which can theo-
retically be performed in a fraction of a second for typical reduced-space
dimension (∼100-500) and number of time steps (∼300). Therefore, most
of the total TPWL computation time is spent on training simulations and
projections, which only need to be done once during preprocessing.

This completes our description of the basic TPWL formulation. See
Cardoso and Durlofsky (2010b) for additional details and algorithms and a
discussion of some implementation issues. In the following section we will
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Figure 7.1: Model 1 with four production wells and two injection wells. Perme-
ability in the x-direction (in mD) is shown.

present an application example of the basic TPWL method and discuss some
of its limitations, which we will address in subsequent sections.

7.2.3 Application Example: Reservoir Model 1

We now apply the basic TPWL procedure described in Section 7.2.2 to a
reservoir simulation model. The simulation model, shown in Figure 7.1,
is part of the so-called Stanford VI geological model developed by Castro
(2007). The model represents a �uvial system with high-permeability chan-
nels embedded in a low-permeability background region. The portion of the
model considered here contains 20,400 grid blocks (with nx = 30, ny = 40,
nz = 17, where nx, ny and nz indicate the number of blocks in each coordi-
nate direction). The dimension of the full-order problem is 40,800 (pressure
and saturation unknowns in each grid block). In this model the �uid and
rock compressibility and the capillary pressure between the two phases are
neglected. We specify oil and water viscosities as µo = 3 cp, µw = 0.5 cp.
The �uids are here speci�ed to have equal densities (ρo = ρw = 55 lb/ft3).
The relative permeability relationships are given by

kro(Sw) = k0
ro

(
1− Sw − Sor

1− Swr − Sor

)a

, krw(Sw) = k0
rw

(
Sw − Swr

1− Swr − Sor

)b

.

(7.10)
We set k0

ro = k0
rw = 1, Swr = Sor = 0.2 and a = b = 2, as was used in

Cardoso and Durlofsky (2010b).
To systematically investigate the performance of TPWL, we de�ne test
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Figure 7.2: Training (left) and target (right) producer BHP schedules for Model
1.

cases based on the level of perturbation from the training run. Shown on
the left in Figure 7.2 is the bottom hole pressure (BHP) control schedule
for the production wells in the training simulation, which we designate as
utraining. This schedule is generated randomly, with BHPs between 1000
psi and 3000 psi, and is updated every 200 days. On the right is a di�erent
(target) schedule also generated randomly with the same update frequency
as the training schedule, though this schedule varies between 2000 psi and
4000 psi. Test cases are speci�ed as a weighted combination of these two
schedules; i.e.,

utest = (1− α)utraining + αutarget, (7.11)

where α represents the �distance" of the test controls from the training
controls. When α is near zero, test cases are close to the training run and
TPWL would be expected to provide accurate results. As α increases toward
1, test cases are further from the training run and larger errors are expected.
For this example, the BHPs of the two injection wells are held constant at
6000 psi throughout the simulations.

In this work, errors are quanti�ed in terms of the mismatch of the pro-
duction rates (for both oil and water) and water injection rates between the
full-order solution (Qfull) and TPWL simulations (Qtpwl). For example, for

oil production rate, the error for the jth well (Ej
o) is calculated as:

Ej
o =

∫ T
0 |Q

j
o,full −Qj

o,tpwl| dt∫ T
0 Qj

o,full

, (7.12)

where subscript o designates oil and T is the total simulation time. The
overall average error of the oil production rates, designated Eo, is computing
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α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0
TPWLEo

40,60 0.0039 0.0047 0.0071 0.0108 0.0144 0.0193
TPWLEw

40,60 0.0024 0.0110 0.0246 0.0441 0.0733 0.1266

TPWLEi
40,60 0.0121 0.0156 0.0209 0.0272 0.0354 0.0456

Table 7.1: Relative error in TPWL solutions for various test schedules for Model
1 for basic TPWL with lp = 40 and ls = 60.

by averaging Ej
o over all wells:

Eo =
1

npw

npw∑
j=1

Ej
o , (7.13)

where npw is the total number of production wells. Similar expressions are
used to compute average water production error and water injection error
(Ew and Ei, respectively).

We now compare full-order simulation results, generated using Stanford's
General Purpose Research Simulator (GPRS) (Cao, 2002; Jiang, 2007), with
TPWL results. For the TPWL model we use lp = 40 and ls = 60. Results
for α = 1.0 for oil and water production rates are shown in Figure 7.3, while
results for water injection rates appear in Figure 7.4. The errors in the
TPWL solution for other levels of perturbation are shown in Table 7.2.3.
Discrepancies are evident between the full-order and TPWL results, espe-
cially for water production and water injection rates. In Section 7.3 these
discrepancies are discussed in detail and a local resolution method is pro-
posed to improve the accuracy. However, it should be noted here that this
inaccuracy results from the use of α = 1.0, which means that the test case
is quite di�erent from the training run. As shown in Table 7.2.3, the use of
smaller values of α leads to TPWL results that are much more accurate.

7.3 Local Resolution TPWL

As shown in Section 7.2.3, the basic TPWL method can display inaccuracy
for cases with large perturbations. In this chapter we will �rst analyse the
problem of under�tting and over�tting. We then propose the local resolution
method to enhance the accuracy of the basic TPWL.
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Figure 7.3: Model 1 production rates for α = 1.0 using basic TPWL (lp = 40,
ls = 60).

Figure 7.4: Model 1 injection rates for α = 1.0 using basic TPWL (lp = 40,
ls = 60).
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7.3.1 Under�tting and Over�tting

Since Φ is orthonormal, we have z = ΦTx. POD will by construction
minimise the mean squared reconstruction error of the training snapshots,
(1/S)ΣS

i=1|Φ(ΦTxi) − xi|2, where S is the number of snapshots (Pearson,
1901). Thus, if we consider TPWL solutions based on the full-order model
(Eq. 7.5) and the reduced-order model (Eq. 7.9) for un = ui, and if we take
the number of basis vectors stored in Φ equal to the number of snapshots
(and if the snapshots are based on pressure rather than potential), both
approaches will reproduce the training states exactly (for Eq. 7.9 we need
to apply x = Φz). However, this will not be the case for states from a new
set of well controls un 6= ui.

The POD dimension reduction technique is based on the assumption that
most of the variability in the snapshot matrices can be represented using
a limited number of orthonormal basis vectors Φ = [φ1, . . . ,φl] (Mardia
et al., 1979). We therefore expect that selecting too few basis vectors will
potentially lead to the problem of model under�tting, which can result in
large errors in the TPWL solution, both for un = ui and un 6= ui. On the
other hand, including too many basis vectors will potentially cause model
over�tting (Hastie et al., 2009), leading to large errors in the TPWL solution
for un 6= ui. This can occur because in the basis matrix obtained from POD,
the basis vectors that correspond to smaller eigenvalues are more subject to
noise in the training snapshots. Thus, including them in Φ can lead to a
deterioration of the representation of x stored in z.

These e�ects can be observed through an assessment of the sensitivity
of the TPWL results to di�erent numbers of basis vectors in Φ. Errors in
injection rate (Ei) for various α are presented in Table 7.3.1. The smallest
error at each value of α is shown in bold. The other errors (Eo and Ew)
display generally similar behaviour and are not shown. It is apparent from
the table that selecting a small number of basis vectors (lp = 5, ls = 5)
leads to large errors in the TPWL solution, particularly as α increases.
Interestingly, however, error does not necessarily decrease monotonically as
we include more basis vectors in Φ. Consistent with this, the use of the
largest lp and ls does not provide the most accurate results for water injection
for any value of α.

This is in part due to error introduced through over�tting. It is addition-
ally because the POD reduction scheme focuses on the global reconstruction
error, not the reconstruction error at the well blocks. Note also that the
reason we do not observe a monotonic decrease in the error for the training
schedule (α = 0) is because, as noted earlier, we use oil potential rather than
pressure snapshots to compute the pressure basis matrix. This results in im-
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α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0
TPWLEi

5,5 0.0513 0.1245 0.1521 0.2078 0.2602 0.2921

TPWLEi
20,30 0.0298 0.0355 0.0423 0.0494 0.0564 0.0664

TPWLEi
40,60 0.0121 0.0156 0.0209 0.0272 0.0354 0.0456

TPWLEi
70,90 0.0183 0.0177 0.0187 0.0215 0.0281 0.0381

TPWLEi
120,120 0.0326 0.0332 0.0351 0.0367 0.0383 0.0416

Table 7.2: Relative error in TPWL solutions for various test schedules for Model
1 with equal density. The notation TPWL·

lp,ls
) in this and subsequent

tables denotes the numbers of pressure and saturation basis vectors
retained in Φ. The smallest error at each value of α is shown in bold.

proved accuracy in the TPWL solution for test schedules that di�er from
the training schedule (Cardoso and Durlofsky, 2010b), although it leads to
an increase in the reconstruction error for the training schedule.

7.3.2 Description of Local Resolution Scheme

For our applications, we are particularly interested in the pressure and sat-
uration at well locations because they directly a�ect injection and produc-
tion rates, which are the key quantities needed for production optimisation.
To compute these quantities, we construct xn+1

w = Φwz
n+1, where Φw in-

cludes only the rows of Φ corresponding to the grid blocks containing wells
(subscript w here denotes well). Although we are especially interested in
maintaining accuracy in Φw, the POD dimension reduction technique, by
construction, minimises the global reconstruction error of the training snap-
shots � it does not preferentially weight information at well locations. We
can therefore expect reconstruction of the saturation and pressure at well
locations to be suboptimal.

This e�ect is illustrated in Figure 7.5, where we plot the maximum re-
construction error (relative to the full-order solution) of the saturation and
pressure at the injection and production wells, as a function of l, for α = 1.0.
From this �gure we see that reconstruction of saturation at the production
wells is problematic, and that increasing the number of basis vectors included
in Φ can lead to a clear increase in the reconstruction error.

It is thus evident that reconstruction error at well locations can have a
large impact on the accuracy of TPWL results for production and injection
rates. To eliminate reconstruction error at the well locations, we therefore
propose a TPWL procedure in which selected key grid blocks are repre-
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Figure 7.5: Log plot of the maximum reconstruction error for saturation and
pressure at production and injection wells for Model 1 with α = 1.0.
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sented using the full-order (linearised) model. We let xLR designate the
full-order states for nLR selected grid blocks and xG the full-order states for
the remaining grid blocks. Then, in place of Eq. 7.6, we write:[

xLR

xG

]
≈
[

ΦLR 0
0 ΦG

] [
zLR

zG

]
, (7.14)

where ΦLR is taken to be the identity matrix (thus zLR = xLR). This means
that the grid blocks associated with xLR are not subject to reduction, so
high local resolution is maintained. Note that, although the local and global
grid blocks are decoupled in Eq. 7.14, they do couple in the TPWL scheme
de�ned in Eq. 7.9 through (J i

r)
−1.

In our implementation, the nLR locally-resolved blocks include the well
blocks and possibly additional blocks that are important for the �ow so-
lution. To determine these additional blocks, we apply the missing point
estimation (MPE) procedure suggested by Astrid and Verhoeven (2006). In
this approach we retain blocks that have the largest impact on the condition
number of ΦTΦ, which are blocks that strongly a�ect the �ow solution. A
computationally e�cient algorithm for MPE is described in Cardoso et al.
(2009). In our implementation, locally resolved blocks are determined sep-
arately for the saturation and pressure portions of Φ. The �nal set of nLR

locally-resolved blocks is the union of these two sets of blocks.

The local resolution method provides �exibility for improving the ac-
curacy of the TPWL representation. As is evident in Figure 7.5 and Ta-
ble 7.3.1, this cannot necessarily be accomplished by adding more basis vec-
tors. Even if it could, the maximum number of basis vectors is limited by
the number of snapshots. The local resolution method does not have these
limitations, and the TPWL model thus de�ned approaches the full-order
model as nLR is increased. Thus, the local resolution method enables us to
achieve a balance between accuracy and e�ciency.

7.3.3 Numerical Results using TPWL(LR)

We now apply the local resolution TPWL scheme, designated TPWL(LR),
to the case considered earlier (Model 1 with α = 1.0). For these runs we use
lp = 40, ls = 60 and nLR = 26 (local resolution only at well blocks), which
corresponds to a total of 152 unknowns. Results are shown in Figures 7.6
and 7.7. Comparing these results with those from the basic TPWL scheme
using lp = 40, ls = 60 (Figures 7.3 and 7.4), we see that by eliminating the
reconstruction error at wells, there is a large improvement in the TPWL
results, particularly for the water injection rates.
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Results for �ow rate errors for a range of α are shown in Table 7.3.3.
Errors are shown for TPWL(LR) (with lp = 40, ls = 60, nLR = 26) as well
as for the basic method for two di�erent sets of (lp, ls). The smallest errors
for each value of α are shown in bold. TPWL(LR) is the most accurate in all
cases, and for some quantities a large reduction in error is observed. These
results clearly demonstrate the e�cacy of the use of local resolution within
a TPWL model.

Figure 7.6: Model 1 production rates for α = 1.0 using local resolution TPWL
(lp = 40, ls = 60, nLR = 26).

7.4 Stability of TPWL Models

As demonstrated through extensive examples in Cardoso and Durlofsky
(2010b) and Cardoso and Durlofsky (2010a), the TPWL procedure can pro-
vide reasonable accuracy and robustness for cases with equal phase densities.
It was, however, also reported in Cardoso and Durlofsky (2010b) that the
method can become unstable when large density di�erences between the two
phases exist. In this section we will �rst show an example of this instability.
We will then discuss stability criteria and present two methods for stabilising
TPWL.



220

Enhanced linearised reduced-order models for subsurface �ow

simulation

Figure 7.7: Model 1 injection rates for α = 1.0 using local resolution TPWL
(lp = 40, ls = 60, nLR = 26).

α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0
TPWLEo

40,60 0.0039 0.0047 0.0071 0.0108 0.0144 0.0193
TPWLEo

70,90 0.0099 0.0113 0.0154 0.0212 0.0281 0.0357

TPWLEo
LR 0.0002 0.0020 0.0041 0.0065 0.0089 0.0121

TPWLEw
40,60 0.0024 0.0110 0.0246 0.0441 0.0733 0.1266

TPWLEw
70,90 0.0128 0.0229 0.0529 0.1106 0.2135 0.4126

TPWLEw
LR 0.0002 0.0090 0.0193 0.0350 0.0547 0.1032

TPWLEi
40,60 0.0121 0.0156 0.0209 0.0272 0.0354 0.0456

TPWLEi
70,90 0.0183 0.0177 0.0187 0.0215 0.0281 0.0381

TPWLEi
LR 0.0003 0.0013 0.0025 0.0037 0.0049 0.0067

Table 7.3: Relative error in TPWL solutions for various test schedules for Model
1. Basic TPWL and local resolution TPWL with lp = 40, ls = 60,
nLR = 26 are compared. The smallest error at each value of α is
shown in bold.
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Figure 7.8: Upper: production rate for well P1 using basic TPWL with di�erent
phase densities (Model 1, α = 0.3, lp = 70, ls = 100). Lower: log of
spectral radius of ampli�cation matrix.

7.4.1 Example Showing Instability of TPWL

We consider a model that is the same as that used in Section 7.3, except that
now the densities for the two phases are di�erent (here we set ρo = 45 lb/ft3

and ρw = 55 lb/ft3). Figure 7.8 (upper) displays the oil production rate for
well P1 for α = 0.3. Small spikes in the solution can be observed at around
500 days and 900 days. Shortly after 2000 days the solution becomes com-
pletely unstable and blows up. Results for all other wells display similar
behaviours and are not shown here. Clearly, the method requires improve-
ment if it is to be applied to problems of this type. We now consider the
stability of the TPWL model.

7.4.2 Stability Analysis

We �rst consider the linearised full-order system, Eq. 7.5. This equation can
be viewed as a piecewise linear discrete-time system,

xn+1 = Mi+1xn + bi+1, (7.15)
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where b is a vector that involves the source term and M is the ampli�cation
matrix given by

Mi+1 = −
(
Ji+1

)−1 ∂Ai+1

∂xi
. (7.16)

For a constant M, the system de�ned in Eq. 7.15 is stable if and only if
the spectral radius of M (γ(M)) is less than or equal to 1 (Gelfand, 1941).
Here, stability means that the error in zn will not be ampli�ed in zn+1.

As can be seen from Eq. 7.16, the ampli�cation matrixMi+1 of Eq. 7.15
is the same as that for the training simulation. Therefore, the full-order
linearised system (Eq. 7.15) displays the same numerical stability properties
as the original system. This is not the case, however, for the reduced-order
model. In this case, the counterpart to Eq. 7.9 is

zn+1 = Mi+1
r zn + bi+1

r , (7.17)

where the ampli�cation matrix is given by

Mi+1
r = −

(
ΦTJi+1Φ

)−1
ΦT

(
∂Ai+1

∂xi

)
Φ. (7.18)

For general matrices Ji+1 and ∂Ai+1/∂xi, γ(Mi+1
r ) can be greater than 1

even when γ(Mi+1) ≤ 1. In general, only special choices of Φ can maintain
the stability of the system. We note that the spectral radius ofMi+1

r a�ects
the stability of the linearised system at the time step when it is used. An
isolated unstableMi+1

r will amplify the error at a speci�c time step and may
create a spike in the solution. The solution may still be able to recover if the
perturbation is not too large and if subsequent Mi+1

r are stable. However,
if we have several consecutive time steps with unstable Mi+1

r , the error
will amplify and the solution may blow up. Therefore, to ensure that the
error does not accumulate over time, it is necessary to require the linearised
system to be stable for all time steps.

Figure 7.8 (lower) presents the log of the spectral radius of the ampli�ca-
tion matrix at each time step. Instability occurs for log γ > 0. It is apparent
that the spikes and eventual blowup of the solution correspond to values of
log γ that are much larger than zero and thus unstable. The isolated un-
stable points at around 500 days and 900 days produce small spikes in the
solution, while the consecutive unstable points starting at around 2200 days
lead to solution blowup. Thus it is clear that the use of the TPWL method
with a POD basis and Galerkin projection can result in instability for this
problem.

The loss of stability for reduced-order models, especially those based
on POD and Galerkin projection, has been studied previously and several
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methods to enhance stability have been proposed. Two basic types of stabil-
isation procedures have been considered. The idea of the �rst set of methods
is to compute a left projection matrix that stabilises the system, rather than
use ΦT as in Galerkin projection. In Bond and Daniel (2007a), Bond and
Daniel (2008) and Bond and Daniel (2009), this new left projection ma-
trix was based on Lyapunov stability theory. However, if only stability is
considered, the accuracy of the reduced-order model can degrade consider-
ably. If accuracy is also taken into account, a matrix optimisation has to be
solved to obtain an optimal left projection matrix, which is computation-
ally expensive for large systems. The other group of methods focuses on
�nding a basis other than POD that can guarantee stability under Galerkin
projection. In Bui-Thanh et al. (2007), a goal-oriented, model-constrained
optimisation problem was formulated to determine the optimal Φ. However,
the procedure involves calculation in the full-order space. Even when the
basis matrix is parametrised by the snapshots, as in Bui-Thanh et al. (2007),
the optimisation can still be computationally demanding.

Neither of the approaches described above maintains both POD and
Galerkin projection while stabilising the result. We will present two rela-
tively e�cient ways to stabilise TPWL in the following sections. Both apply
a POD basis and Galerkin projection.

7.4.3 Stabilisation of TPWL using Optimised Basis

The �rst stabilisation method is based on the observation that the stability
of the reduced-order model is sensitive to lp and ls, which de�ne the number
of columns in Φ. The dependence of Mr on Φ is evident in Eq. 7.18.

Figure 7.9 depicts log(γ(Mr)) for di�erent values of lp and ls for two
particular saved points, i = 70 and i = 100, for the problem with di�erent
phase densities de�ned in Section 7.4.1. In the �gure, the lower bound of
the colour bar is the linear stability limit. Therefore the dark blue regions
indicate combinations of lp and ls that give a stable linearised reduced system
while other colours represent di�erent levels of instability. It can be seen that
the relation between stability and the number of basis vectors is somewhat
random and that the use of more basis vectors does not necessarily lead to
improved stability. This demonstrates that the widely used energy criterion
(see, e.g., Cardoso and Durlofsky (2010b)) for selecting the number of basis
vectors based on singular values may lead to stability problems. However,
it can also be seen that for many of the (lp, ls) combinations, the spectral
radius is less than 1. This means that if these combinations are used to
generate the basis, the resulting reduced system will be stable.

The idea of basis optimisation is to de�ne a range of lp and ls and to
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Figure 7.9: log10 M
i
r for i = 70 and i = 100.

determine values (designated lip and lis) that minimise γ(Mr); i.e.,

(lip, l
i
s) = arg min

lip,lis

γ(Mi
r). (7.19)

This is accomplished using an exhaustive search over the allowable range of
lp and ls (with prescribed increments in lp and ls). If we select di�erent lp
and ls for di�erent time steps, which may be necessary in some cases, the
reduced space changes in time. It is therefore necessary to map z in one
reduced space to z in another reduced space. This is accomplished using

zβ = ΦT
β Φαzα, (7.20)

where subscripts α and β indicate the two reduced spaces. We will refer to
this procedure as basis switching.

The optimised basis (OB) procedure is summarised in Algorithm 7. First,
a range for lp and ls is speci�ed. Then the spectral radius is calculated for
selected combinations of lp and ls. The combination that gives the smallest
γ is selected. This method takes into account both accuracy and stability.
Accuracy is controlled approximately by the search range, and stability is
improved by choosing the optimal (lp, ls) combinations.

The optimisation procedure is reasonably e�cient because Ji
r and

(∂Ai+1/∂xi)r only need to be constructed once, for lp,max and ls,max. De-
noting these matrices as Ji

r,max and (∂Ai+1/∂xi)r,max, J
i
r and (∂Ai+1/∂xi)r

for any other (lip, lis) combination are just submatrices of Ji
r,max and

(∂Ai+1/∂xi)r,max and can be extracted directly. Therefore the matrix op-
erations inside the optimisation loop are all in reduced space. Furthermore,
the optimal (lip, lis) combinations only need to be determined once during
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Algorithm 7: Selecting the Number of Basis Vectors to Achieve Sta-
bility.

Input: Training data obtained using GPRS. Search region for
lip ∈ [lp,min, lp,max] and lis ∈ [ls,min, ls,max]

[Φ,Λ] = SVD(X)1

Keep �rst lp,max + ls,max components2

Compute Ji
r,max and (∂Ai+1/∂xi)r,max based on lp,max and ls,max for3

all time steps i
for each time step do4

for lip = lp,min to lp,max do5

for lis = ls,min to ls,max do6

Extract columns 1, . . . , lp, 1, . . . , ls, of J
i
r,max and7

(∂Ai+1/∂xi)r,max

Construct ampli�cation matrix Mi
r8

Calculate γ(Mi
r)9

Select the optimal values lip and lis that minimise γ(Mi
r)10

Construct the basis Φi
11

the preprocessing and will not add to the runtime of TPWL. Thus this
optimisation does not overly a�ect the e�ciency of the TPWL model.

This method di�ers from the two types of methods developed previously
in that it maintains the advantages of POD and the Galerkin projection.
Speci�cally, POD provides optimal accuracy in representing the snapshots
and the Galerkin projection is straightforward and e�cient. It is, however,
important to note that the algorithm does not guarantee stability. Neverthe-
less, it does lead to considerable improvements in stability and enables the
solution of challenging problems with large di�erences in density between
phases.

Figure 7.10 displays the results when applying this technique to the
problem described in Section 7.4.1. In this case a single set of optimised lp
and ls was used (lp = 45, ls = 60); i.e., basis switching was not required. It is
evident from Figure 7.10 that, after basis optimisation, γ(Mr) is close to 1,
which means that TPWL is stabilised. The oil production for well P1 is seen
to be in reasonable agreement with the reference full-order results, with the
solution blowup after 2000 days eliminated (compare with Figure 7.8). We
note that the use of local resolution will act to further improve the accuracy
of the TPWL solution.
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Figure 7.10: Upper: production rate for well P1 using TPWL with optimised
basis for case with di�erent phase densities (Model 1, α = 0.3,
lp = 45, ls = 60). Lower: log of spectral radius of ampli�cation
matrix.
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It is of interest to note that spikes in γ(Mr) usually correspond to spikes
in the condition number of J−1

r (or Jr). This is potentially of concern since
J−1

r appears not only in Mr but also in br in Eq. 7.17. Thus, even when
the system is stable, spikes in the condition number of J−1

r can still cause
inaccuracy in the solution. In such cases, we may need to determine optimum
(lp, ls) such that both γ(Mr) and the condition number of J−1

r are minimised
to assure solution stability and accuracy. This will be addressed in future
work.

7.4.4 Stabilisation of TPWL using Modi�ed Basis

We now introduce a stabilisation procedure in which Φ is derived from a
problem with better stability characteristics than the target problem with
∆ρ 6= 0. This approach can be motivated with reference to stability maps.
Figure 7.11(a) shows the maximum spectral radius for all saved points as a
function of lp and ls for Model 1 with ρo = ρw. Here we see that the TPWL
scheme is unstable only for a limited number of combinations of lp and ls.
However, the stability map for the same reservoir model but with ∆ρ = 10,
shown in Figure 7.11(b), indicates only isolated regions where the TPWL
model is stable. This motivates the construction of a model reduction scheme
where the basis matrix is formed using snapshots generated from a reservoir
model with ∆ρ = 0. The states and Jacobian matrices used in the actual
TPWL solution (Eq. 7.9) are still from the speci�c problem of interest (with
∆ρ 6= 0). We will refer to this procedure as the equal density projection
(EDP) scheme. A stability analysis of the EDP scheme for di�erent values
of lp and ls reveals that the regions where the TPWL solution is stable, seen
in Figure 7.11(c), correspond to the stability regions in Figure 7.11(a). Thus
the approach inherits the stability properties of the ∆ρ = 0 TPWL model.

Because the EDP basis matrix is constructed using snapshots which are
di�erent from the states in the actual solution, the global reconstruction
error for zi will necessarily increase dramatically compared with the ap-
proaches considered above. However, combining the EDP scheme with local
resolution TPWL e�ectively eliminates the reconstruction error at key loca-
tions such as well blocks.

Figure 7.12 shows the oil and water production rates for Model 1 with
∆ρ = 10 and α = 0.3. Here we apply both EDP and LR and set lp = 70,
ls = 100 and nLR = 27 in the TPWL(EDP+LR) solution. Note that the
use of lp = 70, ls = 100 in the basic TPWL method leads to instability (see
Figure 7.8). As is evident in Figure 7.12, the TPWL(EDP+LR) scheme, by
contrast, is able to provide a stable and reasonably accurate solution relative
to the full-order results. This is further illustrated in the results for water
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(a) log10 max{γ(M i)}, ∆ρ = 0, POD

(b) log10 max{γ(M i)}, ∆ρ = 10, POD

(c) log10 max{γ(M i)}, ∆ρ = 10, EDP

Figure 7.11: Maximum value for the spectral radius of the ampli�cation matrix,

M i
r, as a function of number of basis vectors retained for Model 1

using (a) ∆ρ = 0 with standard POD, (b) ∆ρ = 10 with standard
POD, and (c) ∆ρ = 10 with EDP scheme.
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Figure 7.12: Model 1 production rates for α = 0.3 using TPWL(EDP+LR) (lp =
70, ls = 100, nLR = 27).

injection rates shown in Figure 7.13.

The reason why the basis matrix generated from snapshots of the corre-
sponding equal density case (ΦED) leads to better stability than the basis
matrix generated from snapshots of the actual (di�erent density) case ap-
pears to be related to the magnitudes of the components appearing in the
two basis matrices. Referring to the basis from the simulation with di�erent
densities as ΦDD, we observe that ΦDD tends to have more isolated extreme
values than ΦED. These appear to derive from the fact that changes between
snapshots in simulations with di�erent densities are more localised than in
cases with equal densities. More speci�cally, in runs with ∆ρ 6= 0, substan-
tial changes in the solution from one time step to the next may occur in only
a few grid blocks, with little change in the global solution. This behaviour,
which is less prominent in the equal density case, results in extreme values
in ΦDD. This in turn can lead to high condition numbers in Jr and solution
instability. By contrast, ΦED contains more evenly distributed values and
as a result provides better model stability.

This argument is also consistent with results from the random projection
(RP) scheme (Vempala, 2004). In the RP scheme, the pressure and satu-
ration snapshots are replaced with random vectors generated independently
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Figure 7.13: Model 1 injection rates for α = 0.3 using TPWL(EDP+LR) (lp =
70, ls = 100, nLR = 27).

from a Gaussian probability distribution with zero mean and unit variance.
The variance between snapshots is thus evenly distributed spatially. Or-
thonormalisation of these matrices provides the basis matrix. Interestingly,
this approach leads to a stable TPWL scheme for any combination of lp and
ls. In numerous tests, we achieved stable TPWL results for all of the reser-
voir models considered in this paper, including cases where the basic TPWL
method exhibited instability. The accuracy of the RP scheme is, however,
quite poor as it does not use any information from actual snapshots. The
EDP scheme can be viewed as an enhanced or supervised version of the RP
scheme in the sense that, by using a particular set of snapshots, it achieves
stability at the cost of accuracy. As noted above, accuracy is recovered
through use of local resolution. We note �nally that the accuracy of the RP
scheme can also be improved using local resolution, but nLR needs to be
very large before adequate levels of accuracy are consistently achieved.

The two stabilisation schemes proposed in this section have somewhat
di�erent features. The optimised basis method requires only one full-order
simulation, though it does require basis optimisation computations. In many
cases it performs reasonably well without the use of local resolution. How-
ever, it has limited �exibility in the choice of lp and ls as they are determined
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Figure 7.14: Upper six layers of the SPE 10 reservoir model (79,200 grid blocks)
with four producers and two injectors. Permeability in x-direction
(in mD) is shown.

based on stability properties. The EDP method, by contrast, requires two
full-order simulations and it must be combined with local resolution to pro-
vide reasonable accuracy. It has more �exibility, however, in the choice of
lp and ls. Thus both methods have advantages and limitations, and further
application and development of both approaches appears to be warranted.

7.5 Application of TPWL to Realistic Problems

In this section we apply the new TPWL procedures to two realistic reservoir
models. The models contain O(105) grid blocks and the oil and water phases
are of di�erent densities. For these examples we combine the stabilisation
methods with the local resolution procedure, and present results for a range
of perturbations α. The basic TPWL procedure has di�culty providing
stable solutions for these cases.

7.5.1 Model 2: Upper Six Layers of SPE 10

The geological model used here is shown in Figure 7.14. The model, re-
ferred to as Model 2, comprises the upper six layers of the so-called SPE
10 geological model, developed in Christie and Blunt (2001). The model
contains 79,200 grid blocks (with nx = 60, ny = 220, nz = 6). This model
was also studied in Cardoso and Durlofsky (2010b), where it was applied
for an example with equal phase densities, for which accurate TPWL results
were reported. The problems that can arise using the basic TPWL proce-
dure for cases with unequal densities were also illustrated using this model
in Cardoso and Durlofsky (2010b). Model 2 includes four producers, which



232

Enhanced linearised reduced-order models for subsurface �ow

simulation

are perforated in the upper two layers, and two injectors, perforated in the
lower two layers. The �uid and rock-�uid properties are the same as were
used in Model 1 (see Section 7.2.3) except that here we set the density for
water to be ρw=60 lb/ft3, which gives a larger density di�erence.

The performance of the TPWL procedure for this problem is again stud-
ied using perturbation tests. The training schedule and target BHP sched-
ules for this case are shown in Figure 7.5.1. For producers, the training BHP
schedules vary randomly between 1000 psi and 3000 psi and are changed ev-
ery 200 days. The target BHP schedules vary randomly between 1000 psi
and 4000 psi; they also change every 200 days. Clear di�erences are evident
between the two schedules. For the injectors, the training BHP schedules
are constant at 8000 psi while the target BHP schedules vary randomly be-
tween 7000 psi and 9000 psi. Again, input BHP schedules for test cases are
generated as weighted combinations of the training and target schedules,
as de�ned in Eq. 7.11. The training simulation was run for 5000 days and
produced 311 pressure and saturation snapshots.

Figure 7.15: Training (left) and target (right) BHP schedules for producers and
injectors for Model 2.
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Figure 7.16: Model 2 production rates for α = 0.5 using TPWL with optimised
basis and local resolution (lp = 90, ls = 85, nLR = 154).

We apply both the optimised basis method and the EDP procedure to
generate stable TPWL models. For the optimised basis method, we con-
sidered lp in the range [40, 90] and ls in the range [60, 90]. The search
increment for both was 5. A basis with lp = 90 and ls = 85 was found to
be stable for the entire simulation, so no basis switching was applied in this
case. A total of 154 blocks were locally resolved. These include the 12 well
blocks and 144 additional blocks determined by the MPE procedure.

Test cases were run for values of α from 0 to 1. Results for oil and water
production rates, for α = 0.5, are shown in Figure 7.16. Water injection
rates are presented in Figure 7.17. It is clear that the TPWL model performs
reasonably well for this case. Although slight mismatches are observed for
some quantities, the general level of accuracy of the TPWL solution is quite
acceptable and the method is clearly stable.

We now present results for this case using the EDP method for stabilisa-
tion. This requires that the training simulations are run twice � once using
the actual densities and once using equal densities. The equal density run
is used only to construct Φ; the saved states and matrices are from the run
using the actual densities. To allow direct comparison with TPWL(OB), we
use lp = 90, ls = 85 and nLR = 154.
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Figure 7.17: Model 2 injection rates for α = 0.5 using TPWL with optimised
basis and local resolution (lp = 90, ls = 85, nLR = 154).

Figures 7.18 and 7.19 display results for oil and water production rates
and water injection rates for α = 0.5. We again observe stability and a
reasonable degree of accuracy in the TPWL results. In fact, these results
are quite comparable to those using the optimised basis procedure, shown
in Figures 7.16 and 7.17.

Table 7.5.1 presents errors for oil and water production rates and water
injection rates for the two sets of TPWL solutions at �ve values of α. Er-
rors for both methods increase consistently with α, as would be expected.
The EDP TPWL method is slightly more accurate than TPWL with the
optimised basis, though the magnitudes of the errors are quite comparable.

7.5.2 Reservoir Model 3: Part of SPE 10 Upper 30 Layers

We now consider a more complex case. This model, also extracted from
the geological description in Christie and Blunt (2001), contains 108,000
grid blocks (nx = 60, ny = 60, nz = 30). The permeability distribution is
shown in Figure 7.20. The model is referred to as Model 3 and includes four
producers perforated in the upper 12 layers and two injectors perforated in
the lower 12 layers. There are thus a total of 72 well blocks. To avoid large
discrepancies in the well rates, well indices were set to a speci�ed value. The
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Figure 7.18: Model 2 production rates for α = 0.5 using TPWL with EDP basis
and local resolution (lp = 90, ls = 85, nLR = 154).

Figure 7.19: Model 2 injection rates for α = 0.5 using TPWL with EDP basis
and local resolution (lp = 90, ls = 85, nLR = 154).
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Method/α 0.1 0.3 0.5 0.7 0.9

TPWL(OB+LR), Eo 0.0029 0.0088 0.0142 0.0203 0.0263
TPWL(OB+LR), Ew 0.0116 0.0351 0.0582 0.0819 0.1063
TPWL(OB+LR), Ei 0.0065 0.0194 0.0321 0.0449 0.0585
TPWL(EDP+LR), Eo 0.0022 0.0067 0.0116 0.0166 0.0220
TPWL(EDP+LR), Ew 0.0097 0.0293 0.0495 0.0702 0.0912
TPWL(EDP+LR), Ei 0.0059 0.0174 0.0292 0.0409 0.0531

Table 7.4: Errors for TPWL(OB+LR) and TPWL(EDP+LR) for Model 2.

Figure 7.20: Portion of the SPE 10 reservoir model (108,000 grid blocks) with
four producers and two injectors. Log of permeability in x-direction
is shown.

�uid and rock-�uid properties are the same as were used in Model 2; the
density di�erence between phases is again 15 lb/ft3. This case is challenging
not only because of its size but also because it has more and thicker layers,
which means that density-driven gravitational e�ects can be large.

The training and target BHP schedules are the same as were used for
Model 2, as shown in Figure 15. The training simulation was run for 5000
days. A total of 314 pressure and saturation snapshots were saved.

We again present results using both stabilisation methods. For the opti-
mised basis method, lp and ls were both evaluated over the range [60, 120]
with increments of 5. The optimal combination, lp = 90 and ls = 90, was
found to be stable for the entire run, so basis switching was not required.
Local resolution is applied only to the 72 well blocks. Therefore, the to-
tal dimension of the reduced space is 324, compared with 204,000 for the
full-order model.

Test cases were again run for α between 0 and 1. Figures 7.21 and 7.22
display results for production and injection rates for α = 0.5. The results
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Figure 7.21: Model 3 production rates for α = 0.5 using TPWL with optimised
basis and local resolution (lp = 90, ls = 90, nLR = 72).

are stable and generally accurate and are of about the same quality as those
presented for Model 2. This is encouraging, as Model 3 represents a more
challenging test case.

We also generated a TPWL model for this case using the EDP approach,
again with lp = 90, ls = 90 and nLR = 72. As indicated above, constructing
this TPWL model requires that two training runs be performed. Results for
production and injection rates for α = 0.5 are shown in Figures 7.23 and
7.24. These results are again comparable to those using the optimised basis
method.

Errors for both sets of runs for a range of α are presented in Table 7.5.2.
As was observed for Model 2, error increases with increasing α and the EDP
method is slightly more accurate than the optimised basis method, though
both provide comparable levels of accuracy.

The runtimes for the full-order models for the two examples considered in
this section were 30 minutes and 50 minutes respectively on an Opteron dual-
core CPU. The TPWL models, by contrast, required at most a few seconds.
Thus runtime speedups of O(103) were achieved. We reiterate, however,
that TPWL requires a training run and additional overhead comparable to
about another full-order simulation.
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Figure 7.22: Model 3 injection rates for α = 0.5 using TPWL with optimised
basis and local resolution (lp = 90, ls = 90, nLR = 72).

Taken in total, the results presented in this section demonstrate that our
enhanced TPWL procedures are able to provide stable results of reasonable
accuracy for challenging reservoir simulation problems. This suggests that
these approaches may indeed be applicable in computational optimisation
or uncertainty quanti�cation procedures. In the next section, we apply the
enhanced TPWL method to a production optimisation problem.

Method/α 0.1 0.3 0.5 0.7 0.9

TPWL(OB+LR), Eo 0.0044 0.0132 0.0222 0.0308 0.0398
TPWL(OB+LR), Ew 0.0063 0.0181 0.0298 0.0412 0.0526
TPWL(OB+LR), Ei 0.0064 0.0192 0.0326 0.0457 0.0595
TPWL(EDP+LR), Eo 0.0033 0.0098 0.0164 0.0229 0.0295
TPWL(EDP+LR), Ew 0.0043 0.0128 0.0217 0.0308 0.0403
TPWL(EDP+LR), Ei 0.0057 0.0173 0.0291 0.0401 0.0530

Table 7.5: Errors for TPWL(OB+LR) and TPWL(EDP+LR) for Model 3.
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Figure 7.23: Model 3 production rates for α = 0.5 using TPWL with EDP basis
and local resolution (lp = 90, ls = 90, nLR = 72).

Figure 7.24: Model 3 injection rates for α = 0.5 using TPWL with EDP basis
and local resolution (lp = 90, ls = 90, nLR = 72).
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7.6 Use of TPWL for Production Optimisation

In this section we use TPWL as a surrogate within a generalised pattern
search optimisation algorithm. The optimisation targets the maximisation
of net present value for oil production under water injection. We note that
TPWL was used previously as a surrogate in gradient-based optimisations
(with gradients computed numerically) in Cardoso and Durlofsky (2010b),
and Cardoso and Durlofsky (2010a). That work did not consider systematic
retraining of the TPWL model, which we do incorporate here.

7.6.1 Direct Search Optimisation with TPWL

Surrogate modelling is widely used for simulation-based optimisation when
the full-order (high-�delity) model is computationally expensive to evalu-
ate. A surrogate model should be computationally inexpensive and at least
locally accurate. TPWL should be well suited for use as a surrogate as it
appears to provide a su�ciently accurate approximation of the true solution
within a reasonably sized neighbourhood around the training case.

The direct search method used here is generalised pattern search (GPS).
GPS computes a sequence of points that approach an optimal point. The
algorithm applies polling, which entails the evaluation of solutions de�ned
by a stencil (aligned with the coordinate directions) in the search space. The
central point of the stencil is the current (best) solution. If an improvement
in the cost function is found, the stencil is shifted such that it is centred on
the improved point. If an improved solution is not found, the stencil size is
decreased. See Kolda et al. (2003) for more detail on GPS and Echeverría
Ciaurri et al. (2010) for application of GPS and related procedures to oil
production optimisation problems.

Our approach for incorporating TPWL into GPS is depicted in Fig-
ure 7.25. We start by performing a training simulation with well BHPs
de�ned by the initial guess. The states and Jacobian matrices are saved
and the stabilised TPWL model is constructed using the basis optimisation
procedure described earlier. Then, the GPS optimisation is started using
the TPWL surrogate for function evaluations. After a speci�ed number of
function evaluations are performed, GPS is paused and a training simulation
is run at the current best point (the speci�ed number of function evaluations
can vary during the course of the optimisation). TPWL is then retrained at
this point and GPS is resumed. It occasionally happens that, upon retrain-
ing, the objective function of the current point, evaluated using the full-order
model, is suboptimal relative to that of the previous full-order solution. This
inconsistency can occur when the TPWL solution loses accuracy because it
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Figure 7.25: Flowchart for generalised pattern search with TPWL.

is too far from the most recent training case. When this problem is de-
tected, we restart the search from the previous retraining point and reduce
the number of function evaluations until the next retraining. The size of the
GPS mesh may also be reduced. We note that it should be possible to in-
corporate more sophisticated criteria, possibly based on mass balance errors
in the TPWL model (which are straightforward to compute), for retraining.

7.6.2 Optimisation Results

In this example we optimise using a small model to enable comparison of
results with the surrogate (TPWL) procedure to those using the full-order
model. The reservoir model for this case comprises the �rst four layers of
Model 1 (Model 1 is shown in Figure 7.1) and contains 4800 grid blocks. The
�uid and rock-�uid properties and well locations are the same as for Model
1 in Section 7.4.1 (ρo 6= ρw for this case). In this example, we optimise the
production well BHPs to maximise net present value (NPV) over �ve years
(1800 days) of production. The BHP of each well is changed every 200 days.
Thus there are nine control variables for each producer, giving a total of
36 control variables. Injection well BHPs are set to 6000 psi for the entire
simulation. The oil price is speci�ed to be $80/bbl while the cost of water
produced and injected are $36/bbl and $18/bbl, respectively. Water prices
are set to be arti�cially high to limit the use of water. The bounds for the
production well BHPs are 1000 psi and 3000 psi. Initially, the BHPs for the
four production wells are set to 1500 psi for the entire production period.

The TPWL model here used basis optimisation with basis switching.
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Method Init. NPV ($106) Final NPV($106) # of full sim.

Full-order GPS 49.9 170.1 2500
TPWL guided GPS 49.9 169.0 15

Table 7.6: Optimisation results using TPWL surrogate and full-order models.

Typical TPWL parameter values were lp = 65, ls = 75 and nLR = 50. The
evolution of NPV with the number of simulations is shown in Figure 7.26
and summarised in Table 7.6. In the �gure, the red curve represents the op-
timisation results using the full-order simulation model while the blue curve
presents results using the TPWL model. The circles indicate points where
the TPWL surrogate model was retrained. It is evident that, using only
15 full-order training simulations, the TPWL guided optimisation provides
essentially the same result as was achieved using the full-order simulations.
We note, however, that the detailed well BHP controls do show some dif-
ferences between the two optimisations. It is frequently observed in oil
production optimisations that, even when the resulting objective functions
are essentially identical, the well controls determined by di�erent optimi-
sation procedures can be somewhat di�erent (see, e.g., Echeverría Ciaurri
et al. (2010)). This presumably results from the structure of the objective
function in the high-dimensional search space.

The TPWL overhead in this case required the equivalent of about an-
other 10 training simulations. Thus the equivalent number of full-order runs
associated with TPWL model construction was about 25, which is a fac-
tor of 100 less than that required for the optimisation based on full-order
simulations. Because our TPWL implementation is currently in Matlab, we
expect that TPWL model construction could be accelerated considerably
through a careful C++ implementation.

Another example, involving a larger reservoir model, the determination
of optimal BHPs for both injection and production wells, and nonlinear
constraints in the optimisation, is presented in He (2010). This example,
along with those presented in Cardoso and Durlofsky (2010b) and Cardoso
and Durlofsky (2010a), further demonstrate the applicability of TPWL for
use in oil production optimisations.

7.7 Concluding Remarks

In this work, we developed several new techniques for use in trajectory piece-
wise linearisation (TPWL) procedures. Although our target application area
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Figure 7.26: NPV evolution during optimisation.

is subsurface �ow � speci�cally oil reservoir simulation � the methods pre-
sented here should also �nd application in other disciplines. The speci�c
methods developed in this paper include a local resolution treatment, in
which particular grid blocks are not projected into the low-dimensional space
but are instead represented in the original full-order space, and two stabil-
isation procedures. One of the stabilisation techniques (referred to as OB)
entails the determination of the optimum number of columns in each por-
tion of the basis matrix while the other approach (EDP) applies a basis
derived from a simulation with phases of equal density. The use of snap-
shots from equal-density simulations is shown to lead to basis matrices with
better stability properties. The EDP approach, when used by itself, results
in a degradation of accuracy in the TPWL model. Accuracy in key quanti-
ties such as well rates is recovered, however, by using the EDP method in
combination with the local resolution treatment.

Numerical simulations were performed using two highly heterogeneous
reservoir models, both containing O(105) grid blocks. These results demon-
strated the accuracy and robustness of the new TPWL procedures. The EDP
approach was observed to be slightly more accurate than the OB method,
though the two techniques exhibited levels of accuracy that were generally
comparable. The EDP technique is more �exible in terms of the size of the
basis matrix, though it requires an additional full-order training run and
must be used with local resolution. Since neither stabilisation approach is
superior in all regards, we believe further development and testing of both
methods are warranted.

The TPWL model was also used as a surrogate within a generalised
pattern search (GPS) optimisation procedure. Retraining was applied to
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update the TPWL model during the course of the GPS run. The objective
function computed using the surrogate model was very close to that using the
full-order model. A reduction of about a factor of 100 in the number of full-
order simulations required for the optimisation was achieved through use of
the TPWL surrogate. Future work should be directed toward formalising the
determination of when retraining is required in optimisation applications. It
may also be useful to view the TPWL surrogate within the context of space-
mapping procedures, which are widely used in surrogate-based optimisation.
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