
Master of Science in Physics and Mathematics
July 2010
Kari Hag, MATH

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Numerical approximation of conformal
mappings

Bjørnar Steinnes Luteberget

Problem Description
Examine and present different numerical methods for approximating conformal mappings.

Assignment given: 08. February 2010
Supervisor: Kari Hag, MATH

Abstract

A general introduction to conformal maps and the Riemann mapping
theorem is given. Three methods for numerically approximating conformal
maps from arbitrary domains to the unit disc are presented: the Schwarz-
Christoffel method, the geodesic algorithm and the circle packing method.
Basic implementations of the geodesic algorithm and the circle packing
method were made, and program code is presented. Applications of these
numerical methods to problems in physics and mathematical research are
briefly discussed.

Preface

This thesis will explore the world of conformal mappings and the techniques
available to numerically approximate the mappings between arbitrary simply
connected subsets of the complex plane, as promised by Riemann’s mapping
theorem. I chose this subject for my thesis after exploring complex analysis
and doing a project work on circle packing. While doing this project work, I
made a computer program for computing conformal mappings from a simply
connected polygon in the plane to the unit disc to demonstrate some properties
of the circle packing theory. This led me to look into the other methods available
for computing such mappings. The section on the circle packing method in this
text was originally written for a previous project work done in 2009.

I wish to thank my advisor Kari Hag for good help. With her wide knowl-
edge about complex analysis and people’s areas of expertise both at NTNU and
around the world, she could always help me with my questions or know where
to send me. This led me to contact Donald E. Marshall about his Zipper pro-
gram and the geodesic algorithm, and I was so lucky to get the opportunity to
visit him at the University of Washington. This visit gave me good insight into
these algorithms, and Donald’s general knowledge about the field of conformal
mappings greatly influenced this thesis. This is also why this text is written in
English instead of Norwegian, like my project work.

The completion of this master thesis concludes my studies at the program
for industrial mathematics at NTNU. This study program has very much taken
care of my interests and given me a good background in mathematics, numerics,
computer programming and general enginnering related problem solving. Es-
pecially the courses in complex analysis, numerics and data visualization have
defined my scientific field of interest and influenced this text.

Bjørnar Steinnes Luteberget
Trondheim, July 2010.

i

Contents

Contents iii

1 Introduction 1
1.1 Conformal maps . 1
1.2 Plotting complex functions . 1
1.3 Plotting conformal complex functions 3
1.4 Examples of conformal mappings 6
1.5 The goal of this text . 7

2 Preliminaries 11
2.1 Simply connected domains . 11
2.2 Möbius transformations . 12
2.3 Riemann mapping theorem . 14
2.4 A proof of the Riemann mapping theorem 14
2.5 Quasiconformality . 18
2.6 Circle packing . 19
2.7 Discrete analytic function theory 21
2.8 Hyperbolic geometry and the Poincaré model 22
2.9 Polygons . 24

3 Physical applications of conformal mappings 27
3.1 Example in fluid flow . 28

4 The Schwarz-Christoffel mapping method 31
4.1 Basic idea . 31
4.2 Schwarz-Christoffel formula . 32
4.3 Explicit Schwarz-Christoffel maps 33
4.4 Vertices at infinity . 34

iii

4.5 Calculating the prevertices . 35
4.6 Calculating the integral . 35
4.7 Finding the inverse map . 36
4.8 Computer programs . 36

5 The geodesic algorithm and the Zipper program 37
5.1 The geodesic algorithm . 37
5.2 Implementation details . 40
5.3 The slit algorithm . 40
5.4 The Zipper program . 41
5.5 Basic proof of convergence for the geodesic algorithm 42

6 Circle packing method 45
6.1 Constructing the circle complex . 45
6.2 Radius list for circle packing in hyperbolic geometry 47
6.3 Placing the circles in hyperbolic geometry 48
6.4 Refining the circle grid . 51
6.5 Continuous functions . 51

7 Evaulation of the different methods 55
7.1 Computer software . 56
7.2 Usage . 56

A Miscellaneous computer code 59
A.1 Transforming a bitmap with the f (z) = z2 function 59
A.2 Flow along a wall . 60

B Computer program code for the geodesic algorithm 61

C Computer program code for the circle packing method 65
C.1 Reading the polygon from a file . 65
C.2 Miscellaneous functions . 66
C.3 Construction of the circle complex 67
C.4 Calculating the radius list . 68
C.5 Placing circles in the Poincaré model of the unit disc 69

Bibliography 71

iv

1Introduction

1.1 Conformal maps

A conformal map is a transformation of the complex plane that preserves local
angles. The maps are functions f : A → B with A, B ∈ C that are holomorphic
and have non-zero derivative. C is the extended complex plane, C ∪ {∞} The
conformal properties of a function are important in complex analysis and many
problems in physics and engineering [10].

Let γ1 and γ2 be curves so that γ1(t1) = γ2(t2) and γ1,γ2 are regular (dif-
ferentiable with γ(t) 6= 0) in these points. If the angle between (f ◦ γ1)(t1) and
(f ◦ γ2)(t2) is equal to the angle between γ1(t1) and γ2(t2), then f is said to be
conformal in z0 = γ1(t1) = γ2(t2), see figure 1.1.

This is equivalent to the fact that f is holomorphic in z0 and f ′(z0) 6= 0.

1.2 Plotting complex functions

The graph of a real function g is a set with a member of the form (x, g(x)) for
each element x of the domain. By plotting these tuples as points in the plane,
we get the familiar plot of a real function. This method is not directly applicable
to complex functions, of course, because for complex functions, each member
of the domain and codomain are themselves composed of two real points and
need a plane to be visualized. So, to make the equivalent of such a graph plot for
a complex function, one would need four dimensions to represent the two di-
mensions of the domain and the two dimensions of the codomain in one point.

We do not have any good general purpose methods for plotting in four di-
mensions. The obvious way to do it is of course to make a three dimensional
plot and let the last dimension be realized as a change of this three dimensional

1

z0

γ1

γ2

α

f

f ◦ γ2

α

f ◦ γ1

f (z0)

g

Figure 1.1: The map f preserves the angle α, so it is conformal in z0. The map g
preserves the angles in the grid (the lines are still meeting in right angles), so it
is conformal.

plot over time. This approach can be used with success with other types of four-
dimensional data, mostly when there are three spatial dimensions and temporal
changes to them, but for visualizing complex functions it is unsuitable. Besides
the difficulties already present in plotting in three dimensions, the separation
into 3+1 dimensions does not fit well with the 2+2 dimensions in the graph.

The first bit of insight that can help one to find a better method is to represent
complex numbers in polar form, z = reiθ. Plotting r and θ instead of x and y in
z = x + iy can open up some possibilities. The coloring of a plot can be thought
of as adding another dimension, and by using a color space model with the
dimension of hue, the phase dimension of either the domain or the codomain
can be translated into hue, which is also an angle.

By looking into color models, we soon find out that a single color can iden-
tify a point in three dimensional space, at least inside a cylinder or cone. By
making use of the color value as well as the hue, we can go back to plotting in
two dimensions because we can use these two color dimensions to show a value
for each point. This gives us the method of domain coloring, as described in
[11]. This method avoids the problems that come with three dimensional draw-
ings, but loses detail at either high or low values of | f (z)| when the color value

2

Figure 1.2: The HSV color model can assign a color value to each angle. Figure
from [19].

Figure 1.3: Three dimensional plot of the function f (z) = cos(z) on the domain
Re z ∈ [−2π, 2π] and Im z ∈ [−0.75, 0.75]. The height of the surface represents
the modulus of f and the color represents the phase angle. Figure made with
Maple 13, mathematics and modelling software by Maplesoft.

is low. Also, these color dimensions do not give the most intuitively under-
standable plots, but for some uses they are well suited.

1.3 Plotting conformal complex functions

In general, plotting complex functions is hard. The methods mentioned above
can solve the problem in many cases. Fortunately, the defining property of con-
formal maps opens up possibilities that make this problem much more solve-
able. The fact that angles are preserved tells us that shapes must be the same
at infinitesimal scale and we can therefore see conformal maps geometrically

3

Figure 1.4: f (z) = (z + 2)2(z− 1− 2i)(z + i) on the domain Re z ∈ [−3, 3] and
Im z ∈ [−3, 3]. Figure from [11].

as some distortion of shapes on the global scale. We can imagine a unit disc
made out of some elastic material that you can stretch so that the boundary has
the shape of the region you wish to map to or from. This makes is possible to
visualize a conformal map just by drawing a picture of the effect it has on some
image that you put over the domain in question.

The pictures that are generally used are grids.

• Rectangular grid

If you put a rectangual grid over the domain Ω and map this grid to the
unit disc D, you can recognize the grid in the unit disc and because of its
regularity, you can easily see how it has been stretched to fit.

• Polar grid

When mapping to the unit disc, it can be illustrative to plot the map as the
inverse over a polar grid in the unit disc.

• Carleson grid

The Carleson grid is a grid that you put over the unit disc which gets finer
and finer as you get closer to the boundary. This grid is then mapped to
the domain Ω in question. This method emphasizes the behavior of the
map close to the boundary, which is often the interesting place to examine
and the place that needs the most accuracy. Bounded analytic functions
have bounded differences on the boxes made with this grid.

4

Figure 1.5: Examples of different grid types used to graphically present confor-
mal maps. The first one is a rectangular grid mapped to the disc. The second
one is a polar grid mapped from the disc to the desired domain. The third one
is a Carleson grid mapped from the disc to the desired domain.

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8 1 0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 1.6: The map f (z) = z2 applied to a grid of concentric circles and lines
trough the origin.

See figure 1.5 for examples of what these grids can look like.

1.4 Examples of conformal mappings

Let us look at some example functions that are conformal. Many of the complex
variants of the familiar elementary functions are conformal in most of the plane.

We can begin by considering f (z) = z2. This function satisfies the require-
ments to be conformal except at the origin, where f ′(z = 0) = 0. The geo-
metric properties of this mapping become clearer if we write it in polar form:
f (z) = (reiθ)2 = r2ei2θ. We see that the distance from the origin is squared and
the argument angle is doubled. If we plot this map as it is applied to a set of
concentric circles around the origin and lines through the origin, we see this
doubling of angles, see figure 1.6.

One can see that locally, for example for each grid cell, the shapes are mostly
the same although they are moved, rotated and stretched. If we go all the way
to the infinitesimal level, this represents the fact that angles are conserved. You
can see that the right angles in the grid are still right angles after the mapping
has been applied. To further illustrate this local preservation of shapes, we can
consider a more detailed figure under the map f (z) = z2. Figure 1.7 shows a
photo of a clock under the map. Here we can see that the overall shape of the
clock is distorted, but we can still recognize the photo because of the preserva-
tion of angles at infinitesimal scale.

Of course, other familiar analytical functions are also conformal where their

6

0 1

1 1

1-1

Figure 1.7: The map f (z) = z2 applied to a photo of a clock. See appendix A.1
for program code.

derivatives are non-zero, like zk, sin(z), cos(z), ez. See figure 1.8 for examples.

1.5 The goal of this text

The well-known theorem of complex analysis called the Riemann mapping the-
orem says that any two simply connected domains in the complex plane are con-
formally equivalent. This means that there always exists a conformal function
that maps a simply connected domain to any other simply connected domain.
The map is sometimes called the Riemann mapping, although in the complex
analysis literature, it is so well-known that you can just take it for granted and
call it a conformal map. Riemann’s theorem is very central to complex analysis
and can be quite surprising if you are new to the field. From basic complex
analysis, we have learned that holomorphicity is something that is a very strict
demand to make for a function, that is to say that holomorphic functions are
very well behaved. It can therefore be suprising to learn that any simply con-
nected domain can be mapped to any other. For example a simply connected
open set bounded by a fractal curve of infinite length can be mapped by a con-
formal (and holomorphic) function to the unit disc.

Although these unexpected maps are shown to exist by the Riemann map-
ping theorem, only a very few of them can actually be written explicitly using
elementary functions. One can find a lot of the maps from half-planes, discs,
triangles, strips and other special domains, but in general there is little chance
that a domain you are interested in will be possible to map explicitly to where
you want. The goal of this text is to show some of the different methods for
numerically approximating such maps that makes it possible to release the full

7

–1

–0.5

0.5

1

–1 –0.5 0.5 1

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

(a) (b)

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

–1

–0.5

0

0.5

1

0.6 0.8 1 1.2 1.4

–2

–1

1

2

–1 –0.5 0.5 1

(c) (d) (e)

–6

–4

–2

0

2

4

6

–6 –4 –2 2 4 6

(f)

Figure 1.8: Examples of conformal maps of a rectangular grid. (a) The grid to
be mapped. (b) The grid under the map f (z) = sin(z). (c) f (z) =

√
z. (d)

f (z) = cos(z). (e) f (z) = z2. (f) f (z) = 1/z.

8

potential of Riemann’s promise.
The oldest method, the Schwarz-Christoffel transformation, was discovered

and established as a possible method for calculating maps from arbitrary poly-
gons long before any computers were invented and capable of finding these
maps for complicated polygons. It was nonetheless important for the develop-
ment of complex analysis as a significant branch of mathematics. The two other
methods, the geodesic algorithm and the circle packing method, that are pre-
sented in this text are more recent discoveries that have also shed new light on
mathematical research.

For numerically calculating Riemann maps, the Schwarz-Christoffel method
is the most well-known and used method, but the Zipper program that uses a
variant of the geodesic algorithm can also give fast and good results. Basic
implementations of the geodesic algorithm and the circle packing method were
made in the work with this thesis. See appendices B and C for program code.

9

2Preliminaries

We will start out by giving an overview of some well-known facts of complex
analysis that are essential to the algorithms that will be explained later.

2.1 Simply connected domains

A domain is a non-empty, connected, open subset of the extended complex
plane C. A connected domain is a domain where every point can be connected
to every other point by a curve in the domain. Such a domain can also be simply
connected if such curves can always be continuously deformed to a point. This
property of the curve is called null-homotopy [21]. See figure 2.1 for examples.

The domain in figure 2.2 is connected, but not simply connected, as can be
seen by considering the closed curve γ that cannot be continuously deformed
into a point.

(a) (b) (c) (d)

Figure 2.1: Examples of planar domains that are: (a) connected, (b) connected,
(c) not connected, (d) connected, but not simply connected.

11

γ

Figure 2.2: This domain is not simply connected because the dashed curve γ

cannot be continuously deformed into a point.

Another definition of a simply connected domain that is convenient when
working in the extended complex plane C is that it is a domain Ω for which the
complement in the extended complex plane is connected.

Yet another characterization of simply connected domains is needed for the
proof of the Riemann mapping theorem given below. If f is an analytic, non-
vanishing function on Ω and there exists a branch of log(f) on Ω, then Ω is
simply connected.

2.2 Möbius transformations

A class of functions of special interest in the realm of conformal mappings are
the Möbius transformations, or linear-fractional transformations. They are non-
constant functions φ of the form

φ(z) =
az + b
cz + d

, (2.1)

where a, b, c, d are complex constants (∈ C), and ad− bc 6= 0. We can see that
the function must be holomorphic and we can also find its derivative:

φ′(z) =
ad− bc

(cz + d)2 . (2.2)

Since this is always non-zero, the Möbius tranformations are conformal.
We can generalize the definition of a circle in C to include straight lines.

The lines can be regarded as circles passing through ∞ and therefore having
infinite radius. This notion of a circle is sometimes called a clircle, for example

12

in [21]. The Möbius tranformations map circles to circles, and this property will
we useful later in this text.

Example 2.2.0.1
Let us say that we want a function mapping the upper half-plane to the unit
disc. The real axis can be considered a circle in the generalized definition given
above, so if we let the upper half-plane be the interior of this disc, we can find a
Möbius tranformation that gives the wanted map. The function

f (z) =
z− i
z + i

is a Möbius transformation. If we calculate the points

f (0) =
−i
i

= 1, f (1) =
1− i
1 + i

= −i, f (−1) =
−1− i
−1 + i

= i,

and use the fact that Möbius tranformations map circles to circles, we see that
this function maps the unit disc to the real axis. Since f (i) = i−i

i+i = 0, we see
that it maps the upper half-plane to the interior of the unit disc.

Theorem 1 Fixed points of Möbius tranformations [21]
A Möbius tranformation that is not the identity map has one or two fixed points.

Proof. We see that ∞ is a fixed point if and only if c = 0. The finite fixed points
are the solutions in z of the equation cz2 + (d − a)z − b = 0. If c 6= 0, this
equation has either two distinct roots or one repeated root. If c = 0 then there
is one root for d 6= a and zero roots for d = a. In both cases, the transformation
has one or two fixed points.

Theorem 2 Three-fold transitivity of Möbius tranformations [21]
If z1, z2, z3 are three distinct points of C and w1, w2, w3 are three distinct points
of C, then there is a unique Möbius tranformation φ such that φ(zi) = wi for
i = 1, 2, 3.

Proof. If two maps φ and ψ both have the required property, then ψ−1 ◦ φ is a
Möbius tranformation with three fixed points, so it must be the identity by the
previous theorem. So φ = ψ and the map is unique.

We can write down a Möbius tranformation mapping z1, z2, z3 to ∞, 0, 1,

φ(z) =

(z−z2)(z1−z3)
(z−z1)(z2−z3)

if z1, z2, z3 are all finite,
z−z2
z3−z2

if z1 = ∞,
z3−z1
z−z1

if z2 = ∞,
z−z2
z−z1

if z3 = ∞,

13

and since an inverse of a Möbius tranformation is a Möbius tranformation, we
can find another map ψ from w1, w2, w3 to the same points and compose ψ−1 ◦
φ.

Theorem 3 Preservation of circles [21]
A Möbius tranformation maps generalized circles onto generalized circles

2.3 Riemann mapping theorem

One of the most important theorems that makes conformal mappings interest-
ing is the mapping theorem from G. F. B. Riemann’s PhD thesis written in 1851.
It can be stated as

Theorem 4 Riemann mapping theorem
All simply connected domains Ω ⊂ C that are not the whole of C are confor-
mally equivalent.

This means that there exists a holomorphic, bijective (in other words, con-
formal) mapping between any two simply connected subsets of C. The theorem
is often stated by promising the existence of a conformal function f : Ω → D

that maps a simply connected domain Ω onto the unit disc D. This is of couse
equivalent to saying that all simply connected domains can be mapped to ea-
chother. If you have two such domains Ω1 and Ω2, find f1 and f2 that map
each of the domains to the unit disc. Conformality is preserved under inversion
and composition, so g = f1 ◦ f−1

2 must be a conformal map between the two
domains.

2.4 A proof of the Riemann mapping theorem

The Riemann mapping theorem is the basis for all the results discussed in this
text, so a proof due to Ahlfors will be presented [1]. It begins with Montel’s
theorem.

Theorem 5 Montel’ theorem
Let F be a family of holomorphic functions f : Ω → D where Ω is a domain in
C and D is the unit disc. Then every sequence (fn)∞

n=1 of functions in F has a
locally uniformly convergent subsequence.

Proof. We start by showing that it suffices to prove that (fn) has a locally uni-
formly convergent subsequence in the disc for any open disc Dk ⊂ C whose
closure is in Ω.

14

Dk

ζk

Ω

We can cover Ω with a countable set of discs so that Ω =
⋃∞

k=1 Dk. For ex-
ample, for each rational point ζk in Ω let Dk be the open disc with center on
the point and some radius rk < dist(ζk, ∂Ω). Then, for each disc, we assume
that the sequence (fn) has a subsequence fn1 , fn2 , . . . on Dk that converges uni-
formly on Dk. Let the sequence for the first disc D1 be denoted (f1,n)∞

n=1, and
for the second disc D2, let (f2,n)∞

n=1 be a convergent subsequence of (f1,n)∞
n=1.

Since (f2,n)∞
n=1 converges on D2, and since it is a subsequence of (f1,n)∞

n=1 it also
converges on D1.

f1,1, f1,2, f1,3, f1,4, . . ., converges uniformly on D1.

f2,1, f2,2, f2,3, f2,4, . . ., converges uniformly on D2 and D1.

f3,1, f3,2, f3,3, f3,4, . . ., converges uniformly on D3 and D1, D2.
...,

...,
...,

...,

If we continue in this fashion, we see that (fk,n)∞
n=1 converges for the k-th disc,

and so the functions on the diagonal gn = fn,n converge locally uniformly on all
of Ω.

So now we can prove the theorem for a disc Dk. Since the closure Dk is in Ω,
there exists an open disc in Ω containing Dk. We can map this larger disc to the
unit disc D.

Dk

Ω

15

We now need to prove that fn : D → D has a subsequence that converges
locally uniformly. Let ∑ an,kzk be the power series of fn. Then,

|an,k| =
∣∣∣∣ 1
2πi

∫
Cr

fn(z)
zk+1 dz

∣∣∣∣ ≤ 1
2π

2πr
rk+1 =

1
rk ,

where 0 < r < 1. We let r → 1 and get that |an,k| ≤ 1. Each sequence (an,k)∞
n=1

for k = 0, 1, 2, . . . is bounded and has a convergent subsequence. By using the
same diagonal argument as above, we find a sequence (anj,k)

∞
n=1 that converges

for each k. Let ak = limj→∞ anj,k for k = 0, 1, 2, We have |ak| ≤ 1| for all k, so
the power series ∑∞

k=0 akzk converges for radius R = 1

lim sup |ak|
1
k
≤ 1, which is in

D.
Finally, we need to show that fnj → f locally uniformly in the disc. Fix

r ∈ (0, 1). We will show that fnj(z)→ f (z) uniformly for |z| ≤ r.

| f (z)− fnj(z)| =
∣∣∣∣∣ ∞

∑
k=0

(ak − anj,k)zk

∣∣∣∣∣
≤

m

∑
k=0
|ak − anj,k|+ 2

∞

∑
k=m+1

rk

=
m

∑
k=0
|ak − anj,k|+

2rm+1

1− r
.

So given ε > 0, we choose m so large that 2rm+1

1−r < ε
2 and then j = j0 so large that

|ak − anj,k| <
ε

2(m+1) for k = 0, . . . , m whenever j ≥ j0. Then we get that

| f (z)− fnj(z)| < ε for |z| ≤ r,

and the theorem is proved.

Theorem 6 Riemann Mapping Theorem
If Ω is a simply connected domain that is not the whole of C, there exists a
univalent holomorphic map of Ω onto the open unit disc D.

Proof. Fix z0 ∈ Ω and let F = { f : Ω → D | f (z0) = 0} be the set of univalent
holomorphic functions f .

First, we show that F 6= ∅. If there exists a bounded univalent holomorphic
function in Ω, we can compose it with a Möbius transformation to the unit disc
to get a function in F. Let c ∈ C \ Ω be a point outside of Ω and consider a

16

branch l of log(z − c). This branch exists since Ω is simply connnected. The
function l is holomorphic and also univalent, since l(z1) = l(z2) ⇒ z1 − c =
z2 − c. Also, l(Ω) is an open set and l(Ω) ∩ {l(Ω) + 2πi} = ∅. We have

|l(z)− (l(z0) + 2πi)| ≥ dist(l(z0), ∂l(Ω)) = ε > 0,

so that ∣∣∣∣ 1
l(z)− l(z0)− 2πi

∣∣∣∣ ≤ 1
ε

,

and (l(z)− l(z0)− 2πi)−1 is bounded.
Let ζ = sup{| f ′(z0)| : f ∈ F} > 0, and let (fn)∞

n=1 be a sequence from F such
that | f ′n(z0)| → ζ. By Montel’s theorem, this sequence has a locally uniformly
convergent subsequence. Let us assume that (fn) converges locally uniformly
to a function f , because if it does not, then we can replace it with a subsequence
that does. By Weierstrass’ convergence theorem [21], f is holomorphic and f ′n →
f ′ locally uniformly.

lim f ′n(z0) = f ′(z0)⇒ ζ = lim | f ′n(z0)| = | f ′(z0)|.

We see that f must be non-constant. It is also univalent, since each fn is. We see
that | f (z)| ≤ 1 for z ∈ Ω and f (z0) = 0. Since f (D) is an open set, | f (z)| < 1
for z ∈ Ω, and f ∈ F.

Lastly, we need to show that f (Ω) = D. Suppose that this is not the case,
f (Ω) $ D. Let a ∈ D \ f (Ω) and define h1 by

h1 =
f − a

1− a f
.

So h1 = A ◦ f where A : D→ D is a Möbius transformation mapping a to 0.

D

a

f (Ω)

h1
D

0

h1(f (Ω))

17

Since a 6∈ f (Ω), h1 does not vanish on Ω and since Ω is simply connected, there
exists a branch h2 of

√
h1 defined in Ω. h2 must be a univalent holomorphic

map of Ω to D. Finally, define

g =
h2 − b

1− bh2
,

where b = h2(z0) so that g(z0) = 0 and g ∈ F.
We can now do some calculations and find

f =
(

g + α

1 + αg

)
g,

where α = 2b/(1 + |b|2), which gives us

f ′(z0) = αg′(z0) ⇒ | f ′(z0)| < |g′(z0)|,

since α < 1.
We have reached a contradiction, and can conclude that f (Ω) = D. This

shows the exitence of the socalled Riemann mapping, and shows that simply
connected subsets of C are conformally equivalent.

2.5 Quasiconformality

Quasiconformal mappings are a generalization of conformal mappings where
the preservation of angles is not exact, but has some bound on the distortion of
angles. Such mappings can be defined by analogy to conformal maps by saying
that conformal functions map infinitesimal circles to infinitesimal circles while
quasiconformal functions map infinitesimal circles to infinitesimal ellipses with
bounded eccentricity [7].

Let f : D → D′ be a homeomorfism (continuous bijection with f−1 con-
tinuous), and D, D′ ⊂ C. For z ∈ D\{∞, f−1(∞)} and 0 < r < dist(z, ∂D),
let

l f (z, r) = min
|z−w|=r

| f (z)− f (w)|,

L f (z, r) = max
|z−w|=r

| f (z)− f (w)|.

See figure 2.3. We then call

H f (z) = lim sup
r→0

L f (z, r)
l f (z, r)

18

z
r

f (z)
l f

L f

Figure 2.3: Greatest and smallest dilatation, l f and L f , of f .

the linear dilation of f at the point z.
A homeomorfism f : D → D′ is K-quasiconformal for 1 ≤ K < ∞ if H f is

finite in D\{∞, f−1(∞)} and
H f (z) ≤ K

almost everywhere in D [5].
f is 1-quasiconformal if and only if f or its complex conjugate, f , is a con-

formal mapping [5]. We see that when L f and l f become equal, H f and thereby
K approach 1 and we must have a circle on the right hand side of figure 2.3 and
so f becomes a conformal map by the first definition.

Quasiconformal mappings can be defined in other ways, for example by the
moduli of families of curves, but this geometrical definition is best suited for
the understanding of the circle packing method given in this thesis.

2.6 Circle packing

The theory of circle packing describes existence, uniqueness, calculation, ma-
nipulation, drawing and applications of configurations of circles where it is
specified which of the circles that are tangent to eachother.

This specification can, in the simplest way, be done with an intersection
graph where each node represents a circle and each edge represents the fact that
two circles are tangent. In two dimensional geometry, such a graph is planar,
which means that it can be drawn in the plane without any edges intersecting.

A circle packing is an assignment of radius and center to each of the circles
in an intersection graph so that the tangency specifications in the graph are

19

cv

cu
cw

α

(a) (b)

Figure 2.4: (a) Triangle between the centers of three mutually tangent circles. cv
is here the center circle and α is the angle inside it. (b) A flower made up from
all the circles around a center circle. The circle packing requirement that the
angles of the triangles to all the tangent circles from the center circle sums to 2π

is fulfilled. This means that the circles are as close together as possible.

satisfied. This can be done in Euclidean, spherical or hyperbolic geometry. The
basis for the theory of circle packing is the following theorem:

Theorem 7 Circle packing theorem (Koebe-Andreev-Thurston)
For any planar graph G there exists a circle packing in the plane whose inter-
section graph is isomorphic to G.

In the circle packing literature in general, G is said to be a simplical complex
constructed from a triangulation [24], but for the purposes of this text we can let
G be just an intersection graph representing a tangency pattern. The theorem
was shown in spherical geometry as early as 1936 by Koebe, but was not paid
much attention before William Thurston generalized the theorem and showed
a connection to the Riemann mapping theorem in 1985 [23].

The calculations needed to find such a circle packing for a graph G are
mostly about adjusting the list of radii R(ci) which assigns a radius to each
circle ci, which is a node in G. For three circles that are mutually tangent, one
can find the angles in the triangle with vertices at the circle centers as a function
of the radii by using the cosine law. For a central circle ci, we can find the sum
of the angles of all the tangent circles around it. We would then like the circles
not to overlap, but also to cover the area around the center circle completely, so
the sum should be 2π. This is called an univalent circle packing, as oppposed
to letting this sum be 2πn with n 6= 1 in branch points. See figure 2.4(b).

20

A graph G is said to be a triangulation of a geometric object if the edges
of the graph can be drawn to make triangles that cover the object. If G is a
triangulation of a simply connected compact domain in C, we say that G has
the topology of a closed disc.

Theorem 8 Maximal packing for a closed disc
Let G be a triangulation of a closed disc. Then there exists an essentially unique
circle packing PK for G in D which is univalent, and whose boundary circles are
tangent to the unit circle.

The fact that the boundary circles are tangent to the unit disc, means that
there is no room for more circles and means that the circle packing covers all
of D. The fact that it is esssentially unique, means that the circle packing is
preserved under (conformal) automorphisms of the codomain. The degree of
freedom in choosing these automorphisms is the same as the degree of free-
dom in specifying the Riemann map. See section 2.8 for an explanation of the
automorphisms in the hyperbolic geometry that will be used in this text.

This theorem gives us a one-to-one correspondance between an arbitrary
circle packing, via its intersection graph G, to a circle packing that fills all of D

and has the same intersection graph.

2.7 Discrete analytic function theory

Isomorphisms between circle packings are functions between two sets of circles
that have isomorphic intersection graphs. These functions can be said to have
their own discrete analytic function theory. The idea came from the many simi-
larities one can find in the theory if circle packing and complex analytic function
theory. For example, one can formulate a discrete version of Schwarz’ lemma in
the following way:

Theorem 9 Schwarz’ lemma
Let R be a hyperbolic circle packing representing a closed disc K, and let RK be
the maximal packing. Then we have that R(ci) ≤ RK(ci) for each circle ci in K.
If R(ci) = RK(ci) for at least one circle, then R = RK [23].

The theorem for the maximal packing of a closed disc can also be generalized
to simply connected surfaces and to spherical and Euclidean geometry. This is
called the discrete Riemann mapping theorem [23]. This theorem is what gives
circle packing many of the other applications that makes the theory interesting.

21

It also turns out that the connection between the circle packing’s discrete an-
alytic function theory and the complex function theory is not just an analogy,
but that the discrete circle packings can be used for approximating continuous
objects in complex analysis. To compare with conformal mappings, who can
be said to map infinitesimal circles to infinitesimal circles, circle packings map
actual circles to actual circles [23]. One can then let the radii of these circles be-
come very small and they will look more and more like continuous, conformal
functions, and Rodin and Sullivan showed that this is acutally the case [20].

The isomorphisms between circle packings will only give you a map from
each circle in the domain to a circle in the codomain. To extend this to a contin-
uous function between the subsets of C that the circle packings represent, one
can define the function for each triangle in the intersection graph as an affine
transformation (linear transformation plus a translation). This gives us func-
tions fr : Ω→ D for circle radius r.

Theorem 10 Rodin-Sullivan [24]
Let Ω be a compact simply connected subset of C. Let fr be defined as in the
previous paragraph. Then we have

lim
r→0

fr = F,

where F : Ω→ D is the Riemann map. fr converges uniformly to F on compact
subsets of D.

2.8 Hyperbolic geometry and the Poincaré model

Hyperbolic geometry can be modelled in the unit disc D by the Poincaré model
which has arc length and surface element

ds =
2|dz|

1− |z|2 , ds2 =
4dxdy

(1− |z|2)2 , |z| < 1. (2.3)

The arc length element approaches infinty when |z| approaches 2, so small
Euclidean distances near the edge of D represent large hyperbolic distances. We
write d(x, y) for the hyperbolic distance between two points (complex numbers)
x and y in the unit disc, and we can easily find distances on the positive x-axis:

Theorem 11 Hyperbolic distance on the real axis
Hyperbolic distance from the origin to the point x on the positive real axis in
the unit disc is given by

d(0, x) = log
1 + x
1− x

. (2.4)

22

Proof. We easily see that the shortest curve from 0 to x must be a straight line
segment γ on the real axis. We can then use the arc length element to find

d(0, x) =
∫

γ
ds =

∫
γ

2|dz|
1− |z|2 =

∫ x

0

2dx
1− x2 = log

1 + x
1− x

. (2.5)

Even more useful is finding distances in the unit disc given hyperbolic dis-
tance. We find x given d(0, x):

Corollary 1 Euclidean distance given hyperbolic distance on the real axis
The disctane in the unit disc under the Poincaré model, given a hyperbolic dis-
tance rh from the origin, is

l(rh) =
erh − 1
erh + 1

. (2.6)

Proof. We solve equation 2.4 for x. We let x be called l and d(x, 0) be called
rh.

The automorphisms on D (bijective conformal maps from D to D) are func-
tions of the form

φ(z) = λ
z− z0

1− z0z
, |λ| = 1, z0 ∈ D. (2.7)

These are Möbius tranformations that translate z0 to 0 and rotate by the angle
arg λ.

A hyperbolic circle in D is also a Euclidean circle. We can imagine drawing
a circle C centered at the origin. The distance to the periphery on the real axis
can be found from the hyperbolic radius by (2.6), where l is Euclidean radius
and rh is hyperbolic radius. Since the model has angular symmetry around
the origin, this distance must be the same in all directions, giving us a circle
in both hyperbolic and Euclidean geometry. Let now φ map the origin to the
point z0. φ(C) is still a circle, so hyperbolic circles are also Euclidean circles. We
notice that the center of the hyperbolic circle is not the same as the center in the
Euclidean circle when it is not the origin. The center in the hyperbolic cicle lies
farther out towards the boundary of the unit circle, since the distances become
longer when you move away from the origin. This also lets ut have circles of
infinite hyperbolic radius drawn as finite Euclidean circles that are tangent to
the boundary of the unit disc.

23

In the triangle contructed by drawing lines between the circle centers of
three mutually tangent circles of radius x,y and z, the angle of the circle of ra-
dius x is given in hyperbolic geometry as

α(x; y, z) =

arccos

(
cosh(x+y) cosh(x+z)−cosh(y+z)

sinh(x+y) sinh(x+z)

)
, x, y, z ∈ (0, ∞),

arccos
(

cosh(x+y)−ey−x

sinh(x+y)

)
, x, y ∈ (0, ∞), z = ∞,

arccos
(
1− 2e−2x) , x ∈ (0, ∞), y = z = ∞,

0 x = ∞.
(2.8)

See figure 2.5 for an example of how a drawing in the Poincaré model of the
unit disc can look like.

2.9 Polygons

The simple connectedness property that we have used so far to characterize the
domains for the calculations are fine for mathematical purposes, but there is
no guarantee that an explicit formula for the border exists. To get down to the
numerical calculations we need a class of domains that are finitely representable
by numbers. The practical way to do this is to use domains that are polygons
with specified vertex coordinates and angles.

If the vertices are finite, then the angle at vertex n, αn is given by the vertices
wn−1, wn and wn+1 by the cosine formula.

αn = arccos
(

wn

|wn−1 − wn||wn+1 − wn|

)
. (2.9)

For the example programs made for this thesis, specifying the vertices of
polygons in counter-clockwise order is enough, because we will require that
the polygons are finite. For other applications one can let vertices be positioned
at infinity and specify the angles at vertices that are adjacent to these infinite
vertices.

24

Figure 2.5: Hyperbolic covering of the plane in the Poincaré unit disc. The black
regular fourteen-edged polygons are of the same hyperbolic size.

25

3Physical applications of
conformal mappings

Laplace’s equation is an important partial differential equation in a range of
different physical problems called potential theory. It is generally written

∇2Φ = 0,

where∇2 is the Laplacian operator. Function satisfying this condition is said to
be harmonic. In two dimensional cartesian coordinates this can be written

∂2Φ
∂x2 +

∂2Φ
∂y2 = 0.

If we divide up a complex analytic function f in its real and imaginary com-
ponents,

f (z) = u(x, y) + iv(x, y),

where z = x + iy, we know that the Cauchy-Riemann equations that must apply
to any analytical function,

∂u
∂x

=
∂v
∂y

and
∂v
∂x

= −∂u
∂y

,

and so it follows that

∂2u
∂y2 =

∂

∂y

(
−∂v

∂x

)
= − ∂

∂x

(
∂v
∂y

)
= − ∂

∂x

(
∂u
∂x

)
,

so u satisfies the Laplace equation, ∇2u = 0. The same can be shown for v.

27

Definition 1 Harmonic conjugate
The harmonic conjugate ψ of a function φ(x, y) defined on a domain Ω ∈ R2

exists if the two functions are the real and imaginary part of an analytic function
f (z) where z = x + iy. That is, if

f (z) = φ(x, y) + iψ(x, y)

is analytic in Ω.

Theorem 12 Harmonic functions under conformal mapping [10]
Let Φ∗ be harmonic in a domain Ω∗ in the w-plane. Suppose that f given by
f (z) = w is analytic in a domain Ω in the z-plane and maps Ω conformally onto
Ω∗. Then the function

Φ(z) = Φ∗(f (z))

is harmonic in Ω.

Proof. The fact that the composition of analytic functions is analytic follows
from the chain rule. If we can take the harmonic conjugate Ψ∗ of Φ∗, then we can
form the analytic funtion F∗(z) = Φ∗(x, y) + iΨ∗(x, y) and get F(z) = F∗(f (z))
which is analytic in Ω. The real part of F(z), Re F(z) = Φ(x, y) is then harmonic
in Ω.

It can be shown that if Ω∗ is simply connected, then a harmonic conjugate of
Φ∗ exists [10].

3.1 Example in fluid flow

If we have an irrotational, incompressible, steady, nonviscous fluid flow that
can be expressed as a complex potential, then the flow can be expressed as
stream lines in a canonical domain and then conformally mapped to a domain
of interest. If we imagine a cross section of a flow above a flat ocean floor sur-
face with horizontal stream lines, we can find the flow above an ocean floor
that is not flat by conformally mapping the upper half-plane to some other un-
bounded domain. If we conformally map the upper half-plane to the region
above a horizontal line with a vertical jump, we get the stream lines shown in
figure 3.1.

28

Figure 3.1: Stream lines for fluid flow around an irregularity in the border. See
appendix A.2 for the program used to make the plots.

29

4The Schwarz-Christoffel
mapping method

After Riemann put forth his mapping theorem in 1851, less that 20 years went by
before the Schwarz-Christoffel formula was discovered. Elwin Bruno Christof-
fel and Hermann Amandus Schwarz independently discovered a formula for
conformal maps to arbitrary polygons that can be used in numerical computa-
tions to give explicit Riemann maps.

4.1 Basic idea

The basic idea that eventually resulted in the general formula is that the deriva-
tive of a conformal map f : H→ Ω from the upper half-plane H to an arbitrary
domain Ω can often be written as a product of some elementary functions

f ′ = ∏ fk

because then we get
arg f ′ = ∑ arg fk.

If we let each arg fk be a step function, then f maps the real axis to a polygon.
So, we let Ω = P be a polygon with vertices w1, w2, . . . , wn and interior angles
α1π, α2π, . . . , αnπ given in counter-clockwise order. Let us for now assume that
the vertices are finite and that the polygon is simple, so that αi ∈ (0, 2). We call
zi = f−1(wi) the prevertices of f . We can assume that zn = ∞, because if it is
not, we can add another vertex some place on the polygon with interior angle
π. Because the real axis is mapped to the boundary of the polygon, ∞ must be
mapped to some place on that boundary.

31

By the Schwarz reflection principle, f can be analytically continued across
the segment (zk, zk+1) of the real axis, so that f ′ exists there. We also see that
arg f ′ must be constant on such segments, and that arg f ′ must make a jump at
each zk,

lim
z→z+

k

arg f ′(z)− lim
z→z−k

arg f ′(z) = (1− αk)π = βkπ,

and we call this jump βkπ the turning angle at vertex k. If we now consider the
function

fk = (z− zk)−βk ,

we see that we have a function that is analytic on H, has the specific jump on
z = zk and has arg fk constant on the real axis.

This whole chain of reasoning leads to the idea that a conformal map to a
polygon can now be written

f ′(z) = C
n−1

∏
k=1

fk(z) (4.1)

and this is the essential idea of the Schwarz-Christoffel formula.

4.2 Schwarz-Christoffel formula

By summing up the previous section and specifically equation 4.1, we get the
Schwarz-Christoffel formula for the half-plane,

Theorem 13 Schwarz-Christoffel formula for a half-plane
Let P be the interior of a polygon Γ having vertices w1, . . . , wn and interior an-
gles α1π, . . . , αnπ in counterclockwise order. Let f be any conformal map from
the upper half-plane H+ to P with f (∞) = wn. Then

f (z) = A + C
∫ z n−1

∏
k=1

(ζ − zk)αk−1dζ (4.2)

for some complex constants A and C, where wk = f (zk) for k = 1, . . . , n− 1.

The lower limit of integration only changes the constant A. Of course, the
prevertices zk are not known in advance, so one cannot simply perform this
integration and get a Riemann map. But before exploring how to find these, let
us consider the formula itself.

We can also find a formula for the map from the unit disc D:

32

Theorem 14 Schwarz-Christoffel formula for the unit disc
Let P be the interior of a polygon Γ having vertices w1, . . . , wn and interior an-
gles α1π, . . . , αnπ in counterclockwise order. Let f be any conformal map from
the unit disc D to P. Then

f (z) = A + C
∫ z n

∏
k=1

(
1− ζ

zk

)αk−1

dζ (4.3)

for some complex constants A and C, where wk = f (zk) for k = 1, . . . , n.

4.3 Explicit Schwarz-Christoffel maps

Although we do not know the zk for a chosen polygon, we know from the gen-
eral theory of conformal maps that we can use Möbius tranformations to map
any three points on the real axis to any three points on the boundary of the
polygon as long as the order is preserved. These three degrees of freedom lets
us use the Schwarz-Christoffel formula explicity for n ≤ 3.

Consider for example the special kind of polygons with one vertex w1 = ∞
and α1 = −1. This is of course, only a straight line. The formula for the half-
plane gives us

f = A + Cz,

which is a scaling, rotation and translation of the half-plane, which is what you
would expect for just mapping the real axis to any line. By using the map from
the unit disc, we get

f (z) = A + C
∫ z

(ζ − z1)−2dζ = A +
C

z− z1
.

If we allow two vertices, α1 + α2 = 0, so either α1 = α2 = 0, or α1 = −α2 6= 0.
The first case has both vertices at ∞ and is a strip. The half-plane map gives

f (z) = A + C
∫ z

(ζ − z1)−1dζ = A + C log(z− z1).

and the unit disc map gives

f (z) = A + C
∫ z

(ζ − z1)−1(ζ − z2)−1dζ

= A + C
∫ z (1

ζ − z1
− 1

ζ − z2

)
dζ

= A + C log
(

z− z1

z− z2

)
.

33

Figure 4.1: A conformal map from the half-plane to a polygon with one vertex
at infinity. The polygon is specified as two vertices at i and −i with internal
angles π/2 and one vertex at infinity.

4.4 Vertices at infinity

One advantage of the Schwarz-Christoffel method is that it can be used with one
or more vertices of the polygon positioned at infinity. If one specifies the interior
angles of the vertices of the polygon that are connected to the vertices at infinity,
the polygon is fully determined and the Schwarz-Christoffel transformation can
be used as on any other polygon. See figure 4.1 for an example.

34

4.5 Calculating the prevertices

The main challenge in computing a conformal map to an arbitrary polygon with
the Schwarz-Christoffel method is to solve the parameter problem of finding
the prevertices zk. The basic way to do this is to find some equations involving
the side lengths and numerically solve a system of equations, as described by
Trefethen [25].

If we specify the three degrees of freedom by letting zn−2 = −1, zn−1 = −i
and zn = 1, we need to determine the rest of the points zk on the unit circle,
that is n− 3 angles, which are real quantities. If we assume the polygon to be
bounded, we get∣∣∣∫ zj+1

zj
f ′(ζ)dζ

∣∣∣∣∣∣∫ z2
z1

f ′(ζ)dζ
∣∣∣ =

|wj+1 − wj|
|w2 − w1|

, j = 2, 3, . . . , n− 2,

This gives us n − 3 conditions to satisfy, and this system of equations can be
solved by some general iterative method for non-linear equations. One should
constrain the angles to lie in order on the unit circle. To avoid solving a con-
strained system of equations, which can be harder, one can transform the equa-
tions, for example by

φk = log
(

θk − θk−1

θk+1 − θk

)
,

to get an unconstrained system. This transformation has turned out to work
well in practice [25].

4.6 Calculating the integral

When you have computed the prevertices of the mapping, you still need to eval-
uate the integral (4.2) or (4.3) to map specific points to the polygon. General nu-
merical integration methods can have problems with integrals of this form for
some points, but the form of the integral lets us use a special type of numerical
integration called Gauss-Jacobi quadrature. This is a method for approximating
integrals of the form ∫ 1

−1
f (x)(1− x)α(1 + x)βdx.

35

4.7 Finding the inverse map

We have seen that when the prevertices are found, it is only a matter of evau-
lating the integral (4.2) or (4.3) to find specific image points w = f (z). But
finding arbitrary inverse points z = f−1(w) has no direct approach. Trefethen
[25] proposed two methods for solving this problem

1. Solve f (z)− w = 0 by Newton’s method.

2. Solve the initial-value problem

dz
dw

=
1

f ′(z)
and z(w0) = z0

with a numerical solver for initial-value problems.

The first method is fast and simple, because f ′(z) is explicitly known, but
needs a good starting point to guarantee convergence. The differential equation
method is much slower, but more reliable.

4.8 Computer programs

The Schwarz-Christoffel method has been widely used and so there exists sev-
eral mature computer programs for calculating these maps for arbitrary poly-
gons. Toby Driscoll’s The Schwarz-Christoffel Toolbox for MATLAB [4] was used
to make some of the graphics in this text and was found to be fast and easily
usable.

36

5The geodesic algorithm and
the Zipper program

In the early 1980s an algorithm called "Zipper" for computing conformal maps
was discovered independently by Reiner Künhnau and Donald E. Marhsall [17].

The idea of the algorithm is to use simple conformal functions to map curve
segments approximately on the boundary curve of the specified domain Ω to
the real axis in such a way that the composition of these functions maps the
whole boundary of Ω to the real axis. This gives a conformal map from a do-
main resembling Ω to the upper half-plane, which of course can be mapped to
the unit disc by a simple Möbius transformation, giving the wanted map. The
workings of this algorithm will be explained in detail in the next section.

This method gave fast and accurate results. Also, the one can find the inverse
of the computed map with little extra computation, and this is a big advantage
in many applications. The convergence properties of the algorithm was not
known, but some recent work has shown convergence with some restrictions
on the input [17].

Different types of functions for approximating the boundary segments can
be used as the building blocks for this algorithm. When using straight line
segments, the algorithm is called Zipper. Substituting straight line segments for
circle arcs gives another way of calculating the map that is easier to implement.

5.1 The geodesic algorithm

We assume that we are given input points z0, . . . , zn ∈ C that lie in order on the
boundary γ = ∂Ω.

The basic building blocks of the geodesic algorithm are conformal functions
fa : H \ γ → H. The geodesic algorithm, as opposed to other variants of this

37

0 b

γ
a

z
1−z/b

0

ic

z2 + c2

0 c2

√
z

0 c−c

Figure 5.1: The map fa which is the basic component out of which the geodesic
algorithm’s conformal map φ is made.

method, uses circle arcs as the γ curve. The functions fa can then be described
by Möbius tranformations composed with squaring and square roots and can
therefore be explicitly inverted. The maps fa that conformally remove the circle
arcs from 0 to a from H can be visualized as in figure 5.1

The geodesic algorithm works as follows:

• Start out with some polygon representing
the domain Ω to find the Riemann map
from.

z1 z2

• Map the straight line segment between the
two first vertices to the real line so that the
rest of the vertices are in the upper half-
plane. This can be done with the function

φ1 = i
√

z− z1

z− z0
.

0

φ1(z2)

38

• For the rest of the vertices, do the follow-
ing. Let the vertex zk under the k− 1 pre-
vious maps be called ζk = φk−1 ◦ φk−2 ◦
· · · ◦ φ1(zk). Apply the k-th map

φk = fζk .
0

ζk

• After applying n maps, the interior of the
polygon has been mapped to a half-disc in
H. We can map it to H by

φn+1 = −
(

z
1− z/ζn+1

)2

.

The minus sign can be replaced with + if
the data points are in clockwise order, but
for the purposes of this text, we will as-
sume that the points are given in counter-
clockwise order.

0ζn+1

• To get a map to the disc, one can apply the
Möbius transformation

φd =
z− a
z− a

where a is an interior point. This point can
be specified in the original polygon.

The function φ = φd ◦ φn+1 ◦ · · · ◦ φ1 is then a conformal map from a domain
approximately equal to Ω to the unit disc D. Since all the functions used have
explicit inverses, the inverse map φ−1 can be found in the same way.

39

5.2 Implementation details

The functions used here can easily and concisely be implemented in a program-
ming language with basic facilities for complex calculations. See appendix B
for an example implementation. One important tip is to use the right half-plane
instead of the upper half-plane, because the common way to implement the
complex square root in programming languages has the branch cut along the
negative real axis. By just rotating all the figures presented in this chapter, one
gets rid of most problems. For points that are close to the imaginary axis (if
we are now in the right half-plane), numerical inaccuracies in squaring can put
points on the wrong side of the branch cut, so that when the square root is ap-
plied, the point ends up as its complex conjugate. This can be remedied in the
following way: when applying fa, check

w =
√

z2 − 1,

and if (Im w)(Im z) < 0, then replace w with −w. See source code in appendix
B. The example program made for this text works well for the forward map
φ, but has precision problems for the inverse φ−1. The most important loss of
precision comes from the squaring and square root functions. To illustrate, con-
sider the number 1 + ε, where ε is some small number larger than the machine
precision epsilon. This is commonly about 10−16. The square root

√
1 + ε will

then have half as many significant digits, so when squaring again to
√

1 + ε
2
,

we know that this should be equal to 1 + ε, but half the precision has been lost.
Another problem to watch out for is mapping points that should be inside

of the domain, but are very close to the border. Because the geodesic algorithm
computes a conformal map from a domain approximating Ω, points that are
close to the border could be outside of the domain of φ. Since φ maps the whole
plane to the whole plane, points outside the domain of φ will still be mapped,
but could end up far from where they should be. See figure 5.2 for an illustration
of the phenomenon.

5.3 The slit algorithm

When using the geodesic algorithm, one can say that one is approximating the
curve sections of ∂Ω by circular arcs. For polygons, this should intuitively be
replaced by some ga that replaces fa and uses straight line segments to approx-
imate the border. This can be done with the functions

g−1
a (z) = C(z− p)p(z + 1− p)1−p,

40

Figure 5.2: The geodesic algorithm maps an approximation of the domain Ω to
the unit disc. Points near the boundary could be outside of the approximate Ω
and end up in unexpected places.

where p = arg a/π and C = |a|/pp(1− p)1−p. These map H to H \ L, where L
is the straight line segment from 0 to a, and can be shown to be conformal. The
g−1

a cannot be inverted explicitly to give the map from Ω to H (or D), but using
a numerical inverse calculation one can get more accurate results than with the
geodesic algorithm.

5.4 The Zipper program

Another improvement on the approximation of ∂Ω can be made by using circu-
lar arcs that are not orthogonal to the real axis. At each stage in the algorithm,

41

d

b

c
a

a (z) =
z

1− z/b

0

00

πp πp

pp− 1

g−1d (z)

Figure 5.3: The basic map fa for the zipper algorithm. Figure from [17].

instead of just mapping ζk to 0 by some map, we can use the images of the two
next points, ζ2k−1 and ζ2k, assuming an even number of data points. If we map
the circular arc from 0 through these two points to a straight line by a Möbius
transformation, we can use the g−1 from the slit algorithm to map the points to
the real axis. See figure 5.3.

This approach is more complicated than the simple geodesic algorithm, but
it can be thought of as a quadratic approximation of each curve segment, and
it turns out that it gives better approximations. This version of the algorithm is
the one that is used in Marshall’s Zipper program [13].

5.5 Basic proof of convergence for the geodesic
algorithm

If we find the conformal map φ with the geodesic algorithm for some desired
domain Ω, we can find a bound on how far off the boundary of the computed
domain ∂ΩC can be from ∂Ω [14].

Let us assume that the domain Ω is a polygon with vertices z0, z1, . . . , zn
given in order on the boundary. Define a closed disc-chain D0, D1, . . . , Dn as a
sequence of pairwise disjoint open discs such that ∂Dj is tangent to ∂Dj+1 for

42

j = 0, . . . , n− 1, and ∂Dn is tangent to ∂D0.
There are several ways to make a closed disc chain covering a simple closed

polygon P. A simple way to do it is as follows: Let ε > 0, and find pairwise
disjoint discs {Bj} with centers at each vertex zj and radius r < ε. If we remove
these discs from the boundary of the polygon,

∂P \
⋃

j

Bj =
⋃
k

Lk,

a set Lk of pairwise disjoint line segments remains. We now cover each Lk with a
disc-chain where the centers of the discs are on Lk and the circles at the ends are
tangent to the corresponding Bj and the radii are less than half the distance to
any other Li and less than ε. All these discs, taken in correct order will then be
a closed disc-chain covering ∂P. There are other ways to do this that are better
suited for direct computation [14].

Define a geodesic in Ω as a curve that can be conformally mapped to the
unit disc D so that it is a geodesic in the hyperbolic geometry.

Theorem 15 Jørgensen’s lemma
Let D be an open disc contained in a simply connected domain Ω and let J be a
geodesic in Ω. Then J ∩ D is connected, and if not empty, then J is not tangent
to ∂D in Ω.

This lemma can be interpreted as saying that discs are convex in the metric
on a simply connected domain given by the geodesics.

We now let the vertices of the polygon be the tangent points z0, z1, . . . , zn
of the discs in the closed disc-chain constructed above. This gives the same
polygon P with some added vertices.

Theorem 16 Bound for ΩC [14]
Let D0, D1, . . . , Dn be a closed disc-chain. Then the geodesic algorithm applied
to the centers of these discs, z0, z1, . . . , zn gives a conformal map φ−1 from the
unit disc D to a region ΩC bounded by

∂ΩC ∈
n⋃

j=0

(Dj ∪ zj).

Proof. Let γj be the segment of the computed boundary ∂ΩC between vertices
zj and zj+1. Geodesics in the hyperbolic metric on the unit disc are preserved
under conformal maps, so γj is a geodesic in

C \
j−1⋃
k=0

γk.

43

The inverses of the basic maps fa are analytic across R \ {±c}. fa(±c) = 0 and
f−1
a can be approximated by a square root near ±c. Let fb be another one of

these basic maps. Then f−1
b is analytic and asymptotic to z2 near 0, so f−1

b ◦
f−1
a preserves angles at ±c. The geodesic γj is then a smooth arc which joins

with γj−1 at zj with angle π. So, the computed boundary ∂ΩC is smooth. The
segment from the first vertex, γ0, is a chord of D0 and cannot be tangent to ∂D0.
Since the angle between γ0 and γ1 meeting in z1 is π, γ1 must continue into D1.
Jørgensen’s lemma then gives us that γ1 ∈ D1 and γ1 cannot be tangent to ∂D1.
We can continue in this fashion and conclude that

γj ∈ Dj

for j = 0, 1, . . . , n. The curve ∂ΩC lies within the disc-chain, and the theorem is
proved.

This proof of convergence can be improved to use lenses instead of discs
[15]. There are also proofs of convergence for the Zipper algorithm [17] that are
out of the scope of this text.

44

6Circle packing method

As shown earlier, circle packing can be used to find a Riemann map. This chap-
ter recapitulates my project work on this method [12].

6.1 Constructing the circle complex

We will use the domain Ω in figure 6.1 and cover it with small circles to find a
graph G that can be used for the circle packing.

Gauss showed that a hexagonal grid structure between the circles gives the
best possible covering of the plane [26], so we can begin by imagining the whole
plane covered by circles of radius r in a hexagonal grid. We then remove all the
circles that are not contained in Ω.

If Ω is a polygon, we can decide if a circle center is contained in Ω by a wind-
ing number test as described in [6]. The algorithm uses the boundary points of
the polygon and finds the winding number around the specified point, and this
tells you if the point is inside or outside the polygon. See program code in C.3.
If Ω is not a polygon, we find a polygonal approximation and use that.

We now have a set of circles that are contained in Ω. We require that each
of the circles are tangent to at least three other circles. This requirement can be
avoided, but requires a more robust method for calculating the circle packing
(see [3]). Since Ω is simply connected, this can be satisfied by making r so small
that the circles that lie on the boundary of the graph do not represent more that
one contiguous segment of the border of Ω. We can then be sure that each circle
on the border is tangent to at least one other circle on the boundary and two
circles in the interior. Circles that are not on the border are always tangent to
six other circles.

45

(a) (b)

(c) (d)

Figure 6.1: (a) The domain Ω. (b) Small circles that cover Ω as well as possible.
(c) Graph edges between tangent circles. (d) Approximate representation of Ω
as the intersection graph between the circles.

By letting each circle center be a node and each two tangent circles be an
edge, we get an intersection graph representing the hexagonal circle covering
of Ω.

Because we laid down the hexagonal grid without taking into account the
choice of Ω, it is possible that translating the original grid could have given a
marginally better covering of the domain, but both the polygonal approxima-
tion of Ω and the choice of r can easily be improved to make this effect negligi-
ble.

46

6.2 Radius list for circle packing in hyperbolic
geometry

We have a graph G representing Ω and know that it is topologically equivalent
to a closed disc. The theorem of maximal packing of a closed disc tells us that
there is a unique maximal circle packing PK for G in D, and we will find an
approximation to this.

Let the radii of the internal circles be initialized to some arbitrary value, and
let the boundary circles have infinite radius since they will be tangent to the unit
circle. We can approximate the infinite radius by some large value, for exampel
1000 times the radius of the internal circles, to simplify the calculations. The
boundary circles can easily be identified as the only circles that do not have
exactly six neighbors (see 2.8).

This gives us a set of circle radii and tangency requirements that do not
necessarily fit together. The requirement for these radii to give a univalent circle
packing is that the sum of the angles around an internal circle is 2π. See figure
2.4.

The radii R(ci) can be found as the solution to a Dirichlet problem with the
boundary circles as boundary conditions [3], but it can be shown by a monotony
argument that one can iterate to a solution just by adjusting the radii locally so
that the angle sum of a flower gets closer to 2π [3]. In Introduction to Circle
Packing, Stephenson gives a simplified algorithm in pseudocode:

1. Initialize R(ci) by giving the boundary circles their prescribed radii and
the internal circles arbitrary radii.

2. For every internal circle ci:

a) Find the angle sum α(i) of the flower around ci by the cosine law
(2.8).

b) If the error |2π − α(i)| is larger than ε, adjust R(ci):

i. If α(i) < 2π, decrease R(ci).
ii. If α(i) > 2π, increase R(ci).

3. If |2π − α(i)| < ε for all internal circles ci then the radii in the circle pack-
ing have been found. If not, go to step 2.

This algorithm is a very simple way to find the radii in the circle packing.
The infinite radii on the boundary circles ensures that we get the maximal pack-
ing, and by letting α be given by the cosine law in the Poincaré geometry (2.8)

47

we get the packing in D. The difficulty in the implementation of this algorithm
is finding good ways to decrease and increase R(ci).

By trial and error, it turned out that multiplying the radius of a circle ci by
a value depending on the error e = |2π − α(i)| made the program converge to
the circle packing. The method used in the program made for this text was as
follows:

Let d = min{e, 1}. Insert the following instructions in step 2b of the algo-
rithm.

• If α(i) < 2π, set the radius to (1− 1
10 d)R(ci).

• If α(i) > 2π, set the radius to (1 + 1
10 d)R(ci).

This procedure worked well enough to quickly find the circle packings shown
in this text, see figure 6.3 for examples of packings and appendix C.4 for pro-
gram code. Stephenson has made a program called CirclePack [22] that has a
much more efficient algorithm and many other uses than finding the Riemann
map, but for the purpose of this text a simpler prorgam was made to illustrate
how to calculate circle packings. This was also recommended by Stephenson in
Introduction to Circle Packing to better understand the underlying mathematics.

6.3 Placing the circles in hyperbolic geometry

Theorem 17 Placing circle centers in a hyperbolic circle packing
Given the hyperbolic radii R(ci) in a circle packing of a triangulation G of a
simply connected domain and the position of one circle and one of its neigh-
bords, the centers of the rest of the circles in the circle packing are uniquely
determined.

Proof. We have found the graph G and the radii R for the circles that the nodes
of G represent. If we know the position of two circles, the position of a third
circle that is tangent to the first two is uniquely determined since we know the
radii of all the circles and can construct the triangle with vertices in the circle
centers and side lengths given by their radii. See figure 2.4. Since the graph
is simply connected and we have required that each internal circle cannot be
tangent to more that one contiguous segment of the boundary, we see that as
long as we have circles with unknown position, at least one of them must be
tangent to two other circles that have already been positioned. Applying this
argument several times shows that all circles can be positioned as soon as the
two first are in place.

48

This process is not described by Stephenson in Introduction to Circle Packing,
[24], but we can proceed as follows:

To place the two first circles, we choose an internal circle c0 of G and place it
with its center at the origin and radius l(rc0) determined by (2.6). Find a circle
tangent to c0 and place it on the positive real axis in this way:

• Let he center be at the distance
l(rc0)+l(rc0+rc1)

2 from the origin on the posi-
tive real axis.

• Let the radius be
l(rc0+rc1)−l(rc0)

2 .

When this is done, the position of the rest of the circles can be determined. The
choice of the two circles is arbitrary and is equivalent to the choice of f (0) = z0
and arg f ′(0) = θ0 that makes the Riemann map uniquely determined.

49

The procedure after the two first circles have been positioned is then as follows:

• Find a circle c that has not been placed and
two circles ca, cb that have already been
postioned so that all three are mutually
tangent and their counter-clockwise order
is ca, cb, c.

ca cb

?

• Let z0 be the hyperbolic center of ca so that
the isomorphism φt(z) = z−z0

1−z0z translates
the center of ca to the origin.

φt

• Let λ be the angle between the center of
φt(cb) and the positive real axis, so that the
isomorphism φr(z) = λz rotates the unit
disc so that φ(z) = (φt ◦ φr)(z) places the
center of cb on the positive real axis.

φt ◦ φr

• Find the angle α to the line from the ori-
gin that passes through the center of c by
using (2.8), see figure 2.4(a).

• We know that the circle c has Euclidean
center in l(rca)+l(rca+l(rc)

2 eiα and Euclidean

radius l(rca+rc)−l(rca)
2 under φ. Find three

points pi on the periphery of this circle,
since these three points uniquely deter-
mine the circle.

φt ◦ φr

50

• The center of the Euclidean circle is not
the same as the center of the hyperbolic
circle, but the periphery is the same, so
φ−1(pi) for the three points gives us the
circle translated and rotated back to where
it should be.

c

• Repeat this process until all circles have
been positioned.

See appendix C.5 for program code.

For the domain Ω, a circle packing in D looks like in figure 6.2.

6.4 Refining the circle grid

By letting the radii of the circles in the original hexagonal grid covering Ω tend
to zero, the circle packing will approximate the Riemann map, by theorem 10.
See figure 6.3 showing how the circle packings look for decreasing radius r.

A simple way to give a map looking more like the complex plots described in
the introduction to this text is to put a color map over the circles in the hexagonal
grid and color the corresponding circles in the unit disc with the same color. The
map shown in figure 6.4 uses colors that depend on the distance from a point in
the interior of Ω.

6.5 Continuous functions

The graphics in figure 6.3 show a function between two circle packings. If we
map each triangle between three mutually tangent circles to the corresponding
triangle in the unit disc by an affine transformation, we get a piecewise continu-
ous map from Ω to D. This map is K-quasiconformal, where K depends on the
maximal angle distortion one can find in each triangle. This K tends to 1 as the
circle grid radius tends to 0, so that we get a conformal map in the limit [24].

51

Figure 6.2: Circle packing in D of the domain Ω, shown in figure 6.1

52

Figure 6.3: Circle packings for the domain Ω with decreasing radius in the
hexagonal grid

53

Figure 6.4: The approximate Riemann map made with the circle packing
method. The domain Ω is colored by choosing colors depending on the dis-
tance from a point in the interior, and the colors follow the map to the unit disc.

54

7Evaulation of the different
methods

The three different methods for approximating conformal mappings presented
in this text make maps that are quite different in the way that they are approxi-
mate to the Riemann map.

Making maps with the Schwarz-Christoffel method depends on quite gen-
eral numerical methods. One needs to solve a system of non-linear equations
and numerically integrate a complex integral with singularities. The speed and
precision of the conformal mapping algorithm depends on these numerical rou-
tines.

For the geodesic algorithm or the Zipper program, the map is always con-
formal because it is composed of elementary functions that are conformal. This
is convenient if the conformal property is more important than the exact bound-
ary of the domain. It can also cause problems, for example if you try to map a
point near the border of the domain. If this point is outside the approximate do-
main that the mapping gives, then you will get a function value outside the unit
disc, which could be far off from the wanted value. This is illustrated in figure
5.2. Recent research has made progress in proving the convergece properties of
these algorithms.

The circle packing method makes a map that is quasi-conformal. The beauti-
ful theory of circle packing shows that this map converges to the Riemann map,
but for planar simply connected domains such as the ones studied in this text,
the circle packing method is slow compared to the two others. It requires ma-
nipulation of a quadratically increasing number of circles independently of the
domain chosen.

55

7.1 Computer software

There are many computer software packages available for calculating confor-
mal maps. Besides the two example programs made for this text (code in ap-
pendices), there are widely used packages available for download from the In-
ternet. The best general purpose program seems to be the Schwarz-Christoffel
toolbox [4], which has good documentation and is easy to use. The Zipper pro-
gram [13] can in many cases be faster, but it requires being a little more careful
with the input and checking of the output. Stephenson’s CirclePack program
[22] is not very fast compared to the two others, but Stephenson has suggested
that circle packing could be used to make a coarse approximation that could be
used as an initial guess for the prevertices problem in the Schwarz-Christoffel
method [24].

7.2 Usage

The numerical calculation of conformal mappings was much used in compu-
tational physics [9], in many two-dimensional problems involving Laplace’s
equation. In recent years, however, numerically solving partial differential equa-
tions, especially by the finite element method, has taken over as the preferred
method for solving such numerical physics problems [16, 18]. The increase in
available computing power has made calculations in three dimensions feasible
and the added flexibility of being able to solve other types of equations in the
same way has made this the dominant method in computational physics.

Conformal mappings of the plane are closely related to the theory of ana-
lytic functions of a complex variable, and mathematical research on the two are
closely related and benefit from eachother [9].

The Schwarz-Christoffel formula has had a large impact on mathematical
research. The Schwarz reflection principle was first presented by Schwarz in
his papers about the Schwarz-Christoffel formula. It was also used to prove the
Riemann mapping theorem [25].

The geodesic and Zipper algorithms have been used in mathematical re-
search as an approximate method for conformal welding and as a discretization
of the Loewner differential equation [17]. The Zipper program has been used to
explore Schramm-Loewner evolution, which is a solution to Loewner’s differ-
ential equation with Brownian motion as input, generating a family of planar
curves. This is a conformally invariant stochastic process which can be studied
under conformal maps made by the Zipper program [17].

56

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Figure 7.1: Welding map for the domain Ω used in earlier chapters, see for
example figure 1.5.

Let f : D → Ω be the inverse of the Riemann map we have considered
earlier in this text, and let g : D′ → Ω′ be the inverse of the map from the
complement of Ω. Then h = g−1 ◦ f : T → T, where T is the unit circle, is
called the conformal welding of ∂Ω. For a smooth ∂Ω, h is smooth, univalent
and injective. See figure 7.1 for a welding map for the domain Ω from figure
1.5, made with the Zipper program [13]. Welding maps can be used for pattern
recognition [2].

Circle packing methods have been used in recent research to represent and
visualize surfaces in three dimensional space. Discrete conformal geometry can
be used on surfaces in space in medical imaging, computer graphics, nano sci-
ence and image analysis [23]. The best examples of practical uses of circle pack-
ing comes from Hurdal’s research [8] on flat maps of the human cerebrum. With
new technology available to make three dimensional images of the human brain
(MRA, fMRI, PET), comes a need for representing these images in a usable way
for the medical researchers. Most of the connections in the human brain exist on
the surface, but this surface has creases and folds that hide large parts of it and
makes a regular three dimensional image hard to use. Computer programs us-
ing circle packing to discretely represent conformal geometry can transform the
three dimensional image into a flat map [8]. See figure 7.2 for example images.

57

Figure 7.2: Examples from Hurdal’s research on flat maps of the brain. Figures
from [8].

58

AMiscellaneous computer
code

A.1 Transforming a bitmap with the f (z) = z2

function

Figure 1.7 was made with the following program. It is written in Python and
uses PyGame to read a picture, assumed to be located in the first quadrant of
the complex plane. It then calculates the preimage of each point in the upper
half-plane and colors the point with the color of the nearest pixel in the original
image.

import pygame,math,cmath

orig = pygame.image.load("clock.jpg");
oversq2 = 1/math.sqrt(2)

size = orig.get_height()
white = 255,255,255

newimage = pygame.Surface((size*2,size))

for x in xrange(newimage.get_width()):
for y in xrange(newimage.get_height()):

coords = (float(x)-size)/size + 1j*(1-float(y)/size)
transformed = cmath.sqrt(coords)
origcoords = int(transformed.real*size), (size-1)-int(transformed.imag*

size)
if origcoords[0] >= size or origcoords[1] >= size or origcoords[0] < 0

or origcoords[1] < 0:
newimage.set_at((x,y),white)

else:
newimage.set_at((x,y),orig.get_at(origcoords))

pygame.image.save(newimage,"clock_z2.jpg");

59

A.2 Flow along a wall

Figure 3.1 was made with the MATLAB Schwarz-Christoffel toolbox with the
following code.
p = polygon([-i,i,Inf],[1/2,3/2,-1]);
f = hplmap(p);
axis([-3 3 -1.5 2]), hold on
plot(f,0,0.15*(1:40))

p = polygon([-1,i,1,Inf],[1-1/4,3/2,1-1/4,-1]);
f = hplmap(p);
axis([-2 2 -0.25 2]), hold on
plot(f,0,0.05*(1:40))

60

BComputer program code for
the geodesic algorithm

Example implementation of the geodesic algorithm written in Python. Reads a
file with the polygon and files with points to be mapped by the forward map φ

and the inverse map φ−1. The forward map gives good results, but the inverse
map has precision problems.
import sys,cmath

the first map phi_1 that maps a straight line segment
to the real axis and the polygon to the upper half plane
def phi1(z0,z1,z):

if z == z0: return float("Infinity")
return cmath.sqrt((z-z1)/(z-z0))

the inverse of phi_1
def phi1inv(z0,z1,z):

if z == float("Infinity"):
return z0

sq = z**2
return (z1-sq*z0)/(1-sq)

the i-th map made from the basic map f_a
def phii(a,z):

if z == a:
return 0

if z == float("Infinity"):
if abs(a.imag) <= 1e-14:

return float("Infinity")
else:

L = a.real/(1j*a.imag)
else:

L = a.real*z / (abs(a)**2 + 1j*a.imag*z)

S = cmath.sqrt(L**2-1)
if S.imag*L.imag < 0:

S = -S
return S

61

the inverse of the i-th map
def phiiinv(a,z):

sq = cmath.sqrt(z**2+1)
if sq.imag*z.imag < 0:

sq = -sq
if abs(a.real - sq*1j*a.imag) <= 1e-11:

return float("Infinity")
if z == float("Infinity"):

return abs(a)**2/(1j*a.imag)
return sq*abs(a)**2/(a.real - sq*1j*a.imag)

the (n+1)-th map mapping a halfdisc in the
upper half plane to the whole of the upper
half plane
def phinp1(a,z):

if z == float("Infinity"):
return -(1j*a)**2

if abs(1-z/a) < 1e-14:
return float("Infinity")

return -(1j*z/(1-z/a))**2

the inverse of the (n+1)-th map
def phinp1inv(a,z):

if abs(z) <= 1e-11:
return 0

if z == float("Infinity"):
return a

if abs(z+(1j*a)**2) <= 1e-11:
return float("Infinity")

sq = cmath.sqrt(-z)
if sq.imag*z.imag < 0:

sq = -sq
return sq*a/(1j*a+sq)

the map from the upper half plane to
the unit disc
def phidisc(a,z):

if z == float("Infinity"):
return complex(1)

aconj = a.real-1j*a.imag
if abs(z-aconj) < 1e-14:

return float("Infinity")
return (z-a)/(z-aconj)

the inverse of phidisc
maps the unit disc to the upper half plane
def phidiscinv(a,z):

if z == complex(1):
return float("Infinity")

aconj = a.real-1j*a.imag
if abs(z-1) < 1e-11:

return float("Infinity")
#return (1/(aconj-a))*(aconj*z -a)/(z-1)
return (aconj*z-a)/(z-1)

writes out the vertices z_i, letting infinity
be written out as the origin
def writez(filename):

62

with open(filename,"w") as f:
for i in xrange(len(z_i)):

p = z_i[i]
if p != float("Infinity"):

f.write(str(p.real) + " " + str(p.imag)+"\n")
else:

f.write("0 0 # Infinity\n")

writes out the grid with every pair
of points grouped to allow for grid plotting
def writegrid(v,filename):

with open(filename,"w") as f:
for i in xrange(len(v)):

p = v[i]
if p != float("Infinity"):

f.write(str(p.real) + " " + str(p.imag)+"\n")
else:

f.write("0 0 # Infinity\n")
if i%2 == 1:

f.write("\n")

read in the vertices of the polygon
z_i = []
for line in open("polygon.txt").xreadlines():

a = line.split()
z_i.append(float(a[0]) + float(a[1])*1j)

read in the grid (or other points to be mapped)
grid = []
for line in open("grid.txt").xreadlines():

if len(line) > 1:
a = line.split()
grid.append(float(a[0]) + float(a[1])*1j)

set the interior point (conformal center) to the origin
z_i.append(complex(0))

apply the first map
z0,z1 = z_i[0],z_i[1]
z_i = map(lambda x: phi1(z0,z1,x),z_i)
grid = map(lambda x: phi1(z0,z1,x),grid)

apply the i-th maps, saving the zeta_k for inverse mapping
zeta = {}
for i in xrange(2,len(z_i)-1):

print i
a = z_i[i]
zeta[i] = a
z_i = map(lambda x: phii(a,x),z_i)
grid = map(lambda x: phii(a,x),grid)

apply the (n+1)-th map
chinp1 = z_i[0]
z_i = map(lambda x: phinp1(chinp1,x), z_i)
grid = map(lambda x: phinp1(chinp1,x), grid)

finally, map to the disc and write out the polygon
map and the grid

63

zint = z_i[-1]
z_i = map(lambda x: phidisc(zint,x), z_i)
grid = map(lambda x: phidisc(zint,x), grid)

writez("map.txt")
writegrid(grid,"gridout30.txt")

read in the points to be inversely mapped
(for example Carleson grid)
cgrid = []
for line in open("carlesongrid.txt").xreadlines():

if len(line) > 1:
a = line.split()
cgrid.append(float(a[0]) + float(a[1])*1j)

inverse map to the half plane
z_i = map(lambda x: phidiscinv(zint,x),z_i)
cgrid = map(lambda x: phidiscinv(zint,x),cgrid)

inverse of the (n+1)-th map
z_i = map(lambda x: phinp1inv(chinp1,x),z_i)
cgrid = map(lambda x: phinp1inv(chinp1,x),cgrid)

inverse of the i-th map
for i in reversed(xrange(2,len(z_i)-1)):

a = zeta[i]
z_i = map(lambda x: phiiinv(a,x),z_i)
cgrid = map(lambda x: phiiinv(a,x),cgrid)

inverse of phi_1
z_i = map(lambda x: phi1inv(z0,z1,x),z_i)
cgrid = map(lambda x: phi1inv(z0,z1,x),cgrid)

write out the inverse points and the identity map
for error checking. This could give bad results
because of precision problems.
writegrid(cgrid,"gridoutcarleson.txt")
writez("mapidentity.txt")

64

CComputer program code for
the circle packing method

The code for this example implementation of the circle packing program was
written in Python using PyGame and TiKZ for drawing the results. The code is
shortened to be more concise and readable, so much of the drawing code is not
included.

C.1 Reading the polygon from a file

from Numeric import arange
import sys,math,cmath

gridres = 45

Reads a file with a polygon where each line is one point with x and y coordinates
separated by a space
points = map(lambda x: map(float, x.rstrip().split(" ")), list(sys.stdin))

Finds a suitable drawing area for the given polygon
xmin,xmax,ymin,ymax = float(’Infinity’),float(’-Infinity’),float(’Infinity’),float(’-

Infinity’)
for k in points:

if k[0] < xmin: xmin = k[0]
if k[0] > xmax: xmax = k[0]
if k[1] < ymin: ymin = k[1]
if k[1] > ymax: ymax = k[1]

if xmax-xmin > ymax-ymin:
xmin,xmax = xmin - (xmax-xmin)*0.20, xmax + (xmax-xmin)*0.20
ymin,ymax = ymin + (ymax-ymin)/2 - (xmax-xmin)/2, ymax - (ymax-ymin)/2 + (xmax-

xmin)/2
else:

ymin,ymax = ymin - (ymax-ymin)*0.20, ymax + (ymax-ymin)*0.20
xmin,xmax = xmin + (xmax-xmin)/2 - (ymax-ymin)/2,xmax - (xmax-xmin)/2 + (ymax-

ymin)/2

65

C.2 Miscellaneous functions

Tests if a point is inside the polygon
def inpoly((x,y)):

c = False
for p in xrange(len(points)):

a = points[p]
b = points[(p+1)%len(points)]
if((a[1] > y) != (b[1]>y)):

if x < (b[0]-a[0])*(y-a[1])/(b[1]-a[1])+a[0]:
c = not c

return c

Polygonal coordinates to screen coordinates
def scoord(p):

return ((p[0]-xmin)/(xmax-xmin)*screenx, (-p[1]-ymin)/(ymax-ymin)*screeny)

Grid coordinates (every point is a circle center in the grid)
is converted to screen coordinates
def pcoord(p):

if p[1]%2 == 1:
return ((float(p[0])/gridres)*(xmax-xmin)+xmin+(xmax-xmin)/gridres/2,

(float(p[1])/gridres/2*math.sqrt(3))*(ymax-ymin)+ymin)
else:

return ((float(p[0])/gridres)*(xmax-xmin)+xmin,
(float(p[1])/gridres/2*math.sqrt(3))*(ymax-ymin)+ymin)

Assignment of color given coordinates in Ω.
(HSV to RGB with H as a function of the distance from the center)
def colormap(x,y):

h = math.log(1+((x)**2+(y)**2))*360
s = 1
v = 1

hi = int(h/60)%6
f = h/60-int(h/60)
p = v*(1-s)
q = v*(1-f*s)
t = v*(1-(1-f)*s)
r,g,b = 0,0,0
if hi == 0:

r,g,b = v,t,p
if hi == 1:

r,g,b = q,v,p
if hi == 2:

r,g,b = p,v,t
if hi == 3:

r,g,b = p,q,v
if hi == 4:

r,g,b = t,p,v
if hi == 5:

r,g,b = v,p,q
return (255*r,255*g,255*b)

66

C.3 Construction of the circle complex

The intersection graph that is to be
constructed from the grid
graph = {}

origo = None # The circle that becomes f(c)=0
origo2 = None # The circle that is tangent to the circle at

the origin and lies on the positive real axis
originalplacement = {} # Positioning of the circles in Ω
color = {} # Colors for the colored plot
colorno = 1
for y in xrange(int(gridres*2/math.sqrt(3))):

for x in xrange(gridres):
p = pcoord((x,y))
if inpoly(p): # Inside the polygon?

graph[(x,y)] = set()
if (x-1,y) in graph.keys():

graph[(x,y)].add((x-1,y))
graph[(x-1,y)].add((x,y))

if y%2 == 0:
if (x-1,y-1) in graph.keys():

graph[(x,y)].add((x-1,y-1))
graph[(x-1,y-1)].add((x,y))

else:
if (x+1,y-1) in graph.keys():

graph[(x,y)].add((x+1,y-1))
graph[(x+1,y-1)].add((x,y))

if (x,y-1) in graph.keys():
graph[(x,y)].add((x,y-1))
graph[(x,y-1)].add((x,y))

w = 2
if origo and not origo2:

origo2 = (x,y)
if not origo and pcoord((x,y))[0] > 0 and pcoord((x,y))[1] > 0:

origo = (x,y)

color[(x,y)] = colormap(p[0],p[1])
originalplacement[(x,y)] = (scoord(p))[0]+1j*(scoord(p))[1]

Finds the order of three tangent circles.
True if they lie in counter-clockwise order
False otherwise
def orientation(a,b,c):

v1 = b-a
v2 = c-a
cpz = v1.real*v2.imag - v1.imag*v2.real
if cpz > 0: return True
else: return False

Sort the adjacency list on counter-clockwise order
def sortverts(c,l):

l = list(l)
s = [l.pop()]
i = 0
while len(l) > 0:

67

if l[i] in graph[s[-1]] and orientation(originalplacement[c],
originalplacement[l[i]],originalplacement[s[-1]]):

s += [l.pop(i)]
i = 0

elif l[i] in graph[s[0]] and orientation(originalplacement[c],
originalplacement[s[0]],originalplacement[l[i]]):

s = [l.pop(i)] + s
i = 0

else:
i = (i+1)%len(l)

return s

for p1 in graph.keys():
graph[p1] = sortverts(p1,graph[p1])

C.4 Calculating the radius list

err = float("Infinity")
radii = {}
for p in graph.keys():

radii[p] = 150

p = origo

Finds hyperbolic angle in a triangle with vertices
in the centers of three tangent circles
def angle(a,b,c):

x,y,z = radii[a],radii[b],radii[c]
if y == 150:

y,z = z,y
if x == 150:

return 0
if y == 150 and z == 150:

return math.acos(1-2*math.exp(-2*x))
if z == 150:

return math.acos((math.cosh(x+y)-math.exp(y-x)) / (math.sinh(x+y)))
return math.acos((math.cosh(x+y)*math.cosh(x+z)-math.cosh(y+z)) / (math.sinh(x

+y)*math.sinh(x+z)))

Finds the circle packing.
minerr = float("Infinity")
while err > 1e-6:

err = 0
for p in graph.keys():

if len(graph[p]) == 6:
r = 0
for p1 in range(len(graph[p])):

r += angle(p,graph[p][p1],graph[p][(p1+1)%len(graph[p])
])

e = r - 2*math.pi
if abs(e) > err:

err = abs(e)
if e > 0:

radii[p] *= 1+min(err/10,0.1)

68

else:
radii[p] *= 1-min(err/10,0.1)

C.5 Placing circles in the Poincaré model of the unit
disc

Radius from the origin in the unit disc for a circle,
given hyperbolic radius (as found in the circle packing)
def hyp2eucradius(r):

return (math.exp(r)-1)/(math.exp(r)+1)

Transforms coordinates from the unit disc to the screen
def disc2screen(p):

return ((float(p[0])+1)/2*screenx, (-float(p[1])+1)/2*screeny)

Rotates a vector p with the angle a around the origin
def rot(p,a):

return (math.cos(a)*p[0]-math.sin(a)*p[1], math.sin(a)*p[0]+math.cos(a)*p[1])

Euclidean distance between two vectors
def dist(a,b):

return math.sqrt((b[0]-a[0])**2+(b[1]-a[1])**2)

The general conformal automorphism on the unit disc
def phi(z,znull,lmbda):

return lmbda*(z-znull)/(1-znull.conjugate()*z)

The inverse of the general conformal automorphism on the unit disc
def phiinverse(z,znull,lmbda):

return (z+lmbda*znull)/(lmbda+znull.conjugate()*z)

Initialization of variables
p1 = origo
placed = {}
placedhyp = {}
placed[p1] = (0,0)
placedhyp[p1] = (0,0)
p2 = origo2
placed[p2] = ((hyp2eucradius(radii[p1])+hyp2eucradius(radii[p1]+2*radii[p2]))/2, 0)
placedhyp[p2] = (hyp2eucradius(radii[p1]+radii[p2]),0)
plist = list(graph.keys())
plist.remove(p1)
plist.remove(p2)
last = p2
lastlast = p1
a_b = []
circles = {}
circles[p1] = (placed[p1],hyp2eucradius(radii[p1]))
circles[p2] = (placed[p2], (hyp2eucradius(radii[p1]+2*radii[p2])-hyp2eucradius(radii[p1

]))/2)

Laying out of circles in the hyperbolic unit disc
while len(plist) > 0:

found = False
for p in plist:

69

for i in xrange(len(graph[p])):
if graph[p][i] in placed.keys() and graph[p][(i+1)%len(graph[p

])] in placed.keys():
Let graph[p][(i+1)%len(graph[p])] be circle A

centered on (0,0)
\phi with z_0 = c_A, \lambda = e^(i \theta), \theta =

-atan2(c_B-c-A)
A = graph[p][(i+1)%len(graph[p])]
B = graph[p][i]
p3 = p
znull = placedhyp[A][0]+1j*placedhyp[A][1]
phb2 = phi(placedhyp[B][0]+1j*placedhyp[B][1],znull,1)
theta = -cmath.phase(phb2)
lmbda = cmath.exp(1j*theta)
a = angle(A,B,p)
centre = ((hyp2eucradius(radii[A]) + hyp2eucradius(

radii[A]+2*radii[p]))/2, 0)
centre = rot(centre,a)
centrehypeuc = (hyp2eucradius(radii[A] + radii[p]), 0)
centrehypeuc = rot(centrehypeuc,a)
radiuspoint = ((hyp2eucradius(radii[A])),0)
radiuspoint = rot(radiuspoint,a)
radius = dist(centre,radiuspoint)
radiuspoints = map(lambda x: (centre[0]+1j*centre[1]) +

radius*cmath.exp(1j*2*cmath.pi*x/3),range(3))
if radius > 0:

centrehypeuc = phiinverse(centrehypeuc[0]+1j*
centrehypeuc[1],znull,lmbda)

centre = phiinverse(centre[0]+1j*centre[1],
znull,lmbda)

radiuspoint = phiinverse(radiuspoint[0]+1j*
radiuspoint[1],znull,lmbda)

radiuspoints = map(lambda x: phiinverse(x,znull
,lmbda), radiuspoints)

z1,z2,z3 = radiuspoints
cc = (abs(z1)**2*(z2-z3)+abs(z2)**2*(z3-z1)+abs

(z3)**2*(z1-z2))/(z1*(z3.conjugate()-z2.
conjugate())+z2*(z1.conjugate()-z3.
conjugate())+z3*(z2.conjugate()-z1.
conjugate()))

rr = abs(z1-cc)
drawcircle((cc.real,cc.imag),rr,color[p])
circles[p] = ((cc.real,cc.imag),rr)
placedhyp[p] = (centrehypeuc.real,centrehypeuc.

imag)
placed[p] = (centre.real,centre.imag)

else:
print a,radii[A],radii[B],radii[p],centrehypeuc

,centre,znull,lmbda
circles[p] = ((0,0),0)

plist.remove(p)
found = True
break

if found: break

70

Bibliography

[1] Lars Ahlfors. Complex Analysis. McGraw-Hill Science/Engineering/Math,
1979.

[2] Christopher J. Bishop. Conformal welding and koebe’s theorem. Text
available from http://www.math.sunysb.edu/~bishop/lectures,
2007.

[3] Charles R. Collins and Kenneth Stephenson. A circle packing algorithm.
Computational Geometry: Theory and Applications, 25:233–256, 2003.

[4] Toby Driscoll. The schwarz-christoffel toolbox for matlab. Software avail-
able from http://www.math.udel.edu/~driscoll/software/.

[5] Frederick W. Gehring and Kari Hag. The Ubiquitous Quasidisk. Unpublished
draft, 2009.

[6] Donald Hearn and M. Pauline Baker. Computer Graphics with OpenGL. Pear-
son Prentice Hall, 2004.

[7] Juha Heinonen. What is a quasiconformal mapping? Notices of the AMS,
53(11):1334–1335, 2006.

[8] Monica K. Hurdal and Ken Stephenson. Cortical cartography using the
discrete conformal approach of circle packing. NeuroImage, 23:119–128,
2004.

[9] V. I. Ivanov and M. K. Trubetskov. Handbook of Conformal Mapping with
Computer-Aided Visualization. CRC Press, 1994.

[10] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons,
Inc., 2006.

71

http://www.math.sunysb.edu/~bishop/lectures
http://www.math.udel.edu/~driscoll/software/

[11] Hans Lundmark. Visualizing complex analytic functions using domain
coloring. Text available online at http://www.mai.liu.se/~halun/
complex/domain_coloring-unicode.html, 2004.

[12] Bjørnar Steinnes Luteberget. Approksimering av riemann-avbildninger
ved hjelp av sirkelpakking. Project work at NTNU, 2010.

[13] Donald E. Marhsall. Numerical conformal mapping software: zip-
per. Software available from http://www.math.washington.edu/
~marshall/zipper.html.

[14] Donald E. Marshall. Complex analysis course notes. Coures notes
available from http://www.math.washington.edu/~marshall/
math536-10.html, 2009.

[15] Donald E. Marshall. Lens chains and the geodesic algorithm for conformal
mapping. Preprint available from http://www.math.washington.
edu/~marshall/preprints/preprints.html, 2009.

[16] Donald E. Marshall. Personal communication, 2010.

[17] Donald E. Marshall and Steffen Rohde. Convergence of a variant of the
zipper algorithm for conformal mapping. SIAM J. Numer. Anal., 45, 6:2577–
2609, 2007.

[18] Robert Nilssen. Personal communication, 2010.

[19] Wikipedia online encyclopedia. Figure from hls-hsv models. Available on-
line at http://en.wikipedia.org/wiki/File:Hsl-hsv_models.
svg, 2010.

[20] Burt Rodin and Dennis Sullivan. The convergence of circle packings to the
riemann mapping. J. Differential Geometry, (26):349–360, 1987.

[21] Donald Sarason. Complex Function Theory. American Mathematical Society,
2007.

[22] Kenneth Stephenson. Circlepack. Software available from http://www.
math.utk.edu/~kens/CirclePack/.

[23] Kenneth Stephenson. Circle packing: A mathematical tale. Notices of the
AMS, 50(11):1376–1388, 2003.

72

http://www.mai.liu.se/~halun/complex/domain_coloring-unicode.html
http://www.mai.liu.se/~halun/complex/domain_coloring-unicode.html
http://www.math.washington.edu/~marshall/zipper.html
http://www.math.washington.edu/~marshall/zipper.html
http://www.math.washington.edu/~marshall/math536-10.html
http://www.math.washington.edu/~marshall/math536-10.html
http://www.math.washington.edu/~marshall/preprints/preprints.html
http://www.math.washington.edu/~marshall/preprints/preprints.html
http://en.wikipedia.org/wiki/File:Hsl-hsv_models.svg
http://en.wikipedia.org/wiki/File:Hsl-hsv_models.svg
http://www.math.utk.edu/~kens/CirclePack/
http://www.math.utk.edu/~kens/CirclePack/

[24] Kenneth Stephenson. Introduction to Circle Packing. Cambridge University
Press, 2005.

[25] L. N. Trefethen. Numerical computation of the scwarz-christoffel transfor-
mation. SIAM J. Sci. Stat. Comput., 1:82–102, 1980.

[26] Eric W. Weisstein. Circle packing. MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/CirclePacking.html.

73

http://mathworld.wolfram.com/CirclePacking.html

	Title Page
	Problem Description
	Contents
	Introduction
	Conformal maps
	Plotting complex functions
	Plotting conformal complex functions
	Examples of conformal mappings
	The goal of this text

	Preliminaries
	Simply connected domains
	Möbius transformations
	Riemann mapping theorem
	A proof of the Riemann mapping theorem
	Quasiconformality
	Circle packing
	Discrete analytic function theory
	Hyperbolic geometry and the Poincaré model
	Polygons

	Physical applications of conformal mappings
	Example in fluid flow

	The Schwarz-Christoffel mapping method
	Basic idea
	Schwarz-Christoffel formula
	Explicit Schwarz-Christoffel maps
	Vertices at infinity
	Calculating the prevertices
	Calculating the integral
	Finding the inverse map
	Computer programs

	The geodesic algorithm and the Zipper program
	The geodesic algorithm
	Implementation details
	The slit algorithm
	The Zipper program
	Basic proof of convergence for the geodesic algorithm

	Circle packing method
	Constructing the circle complex
	Radius list for circle packing in hyperbolic geometry
	Placing the circles in hyperbolic geometry
	Refining the circle grid
	Continuous functions

	Evaulation of the different methods
	Computer software
	Usage

	Miscellaneous computer code
	Transforming a bitmap with the f(z)=z2 function
	Flow along a wall

	Computer program code for the geodesic algorithm
	Computer program code for the circle packing method
	Reading the polygon from a file
	Miscellaneous functions
	Construction of the circle complex
	Calculating the radius list
	Placing circles in the Poincaré model of the unit disc

	Bibliography

