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Abstract

Bayesian inversion is performed on real observations to predict the diagenetic classes of a car-

bonate reservoir where the proportions of carbonate rock and depositional properties are known.

The complete solution is the posterior model. The model is first developed in a 1D setting where

the likelihood model is generalized Dirichlet distributed and the prior model is a Markov chain.

The 1D model is used to justify the general assumptions on which the model is based. There-

after the model is expanded to a 3D setting where the likelihood model remains the same and

the prior model is a profile Markov random field where each profile is a Markov chain. Lateral

continuity is incorporated into the model by adapting the transition matrices to fit a given as-

sociated limiting distribution, two algorithms for the adjustment are presented. The result is

a good statistical formulation of the problem in 3D. Results from a study on real observations

from a 2D reservoir show that simulations reproduce characteristics of the real data and it is

also possible to incorporate conditioning on well observations into the model.
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1 Introduction

Prediction of reservoir characteristics is increasingly important as petroleum resources become

scarcer. With the help of good mathematical models, a geologist can use his prior knowledge

to make a reliable prediction of reservoir characteristics. In Norway the majority of petroleum

reserves are located in sandstone reservoirs, hence the competence on other types of reservoirs

is limited.

The Norwegian oil and gas company Statoil are now venturing outside the North Sea in

search of petroleum reserves, which entails developing fields other than the familiar sandstone

reservoirs. The background of this thesis is a carbonate field located in the Middle East for

which Statoil wishes to develop a model. Statoil has already predicted depositional properties

and the proportions of different carbonate rock throughout the reservoir. Deposition is the

process by which sediments settles on a surface and we assume that the depositional properties

can be classified in one of two categories grainstone and fines, abbreviated GS and FS, where

fines consists of wackestone and packstone. Grainstone, packstone and wackestone are part of

the Dunham classification system for carbonate rock, see Dunham (1962). The carbonate rocks

present in the reservoir are anhydrite, calcite and dolomite, the proportions of these sum to

unity. The aim of this thesis is to predict a diagenetic class given the depositional property

and the proportions of carbonate rock. Diagenesis is an alteration of sediment into sedimentary

rock. The diagenetic classes are good, moderate, oomoldic and poor, abbreviated G, M , O and

P respectively.

Ulvmoen & Omre (2010) presents a methodology for prediction of lithology/fluid character-

istics based on prestack seismic data. The study defines the inversion in a Bayesian framework

in a 3D target zone which is discretized into vertical profiles and lateral horizons. The likelihood

model links the seismic data to the lithology/fluid characteristics and is defined independently

for each profile. The prior model is a profile Markov random field with each profile modelled as a

Markov chain. The model for the carbonate field will be similar to this, but the exact definition

of the likelihood and prior model will be different due to the different natures of the problems.
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2 Observations and Notation

For each node in the target zone the proportions of anhydrite, calcite and dolomite, denoted

carbonate rocks, is considered known. The proportions are numbers between zero and one and

in each node the proportions sum to one. There is also information about the depositional

property in each node, either FS or GS.

The observations arise from wells drilled throughout the reservoir. When the wells were

drilled, columns were extracted and parts of the columns were analyzed under a microscope

to determine the proportions of carbonate rocks as well as diagenetic classes and depositional

properties.

The information from this analysis as well as information from a permeability measurement

was then utilized in order to estimate these properties for the entire well.

Using observations from the wells the proportions of carbonate rocks and depositional prop-

erties for the reservoir were estimated.

Figure 1 shows a plot of the data in the 2D target zone.

Denote the target zone in 3D by D3, and let the discretisation of the target zone be by the

lattice LD divided into vertical profiles and lateral horizons. Denote a node in the lattice (x, t).

The profiles are discretized upwards by the lattice LtD where the nodes are labelled from 1 to

T. The lateral horizons are discretized by the lattice Lx
D. The diagenetic class in node (x, t) is

denoted πx,t. Further we define the diagenetic classes πx,t ∈ {G,M,O, P}. The complete set of

diagenetic classes in the 2D target zone is represented by π : {πx,t; (x, t) ∈ LD}.

Denote the proportions of anhydrite, calcite and dolomite dp(1)
x,t , dp(2)

x,t and dp(3)
x,t respectively,

d
p(i)
x,t ∈ [0, 1], dp(1)x,t + d

p(2)
x,t + d

p(3)
x,t = 1. Let the proportions in node (x, t) be the vector dpx,t with

elements {dp(i)x,t ; i ∈ {1, 2, 3}}. Denote the complete set of proportions dp : {dpx,t; (x, t) ∈ LD}.

The depositional property in node (x, t) is denoted ddx,t with ddx,t ∈ {GS,FS}. Denote the

complete set of depositional properties dd : {ddx,t; (x, t) ∈ LD}.

The term p(·) is a general term for probability and can denote univariate probability, mul-

tivariate probability, probability mass functions (pmf) for discrete variables and probability

density functions (pdf) for continuous variables.
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(a) Anhydrite

0 10 20 30 40 50 60

50
10

0
15

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Calcite
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Figure 1: (a)-(c) shows the proportions of carbonate rocks in the target zone, while (d) shows
the depositional properties
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3 Theory

In the following we will present some general theory on the topics the gamma distribution,

the beta distribution, the multinomial distribution, the Dirichlet distribution, the generalized

Dirichlet distribution, Markov chains, hidden Markov models, Markov random fields and Markov

Chain Monte Carlo (MCMC) with a Metropolis-Hastings (MH) implementation. The degree of

detail varies with what is needed for model development later in the thesis.

3.1 The Gamma Distribution

The gamma distribution, see Gamerman & Lopes (2006), is denoted Gamma(α, β) and has pdf

p(x;α, β) =


βα

Γ(α)x
α−1e−βx , x > 0

0 , otherwise

with Γ(·) being the gamma function:

Γ(x) =
∫ ∞
0

tx−1e−t dt. (1)

Sampling from Gamma(α, 1) can be done by considering α ∈ (0, 1), α = 1 and α > 1 separately.

Before presenting the simulation algorithm, Algorithm 3.1, we need to define some quantities.

If α is between 0 and 1 we use rejection sampling and define a function q(x):

q(x) =



cxα−1 , x ∈ (0, 1)

ce−x , x ≥ 1

0 , otherwise

,

where c is a normalizing constant. Observe that p(x)
q(x) ≤ d = 1

Γ(α)c . Calculate acceptance

probability k:

k = 1
d

p(x)
q(x)

=



e−x , x ∈ (0, 1)

xα−1 , x ≥ 1

0 , otherwise

.
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If α is equal to 1, the pdf

p(x; 1, 1) =


e−x , x > 0

0 , otherwise

is the same as the pdf of the exponential distribution which is simple to sample from.

If α is greater than 1 we use ratio of uniforms sampling and need to define region

Cp =
{

(x1, x2)|0 ≤ x1 ≤
√
p∗
(
x2
x1

)}

where

p∗(x) =


xα−1e−x , x > 0

0 , otherwise

.

Calculate constants a, b− and b+:

a =
√

sup
x
p∗(x) =

√
(α− 1)α−1e−(α−1)

b+ =
√

sup
x≥0

x2p∗(x) = 0

b− = −
√

sup
x≤0

x2p∗(x) =
√

(α+ 1)α+1e−(α+1)

so that Cp ⊂ [0, a]× [b−, b+].

Algorithm 3.1 is the algorithm for sampling from the gamma distribution, and it is defined

from the expressions above.
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Algorithm 3.1 Sampling from the gamma distribution
1: initiate : α
2: if α ∈ (0, 1) then
3: initiate : p(x), q(x), d
4: repeat
5: x ∼ q(x)
6: calculate k = 1

d
p(x)
q(x)

7: u ∼ U [0, 1]
8: until u ≤ k
9: return x

10: end if
11: if α = 1 then
12: x ∼ Exp(1)
13: return x
14: end if
15: if α > 1 then
16: initiate : Cp, a, b−, b+
17: repeat
18: x1 ∼ U [0, a]
19: x2 ∼ U [b−, b+]
20: until (x1, x2) ∈ Cp
21: return x2

x1
22: end if

3.2 The Beta Distribution

The beta distribution with parameters (a, b) > 0, see Ross (2007), is denoted Beta(a, b) and has

pdf

p(x; a, b) =


1

B(a,b)x
a−1(1− x)b−1 , 0 ≤ x ≤ 1

0 , otherwise

.

The normalizing constant is defined by B(·, ·), which is the beta function with two parameters

defined as

B(a, b) = Γ(a)Γ(b)
Γ(a+ b)

, (2)

with Γ(·) being the gamma function defined in Expression 1.

The beta function is also defined for a parameter vector α = (α1, ..., αn):

B(α) =
∏n
i Γ(αi)

Γ(
∑n
i αi)

. (3)
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3.3 The Multinomial Distribution

The k-dimensional multinomial distribution with parameter vector x > 0, see Walpole, Myers,

Myers & Ye (2007), is denoted Multk(x) and has pdf

p(β;x) =



(
n

β1, β2, ..., βk

)
xβ1

1 x
β2
2 · · ·x

βk
k ,

x1, ..., xk > 0

x1 + · · ·+ xk = 1

β1, ..., βk ≥ 0

β1 + · · ·+ βk = n

0 , otherwise

,

where β is a vector of integers.

3.4 The Dirichlet Distribution

The k-dimensional Dirichlet distribution with parameter vector α > 0, see Connor & Mosimann

(1969), is denoted Dirk(α) and has pdf

p(x;α) =


1

B(α)
∏k
i=1 x

αi−1
i ,

x1, ..., xk > 0

x1 + · · ·+ xk = 1

0 , otherwise

(4)

where B(α) is the beta function defined in Expression 3.

If the random vector x = (x1, ..., xk) is Dirichlet distributed, the expected value of random

variable xi is

E(xi) = αi
α0

where α0 =
∑
i αi.

The Dirichlet distribution is conjugate to the multinomial distribution. Assume x = (x1, ..., xk)

is a vector of random variables and that we are given the vector β = (β1, ..., βk). We are inter-

ested in the distribution of x given β, namely p(x|β), denoted the posterior distribution

p(x|β) = const× p(β|x)p(x)
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where p(β|x) is the likelihood function, p(x) is the prior distribution and the constant is a

normalizing constant. Further assume that the prior is Dirichlet distributed, x ∼ Dirk(α) and

that the likelihood has a multinomial distribution [β|x] ∼ Multk(x). The posterior distribution

then becomes

p(x|β) = const× p(β|x)p(x)

= const×
k∏
i=1

xαi−1
i xβii

= const×
k∏
i=1

xαi+βi−1
i

∼ Dirk(α+ β),

hence the posterior distribution is also Dirichlet distributed.

The parameters of the Dirichlet distribution can be estimated through a maximum likelihood

method as presented in Wicker, Muller, Kalathur & Poch (2008). Given a data sample x =

(x1, ...,xN ), xi = (xi1, ..., xik), the maximum likelihood approach aims to maximize the log-

likelihood function given by

l(α1, ..., αk|x1, ...,xN ) = N ln Γ(α0)−N
k∑
j=1

ln Γ(αj) +
k∑
j=1

(αj − 1)
N∑
i=1

ln xij . (5)

Let H = {hij ; i, j = 1, ..., k} denote the k × k Hessian of l(α1, ..., αk;x1, ..., xk) and define a

vector g = (g1, ..., gk) with elements given by

gj = ∂

∂αj
l(α1, ..., αk|x1, ..., xk)

= NΨ(α0)−NΨ(αj) +
N∑
i=1

ln xij

where Ψ(·) is the digamma function defined by

Ψ(x) = d

dx
ln Γ(x).
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Expression 5 is maximized by the Newton-Raphson method which gives the iteration

αn+1 = αn + H−1g (6)

with elements h−1
ij of the inverse Hessian given by

h−1
ij = 1

NΨ1(αi)
δij + 1

NΨ1(αi)Ψ1(αj)
Ψ1(α0)

1−Ψ1(α0)
∑k
l=1

1
Ψ1(αl)

where δij is the Kronecker delta and Ψ1(·) is the trigamma function defined by

Ψ1(x) = d2

dx2 ln Γ(x).

An efficient rate of convergence of the iterations can be achieved by choosing an appropriate

starting value. Wicker et al. (2008) presents a method for estimating the starting value called

maximum likelihood approximation. Define the constant fj by

fj = αj
α0
.

Estimate the starting value of fj , f0
j by

f0
j = 1

N

N∑
i=1

xij .

By maximum likelihood approximation the starting value of α0, α0
0 is given by

α0
0 = N(k − 1)γ

N
∑k
j=1 fj ln fj −

∑k
j=1 fj

∑N
i=1 ln xij

where the constant γ is defined as γ = −Ψ(1). Further, the starting value of α, α0 is a vector

with elements given by

α0
j = α0

0f
0
j . (7)

Sampling from the Dirichlet distribution is simple by using samples from the gamma distri-

bution with β = 1, see Algorithm 3.2.
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Algorithm 3.2 Sampling from the Dirichlet distribution
1: initiate : α = (α1, ..., αk)
2: for i = 1, ..., k do
3: yi ∼ Gamma(αi, 1)
4: end for
5: for i = 1, ..., k do
6: xi = yi∑k

j=1 yj

7: end for
8: return (x1, ..., xk)

3.5 The Generalized Dirichlet Distribution

The generalized Dirichlet distribution has a more general covariance structure than the Dirichlet

distribution, often making it more applicable, see Connor & Mosimann (1969).

Consider a random vector x = (x1, ..., xk) > 0 where the random variables sum to unity.

Define a new random vector z = (z1, ..., zk−1) where the elements are given by z1 = x1, zj =

xj/(1− x1 − · · ·xj−1); j = 2, ..., k− 1. Assume the zj ; j = 1, ..., k− 1 are mutually independent

and beta distributed with parameters αj and βj , zj ∼ Beta(αj , βj); j = 1, ..., k − 1.

Since the zj ; j = 1, ..., k − 1 are mutually independent their joint distribution is easily

calculated, and by simple transformation of variables the pdf of the k-dimensional generalized

Dirichlet distribution with parameter vectors α = (α1, ..., αk−1) > 0 and β = (β1, ..., βk−1) > 0,

denoted GDirk(α,β) is derived:

p(x;α,β) =



∏k−1
i=1

1
B(αi,βi)x

αi−1
i (1−

∑i
j=1 xj)γi ,

x1, ..., xk > 0

x1 + · · ·+ xk = 1

0 , otherwise

where

γi =


βi − αi+1 − βi+1 , i = 1, ..., k − 2

βi − 1 , i = k − 1

and B(·, ·) is the beta function defined in Expression 2.

The parameters of the generalized Dirichlet distribution can be estimated from a data sample

x = (x1, ...,xN ), xi = (xi1, ..., xik) by defining a new sample z = (z1, ..., zN ), zi = (zi1, ..., zi(k−1))

where zi1 = xi1 and zij = xij/(1− xi1 − · · · − xi(j−1)); j = 2, ..., k − 1. For each j = 1, ..., k − 1,



3.6 Markov Chains 11

define data sample zj = (z1j , ..., zNj) and assume these to be observations of the random variable

zj , zj ∼ Beta(αj , βj). The beta distribution is a special case of the Dirichlet distribution,

Beta(αj , βj) = Dir2(αj , βj), hence the parameters αj and βj can be estimated by the iteration

presented in Expression 6.

Wong (1998) describes an algorithm for generating samples from the generalized Dirichlet

distribution, this is presented in Algorithm 3.3.

Algorithm 3.3 Sampling from the generalized Dirichlet distribution
1: initiate :
2: α = (α1, ..., αk−1)
3: β = (β1, ..., βk−1)
4: x1 ∼ Beta(α1, β1)
5: for i = 2, ..., k − 1 do
6: zi ∼ Beta(αi, βi)
7: xi = zi

(
1−

∑i−1
j=1 xj

)
8: end for
9: xk = 1−

∑k−1
j=1 xj

10: return (x1, ..., xk)

3.6 Markov Chains

A Markov chain, see Ross (2007), is a discrete time stochastic process π : {πt; t ∈ LtD}, πt ∈ Ω,

which fulfils the Markov property

p(πt|πt−1, ..., π1) = p(πt|πt−1).

A joint probability can always be expressed as a product of conditional probabilities

p(π) = p(πT |πT−1, ..., π1)× · · · × p(π2|π1)p(π1),

and due to the Markov property, the Markov chain can be written

p(π) = p(πT |πT−1)× · · · × p(π2|π1)p(π1)

=
∏
t

p(πt|πt−1)

where p(π1|π0) = p(π1) for notational convenience. From this it follows that the Markov chain

is fully described by the distribution p(π1) and the transition probabilities p(πt|πt−1). The
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transition probabilities for a fixed t are arranged into a transition matrix

Pt = {p(πt|πt−1);πt, πt−1 ∈ Ω},

where the options for πt−1 are represented by the rows of the matrix and the options for πt are

represented by the columns of the matrix. The number of elements of the matrix is the number

of possible classes squared, and the elements of a row must sum to one:

∑
πt

p(πt|πt−1) = 1.

A Markov chain is homogeneous if Pt = P for all transitions in the chain, otherwise the

Markov chain is inhomogeneous.

If it is possible to access any state in Ω in a finite number of steps if initially in any given

state in Ω, the Markov chain is irreducible.

The period of a state is the greatest common divisor of the number of steps in all the ways

of returning to a state if initially in that given state. If the period of the state is one, the state

is said to be aperiodic. If all the states in Ω are aperiodic, the Markov chain is aperiodic.

A state is recurrent if starting in a specific state the chain will with probability one return

to that state, and it is positive recurrent if it returns in a finite amount of time. All recurrent

states in a Markov chain with a finite state space are positive recurrent. The Markov chain is

positive recurrent if all the states of the Markov chain are positive recurrent.

A homogeneous Markov chain has a unique limiting distribution p : {p(π);π ∈ Ω} if the

chain is irreducible, aperiodic and positive recurrent. If so, the limiting distribution

p(π) = lim
k→∞

p(πk|π1); ∀π ∈ Ω (8)

can be calculated by
p = PTp∑
π p(π) = 1

. (9)
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3.7 Hidden Markov Models

Consider the Markov chain π : {πt; t ∈ LtD} with πt ∈ Ω. Assume that the state πt is not

visible, but an observation ot depending on πt is available. Denote the set of observations

o : {ot; t ∈ LtD}. This process is a hidden Markov model, see Scott (2002). The dependency

structure is illustrated in Figure 2.

WVUTPQRSo1 WVUTPQRSo2 WVUTPQRSot−1 WVUTPQRSot WVUTPQRSoT

WVUTPQRSπ1 //

OO

WVUTPQRSπ2 //

OO

· · · // WVUTPQRSπt−1 //

OO

WVUTPQRSπt //

OO

· · · // WVUTPQRSπT

OO

Figure 2: Illustration of the hidden Markov model

We are interested in exploring the Markov process given the observations. In a Bayesian

setting this is known as the posterior distribution denoted p(π|o). Using Bayes rule the posterior

distribution can be written

p(π|o) = const× p(o|π)p(π),

where p(o|π) is the likelihood function, p(π) is the prior distribution and the constant is a

normalizing constant which can be difficult to calculate.

Based on the dependency structure the likelihood function factorizes and can be written

p(o|π) =
∏
t

p(ot|πt).

The prior distribution is a Markov chain and hence can be written

p(π) =
∏
t

p(πt|πt−1)

where p(π1|π0) = p(π1) for notational convenience.

The posterior model of interest is

p(π|o) = const×
∏
t

p(ot|πt)p(πt|πt−1).
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It can be shown that the posterior model also follows a Markov chain, hence it can be written

p(π|o) =
∏
t

p(πt|πt−1,o), (10)

where the factors p(πt|πt−1,o) need to be determined.

The posterior distribution can be assessed by the Forward-Backward Algorithm.

Define forward probabilities

pf (π1, ..., πt) = p(π1, ..., πt|o1, ..., ot)

and backward probabilities

pb(πt, ..., πT ) = p(πt, ..., πT |o1, ..., oT ).

The forward probabilities are calculated recursively, initiated by calculating

pf (π1) = p(π1|o1) = const× p(d1|π1)p(π1)

where the constant is a normalizing constant given by

∑
π1

pf (π1) = 1.

For t = 2, ..., T the joint forward probabilities pf (πt−1, πt) are calculated by

pf (πt−1, πt) = p(πt−1, πt|o1, ..., ot)

= const× p(ot|πt)p(πt|πt−1)p(πt−1|o1, ..., ot−1)

= const× p(ot|πt)p(πt|πt−1)pf (πt−1)

where the constant can be calculated by

∑
πt−1

∑
πt

pf (πt−1, πt) = 1.
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Further the marginal forward probability pf (πt) can be calculated by the expression

pf (πt) =
∑
πt−1

pf (πt−1, πt).

Calculating the backward probabilities is initiated by noting that

pb(πT ) = pf (πT ).

For t = T, ..., 2, calculate the backward probabilities pb(πt−1|πt) by

pb(πt−1|πt) = p(πt−1|πt, o1, ..., oT )

= p(πt−1|πt, o1, ..., ot)

= p(πt−1, πt|o1, ..., ot)
p(πt|o1, ..., ot)

=
pf (πt−1, πt)
pf (πt)

i.e. the backward probabilities can be calculated by the forward probabilities.

The marginal backward probability pb(πt−1) is calculated by

pb(πt−1) =
∑
πt

pb(πt−1|πt)pb(πt).

Algorithm 3.4 Forward-Backward Algorithm
1: initiate
2: pf (π1) = const× p(o1|π1)p(π1)
3: const→

∑
π1 pf (π1) = 1

4: for t = 2 to T do
5: pf (πt−1, πt) = const× p(o1|π1)p(πt|πt−1)
6: const→

∑
πt−1

∑
πt pf (πt−1, πt) = 1

7: pf (πt) =
∑
πt−1 pf (πt−1, πt)

8: end for
9: pb(πT ) = pf (πT )

10: for t = T to 2 do
11: pb(πt−1|πt) = pf (πt−1,πt)

pf (πt)
12: pb(πt−1) =

∑
πt pb(πt−1|πt)pb(πt)

13: end for

Algorithm 3.4 is the Forward-Backward Algorithm.

From Expression 10 we see that we need the probability pb(πt|πt−1), and not pb(πt−1|πt) as
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is calculated by the backward recursion. However, the Markov chain is easily reversed by

p(πt|πt−1,o) = pb(πt|πt−1)

= pb(πt, πt−1)
pb(πt−1)

= pb(πt−1|πt)pb(πt)
pb(πt−1)

,

hence pb(πt|πt−1) is expressed by the already calculated backward probabilities.

We can now easily simulate from the posterior distribution p(π|o), Algorithm 3.5 creates a

realisation πs : {πst ; t ∈ LtD} ∼ p(π|o).

Algorithm 3.5 Simulation Algorithm
1: initiate
2: πs1 ∼ pb(π1)
3: for t = 2 to T do
4: πst ∼ pb(πt|πst−1)
5: end for

A location wise MAP estimate π̂ is given by

π̂ :
{

arg max
πt
{pb(πt)}; t ∈ LtD

}
(11)

3.8 Markov Random Fields

Consider a 2D random field D2, let the discretisation of D2 be by the lattice Lx
D. The state of

node x is denoted πx, πx ∈ Ω. The complete set of states is denoted π : {πx;x ∈ Lx
D}. Define

π−x : {πy;y ∈ Lx
D,y 6= x} as the set of states excluding the state in node x.

Each node x has a set of neighbours known as the neighbourhood around x, denote this

neighbourhood δ(x). If the neighbourhood of x consists of the four closest nodes to x, the

neighbourhood is denoted a first order neighbourhood. A Markov random field is a random field

where a state in node x given all other states in the random field only depends on the states of

the nodes in the neighbourhood of x, hence the full conditional distribution can be written

p(πx|π−x) = p(πx|πy;y ∈ δ(x)); ∀x ∈ Lx
D.

By the Hammersley-Clifford theorem the Markov random field is fully specified by the con-
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ditional distributions, see Besag (1974).

3.9 Profile Markov Random Fields

Now consider the 3D random field D3 discretized by the lattice LD divided into vertical profiles

and lateral horizons. Denote a node in the lattice (x, t) and the state in this node πx,t. The

profiles are discretized by the lattice LtD and the lateral horizons are discretized by the lattice

LxD.

Similarly to the Markov random field, a profile Markov random field is defined by

p(πx|π−x) = p(πx|π−y;y ∈ δ(x)); ∀x ∈ Lx
D

where πx : {πx,t; t ∈ LtD} is a profile for arbitrary x, π−x : {πy;y ∈ Lx
D,y 6= x} and δ(x) is a

profile neighbourhood around x. If the profile neighbourhood consists of the four closet profiles

to profile x, the neighbourhood is denoted a first order profile neighbourhood.

The profile Markov random field is fully specified by the conditional distributions.

3.10 Markov Chain Monte Carlo

Consider a pdf p(x), x ∈ Ω, on the form

p(x) = const× h(x) (12)

where h(x) is a non-negative function and the constant is difficult to calculate. Markov Chain

Monte Carlo (MCMC) is method for creating realisations from p(x) by constructing a Markov

chain with limiting distribution p(x) followed by simulating the Markov chain. The transition

probabilities of a Markov chain are not uniquely defined by the limiting distribution, hence

there are several ways of constructing the Markov chain. Hastings (1970) presents a method

for constructing the Markov chain and the implementation is known as the Metropolis-Hastings

(MH) algorithm.

Suggest a proposal distribution q(y|x) summing to unity for fixed x, and accept this dis-

tribution with acceptance probability α(y|x). The transition probabilities of the Markov chain
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are
p(y|x) = q(y|x)α(y|x) , y 6= x

p(x|x) = 1−
∑
y 6=x q(y|x)α(y|x) , otherwise

(13)

A sufficient condition for the existence of the limiting distribution defined in Expression 8 is

the detailed balance given by

p(x)p(y|x) = p(y)p(x|y); ∀x, y ∈ Ω. (14)

Insert Expression 13 into Expression 14 which gives

p(x)q(y|x)α(y|x) = p(y)q(x|y)α(x|y) (15)

Define expression r(y|x) as

r(y|x) = p(x)q(y|x)α(y|x),

and due to Expression 15 we have

r(y|x) = r(x|y).

Since α(·|·) is an acceptance probability it cannot be larger than one, hence

α(y|x) = r(y|x)
p(x)q(y|x) ≤ 1 ⇒ r(y|x) ≤ p(x)q(y|x)

α(x|y) = r(x|y)
p(y)q(x|y) ≤ 1 ⇒ r(x|y) ≤ p(y)q(x|y)

.

In Hastings (1970) it is shown that r(·|·) should be as large as possible, thus

r(y|x) = min {p(x)q(y|x), p(y)q(x|y)}

which gives the acceptance probability

α(y|x) = 1
p(x)q(y|x) min {p(x)q(y|x), p(y)q(x|y)}

= min
{
1, p(y)q(x|y)p(x)q(y|x)

} . (16)

The constant in Expression 12 which was difficult to calculate disappears from the expression

for the acceptance probability as we divide p(y)/p(x), and does not appear anywhere else in the

MH-method.
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Assume πt−1 = x in the Markov chain. Suggest πt = y, where y is sampled from the proposal

distribution with pdf q(y|x). Accept πt = y with the acceptance probability from Expression

16. If y is not accepted the Markov chain remains in x.

We have not specified an initial distribution for the Markov chain, and common practice is

to choose a random starting point and iterate until the Markov chain forgets its origin, i.e. until

it converges. The time until convergence is denoted the burn-in period, and we only use samples

produced after the burn-in period as realisations from p(x).

Algorithm 3.6 is the MH algorithm.

Algorithm 3.6 The MH Algorithm
1: initiate :
2: x
3: repeat
4: propose y ∼ q(y|x)
5: compute α(y|x)
6: draw y ∼ U [0, 1]
7: if u ≤ α(y|x) then
8: x = y
9: else

10: x = x
11: end if
12: until sufficient amount of samples produced
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4 Stochastic Model in 1D

The problem to be addressed is to predict diagenetic classes, π, given proportions of carbonate

rocks, dp, and depositional properties, dd. The problem is solved in a Bayesian setting where

the complete solution is the posterior model expressed as

p(π|dp,dd) = const× p(dp|π,dd)p(π|dd)

where the expression p(dp|π,dd) is the likelihood model, the expression p(π|dd) is the prior

model and the constant is a normalizing constant which computation can be very computer

demanding.

The model will initially be developed in a 1D-setting for a profile discretized by the grid LtD,

followed by an expansion into 3D. In the 1D-setting the point x is omitted from the notation,

hence a node will be denoted t, the diagenetic class in that node πt and so on.

4.1 Likelihood Model in 1D

The likelihood model describes the likelihood of the proportions of carbonate rocks given the

diagenetic classes and depositional properties. To build the model we will use data from the

wells.

For the likelihood model we assume independence between the nodes such that it can be

written in product form:

p(dp|π,dd) =
∏
t

p(dpt |π,dd) =
∏
t

p(dpt |πt, ddt ).

The distribution in each node is estimated from the observations. The proportions of car-

bonate rocks are real numbers on the interval between zero and one which sum to one.

Figure 3 and Figure 4 show plots of the observations with proportions on the axes. The

colours represent the four diagenetic classes, where red represents good, green represents mod-

erate, black represents oomoldic and poor is represented by blue. There will be one probability

distribution for each given combination of diagenetic class and depositional property, eight in

total. Give the parameters of the distributions superfixes π and dd to clarify which diagenetic

class and depositional property are given.
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Figure 3: Plot of the observations in depositional property GS. The colours represent the
diagenetic classes, G: red, M : green, O: black, P : blue
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Figure 4: Plot of the observations in depositional property FS. The colours represent the
diagenetic classes, G: red, M : green, O: black, P : blue
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The proportions summing to unity could indicate Dirichlet distributed or generalized Dirich-

let distributed observations, however, we allow zero proportions for which the mentioned distri-

butions have probability zero. We choose to adjust the data such that a small value is added

to the zero proportions and correspondingly subtracted from the larger proportions. The rami-

fications of this adjustment are considered minor due the uncertainty in the data.

If the Dirichlet distribution and the generalized Dirichlet distribution fit the data equally

well, we will use the Dirichlet distribution as simpler distributions are preferable. To check

the fit we estimate the parameters for the Dirichlet distribution and the generalized Dirichlet

distribution from the observations for each combination of diagenetic class and depositional

property, and compare the observations to samples drawn from these distributions.

The parameters of the Dirichlet distribution, απ,dd =
(
απ,d

d

1 , απ,d
d

2 , απ,d
d

3

)
, are estimated from

the adjusted observations by the maximum likelihood approach using the iteration presented in

Expression 6 with starting value calculated by Expression 7.

The estimated parameters of the Dirichlet distribution are:

αG,GS = (0.13, 0.31, 0.35)

αM,GS = (0.16, 0.25, 0.34)

αO,GS = (0.12, 8.19, 0.16)

αP,GS = (0.38, 0.28, 0.52)

αG,FS = (0.18, 0.41, 0.77)

αM,FS = (0.19, 0.33, 0.37)

αO,FS = (0.15, 16.14, 0.24)

αP,FS = (0.48, 0.31, 0.53)

The parameters of the generalized Dirichlet distribution,

(
απ,d

d
,βπ,d

d
)

=
(
απ,d

d

1 , απ,d
d

2 , βπ,d
d

1 , βπ,d
d

2

)
,

are estimated from the adjusted observations by the procedure described in Section 3.5.
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The estimated parameters of the generalized Dirichlet distribution are:

(
αG,GS ,βG,GS

)
= (0.18, 0.26, 3.34, 0.28)(

αM,GS ,βM,GS
)

= (0.23, 0.21, 2.57, 0.26)(
αO,GS ,βO,GS

)
= (0.14, 5.01, 42.50, 0.14)(

αP,GS ,βP,GS
)

= (0.49, 0.23, 1.52, 0.40)

(
αG,FS ,βG,FS

)
= (0.22, 0.36, 2.79, 0.63)(

αM,FS ,βM,FS
)

= (0.25, 0.27, 2.09, 0.29)(
αM,FS ,βM,FS

)
= (0.15, 16.70, 15.60, 0.25)(

αP,FS ,βP,FS
)

= (0.53, 0.28, 1.03, 0.47)

For each combination of diagenetic class and depositional property, samples are drawn from

the estimated Dirichlet and generalized Dirichlet distribution by Algorithm 3.2 and Algorithm

3.3 respectively. The number of samples drawn are the same as the number of observations for

the given diagenetic class and depositional property.

Figure 5 through Figure 12 are plots comparing the observed values to those sampled from the

estimated distributions. For diagenetic class G, M and O the generalized Dirichlet distribution is

clearly a better fit than the Dirichlet distribution, while for diagenetic class P neither distribution

fits particularly well. Overall the generalized Dirichlet distribution provides the best fit, hence

this is chosen for the likelihood model in a node:

p(dpt |πt, ddt ) =



1
B(α1,β1)

1
B(α2,β2) ×dp(1)t

α1−1 (
1− dp(1)

t

)β1−α2−β2

×dp(2)t

α2−1
d
p(3)
t

β2−1
,
d
p(1)
t , d

p(2)
t , d

p(3)
t > 0

d
p(1)
t + d

p(2)
t + d

p(3)
t = 1

0 , otherwise

where the superfixes of the parameters are implied.
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Figure 5: Plot comparing distributions for the observations in diagenetic class G, depositional
property GS
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Figure 6: Plot comparing distributions for the observations in diagenetic class M , depositional
property GS
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Figure 7: Plot comparing distributions for the observations in diagenetic class O, depositional
property GS
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Figure 9: Plot comparing distributions for the observations in diagenetic class G, depositional
property FS
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Figure 10: Plot comparing distributions for the observations in diagenetic class M , depositional
property FS
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Figure 11: Plot comparing distributions for the observations in diagenetic class O, depositional
property FS
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Figure 12: Plot comparing distributions for the observations in diagenetic class P , depositional
property FS
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4.2 Prior Model in 1D

The prior model contains prior knowledge about the diagenetic classes, hence it does not rely

on the observations of carbonate rock.

We define a Markov chain with state space Ω = {G,M,O, P} upwards through the vertical

profile. This means that the prior model can be written

p(π|dd) =
∏
t

p(πt|πt−1, d
d
t , d

d
t−1)

where p(π1|π0, d
d
1, d

d
0) = p(π1|dd1) for notational convenience.

To substantiate the use of a Markov chain as the prior model we look at the transitions

between diagenetic classes from the well data. We create a general transition matrix by counting

the number of transitions between diagenetic classes upwards, disregarding the depositional

properties. The general transition matrix, denoted P, becomes

P =

G

M

O

P



0.44 0.39 0.06 0.12

0.21 0.63 0.04 0.11

0.15 0.15 0.68 0.02

0.12 0.25 0.01 0.62


,

where the element in row one, column one is denoted p(G|G) and represents the probability

of going from diagenetic class good in node t − 1, πt−1 = G, to diagenetic class good in node

t, πt = G. The element in row one, column two is denoted p(M |G) and so on. If the profile

follows a Markov chain, the length of intervals of consecutive equal diagenetic classes should

follow geometric distributions with parameters one minus the diagonal elements of the transition

matrix, e.g. the probability of just one consecutive diagenetic class good is 1 − p(G|G) =

1 − 0.44 = 0.56, while the probability of two consecutive goods is (1 − p(G|G)) × p(G|G) =

(1−0.44)×0.44 = 0.25. Hence, if we count the length of all intervals of consecutive equal goods

we expect 56% of the intervals to have length 1 and 25% of the intervals to have length 2.

Figure 13 shows the length of the intervals of consecutive equal classes compared to the

theoretical geometric distribution, and we see that the fit is very good which indicates a Markov

prior model.



30 4 STOCHASTIC MODEL IN 1D

1 2 3 4 5 6 7 8 9 10 11

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(a) Good

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

0.
0

0.
1

0.
2

0.
3

0.
4

(b) Moderate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(c) Oomoldic

1 2 3 4 5 6 7 8 9 10 11

0.
0

0.
1

0.
2

0.
3

0.
4

(d) Poor

Figure 13: Plot comparing length of intervals to the geometric distribution
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The transition probabilities between node t− 1 and node t can be expressed as a transition

matrix Pddt−1,d
d
t

where the elements are the conditional pmfs p(πt|πt−1, d
d
t−1, d

d
t ). The transition

matrices are dependent on t through the dependency on ddt−1 and ddt , hence the Markov chain

is inhomogeneous.

The transition matrices are different depending on the depositional properties in the nodes

between which the transition occurs. There are four possible combinations of depositional prop-

erties, moving from GS to GS, from FS to FS, from FS to GS and from GS to FS.

We will consider two approaches to estimating the transition matrices. The first approach

considers the transition probabilities a global property of the profile, hence the transition prob-

abilities are independent of the value of t, though still dependent on t through the dependency

on the depositional properties.

The second approach considers the transition probabilities a more local property, hence

the vertical positions of two nodes affects the transition probabilities between them, hence the

transition probabilities will depend on the value of t as well as the depositional properties. Figure

14 shows the diagenetic classes of wells in the reservoir. We see that the diagenetic classes are

not distributed equally vertically through the reservoir, and the distribution is somewhat similar

in the wells, e.g. the proportion of diagenetic class P is larger for t > 70 than t < 70 for all wells

and the majority of diagenetic class O is located around t ≈ 50. Geologically these observations

are reasonable as the deposition process causes lateral geological layers, and properties may vary

somewhat between the layers. Node t is within the same geological layer for all wells.

If the prior model were estimated from only one well the local approach could overfit the

model, especially if there were no significant differences between distributions of diagenetic

classes in different geological layers. Since there are observations from seven wells the cross well

calculation ensures that the local approach essentially behaves as the global approach if vertical

differences are not present.

The transition matrices will be estimated by the same method for both approaches. For the

first approach, all well observations will be used for the estimation for any given t, while for

the second approach only well observations in the interval t ∈ [t− n, t+ n] will be used. If the

interval falls outside the observation region, the interval shrinks accordingly, hence if t = 1, the

interval is reduced to [1, 1 + n].

Using the global estimation approach there will be four transition matrices in total, while for
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Figure 14: Diagenetic properties in the wells. G: red, M : green, O: black, P : blue, the white
areas are undefined

the local approach there will be four transition matrices for each t. If both approaches perform

equally well the global approach will be preferred since it is faster and simpler.

4.2.1 Estimating the Transition Matrices

The transition matrices are estimated by putting a Dirichlet prior on the rows of the transition

matrix. The parameters of the Dirichlet prior are the number of each diagenetic class in the

depositional property to which the chain is transitioning. Using the global approach these are

counted using all well observations, using the local approach these are only counted in the

specified interval. Denote the proportions of each diagenetic class aG, aM , aO and aP , hence

the prior for a row is

p(pπt−1) ∼ Dir4(aG, aM , aO, aP ).

Define a multinomial likelihood for the row

p(nG, nM , n0, nP |pπt−1) ∼ Mult4(pπt−1)

where nπt−1
G , nπt−1

M , nπt−1
O and n

πt−1
P is the number of transitions to good, moderate, oomoldic

and poor when transitioning between the given depositional properties, given that the previous
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state is πt−1. Again we only use the observations specified by the approach.

The Dirichlet distribution is the conjugate prior for the multinomial distribution, hence the

posterior distribution is also Dirichlet:

p(pπt−1 |n
πt−1
G , n

πt−1
M , n

πt−1
0 , n

πt−1
P ) ∼ Dir4(aG + n

πt−1
G , aM + n

πt−1
M , aO + n

πt−1
O , aP + n

πt−1
P ).

To estimate the transition matrix we take the expected value of the Dirichlet distribution

for each row, for each element this means the parameter divided by the sum of the parameters

in the row. Hence the elements of the row become

pπi−1 =

[
aG + n

πi−1
G aM + n

πi−1
M aO + n

πi−1
O aP + n

πi−1
P

]
aG + n

πi−1
G + aM + n

πi−1
M + aO + n

πi−1
O + aP + n

πi−1
P

The transition matrices using the global approach are estimated to:

PGS,GS =



0.31 0.40 0.15 0.15

0.26 0.46 0.14 0.14

0.24 0.37 0.24 0.14

0.25 0.40 0.14 0.21


,PFS,FS =



0.24 0.48 0.01 0.27

0.18 0.58 0.01 0.23

0.21 0.50 0.01 0.28

0.20 0.47 0.01 0.32



PFS,GS =



0.27 0.41 0.16 0.16

0.26 0.42 0.15 0.17

0.26 0.41 0.16 0.16

0.26 0.41 0.16 0.18


,PGS,FS =



0.22 0.50 0.01 0.28

0.21 0.50 0.01 0.28

0.21 0.50 0.01 0.28

0.20 0.48 0.01 0.31


.

The local approach produces too many transition matrices to list all.
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4.3 Posterior Model in 1D

The posterior model, uniquely defined by the likelihood and prior model, is given by

p(π|dp,dd) =



const ×
∏
t p(d

p
t |πt, ddt )

×
∏
t p(πt|πt−1, d

d
t , d

d
t−1)

,
d
p(1)
t , d

p(2)
t , d

p(3)
t > 0

d
p(1)
t + d

p(2)
t + d

p(3)
t = 1

0 , otherwise

where calculation of the constant is very computer demanding since it is defined by
∑
π p(π|dp,dp),

i.e. the sum over all combinations of diagenetic classes in the profile.

Since the likelihood model factorizes and the prior model is a Markov chain, the posterior

model is a hidden Markov chain and can be assessed by the Forward-Backward algorithm.

4.4 Results and Discussion

The model is tested on a well from which the observations were not used to develop the model,

this is denoted the reference well and the diagenetic classes from the reference well are denoted

πR. The observed proportions, dp, and the observed depositional properties, dd, are used

to calculate the posterior probability of the diagenetic classes, and these probabilities will be

compared to the observed diagenetic classes πR.

Figure 15 compares the location wise MAP estimate of the diagenetic classes defined in

Expression 11 to the reference diagenetic classes for the global and local approach. We see that

overall the location wise MAP appears smoother with longer class intervals than the reference

classes as is expected since the MAP-operator tends to reduce heterogeneity. The two approaches

produce similar location wise MAPs, but there are some noteworthy differences. The local

approach captures more of the heterogeneity in the well than the global approach. In some

cases the LMAP of the global approach matches the reference classes better than the local

approach, e.g. at node t ≈ 150 the LMAP of the global approach matches the correct O, while

the LMAP of the local approach is M and at node t ≈ 45 the global LMAP is the correct

G, while the local LMAP predicts M . The LMAP of the local approach also matches some

reference classes the LMAP of the global approach does not, e.g. the local LMAP matches

G around t ≈ 150, t ≈ 60 and t ≈ 25 and especially towards the bottom the local approach

correctly predicts M where the global approach predicts P .



4.4 Results and Discussion 35

Dia LMAP

50
10

0
15

0

(a) Global

Dia LMAP

50
10

0
15

0
(b) Local

Figure 15: Plot comparing the reference diagenetic class to the LMAP. G: red, M : green, O:
black, P : blue

The LMAP only gives which class is most probable from the posterior distribution, but there

is no information about whether the predicted diagenetic class in a node is significantly more

probable than the other classes of if the difference is marginal. Figure 16 show the marginal

posterior distribution, p(πt|dp,dd) for G, M , O and P compared with the reference classes

marked on the left axis, as well as the depositional properties for the global and local estimation

approach respectively. Again there are similarities between the two approaches, and at node

t ≈ 45 where the LMAP of the global approach matches the reference class the difference be-

tween the distributions is marginal. However, at node t ≈ 150 the difference between the two

approaches is significant for class O. Generally the local approach is better when is comes to

the marginal posterior distribution of O, both have a large probability for O at node t ≈ 120,

but for the local approach the probability is smaller than the global approach, also at t ≈ 70

the global approach has a relatively large probability for O, while this is correctly close to zero

for the local approach. The marginal posterior probability for G at node t ≈ 60 is significantly

larger for the local approach than the global approach, and towards the bottom where there is

almost no class P the global approach has a large marginal posterior probability for P while it

is smaller for the local approach.
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Figure 16: Plot showing the marginal posterior distribution, p(πt|dp,dd) for each diagenetic
class, the reference diagenetic class is marked on the left axis. The plot to the right is the
depositional property, GS: white, FS: black
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Global Local
δG 0.25 0.29
δM 0.44 0.49
δO 0.87 0.85
δP 0.53 0.58
δ 0.44 0.49

Table 1: Probability of correct classification

Denote the number of diagenetic class π in a profile N(π), where N(G) +N(M) +N(O) +

N(P ) = T . Define a probability of correct classification δ for the whole profile

δ = 1
T

∑
t

p(πt = πRt |dp,dd)

and for diagenetic class

δπ = 1
N(π)

∑
πRt =π

p(πt = πRt |dp,dd).

Ideally the probability of correct classification δ and hence δπ should equal unity, which would

mean 100% correct classification. Table 1 shows the probability of correct classification for both

the global and local approach. For both approaches we see that probability of classification is

below average for G and above average for O. The local approach mostly outperforms the global

approach except for O, this is probably due to the classification at point t ≈ 150. Since the local

approach mostly outperforms the global approach the former is chosen for the model.

Diagenetic class G is often misclassified as M as apparent from Figure 15b, but from Figure

16b we see that in many cases where this happens they have nearly the same marginal posterior

probability. Around t = 120 diagenetic class O is very probable compared to the other classes,

which is a clear misclassification. The reason for this is that O is only found where there is

a majority of calcite while the other diagenetic classes are more widely distributed, hence the

likelihood distribution of O is much steeper than the others. If there is a majority of calcite,

as around t = 120 and also around t = 50, the probability of O is much larger than the other

diagenetic classes since all of their distributions integrate to one.

Figure 17 shows 200 independent simulations from the posterior distribution compared with

the LMAP solution and the true diagenetic classes. The nodes where the probability of a certain

diagenetic class is large appears evenly coloured, while nodes where the diagenetic class is more
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π Prop(πR) 90% CI for Prop(π)
G 0.29 [0.14,0.23]
M 0.36 [0.31,0.43]
O 0.08 [0.15,0.19]
P 0.29 [0.22,0.31]

Table 2: Reference proportions of the diagenetic classes compared to 90% CI for estimated
proportions of diagenetic classes

uncertain appear more blurred. We see that even though the heterogeneity of the well is lost in

the LMAP solution it is present in the simulations.

The proportions of diagenetic class π seems to vary between the reference diagenetic classes

of the well and the LMAP. Denote the proportion of diagenetic class π Prop(π) defined by

Prop(π) = N(π)/T . We wish to check whether the true diagenetic proportions are within 90%

confidence intervals (CI) of the proportions predicted by the posterior distribution. Create 90%

CIs by producing 1000 realisations from the posterior distribution, calculating the proportions

of diagenetic classes for each of the realisations. The 90% CI for a diagenetic class π is estimated

by removing the 5% highest and 5% lowest simulated proportions. Table 2 shows the reference

proportions of diagenetic classes compared to the 90% CIs. We see that for digenetic classes M

and P the reference proportions are within the 90% CIs, while for classes G and O the reference

proportions fall outside the 90% CI.
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Figure 17: (a) 200 independent realisations from p(π|dp,dd). (b) Location wise Maximum a
Posteriori (c) True diagenetic classes. G: red, M : green, O: black, P : blue
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5 Model Expansion

In the expansion of the model from 1D to 3D we still assume the likelihood model factorizes

and can be written

p(dp|π,dd) =
∏
(x,t)

p(dpx,t|πx,t, d
d
x,t)

where p(dpx,t|πx,t, d
d
x,t) is generalized Dirichlet distributed as before.

A priori we expect the diagenetic classes to be laterally continuous. To model the continuity

we define the prior model to be a profile Markov random field defined by

p(πx|ddx,π−x) = p(πx|dpx,t,πy;y ∈ δ(x)); ∀x ∈ Lx
D

where all variables are as defined in Section 3.9 and δ(x) is specifically a first order profile

neighbourhood around profile x.

As previously stated, the profile Markov random field is fully specified by the full conditional

distributions. Similarly to the prior model in the 1D-setting, let the full conditional distribution

of the profile be modelled by an inhomogeneous Markov chain

p(πx|ddx,πy;y ∈ δ(x)) =
∏
t

p(πx,t|πx,t−1, d
d
x,t, d

d
x,t−1, πy,t;y ∈ δ(x)); ∀x ∈ Lx

D

with p(πx,1|πx,0, d
d
x,1, d

d
x,0, πy,t;y ∈ δ(x)) = p(πx,1|ddx,1, πy,t;y ∈ δ(x)) for notational conve-

nience.

The transition probabilities between node (x, t − 1) and node (x, t) can be expressed as a

transition matrix Pddx,t−1,d
d
x,t

(πy,t;y ∈ δ(x)) where the elements are the conditional probability

mass functions p(πx,t|πx,t−1, d
d
x,t, d

d
x,t−1, πy,t;y ∈ δ(x)).

5.1 Lateral Continuity

Several ways of incorporating lateral continuity have been suggested. Rimstad & Omre (2010)

introduce a correction term V (πx,t, δ(x), β) by which the transition probabilities are multiplied,

hence the expression for the transition probabilities becomes

p(πx,t|πx,t−1, d
d
x,t, d

d
x,t−1, πy,t;y ∈ δ(x)) = const× p(πx,t|πx,t−1, d

d
x,t, d

d
x,t−1)V (πx,t, δ(x), β)
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where the correction term is defined by

V (πx,t, δ(x), β) = exp

β ∑
y∈δ(x)

I(πy,t = πx,t)


where I(·) is an indicator function and β is a coupling parameter.

Ulvmoen, Omre & Buland (2010) create basic transition matrices where transitions proba-

bilities to classes in the neighbourhood are larger than transition probabilities to classes not in

the neighbourhood. If the neighbours were {G,G,O, P} the transition matrix could be

P =

G

M

O

P



0.4998 0.0004 0.2499 0.2499

0.4998 0.0004 0.2499 0.2499

0.4998 0.0004 0.2499 0.2499

0.4998 0.0004 0.2499 0.2499


,

where there is a larger probability of transitioning to the neighbouring classes. The transition

matrices are then adjusted such that their associated limiting distributions are consistent with

the expected proportions of the classes in the reservoir.

We will use an approach similar to the latter approach, only reversed. Use the estimated

matrices in Section 4.2 as suggested transition matrices given depositional properties ddx,t−1 and

ddx,t. To incorporate lateral continuity into the prior model adjust the suggested transition matrix

towards an associated limiting distribution with higher probability for neighbouring classes.

Methods for adjusting the transition matrices will be presented in the following section.
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6 Adaption of Transition Matrices

This section will discuss adaption of transition matrices of a Markov chain to a given associated

limiting distribution. The challenge is: Consider a reference proportion vector ζ and a reference

transition matrix P of a Markov chain with state space Ω, find a transition matrix P∗ similar

to P, and the associated limiting distribution p∗ of P∗ similar to ζ. P has associated limiting

distribution p, Ω has n elements.

Define a difference function between matrices:

δ1(P,P∗) = 1
n2

∑
y∈Ω

∑
x∈Ω

(p(y|x)− p∗(y|x))2 (17)

and vectors:

δ2(ζ,p∗) = 1
n

∑
x∈Ω

(ζ(x)− p∗(x))2 (18)

where division by n2 in Expression 17 and n in Expression 18 ensure that δ1(·, ·) and δ2(·, ·)

represent average change in an element.

Define a loss function

Lλ(P∗;P, ζ) = λδ1(P,P∗) + (1− λ)δ2(ζ,p∗)

which describes deviance from both P and ζ. The parameter λ ∈ [0, 1] defines a trade-off

between changes in P and ζ.

We will present two approaches aimed at finding the P∗ which minimizes Lλ(P∗;P, ζ).

6.1 The Iteration Algorithm

The iteration algorithm is based on the adjustment presented in Ulvmoen et al. (2010). The

objective is to minimize L0(P∗;P, ζ) by adjusting P gradually until we reach a Markov chain

with limiting distribution p∗ close to ζ.

Define a set of adjustment factors

s = {s(x);x ∈ Ω}
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and transition matrix

P∗s =
{
αs(x)p(y|x)

s(y)
p(y)

;x, y ∈ Ω
}

(19)

where

αs(x) =

∑
y∈Ω

p(y|x)s(y)
p(y)

−1

.

Let the limiting distribution associated with P∗s be denoted p∗s. We wish to find an s such that

δ2(ζ,p∗s) = 0. By looking at Expression 19 it is easy to see that if s(x) grows larger, p∗s(x)

will grow larger, hence if ζ(x) > p∗s(x), we wish to increase the value of s(x) and similarly if

ζ(x) < p∗s(x) we wish to decrease the value of s(x). Thus we want to adjust s(x) in the direction

of ζ(x)− p∗s(x), so to update s(x) we add k(ζ(x)− p∗s(x)), k a constant, to the old value:

s(i+1) = s(i) + k
(
ζ − p∗s(i)

)
.

The constant k determines the size of the steps and should be chosen carefully. If k is too large

the steps will be so large that the algorithm will never converge towards the desired value but

keep jumping over it, while if k is too small the steps will be so small that convergence is very

slow.

Algorithm 6.1 performs iterations until δ2
(
ζ,p∗s(i)

)
≤ ε, then P∗s will be a matrix with

associated limiting distribution p∗s close to the reference proportions ζ.

Algorithm 6.1 Iteration Algorithm
1: initiate :
2: s(0) = ζ, k, ε
3: repeat
4: s(i+1) = s(i) + k

(
ζ − p∗s(i)

)
5: compute P∗s(i+1) → p∗s(i+1)

6: compute δ2
(
ζ,p∗s(i)

)
7: until δ2

(
ζ,p∗s(i)

)
≤ ε

6.2 The ‘Bayesian’ Algorithm

View transition matrix P∗ as a random matrix with pdf p(P∗).



44 6 ADAPTION OF TRANSITION MATRICES

We want to estimate a transition matrix given the limiting distribution, i.e.

E(P∗|ζ). (20)

The pdf of [P∗|ζ] is

p(P∗|ζ) = const× p(ζ|P∗)p(P∗). (21)

Conditional expression p(ζ|P∗) is the likelihood function, linking ζ to P∗. The density p(P∗) is

the prior model and should incorporate prior knowledge about P∗.

In special cases p(P∗|ζ) can be computed analytically, but in general evaluating the constant

will be very computer damanding.

6.2.1 Prior model

For the prior model p(P∗), assign the rows of the transition matrix P∗ independent Dirichlet

distributions with parameters identical to the corresponding row of the reference matrix P:

p∗x ∼ Dirn(px), (22)

where p∗x : {p∗(y|x); y ∈ Ω}; ∀x ∈ Ω and px : {p(y|x); y ∈ Ω};∀x ∈ Ω. Hence the pdf is

p(P∗) =
∏
i

p(p∗x;px),

where p(p∗x;px) is the Dirichlet pdf as defined in Expression 4.

A problem with this approach is that we may have p(y|x) = 0 or p∗(y|x) = 0, for which

the pdf of the Dirichlet distribution is zero. However, we want 0 to be a possible value, so if

p(y|x) = 0 or p∗(y|x) = 0, simply disregard this element and consider the rest of the row as

Dirichlet distributed.

It is possible to introduce a scale factor sx > 1 for each row to adjust the steepness of the

distribution. Multiply the parameters of the Dirichlet distribution with the scale factor, hence

the rows of the transition matrix P∗ have distributions

p∗x ∼ Dirn(sxpx) (23)
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and the pdf would then become

p(P∗) =
∏
i

p(p∗x; sxpx).

6.2.2 Likelihood model

The likelihood model p(ζ|P∗) links the reference proportions ζ to the transition matrix P∗.

Assume that ζ is the expected value of the associated limiting distribution of P∗, then

Expression 9 can be expressed as a multivariate linear regression problem:

z = Zζ + ε

where z is a vector of length (n+ 1):

z =



0
...

0

1


,

Z is a matrix of dimension ((n+ 1)× n):

Z =

P∗T − I

1 · · · 1

 ,
ζ is the limiting distribution and the error term is normally distributed:

ε ∼ Nn+1(0, σ2I).

The maximum likelihood estimator, see Johnson & Wichern (2007), of ζ will in fact be the real

associated limiting distribution p∗, so

p∗ = (ZTZ)−1Zy.

Moreover, p∗ is normally distributed:

p∗ ∼ Nn(ζ, σ2(ZTZ)−1), (24)
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or equally:

[ζ|P∗] ∼ Nn(p∗, σ2(ZTZ)−1) = Nn(p∗,Σ). (25)

The value of the standard deviation σ determines the deviance of the limiting distribution

p∗ from the reference proportions ζ, the smaller the value of σ the less deviance.

6.2.3 MH Implementation

Evaluating the constant in Expression 21 is very computer demanding, hence we will use the

MH algorithm to estimate Expression 20.

Suggest a new value for P∗, P̃∗, from a freely chosen proposal distribution with pdf q(P̃∗|P∗).

The efficiency of the MH algorithm will depend on this choice. Common choises are independent

proposal, where we suggest a new value for P∗ independently of the current value, and random

walk proposal, where we suggest the new value from a distribution which has the old value of

P∗ as its expected value.

Suggesting a new value for P∗, P̃∗, by independent proposal for each row:

[p̃∗x|p∗x] ∼ Dirn(ζ).

Hence the proposal distribution has pdf

q(P̃∗|P∗) = q(P̃∗) =
∏
x∈Ω

p(p̃∗x; ζ),

p(p̃∗;p∗) as defined in Expression 4.

The acceptance probability from Expression 16 is:

α(P̃∗|P∗) = min
{

1, p(ζ|P̃
∗)p(P̃∗)q(P∗|P̃∗)

p(ζ|P∗)p(P∗)q(P̃∗|P∗)

}
.

With the suggested proposal distribution this becomes:

α(P̃∗|P∗) = min

1,
1

|Σp̃∗ |1/2 e
− 1

2 (p̃∗−ζ)TΣ−1
p̃∗ (p̃∗−ζ)∏

x

∏
y p̃
∗(y|x)p(y|x)−1∏

x

∏
y p
∗(y|x)ζ(y)−1

1
|Σp∗ |1/2 e

− 1
2 (p∗−ζ)TΣ−1

p∗ (p∗−ζ)∏
x

∏
y p
∗(y|x)p(y|x)−1∏

x

∏
y p̃
∗(y|x)ζ(y)−1

 .

Use the average of the realisations produced after the burn-in period to estimate E(P∗|ζ).
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6.3 Discussion

The iteration algorithm is a very fast algorithm which allows δ2(ζ,p∗) to become arbitrarily

small, though we have no control over δ1(P,P∗). The ‘Bayesian’ algorithm produces better

results than the iteration algorithm, especially for large λ, but it is not very efficient since we

have to obtain convergence in the MH algorithm for thereafter to acquire the appropriate number

of samples to estimate E(P∗|ζ).

We will use the iteration algorithm for model implementation since the adjustment has to

be performed for a large number of transition matrices. For the local approach to creating

transition matrices there are four different transition matrices for every t ∈ LtD and adjustment

by the ‘Bayesian’ algorithm would be very time consuming. However, if the transition matrices

were created by the global approach there would be four transition matrices in total, hence for

a small number of different limiting distributions ζ the ‘Bayesian’ algorithm could be used for

the adjustment.
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7 Model Implementation in 2D

Figure 1 shows the observations for which we will now estimate the diagenetic classes. The well

we tested on in Section 4.3 is located at x = 25, i.e. the 25th column of the well.

There are two sets of observations of carbonate rock for the well, the nodes of the two sets

are in the same location but are estimated with different support. The support of the well

observations used to assess the model in Section 4 is the same as for the other wells, while the

support of the second set of observations is the same as for the rest of the 2D target zone.

To make a fair comparison of the 1D model and the 2D model both models will be applied to

observations with the same support, i.e. the 1D model will be implemented with observations

from the 25th column of the 2D reservoir observations and compared with results from the 2D

implementation.

The likelihood model in 2D factorizes and is given by

p(dp|π,dd) =
∏
(x,t)

p(dpx,t|πx,t, ddx,t).

The prior model is a profile Markov random field defined by

p(πx|ddx,π−x) = p(πx|dpx,t,πy; y ∈ δ(x))

where δ(x) is a first order profile neighbourhood, which in the 2D case means the two closest

profiles.

The transition matrices will be adjusted towards a limiting distribution with a larger prob-

ability for the neighbouring diagenetic classes. Start with a basic vector (0.05, 0.05, 0.05, 0.05)

and add 0.4 to each element representing a neighbouring class, e.g. if the neighbouring classes

were δ(x) = {G,M}, the limiting distribution would be ζ = (0.45, 0.45, 0.05, 0.05).

The reservoir will be explored by a block Gibbs method, an MCMC method where the

acceptance probability is always one. Profiles are picked one by one left to right and simulated

given their full conditional distributions. The profiles are assessed by the Forward-Backward

algorithm with transition matrices as presented in Section 5.1 and simulated by Algorithm 3.5.

When the algorithm has picked all the profiles in the reservoir we have performed one sweep.



7.1 Convergence 49

7.1 Convergence

To find the burn-in period of the algorithm we do four runs with different starting configurations.

The first configuration is all nodes given diagenetic class G, the second configuration is all nodes

given diagenetic class M , the third configuration is all nodes given diagenetic class O and the

fourth configuration is all nodes given diagenetic class P . For each sweep the proportion of

diagenetic classes are calculated. The proportions of the four runs will approach the same value

when iterating, and when this value is reached we believe the algorithm has converged.

Figure 18 shows the proportions through the sweeps for the four runs with different starting

configurations. We see that a burn-in period of 60 sweeps is sufficient.
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Figure 18: Proportions of diagenetic classes for four runs with different starting configurations.
G: red, M : green, O: black, P : blue

7.2 Results and Discussion

We will present results from the 2D implementation and where appropriate compare with results

from the 1D implementation. First we do a simulation independent of the reference diagenetic

classes in the well, thereafter a simulation conditioning on the reference diagenetic classes.

Figure 19 shows the LMAP for the 2D reservoir predicted by the dominant representative di-

agenetic class in each node from 1000 realisations. The reference diagenetic classes are displayed

at the well location to show the difference in heterogeneity. We see that there is more hetero-

geneity in the reference observations than the LMAP. This is expected since the MAP-operator

tends to reduce heterogeneity.
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Figure 20 shows four realisations from the simulation, the reference diagenetic classes are

displayed. As expected there is more heterogeneity in the realisations than the LMAP, and the

reference diagenetic classes are less prominent in the realisations than the LMAP. Some areas

remain the same in all realisations, especially oomoldic and poor seem to be restricted to certain

areas where they are present in all four realisations. These areas can also be recognized from

the LMAP.

The probability maps in Figure 21 show the probabilities of each diagenetic class calculated

from the 1000 realisations from the simulation. We see that for oomoldic and poor there seems to

be either a very large or a very small probability for the diagenetic class, which is in accordance

with only finding them in restricted areas where they are largely represented. For diagenetic

classes good and moderate the probabilities are less extreme, especially in the area with t between

100 and 130.

Figure 22 shows the marginal posterior distribution p(πt|dp,dd), for the well in the 1D model

and p(πt,25|π−25,dp,dd), for the well in the 2D model. The marginal distribution for the 2D

model is estimated by taking the average of the 1000 realisations. The shape of the marginal

posterior distribution for the two models is similar, but the probabilities appear more extreme

for the 2D model which is mostly preferable, e.g. for P at t ≈ 65, M at t ≈ 75 and G at t ≈ 60

the probability of picking the correct diagenetic classes has increased. Again we see that for

oomoldic and poor the probabilities are either close to zero or one, while diagenetic class good

and moderate are less extreme.

Table 3 shows probability of correct classification in the well for the 1D model and the 2D

model. We see that overall the 2D model performs marginally better than the 1D model, the

improvement is larger for diagenetic classes oomoldic and poor.

Table 4 compares the proportions in the well to 90% CI for well proportions estimated from

the 1D and 2D realisations. We see that for diagenetic classes G and O the intervals are closer

to the real value for the 1D model, but the intervals are also larger for the 1D model with is in

accordance with what we saw from the marginal posterior distributions.

Figure 23 shows 200 realisations for the well from the 2D reservoir, the LMAP for the well

from the 2D reservoir and the reference diagenetic classes. Areas where the probability of a

certain diagenetic class is large appear as uniform in colour in Figure 23a, while less certain

areas appear blurry.
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Figure 19: LMAP for the 2D reservoir not conditional on well diagenetic classes, reference well
diagenetic classes displayed at column 25
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Figure 20: Realisations from the posterior model for the 2D reservoir not conditional on well
diagenetic classes, reference well diagenetic classes displayed at column 25
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Figure 21: The probability of each diagenetic class for the 2D reservoir not conditional on well
diagenetic classes
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1D 2D
δG 0.31 0.24
δM 0.46 0.56
δO 0.67 0.76
δP 0.57 0.61
δ 0.47 0.50

Table 3: Probability of correct classification

π Prop(πR) 90% CI for Prop(π) 1D 90% CI for Prop(π) 2D
G 0.29 [0.17,0.27] [0.12,0.23]
M 0.36 [0.32,0.42] [0.34,0.44]
O 0.08 [0.08,0.13] [0.11,0.13]
P 0.29 [0.25,0.36] [0.26,0.34]

Table 4: Reference proportions of the diagenetic classes compared to 90% CI for estimated
proportions of diagenetic classes
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Figure 22: Plot showing the marginal posterior distribution for each diagenetic class, the ref-
erence diagenetic class is marked on the left axis. The plot to the right is the depositional
properties in the well, GS: white, FS: black
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Figure 23: (a) 200 independent realisations from p(π25|π−25,dp,dd). (b) Locationwise Maxi-
mum a Posteriori (c) Reference diagenetic classes in the well. G: red, M : green, O: black, P :
blue
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We also do a run where the model is conditioned on well diagenetic classes. The reference

observations πR, πR ∈ {G,M,O, P}, are considered exact observations of the diagenetic classes

along the well profile. Let the posterior model be

p(π|πR,dp,dd) = const× p(dp|π,dd)p(πR|π)p(π)

where p(πR|π) is the well likelihood model defined by

p(πRx,t|πx,t) = δ
(
πRx,t, πx,t

)

where δ(·, ·) is the Kronecker delta. The well likelihood is only defined at the well location.

Figure 24 shows the LMAP of the 2D model conditioned on well diagenetic classes. The

effect of the conditioning well is mostly present in the areas where the probabilities of diagenetic

classes are less extreme, i.e. for t between 100 and 130.

The four realisations in Figure 25 show that when the model is conditioned on the well

diagenetic classes the difference between the well location and the rest of the reservoir is almost

unnoticeable.

Figure 26 shows the probability maps for the run conditioned on well diagenetic classes. If

a well diagenetic class is present in an area where the probability of that given class is close

to zero the lateral continuity might have a small effect, e.g. for M at t = 51 there is a small

increase in the probability for M at node (51, 24) and node (51, 26) compared with Figure 21,

but the effect is so small that it does not impact the LMAP.
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Figure 24: LMAP for the 2D reservoir conditioned on well diagenetic classes
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Figure 25: Realisations from the posterior model for the 2D reservoir conditioned on well dia-
genetic classes
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Figure 26: The probability of each diagenetic class for the 2D reservoir conditioned on well
diagenetic classes
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8 Conclusion

In this thesis Bayesian inversion is performed on real observations to predict the diagenetic classes

of a carbonate reservoir where the proportions of carbonate rock and depositional properties are

known. Experiences from the thesis are:

• A good statistical formulation of the problem is developed in 3D. The model captures most

known effects such as lateral continuity. Reliable parameter estimates for the Markov chain

and the generalized Dirichlet distribution reproduce the 1D well observations.

• Results from a study on real data show that simulations reproduce the heterogeneity of the

real observations. Originally the model conditions on reservoir observations, but condi-

tioning on well observations is easily incorporated and we can simulate the representative

2D diagenetic classes for both models.

• Future work should look into the origin of conditioning. Implementation of the model for

a 3D reservoir should also be studied as the computing time is quite fast for the 2D model.
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