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Abstract

This master thesis project concerns the structural monitoring applied to a windturbine. The

algorithm analysed in this master thesis is an extended Kalman Filter called the joint input-state

estimation algorithm.

Kalman Filter algorithm is usually fed with a measured signal that is to be filtered and some

model parameter. The filtering process is based on a weighted average between the model and the

measure at each time step. The weighting process involve calculation of noise covariance matrices.

This master thesis is an analysis on Kalman Filtering in case of an operating windturbine, the

measured signal correspond to motion data, either displacement, velocity or acceleration taken at

a given height. As on a windturbine, the excitation force applied through the rotor can not be

exactly known, an extended version of the Kalman Filter called the joint input-state estimation

algorithm will be used. This algorithm estimate at the same time the state and the input -excitation

force - of the system.

A special attention is given to detection and quantification of the modeling error which is the

main personal contribution to this field. A process to include modeling error in calculation of

covariance matrices is given and an analysis of the impact of each dynamical model parameter

error on the overall estimation error is carried out. Besides, the stability of the algorithm is also a

concern in this thesis. Finally, an optimisation of the sensor layout is performed.

As the Kalman Filter is linear, in the first instance algorithm will be analysed for periodic

sinusoidal signals as every signal can be seen as the infinite sum of harmonic signals. Then,

algorithm will be analysed on a virtual windturbine through FedEm R©. Advantage of virtual

simulation is that the user can control the importance of stochastic parameters.
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Introduction

Developpement of renewable energies and sucess of energy transition is one of the biggest chal-

lenge of the 21st century. This challenge relies, among other sources of renewable energy, on a

fast and significant increase of wind energy business. Wind energy production can be divided in

two families : onshore and offshore. Both present advantages and inconvenients but nowadays,

technical reasons bring onshore production to the foreground of wind energy. According to Wind

Europe report Wind in Power 2017 [20], wind energy in Europe is the second largest form of power

generation - after gas installations - with a net installed capacity of 168.7 GW, which represent

18% of the total net EU-installed power in 2017. Onshore production represents a net installed

power of 153 GW and offshore production reach 15.8 GW. Offshore is still far behind onshore but

the net installed power in 2017 can give us an indication on how fast the sector is developping. In

2017, Europe instlled 15.638 GW of new wind power capacity ; 12.484 of which were onshore and

3.154 offshore. Compared to 2016, onshore grew 14.3% while offshore grew 101%. This numbers

show how promising the offshore wind sector can be. Also, among other advantages, offshore wind

solve the problem of space as the sea space is usually unused. This advantage is very attractive

in a world with growing population and growing needs in terms of energy and food. The trend of

wind energy from 2005 to 2017 is very encouraging but EU has high-level objectives in terms of

renewable energy, which are quite challenging for the sector.

Wind energy challenges

The targets in terms of percentage of renewable in the energy mix are constantly reviewed but

several actors, including WindEurope agree to aim for 35% for 2030. Proaction studies are on-

going to determine the necesary today’s actions to fulfill this objective. Wind Europe present in

a report Wind energy in Europe: Scenarios for 2030 [21] three different scenarii for wind energy.

These scenarii are in line with EU-objectives but they require some breakthrough, especially in

offshore wind, to be reached. Indeed, offshore wind is now too expensive compared to onshore

wind or to other sources of energy production to be really competitive. Wind Europe expect the

offshore wind cost to be below 80e/MWh before 2025 for every windfarm, i.e. any depth and any

kind of turbine. This cost reduction can be realised at various levels : wind turbine construction,

maintenance and operation, lifetime extension... And, as presented in this report, an equilibrium

has to be found between these parts of a windturbine project.

The life time extension issue is an essential question because the first offshore windturbine date

back to the end of the 1990’s, which means that the first offshore windturbine reached or will
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soon reach the end of their designed lifetime. A windturbine demanteling is a huge and onerous

operation especially since it has never been done for any offshore windturbine. Are all the parts of

the turbine obsolete or are some parts reusable ? It is a new operation with big impacts on envi-

ronement and economy. That’s why, at the end of a windturbine lifetime, some specific questions

must be studied in detail. Knowing that producing electricity with a turbine creates money but

also damages the turbine, one has to wonder if there is an optimal solution between running the

windturbine and stopping it to protect it. One may also wonder if it is worth the risk to run the

windturbine knowing that it could collapse.

In order to have quantitative answers to these questions, wind turbines are fitted with different

kinds of sensors aimed to estimate the windturbine damage all along its lifetime. For economic

reasons, number and type of sensors are limited, e.g. a strain gauge is much more expensive and

complex to put on a windturbine than an accelerometer. Hence, having an efficient sensor dis-

tribution along the windturbine monopile is essential to compute a good damage estimation at

relatively low costs. This problematic will be the main topic of the thesis.

Motivation

Extracting acurate data from sensors on a windturbine can have a lot of impacts on energy

production costs. Not only can it extend the turbines lifetime thanks to an acurate fatigue damage

calculation, but it can also make the maintenance and operation (M & O) more effective. Es-

pecially in the field of offshore wind, M & O needs considerable means due to inaccessibility and

random - and possibly strong - weather conditions. These operations often represent a large amout

of money hence M & O is an important issue in the process of offshore wind cost reduction.

This work intent to provide a better understanding of the filtering processes used for wind turbine

monitoring, which could lead to a better estimation of wind turbine displacement and hence a

better estimation on fatigue damage.

Besides, the problem of extrapolating data from a sensor distribution is a wide problem in struc-

tural engineering. This work can be valuable for other fields than wind turbine, as it is mainly a

study of Kalman Filter (KF) algorithm, a filter widely used in dynamic engineering.

As a matter of fact the reason why this thesis is made are both for trying to provide a deeper

understanding of dynamical behavior of an offshore wind turbine and also to deepen my knowlege

as a master student.

State of the art

The Kalman Filter, first published by Rudholf E. Kalman in 1960 [6] is a very powerful tool

for signal processing and for system tracking. Its aim is to filter a signal resulting from a set of

deterministic and stochastic processes. Concerning its application on structural monitoring, the

filter and its application has been widely analyzed, among others, by E. Lourens and K. Maes

whose work is often referenced in this report.

The Kalman filter algorithm is able to compute an output estimation, given a model, measure-
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ment data and an input following a process explained through a sketch in Appendix A. However, in

most of the real structural dynamic systems such as buildings, bridges or monopiles, the excitation

force is caused by several factors and can often be realted to stochastic processes. Therefore, exact

excitation forces are rarely well known. Taking into account this important problem in study of

structural monitoring, S. Gillijns and B. De Moor developped in 2007 a joint input-state estima-

tion algorithm [2]. This algorithm can be considered as an extended Kalman filter and enable

to estimate both the input and the output of the system - excitation force and displacement or

velocity or acceleration in case of a dynamic system - through a weight average process between

model and measure. This weight tells the algorithm how trustful the model and the measurement

are. Computing the correct weight is all the mater of this thesis.

However, the algorithm developed by Gillijns and De Moor assumes that the different stochastic

processes are all uncorrolated, which can be - in some cases - too simplistic. In 2016, K. Maes

put forward a joint input-state estimation algorithm update in [11] that takes into account the

potential correlation between stocastic processes. This most recent algorithm is the one used and

analysed in this report.

As explained further, the Kalman Filter is based on a weight average process between measures

and a model. Uncertainty can affect both the measures and the model, however, in almost all the

Kalman Filter analysis done so far, the modeling uncertainties are neglected. Indeed, in presence

of modeling errors, the true dynamic behavior of the system is unknown and all the estmations

computed by the algorithm are biased. The influence of modeling error is very wide and complex

and hence often assumed to be meaningless for sake of simplicity.

In this report, a modeling uncertainty quantification based on operational modal analysis will be

put forward. Furthermore, the different parameters of the dynamic model and their impact on the

estimated response of the Kalmen Filter will be analysed one by one. Virtual simulation enables

to simply measure the modeling error by difference between simulations with and without model

uncertainties.

Objectives

The objectives of this thesis can be cathegorized in studying two main problems. During its

lifetime, a windturbine is subject to a lot of random factors which can be taken into account in

the filter as stochastic variables.

First, a detail analysis of KF algorithm will aim at having a better understanding of stability

and robustness of this filter, face to this stochastic variables and other sources of error. A special

care will be given to study the algorithm reaction face to model uncertainties, trying to include

their contribution within the joint input-state estimation algorithm.

The second objective is to use this filter for windturbine monopile monitoring and determine

if there is an optimal sensor distribution along the monopile which would minimize the total error
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on motion. In other words, existence of critical points where data can not be extrabolated will be

studied.

Structure

This thesis will be divided in two main parts. In a first instance, a mathematical formulation

of the KF applied to a dynamic system will be presented. After giving a general definition of

dynamical system, the Kalman Filter algorithm for joint input-state estimation will be analysed

closely in terms of uncertainty propagation in order to have a better idea about stability of the

filter. For the first part of this thesis all the examples will be given with a single degree of freedom

(SDOF) system for sake of simplification.

In a second phase, an example of KF aplication on a monopile will be carried on. After defin-

ing a model for the wind turbine time evolution, and after generating motion data through virtual

sensing thanks to FedEm software, the performances of the joint input-state algorithm will be

shown and discussed. Finally an optimization of the sensor layout on the wind turbine aiming to

minimize the estimated output error will be put forward.

Note: All along the report, the joint input-state estimation algorithm applied on a dynamic

system will be studied. The system input and output are different from the algorithm input and

output. The system input refers to the force applied on the system and the system output is either

displacement, velocity or acceleration. Besides, the algorithm input refers to the measurements of

the system output and the algorithm output correspond to the filtered system output signals and

to the system input.
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Analysis of Kalman Filter algorithm

1.1 Dynamical system model

1.1.1 Equation of motion

Consider a continuous-time equation of motion for a dynamical system with ndof degrees of

freedom:

Mü(t) + Cu̇(t) + Ku(t) = f(t) = Sp(t)p(t) (1.1)

With :

u(t) ∈ Rndof the vector of displacement,

M,C and K ∈ Rndof×ndof are the mass, damping and stiffness matrices respectively,

f(t) is the excitation vector.

If a number np of different forces are applied on the system, the excitation vector is often de-

composed into an input force influence matrix Sp(t) ∈ Rndof×np and a vector p(t) ∈ Rnp . The

vector p(t) contains the information of the np forces time history, and, each column of the matrix

Sp gives the spatial distribution of the load in the corresponding element of vector p(t). If the

load distribution changes in time then Sp becomes time dependant and is written Sp(t). In the

particular case of a SDOF system with a time dependant excitation applied on the system, the

matrix Sp is simply 1 and the vector p(t) is the value of the force at time t.

In order to write the governing equation in modal coordinates, the undamped eigenvalue prob-

lem [5] corresponding to 1.2 is solved:

KΦ = MΦΩ2 (1.2)

Where Φ ∈ Rndof×ndof is the matrix formed by the eigenvectors, and Ω is a matrix containing the

eigenfrequencies ωj in rad/s on its diagonal.

The displacement vector in modal coordinates z(t) is obtained by applying the coordinates

transformation from space coordinates to modal coordinates to displacement vector u(t): z(t) =
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Φu(t). Premultiplying 1.1 by ΦT yields:

ΦTMΦz̈(t) + ΦTCΦż(t) + ΦTKΦz(t) = ΦTSp(t)p(t) (1.3)

Assuming that mass normalized eigenvectors are used, i.e. ΦTMΦ = I and using equation 1.2

leads to ΦTKΦ = Ω2. The assumption of proportional damping leads to ΦCΦT = Γ, where Γ

contains the terms 2ξjωj on its diagonal with ξ the modal damping ratio.

The governing equation of motion in modal coordinates then becomes:

z̈(t) + Γż(t) + Ω2z(t) = ΦTSp(t)p(t) (1.4)

1.1.2 Continuous time state-space model

The state vector x(t) is defined as:

x(t) =

(
u(t)

u̇(t)

)
(1.5)

Once the state vector is defined,equation 1.1 can be written in matrix form as:

ẋ(t) = Acx(t) + Bcp(t) (1.6)

With Ac and Bc the system matrices defined as Ac =

[
0 I

−M−1K −M−1C

]
, Bc =

[
0

M−1Sp

]

The dynamic system contains an observator able to measure nd quantities. These observed

quantities are expressed in the measurement data vector d(t) ∈ Rnd . The observed quantities can

be expressed as a linear combination of acceleration, velocity and displacement:

d(t) = Saü(t) + Svu̇(t) + Sdu(t) (1.7)

Where Sa, Sv and Sd are the selection matrices. As an example in a SDOF system containing

one accelerometer and one strain gauge, i.e. measured data contains acceleration and dislacement,

Sa =

(
0

1

)
, Sv =

(
0

0

)
and Sd =

(
1

0

)
.

Considering the state vector x(t) in equation 1.5 and using equation 1.1, the output measured

data vector defined in equation 1.7 can also be expressed in state-space form as:

d(t) = Gcx(t) + Jcp(t) (1.8)

Where Gc ∈ Rnd×ns , ns = 2ndof is called the output influence matrix and Jc ∈ Rnd×np is the

direct transmission matrix.

They are defined as

Gc =
[
Sd − SaM

−1K Sv − SaM
−1K

]
(1.9)

Jc =
[
SaM

−1Sp

]
(1.10)
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In case of a model reduction, i.e. when the dynamics of the system are expressed by a reduced

number nm of modal coordinates z(t) as u(t) = Φrz(t), the state vector is transformed accordingly:

x(t) =

[
Φr 0

0 Φr

]
ζ(t) (1.11)

The modal state-space system model is then:

ζ̇(t) = Acζ(t) + Bcp(t) (1.12)

d(t) = Gcζ(t) + Jcp(t) (1.13)

Where Ac, Bc, Gc and Jc are defined as:

Ac =

[
0 I

−Ω2 −Γ

]
, (1.14)

Bc =

[
0

ΦTSp

]
, (1.15)

Gc =
[
SdΦ− SaΦΩ2 SvΦ− SaΦΓ

]
, (1.16)

Jc =
[
SaΦΦTSp

]
. (1.17)

1.1.3 Discretization of continuous time state space system model

A sampling frequency of 1/∆t is used to discretize the continuous time state space system model:

xk+1 = Axk + Bpk (1.18)

dk = Gxk + Jpk (1.19)

With xk = x(k∆t), dk = d(k∆t), pk = p(k∆t), k = 1,...,N .

It is shown in [7] that the matrices A and B can be expressed as:

A = eAc∆t , B =
∫ ∆t

0
eAcλdλBc = [A− I]Ac

−1Bc , G = Gc , J = Jc

In case of a small ∆t compared to characteristic time of the system, it is possible to use a linear

approximation saying that ẋk+1 =
xk+1 − xk

∆t
to symplify the expression of A :

A = I + ∆tAc.

1.2 Kalman Filter and joint input-state estimation

Any kind of dynamic system in real life is subject to known excitations and stochastic unknown

excitation. In addition, the sensors composing the system observor contain some noise which can
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be very annoying especially in fatigue analysis. Indeed noise in the motion signal can be interpreted

as a lot of charge/discharge cycles while it is not. The filtering process and especially the Kalman

Filter algorithm aims to estimate accurately the state of the system thanks to a model implemented

in the filter through matrices A and B. This model is theorical and can not describe the system

perfectly neither. These errors are accounted for in the system model by stochastic noise process

wk and measurement noise vk. When these noises are added to equation 1.18 and 1.19, the time

descrete deterministic-stochastic state-space description of the dynamic system is obtained :

xk+1 = Axk + Bpk + wk (1.20)

dk = Gxk + Jpk + vk (1.21)

The Kalman Filter algorithm consists in estimating the state xk from a set of measures dk. A

state estimator x̂[k|l] is defined as an estimate of xk for a sequence of outputs d[1,...,l]. In order to

estimate the process error, the error covariance matrix is defined as :

P[k|l] = E
[
(xk − x̂[k|l])(xk − x̂[k|l])

T
]
. (1.22)

The initial state x̂[0|−1] estimate and the initial error covariance matrix P[0|−1] are both assumed

known. The Kalman Filter algorithm compute the Kalman Gain K such as the state estimates

have the minimum variance and are unbiased. This gain act as a weight that put more importance

either on the measure or on the model at each time step. Indeed the Kalman Filter algorithm

propagates by computing state estimates x̂[k+1|k] as follow:

x̂[k+1|k] = Ax̂[k|k−1] + Bpk + Kk

(
dk −Gx̂[k|k−1] − Jpk

)
(1.23)

The Kalman gain is computed for each step as follow:

Kk = AP[k|k−1]G
T
(
GP[k|k−1]G

T +R
)−1

(1.24)

(Matrix R is defined below). And for each step, the error covariance matrix is updated in two

steps, the first step can be seen as the measurement update and the second step as the time update:

P[k|k] = P[k|k−1] + A−1KkGP[k|k−1] (1.25)

P[k+1|k] = AP[k|k]A
T + Q−KkS

T − SKT
k (1.26)

Where Q, R and S are known noise covariance matrices which can be computed as shown next.

1.2.1 Noise covariance matrices

The process noise vector wk accounts for unknown stochastic excitation and modeling errors

denoted by wSk and wEk respectively. The measurement noise accounts for unkown stochastic

excitation, modeling errors and measurement errors denoted by vSk, vEk and vMk respectively.

wSk and vSk which represent the stochastic excitation can be expressed as:

wSk = B′pSk (1.27)
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vSk = J′pSk (1.28)

With pSk the unknown vector of stochastic forces, B′ relates the state vector to the vector of

stochastic forces and J′ relates the output vector to the vector of stochastic forces.

wEk and vEk which represent the modeling error can be expressed as:

wEk = ∆Axk + ∆Bpk (1.29)

vEk = ∆Gxk + ∆Jpk (1.30)

With ∆A, ∆B, ∆G and ∆J the error on A, B, G and J matrix resulting from error on stiffness,

damping and mass matrices. Determination of these matrices will be subject to a further analysis

in section 1.2.2.

The noise processes wk and vk are assumed to be zero mean and white with known covariance

matrices Q, R and S defined by:

E

[(
wk

vk

) (
wT
l vTl

)]
=

[
Q S

ST R

]
δ[k−l] (1.31)

The assumptions are that stochastic forces represented by the vector pS and the state vector x

are uncorrolated, as well as pS and the force history vector p. It is also assumed that pS, x, and

p are zero mean, this is relevant in the context of a dynamic analysis.

Q = E(wkw
T
l ) = B′CpSB′T +∆ACx∆AT +∆BCp∆BT +∆ACxp∆BT +∆BCpx∆AT (1.32)

With CpS ∈ Rnps×nps the covariance matrix of the stocastic forces, Cx ∈ Rns×ns the covariance

matrix of the state vector, Cp ∈ Rnp×np the covariance matrix of the force, Cpx = E(pkx
T
l ) =

COV (pk,x
T
l ) ∈ Rnp×ns and Cxp = E(xkp

T
l ) = COV (xk,p

T
l ) ∈ Rns×np . Where nps is the number

of stochastic forces acting on the system.

S = E(wkv
T
l ) = B′CpSJ′T + ∆ACx∆GT + ∆BCp∆JT + ∆ACxp∆JT + +∆BCpx∆GT (1.33)

R = E(vkw
T
l ) = J′CpSJ′T + ∆GCx∆GT + ∆JCp∆JT + ∆GCxp∆JT + +∆JCpx∆GT + RM

(1.34)

With RM ∈ Rnd×nd the measurement error covariance matrix. CpS, Cp, Cx, Cpx, Cxp and RM

act as tuning parameters for the system and depend on the sensors quality, the size of the system

and type of input excitation force.

One can note that if modeling uncertainties are neglected, the expression for error covariance

matrix given in [12] is found.
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1.2.2 Modeling uncertainties

The aim of this section is to put forward a solution to compute matrices ∆A, ∆B, ∆G and

∆J defined in equations 1.29 and 1.30.

These modeling error matrices are the result from a wrong estimation of the dynamical parameters

of the system, i.e. mass matrix M, stiffness matrix K and damping matrix C. Thus the modeling

errors matrices should be the result of an estimation of error on M, K and C.

In practice, errors on K, C and M matrices can be spotted from errors on natural frequencies

ωj and on damping ratio ξj. To do so, natural frequencies and damping ratios for every mode has

to be identified from the measured output vector only, without any information on the excitation

force. This process is called the omerational modal analysis (OMA) and has been well studied in

case of unknown stochastic excitation. Several technics like Peak-picking technique [14] or Natural

excitation technique [4] enable the user to find the modal parameter of a system from an output

meaured signal, either displacement, velocity or acceleration.

In particular the peak-picking technique uses a frequency analysis and identify peaks corresponding

to the natural frequencies. This technique is a SDOF technique but it can be applied on MDOF

systems through a singular value decomposition (SDV) of the matrix of power spectra, i.e. each

mode of the MDOF system is seen as a SDOF system. This advanced version of peak-picking

method is known as the Complex Mode Indicator Function (CMIF) [3].

All the OMA techniques presented above assume that the input applied on the structure is a

stationary white noise. In a windturbine, the input force applied on the monopile is composed of

stochastic excitations which can be considered as white noise due to wind turbulences, but also

from an harmonic part due to blade rotation and tower shadow effect. In this case, the OMA

methods are not applicable. However, the response to a harmonic excitation can be seen as a

virtual eigenmode with zero damping and it can be considered that only white noise excitation is

present. This trick makes the OMA possible in presence of harmonic excitation but in order to

find the good modal properties of the system, the real eigenfrequencies have to be distinguished

from the pseudo eigenfrequencies due to harmonic excitation.

A solution based on peak-picking technique and on statistiacal analysis of the output is presented

in [1]. Indeed, the probability density function of a harmonic response is a distribution with two

peaks whereas the probability density function of a stochastic structural response is only one peak.

Probability density function of a harmonic response

Let X and Y be two random variables with corresponding probability density functions f(x)

and g(y) related by y = h(x). Then according to the fundamental theorem in [17]1:

g(y) =
f(x)

h′(x)
(1.35)

1Pages 93-94 of third edition (1991)
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Now, for a harmonic response of amplitude a, y = a sin(x+ θ) or x = arcsin
(y
a

)
− θ.

Since h′(x) = a cos(x+ θ) = a cos
(
arcsin(

(
y
a

))
=
√
a2 − y2:

g(y) =
f(x)√
a2 − y2

(1.36)

Taking the density function of X as uniform in the interval
[
−π

2
,
π

2

]
2:

g(y) =
1

π
√
a2 − y2

(1.37)

The density function above goes to infinity if y = a or if y = −a which means that the density

function has two distinct peaks.

Probability density function of a stochastic response

In case of stochastic loading, the structure is loaded by a large number of independant loading

sources which can be seen as a large number of stochastic variables. The central limit theorem

states that any linear combination of a large number of stochastic variables tends to a normal

distribution. Thus, the probability density function of a stochastic response will show only one

peak as a gaussian distribution.

After computing the modal response for each mode, i.e. for each peak detected in the frequency

domain decomposition of the signal, R. Brincker and al. in [1] are able to distinguish the type

of mode corresponding to each peak. In case of a harmonic mode, no further information will be

taken from the response, but in case of structural mode, the eigenfrequency and the damping ratio

will be identified thanks to a classic SDOF peak-picking method.

In reality, this method based on statistiacal analysis of the output is consistent only if the harmonic

frequencies are well separated from the structural eigen frequencies. In the case of a windturbine,

special care is given to avoid resonance in the design process. Hence, such an assuption is quite

realistic for a windturbine.

Once the eigen frequencies and the damping ratios are identified from the measured output

signal, it can be compared to the parameters of the model and thus identify and quantify the

modeling error.

1.2.3 Joint input-state estimation algorithm

In this most basic form of the Kalman filter, it is assumed that the excitation forces pk are known.

This assumption may be relevant for systems where the known excitation forces are significantly

higher than the stochastic forces applyed on the system but as our goal is to apply this Kalman

Filter on a wind turbine monopile, this assumption is not acceptable. Indeed, the wind may be

2The equation y = a sin(x+ θ) has one root in the interval
[
−π2 ,

π
2

]
for any θ
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very turbulent, even more in front of an obstacle like a wind turbine. It is of course possible to

have a mean value of the force applied on the structure thanks to anemometers but the actual

wind acting on the wind turbine can not be known exactly. Moreover, on offshore wind turbines

the waves add a significant stochastic excitation to the whole structure. Thus, it is necessary to

consider the force as a unknown variable that is to be estimated.

The original algorithm called the joint input-state estimation algorithm is found in [9] but con-

trary to the assumption made in it, the noise vectors wk and vk are correlated as it is done in [11]

because they both account for excitation forces and modeling errors.

As done in section 1.2, a state estimate x̂[k|l] is defined as an estimate of xk. In addition to the

basic KF algorithm, an input estimate p̂[k|l] is defined as an estimate of pk.

The error covariance matrix P[k|l] is defined for both state and input and are denoted by Px

and Pp respectively. Px is defined in 1.22 and Pp is defined similarly:

Pp[k|l] = E
[
(pk − p̂[k|l])(p

T
k − p̂T[k|l])

]
(1.38)

Input and state are obviously correlated signals, thus a cross covariance matrix Pxp has to be

defined:

Pxp[k|l] = PT
px[k|l] = E

[
(xk − x̂[k|l])(p

T
k − p̂T[k|l])

]
(1.39)

In addition, a vector of output quantities de(t) that are to be identified - which is a combination

of acceleration, velocity and displacement of the system - is introduced as:

de(t) = Sde,aü(t) + Sde,vu̇(t) + Sde,du(t) (1.40)

Where Sde,a, Sde,v and Sde,d are the selection matrices, similar to equation 1.7 except that de(t)

represents the output quantities that are to be identified and not the output quantities measured.

Similarly to what is done in section 1.1.2, equation 1.40 can be transform into its state-space form.

After adding a measurement noise to this output vector, it is expressed as:

dek = Gexk + Jepk + vek (1.41)

Matrices Ge and Je are obtained from equations 1.9 and 1.10 by replacing selection matrices

of output measured quantities Sa, Sv and Sd by the selection matrices of output quantities to

be identified Sde,a, Sde,v and Sde,d. The measurement noise vector vek accounts for stochastic

excitation and modeling errors and is assumed to be zero mean and white with known covariance

matrices Re and Rc:

E
[
vekve

T
l

]
= Reδ[k−l], and E

[
vekv

T
l

]
= Rcδ[k−l] (1.42)

Finally, an output vector estimate d̂e is defined and the error covariance matrix corresponding to
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output estimate is defined similarly to other error covariance matrices :

Pde[k|l] = E
[
(dek − d̂e[k|l])(d

T
ek − d̂Te[k|l])

]
(1.43)

Joint input-state estimation algorithm

The algorithm presented below is taken from [11]. The initial state estimate vector x̂[0|−1] and

its error covariance matrix Px[0|−1] are assumed to be known. The algorithm proceeds by com-

puting the input, the state estimate, and the output estimate recursively in four steps, the input

estimation step, the measurement update, the time update and the output estimation step:

Step 1: Input estimation

R̃k = GPx[k|k−1]G
T + R (1.44)

Mk =
(
JT R̃−1

k J
)−1

JT R̃−1
k (1.45)

p̂[k|k] = Mk

(
dk −Gx̂[k|k−1]

)
(1.46)

Pp[k|k] =
(
JT R̃−1

k J
)−1

(1.47)

Step 2: Measurement update

Kk = Px[k|k−1]G
T R̃−1

k (1.48)

x̂[k|k] = x̂[k|k−1] + Kk

(
dk −Gx̂[k|k−1] − Jp̂[k|k]

)
(1.49)

Px[k|k] = Px[k|k−1] −Kk

(
R̃k − JPp[k|k]J

T
)

Kk (1.50)

Pxp[k|k] = PT
px[k|k] = −KkJPp[k|k] (1.51)

Step 3: Time update

x̂[k+1|k] = Ax̂[k|k] + Bp̂[k|k] (1.52)

Nk = AKk (Ind
− JMk) + BMk (1.53)

Px[k+1|k] =
[
A B

] [Px[k|k] Pxp[k|k]

Ppx[k|k] Pp[k|k]

][
AT

BT

]
+ Q−NkS

T − SNT
k (1.54)

Step 4: Output estimate

de[k|k] = Gex̂[k|k] + Jep̂[k|k] (1.55)

Zk = GeKk (I− JMk) + JeMk (1.56)

Pde[k|k] = GePx[k|k]Ge
T + JePp[k|k]Je

T + GePxp[k|k]Je
T + JePpx[k|k]Ge

T + Re − ZkRc
T −RcZ

T
k

(1.57)

Mk and Kk are the gain matrix for input estimation and state estimation respectively. They

are determined such as the input estimate p̂k and the state estimate x̂k are minimum variance and
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unbiased.

The ucertainties on force and state estimate are quantified by the trace of error covariance ma-

trices, Pp[k|k] and Px[k|k] respectively. Similarly, the uncertainty on output estimated quantity is

quantified by the trace of output covariance matrix Pde[k|k].

The MATLAB R© script for this algorithm in the simple case of a SDOF system is presented in

Appendix B.

1.2.4 Algorithm results

For reasons of system identifiablity presented in [10], measured quantities are subject to some con-

straints. As the algorithm is computing both input and state, the measurements have to satisfy

criteria of obervability, controlability and direct inversion.

For a SDOF system, the criterion of direct inversion requires that the output vector contains at

least one acceleration measurement. In addition, avoiding marginally stable transmission zeros

(see section 1.3) requires that the output vector contains at least one displacement measurement.

In the first instance, some results of the algorithm with satisfied instentaneous system inversion

conditions will be presented: a SDOF system, with a mass m = 10kg, a dashpot c = 2kg/s and

a stiffness k = 1000N/m is considered. First, a very short and high force shaped like a peak with

an amplitude of 100N is applied to the system. Then a sinusoidal excitation force of amplitude

F0 = 20N and a pulsation ω0 = 7rad/s which is most likely the type of load seen by a windturbine

is applied on the system. The algorithm is run in abscence of stochastic forces and with insignificant

measurement noise3. The initial state vector x̂[0|−1] and the initial error covariance matrix Px[0|−1]

are both assigned to zero value. In order to simulate the measured quantities, the dynamical

equation 1.1 of the system is numerically solved and some atificial white and zero mean noise is

added to the solution.

Figures 1.1 and 1.2 shows that in abscence of stochastic excitation, modeling errors and with

almost no measurement error, the algorithm is able to reconstruct almost perfectly the actual force

applied on the system and the system state.

The ”true displacement” is the numerical solution to the dynamic equation 1.1 applied to the SDOF

system described above and the ”true force” is the force implemented in the dynamical equation

resolution.

The measurement - which is in this example the ”true” output - is now disturbed with some

gaussian noise. σM ,d = 10−3m and σM ,a = 10−2m/s2 are the standart deviation of measurement

3The standart deviation of measurement noise can not be set strictly to zero because we see in the joint input-state

estimation algorithm that inverse of R̃ has to be computed, which means that the matrix can not be singular. To

avoid this problem, we set a standart deviation of 10−7 for the noise in displacement and acceleration measurement.

This problem is not so important as the aim of the algorithm is, among other, to filter measurement noise.
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Fig. 1.1 : Response to peak excitation

noise for the displacement and the acceleration respectively. A zero mean and white stochastic

force acting on the system with a standart deviation σps = 2N is also considered. Finally for this

example as well, the initial state vector x̂[0|−1] and the initial error covariance matrix Px[0|−1] are

both assigned to zero value. Figure 1.3 shows the capacity to remove the noise from the measured

output. For this example, the filter shows very satisfying results in terms of strain estimation. The

uncertaity on output estimate, tr(Pde) = 2.8× 10−8 m2 is almost insignificant. On another hand,

the force estimate is less accurate, the uncertainty on the force estimate, tr(Pp) = 4.04 N2. This

result correspond to a stochastic force with a standart deviation of 2N. Besides, force estimation

can be important for operating but for fatigue calculation, only strain estimation which are in this

case very accurate are important.

Hence, for a SDOF system the algorithm is very performant when modeling errors are assumed

negligible. In reality, it is very unlikely that the complex dynamic model used for the wind turbine

monopile is perfect. Indeed, even if values of stiffness, mass and damping are accurately measured,

the finite element process will introduce some error, especially as the main deformation on the

monopile is bending. Thus, the response of the algorithm in attendance of modeling errors is

analysed below.

In presence of modeling errors, the system described by equations 1.20 and 1.21 does not rep-

resent the true dynamic behavior of the structure anymore. The force and the state obtained from

the joint input-state estimation algorithm are no longer minimum variance and unbiased. The

force and state covariance matrices do not correspond to the true error on the biased estimates.

Similarly, in the presence of modelling errors, the estimated output covariance matrix Pde[k|k] does

not correspond to the true error on the biased output estimate. Hence it is not possible to use the



Chapter 1. Analysis of Kalman Filter algorithm 20

0 2 4 6 8 10
Time [s]

-20

0

20
F

or
ce

 [N
]

True force

0 2 4 6 8 10
Time [s]

-20

0

20

F
or

ce
 [N

]

Estimated force

0 2 4 6 8 10
Time [s]

-0.1

0

0.1

di
sp

la
ce

m
en

t [
m

] Estimated displacement

0 2 4 6 8 10
Time [s]

-0.1

0

0.1

di
sp

la
ce

m
en

t [
m

] True displacement

Fig. 1.2 : Response to sinusoidal excitation
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Fig. 1.3 : Response to sinusoidal excitation with measurement noise and stochastic forces

error covariance matrix to estimate the error on input and output estimate.

However, the advantage of virtual sensing is that every parameter is controllable, such as mea-

surement noise, standart deviation of stochastic forces and modeling error matrices ∆A and ∆B.

Thereupon, it is possible to see how the algorithm reacts to modeling errors by comparing esti-

mated output with and without modeling error. It is important to note that the modeling error

analysis can not be decoupled from the other sources of error. Indeed, if the measurement noise

and stochastic forces are set to zero, it means that the measured output quantity is the exact

solution and the algorithm will rely one hundred percent on the measurement and the imformation

given by the model will be totally useless. The process to quantify modeling error is described

below :

• A reference output estimate with no modeling error is computed with a set of parameters

that describes the stochastic forces and the measurement noise.

• While keeping the same measurement noise4, the joint input-state estimation algorithm is

4The measurement noise is made randomly everytime that the algorithm is run. To be sure that the modeling
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run with modeling errors on the stiffness k, the daming c and the mass m.

• The standart deviation of the difference between the two signals σmodel is used to quantify

the modeling error on the output estimate.

The set of parameters for stochastic forces and measurement noise is the same than on the pre-

vious examples, i.e. σM ,d = 10−3m and σM ,a = 10−2m/s2 the standart deviation of measurement

noise for the displacement and the acceleration respectively, with a stochastic force of standart

deviation σps = 2N applyed on the system. The results for different values of error on mass and

on stiffness for a damping error errc = 0% are presented in table 1.1.

σmodel × 10−3 [m] 1% 5% 10% 20% 50% 80%

1% 0.3 1.6 2.7 3.8 4.5 4.7

5% 1.8 2.7 3.4 4.0 4.6 4.7

10% 3.1 3.5 3.9 4.2 4.6 4.8

20% 4.1 4.2 4.4 4.5 4.7 4.8

50% 4.8 4.8 4.8 4.9 4.9 4.9

80% 5.0 5.0 5.0 5.0 5.0 5.0

Table 1.1: Values of σmodel[m] for different relative error on mass (rows) and stiffness (columns) with no

damping error

The results for different values of error on mass and on stiffness for a daming error errc = 20%

are presented in table 1.2.

σmodel × 10−3 [m] 1% 5% 10% 20% 50% 80%

1% 0.8 1.8 2.8 3.8 4.5 4.7

5% 2.0 2.8 3.4 4.0 4.6 4.7

10% 3.2 3.5 3.9 4.2 4.6 4.8

20% 4.1 4.2 4.4 4.5 4.7 4.8

50% 4.8 4.8 4.8 4.9 4.9 4.9

80% 5.0 5.0 5.0 5.0 5.0 5.0

Table 1.2: Values of σmodel for different relative error on mass (rows) and stiffness (columns) for a relative

damping error of 20%

Different conclusions can be drawn from this tables. First, the algorithm stays quite stable for

small modeling errors, indeed, the range of σmodel is always 10−3 which is equal to the standart

deviation of the noise in the displacement measurement, there is no unstable phenomenon with

error is observed without any other measurement noise, the measure has to stay exactely the same when the reference

output estimate is computed and when the response with modeling error is computed.



Chapter 1. Analysis of Kalman Filter algorithm 22

the modeling errors concerning the output estimation.

Then, we can rank in order of importance in the algorithm the three dynamical parameters

mass m, damping c and stiffness k. The difference between m and k is slight in the results pre-

sented but as the mass m is involved more significantely5 than stiffness k in force estimation, the

mass is stated as the most important dynamical parameter that is to be measured as accuratly

as possible. Then comes the stiffness k, to which the output estimate is also sensitive and finally,

the damping c has less effect on the modeling error, hence it is not necessary to use resources to

measure the damping c very acurately.

Last but not least, the modeling error tends to a limit which seems to be 5.0 × 10−3 for the

set of parameters considered in this example. This is indeed due to the fact that the joint input-

state estimation algorithm is based on a principle of weight mean between the measure and the

model. Thus, once the model starts to be very unacurate, all the weight is put on the measure. The

output is then not absurd but if the modeling errors are too high, the key concept of filtering is lost.

Concerning the input estimate, the algorithm does not behaves as well as it does with the

output estimate. The process presented above to compute σmodel is done once again to compute

σinputmod
, which is the uncertainty induced by modeling error on the input estimation. Results are

presented in table 1.3

σinputmod
[N ] 1% 5% 10% 20% 50% 80%

1% 0.4237 0.8178 1.4578 3.5794 12.6907 22.5118

5% 1.2614 1.7721 2.6486 5.1496 14.4666 24.3161

10% 2.4979 3.2481 4.4205 7.2140 16.7032 26.5793

20% 5.9303 7.0255 8.4759 11.5368 21.2168 31.1266

50% 18.9496 20.2274 21.8352 25.0772 34.9273 44.8676

80% 32.6549 33.9559 35.5862 38.8582 48.7376 58.6744

Table 1.3: Values of σinputmod
for different relative error on mass (rows) and stiffness (columns) for a

relative damping error of 0%

The increase of model errors has dire consequences on the input estimate. Contrary to the

output estimate, the joint input-state estimation algorithm does not include any force measure-

ment that can prevent the model error from becoming very large. Indeed, when the algorithm

include a measurement of the quantity that is to be estimated, in case of high modeling error, the

weighted average process can put all the weight on the measure and not on the model. However,

when the algorithm does not include any measurement of the quantity that is to be estimated,

both the modeling term and the measurement term that acts in the weighted average process are

biased. One can see in figure 1.4 that with 10% relative error on mass and stiffness, the shape of

the estimated force is totally different from the true force.

5The gain matrix Mk used for input estimation is computed with matrix J which contains the mass m but not

the stiffness k.
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0% relative error on damping

The results on model error in force estimation confirm that the algorithm is more sensitive to

error on mass m than on stiffness k.

In order to keep a good filtering performance, the input has to be computed accurately as it is

used in the measurement update for the state. Then a criteria on σinputmod
can be set: the standart

deviation of the uncertainty introduced by modeling errors σinputmod
has to be at least 10 times

lower than the standart deviation of the stochastic forces applied on the structure. This criterion

ensures that the stochastic forces remain predominant in the process of force estimation.

1.3 Stability of filtering process

It has been seen that in the example of SDOF system, when the output measured vector con-

tains acceleration and displacement and when the ouptut vector to be estimated contains only

displacement, the algorithm is stable against measurement errors, stochastic forces and modeling

errors. In this part, stability criteria will be analysed deeper and not only for SDOF systems. This

part is not a personal contribution, as this problem is studied in [10] but it is still explained there

for sake of completeness.

1.3.1 Identifiability conditions

In the joint input-state estimation algorithm, the input and output quantities are estimated from

an output measured vector and a model. Hence it is necessary that the measurement contains

information on all the quantities that are to be estimated. The identifiability condition requires

observability and direct inverstability.

Observability

System observability requires that all the states are observed in the system output. An observ-

ability matrix is defined:
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O =


G

GA
...

GAns−1

 (1.58)

The system described by equations 1.20 and 1.21 is observable if and only if rank(O) = ns with

ns the number of system state.

This criteria is automatically satisfied in a SDOF system as long as G is non-null. For a multiple

degree of freedom (MDOF) system, when a modally reduced order model is used, observability

requires that all modes considered in the model contribute to the measured quantity.

Direct inversion

Direct invertibility requires that the input can be estimated from the output without any time

delay. The necessary and sufficient condition for direct invertibility is, for a system described by

equations 1.20 and 1.21, rank(J) = np with np the number of input forces that are to be estimated.

For a SDOF system with only one force applying on it, the direct inversion is satisfied as long

as J is non-null. According to 1.10, Sa has to be non-null which means that the output measure

vector should contain at least one acceleration measurement. For a MDOF system, when a modally

reduced order model is used, this direct inversion criteria requires two conditions:

• The number of input forces to be identified np has to be lower or equal to the number of

modes used in the model nm.

• The number of acceleration measurements nd,a has to be greater or equal to the number of

input forces to be estimated np.

Proofs for the statements above can be found in [10] and [13].

Controlability

When unknown ambiant forces such as wind loads are acting on the structure, the location

and the spatial distribution of these forces are not well known. In this case, the joint input-state

estimation algorithm is applied to identify a set of forces acting at predefined locations, i.e. Sp is

a parameter set by the user. Then the estimated forces are not the true force but equivalent forces

that compensates for any source of vibration. The unknown vibration source generally excites all

modes, so the estimated forces should be able to do the same. This requires that all the states of

the system can be controlled by the system input.

The system controlability is tested by the controllability matrix C:

C =
[
B AB . . . Ans−1B

]
(1.59)

The system described by equations 1.20 and 1.21 is controllable if and only if rank(C) = ns,

with ns the number of system states.
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For a MDOF system and for a modally reduced order model, if all damped natural frequencies are

different, controllability requires that the matrix SpΦ does not contain any zero columns.

These invertibility conditions are necessary but not sufficient to guarentee that the forces and

the system states can be estimated in the presence of noise. The system also needs to satisfy

stability and uniqueness conditions to estimate the input and output correctly.

1.3.2 Stability and uniqueness conditions

It is now assumed that the system is totally observable, controlable and that it satisfy the direct

invertibility conditions. In this section, the properties and the rank of Rosenbrock’s system matrix

will be analyzed ([16],[19]):

R =

[
A− λjI B

G J

]
(1.60)

λj ∈ C is called a finite transmission zero of the system if

rank(R) ≤ ns +min(np,nd) (1.61)

The transmission zero of a system depends on all four system matrices A, B, G and J and are

found by solving the generalized eigenvalue problem:[
A B

G J

][
x[0]

p[0]

]
=

[
λjI

0

]
(1.62)

When a modally reduced order model is used, the mode shapes Φj, the natural frequencies ωj

and the damping ratio ξj determine the location of the transmission zero in the complex plan. The

location of the transmission zero also depends on the type, number and location of the sensors used

for the measured output vector. If a transmission zero is located inside the unit circle, i.e. |λj| < 1,

the transmission zero is called stable. If |λj| = 1, the transmission zero is called marginally stable.

If |λj| > 1, the transmission zero is called unstable.

The following theorem is stated and proved in [10]:

Theorem: If only acceleration and/or velocity measurements are included in the output vector,

there will always be at least one purely real transmission zero λj = 1 marginally stable.

Indeed, a transmission zero λj = 1 correspond to a constant excitation force. Both acceler-

ation and velocity measurement are insensitive to constant excitation, hence the input can not

be computed exactly with only velocity and acceleration measurement. Eventhough in dynamical

studies the constant forces and displacement are not important, they can be responsible for system

inversion instability.

To avoid the marginally stable transmission zero, it is stated in [10] that the number of displace-

ment measurement has to be greater or equal to the number of forces np that are to be estimated.
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The proposition on uniqueness is stated in [10] is presented below:

Proposition: The input of a system with at least one finite transmission zero cannot be

uniquely reconstructed.

Indeed, if the system has a finite transmission zero, then by definition (equation 1.62) it exists

an initial input and an initial state for which the system output is zero. As a consequence, the

input cannot be uniquely reconstructed from the measured output.

To ilustrate the stability and uniqueness criteria, the joint input-state estimation algorithm is

run with a measured output vector containing only acceleration. The system is the same than

the one presented in section 1.2.4 but without displacement measurement. Matrices G and J

and the error covariance matrices changes consequently. The estimated force and the estimated

displacement are compared to the results in section 1.2.4 in figure 1.5
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Fig. 1.5 : Response to sinusoidal excitation and estimation of this excitation force with only acceleration

measurement

Both input and output estimations are shifting from the good solution. Then the force and

the displacement are not computed perfectly. If the aim of the process is to calculate the fatigue

damage to the structure, the important data are the charge/discharge cycles which can be identified

for example thanks to a rainflow counting method. Three cycles parameters are factored: the range

of the charge/discharge cycle, its mean value, and the number of cycles. The range and the number

of cycles will be the same in both cases but the mean value will change.

However, as the shape of the signal is the same in both cases, it is feasible to redress the signal

so that its mean value would be zero before proceeding with the rainflow counting process. In

practice, accelerometers are very cheap compared to strain gauges and much easier to set up on a
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wind turbine. Thus, estimating the signal without displacement measurement, and then proceed

to an average adjustement may be a good economical solution for monitoring.



Chapter 2

Dynamic study of an offshore

windturbine

2.1 Windturbine model

In this chapter, an offshore windturbine will be modeled by a tube-shaped beam clamped at one

end and free at the other end, with a tip mass Mtip at the free end representing the nacelle and

the rotor of the wind turbine. The beam will be submited to different kind of loads:

- The main load applied at the tip of the beam is caused by the lift component of the force

applied on the blades. This force is the only force that is to be estimated with the joint

input-state estimation algorithm.

- Light stochastic loads are applied all along the emerged part of the beam. This stochastic

forces are caused by the wind on the structure, other than the blades.

- Slightly stronger stochastig loads are applied all along the immersed part of the beam in

order to imitate the action of the stream and of the vortex induced vibrations (VIV) on the

structure.

- Finally a stronger stochastic force is applied at the waterline level which accounts for VIV

and for stronger forces due to the waves such as slaming loads in case of plunging waves.

The beam itself is modeled by an Euler-Bernoulli model in 2D. Then, the motion in only one

dimension will be studied. The system is sketched in figure 2.1.

A modal analysis will be carried out on this beam. First, the eigenfrequencies and the mode

shape have to be determined. The equilibrium equation of an Euler-Bernoulli beam can be written

as [15]:

ρAw,tt + EIw,xxxx = 0 (2.1)
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Fig. 2.1 : Sketch of the studied system - Arrows on the left side of the beam represents stochastic forces

applying on the structure.

Where ρ is the volumic mass of the beam, A the surface of its cross section,l its length, E its

Young modulus and I its quadratic moment.

Four boundary conditions are needed to describe the model correctly [8]:

w(0,t) = 0 (2.2)

w,x(0,t) = 0 (2.3)

w,xx(l,t) = 0 (2.4)

EIw,xxx(l,t) = Mtipw,tt(l,t) (2.5)

Equations 2.2 and 2.3 come from the fact that there is nore displacement neither rotation at

the clamped end of the beam. Equation 2.4 expresses the abscence of bending moment at the free

end of the beam. Equation 2.5 comes from the fundamental dynamic principle applied at the end

of the beam which tells that the shear force is equal to the tip mass times the tip mass acceleration.

As vibration modes are studied, a solution of the following form will be searched:

w(x,t) = W (x)eiωt (2.6)
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Subsituting equation 2.6 in equation 2.1:

− ω2ρAW (x) + EIW ′′′′(x) = 0 (2.7)

The boundary conditions can be expressed as:

W (0) = 0 , W ′(0) = 0 , W ′′(l) = 0 , W ′′′(l) = −Mtip

ρA
W ′′′′(l) (2.8)

Equations 2.7 and 2.8 form the eigenvalue problem.

It is assumed that the solution of 2.7 can be written as:

W (x) = Beβ̃x (2.9)

Substituting equation 2.9 in 2.7, and simplifying by Beβ̃x:

− ω2ρA+ EIβ̃4 = 0 (2.10)

2.10 has then four solution on β̃:

β̃ = ±
[
ω2ρA

EI

] 1
4

= ±β , β̃ = ± i

[
ω2ρA

EI

] 1
4

= ± iβ (2.11)

Thus W (x) can be written as:

W (x) = B1 cosh(βx) +B2 sinh(βx) +B3 cos(βx) +B4 sin(βx) (2.12)

Using 2.12 and the boundary conditions, it can be stated that:


1 0 1 0

0 1 0 1

cosh(βl) sinh(βl) − cos(βl) − sin(βl)

sinh(βl) + µβ cosh(βl) cosh(βl) + µβ sinh(βl) sin(βl) + µβ cos(βl) µβ sin(βl)− cos(βl)



×


B1

B2

B3

B4

 = 0 (2.13)

With µ =
Mtip

ρA

The equation 2.13 has to be true for non-trivial solutions, i.e. for
[
B1 B2 B3 B4

]T
6= 0,

which means that the determinant of the first matrix has to vanish:
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∣∣∣∣∣∣∣∣∣
1 0 1 0

0 1 0 1

cosh(βl) sinh(βl) − cos(βl) − sin(βl)

sinh(βl) + µβ cosh(βl) cosh(βl) + µβ sinh(βl) sin(βl) + µβ cos(βl) µβ sin(βl)− cos(βl)

∣∣∣∣∣∣∣∣∣ = 0

(2.14)

⇔ 1 + cos(βl) cosh(βl)

βl(sin(βl) cosh(βl)− cos(βl) sinh(βl)
=
Mtip

ρAl
(2.15)

Numerical methods are used to solve the characteristic equation 2.15 and obtain the nm first

natural frequencies of the system. The number of modes nm is determined by the user.

Solving partially equation 2.13 for B2, B3 and B4 gives :

B2 = −B1
cosh(βl) + cos(βl)

sinh(βl) + sin(βl)
, B3 = −B1 , B4 = B1

cosh(βl) + cos(βl)

sinh(βl) + sin(βl)
(2.16)

These results are used in equation 2.12 and for each circular natural frequency βn
1, the core-

sponding mode shape is numerically computed as:

Wn(x) = B1

[(
cosh(βnl) + cos(βnl)

sinh(βnl) + sin(βnl)

)
(sin(βnx)− sinh(βnx)) + cosh(βnx)− cos(βnx)

]
(2.17)

The eigen frequencies ωn are computed from equation 2.11 and the corresponding mode shapes

Φn are computed from equation 2.17.

2.1.1 Mode shapes normalization

It is assumed in the system description in section 1.1.1 that the mode shape matrix Φ satisfies

the orthonomralization condition, i.e. ΦMΦT = I. Hence the value of B1 is not important and

can be arbitrary set e.g. to B1 = 1.

For the normalization process only, the mass matrix M is defined using lumped mass and finite

element method. The beam is divided in ndisc elements, each one with a local mass matrix

M e =
1

2
ρAl

[
1 0

0 1

]
(2.18)

The global mass matrix is obtained by merging all the element matrices.

The eigenvectors are normalized by:

Φn = Φn/
√

ΦnMΦT
n (2.19)

1solutions of equation 2.15
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The four first eigen frequencies and their corresponding mode shapes are represented in figure

2.2. The parameters used for this simulation are: length l = 107.6m, volmic mass ρ = 8500kg/m3,

young modulus E = 2.1×1011Pa, Poisson ratio ν = 0.3, diameter D = 6m and thikness t = 0.06m.

Matrix Φ is obtained from the concatenation of all the mode shapes.
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Fig. 2.2 : Four first eigen frequencies and their corresponding mode shapes for a set of dynamical

parameters

2.1.2 Modal damping

As the assumption of proportional damping holds, Γ is a diagonal matrix containing the values

of modal damping ratios for each mode. For a wind turbine, damping is the combination of two

phenomena: the structural damping and the aerodynamic damping. Thus the damping ratios de-

pend on the wind speed. However, as shown in section 1.2.4 the modeling error on damping values

does not have so much impact on the overall estimation error. Hence, in this report, no further
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attention will be paid to wind turbine damping.

Values for damping ratios for the three first modes are taken from [12] and come from mea-

surements on a Vestas V90 3MW located in the belgium north sea with a height of 72 m above

lowest astronomical tide, a water depth of 24 m and a diameter of 5 m.

Γ =

2× 1.86ω1 0 0

0 2× 1.38ω2 0

0 0 2× 0.56ω3

% (2.20)

2.1.3 Model reduction

Strictly speaking, the number of modes should be equal to the number of degrees of freedom of

the system. However, only the low frequency modes have a physical meaning [18].

If the structure is excited by harmonic forces with a frequency within a bandwidth ∆ω, its

response is dominated by the modes whose natural frequency belongs to the excitation bandwidth.

The structural response can be splited into two kinds of modes: the modes whose frequency

belongs to the excitation bandwidth which are responding dynamically and the modes with higher

frequency which are responding in a quasi-static manner.

In the context of dynamical study, the three first modes will be taken into account in the im-

plementation of joint input-state estimation algorithm.

Finally system model matrices A, B, J and G are computed from equations 1.14, 1.15, 1.16

and 1.17.

2.2 Data aquisition

The data used in the joint input-state estimation algorithm will be taken from the finite element

software specialized in offshore structures dynamic analysis FedEm R©.

Different simulations of the joint input-state estimation algorithm will be carried out :

- First the algorithm response will be analyzed when the output measured vector contains

one displacement measurement, one acceleration measurement and when only one excitation

force is to be estimated. In this case the identifiability, stability and uniqueness conditions

are fulfilled.

- Then the algorithm response will be analyzed when the uniqueness condition expressed in

1.3.2 is lacking, i.e. when the measured output vector does not contain any displacement or

strain measurement.

This case is particularely interesting as the accelerometers are cheap sensors and are easy to

install on a structure, whereas the displacement sensors or strain gauges often have to be

installed during the building process and are much more onerous.
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- Finally, an optimization of the sensor layout will be put forward by comparing the output

estimate error for different arrengements of accelerometers and displacement sensors.

A windturbine with a monopile which has the same dynamical properties than in 2.1 is imple-

mented in FedEm R©. The windturbine is loaded with a constant wind of 8m/s. A sampling rate

of 1250Hz is used in the data aquisition. In the system described above, only one force is to be

estimated. Thus, the system identifiability, stability and uniqueness conditions require that the

measured output vector contains at least one displacement and one acceleration measurement.

An example of measured output vector is shown in figures 2.3 and 2.4. The displacement mea-

surement is taken at 97 m, and the acceleration measurement is taken 64 m above the mudline.
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2.3 Algorithm response analysis

2.3.1 Transfer functions of the system

The characteristics of the algorithm presented in section 1.2.3 depend on the dynamic behavior

of the system and on the sensor layout. In order to analyse the impact of the sensors arrangement

on the estimation error, the system transfer function relating Fourier transform of input to Fourier

transform of output is computed.

The system transfer function Hdp is defined in the Laplace domain by :

Hdp(s) =
nm∑
m=1

sqφdmφpm
s2 + 2ξmωms+ ω2

m

(2.21)

With s the Laplace variable, ξm and ωm are the modal damping ratio and the natural frequency

corresponding to mode m. φdm and φpm are the components of mode shape corresponding to

mode m taken respectively at the sensor(s) and at the force(s) location. The integer q equals 0 for

displacement measurement, 1 for velocity and 2 for acceleration.

Replacing s by iω, the transfer function in frequency domain is obtained. Figures 2.5 respec-

tively 2.6 show the transfer function obtained for displacement sensor and acceleration sensors

respectively at 40 m above the mudline and at the tip of the beam.
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Fig. 2.5 : Transfer function relating Fourier transform of the displacement measure to Fourier transform

of the force (left) and Fourier transform of the acceleration measure to Fourier transform of the force

(right). Both acclerometer and displacement sensors are 40 m above the mudline

Three peaks corresponding to the eigenvalues can be identified for both sensor heights, however,

the abscence of clear dips in figure 2.5 shows that existence of antiresonance frequencies depends

on the sensor position on the monopile.

It has been shown in [11] that the estimation error depends on the zeros stability of the transfer

function because the estimation error is maximum at the antiresonance frequencies. Hence, in case

of existence of antiresonance frequencies, a special care will be given to unstable zero analysis in

the optimization of the sensor layout in section 2.3.3.
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Fig. 2.6 : Transfer function relating Fourier transform of the displacement measure to Fourier transform

of the force (left) and Fourier transform of the acceleration measure to Fourier transform of the force

(right). Both acclerometer and displacement sensors are at the tip of the monopile.

Finally, the system transfer function is useful to check the discrete time system stability: the

discrete time system is stable only if the poles are located inside the unit circle.

A system with nm modes has 2nm poles occuring in complex conjugate pairs given by:

λm1,2 = −ωmξm ± iωm
√

1− ξ2
m (2.22)

The poles of the transfer function λm1,2 of the continuous time system are related to the poles

of the transfer function of the discrete time system λDm1,2 as follows2:

λDm1,2 = exp(λm1,2∆t) (2.23)

The poles of the system depend only on its dynamical properties, i.e. its eigenvalues and the

damping ratios.

The poles of the system presented in 2.1 are shown on the complex plan in figure 2.7.

The discrete time system is then stable and the joint input-state estimation can be performed.

However, it is found that beyond a limit on the discretization time step ∆t, system matrices -

epecially A - are badly conditionned, which leads to important numerical error. For the system

described in section 2.1, the maximum limit for time step is found to be 8× 10−4 s.

2.3.2 Estimation results

The joint input-state estimation algorithm takes the model equations from section 2.1 and the

data from section 2.2 and compute the input and output estimation through a weight average

process. The weighting is based on the covariance matrices Q, S and R defined in section 1.2.1.

The stochastic forces are assumed to be zero mean and white with a standart deviation of:

2Under zero-order hold assumption
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Fig. 2.7 : Poles of the system in complex plan compared to unity circle

- 100N for the forces located above the waterline

- 1000N for the forces located under the waterline

- 5000N for the force at the waterline ment to represent the eventual high loads induced by

slamming waves.

The assumption of zero mean and white noise stochastic forces is, in practice, not very relevant

as the waves, the wind and the underwater stream often have one dominant direction. However,

in case of colored stochastic forces, the input and state estimates are no longer minimum variance

and unbiased and the error covariance matrix of the extrapolated output vector Pde defined in

equation 1.57 does not correspond to the true error on the output estimate. Algorithm response

in case of non zero mean stochastic forces is beyond the scope of this thesis, however it would be

a good track of research to make the algorithm results even more accurate and trustful.

Matrices Cp, Cx, Cxp and Cpx which account for the modeling error in the expression of

covariance matrices depends on the input force and the state variance. Therefore, a two steps

process is necessary to estimate the input and the state taking into account the modeling errors:

1. First, the joint input-state estimation algorithm is run without any modeling error, i.e. Cp,

Cx, Cxp and Cpx are set to 0.

2. Cp, Cx, Cxp and Cpx are computed based on the estimated force and state obtained on the

previous step and become parameters of the joint input-state estimation algorithm.

An example of input and output estimation for a 5% relative error on the Young modulus E, a

1% relative error on the volumic mass ρ and a 10% relative error on the damping ratios is presented
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in figure 2.8.

MATLAB R© script for Euler-Bernouilli beam model and joint input-state estimation algorithm

is presented in Appendix C.
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Fig. 2.8 : Input force and exptrapolated output estimation by the joint input-state estimation algorithm

in presence of stochastic forces, measurement noise and modeling errors

The algorithm is run with the same parameters but without modeling errors. The results are

presented in Appendix D .

From the comparison between the two results, one can see that the output estimation show

a good behavior in presence of modeling errors. Concerning the input, as long as the stochastic

forces remain dominant compared to the modeling error (cf. section 1.2.2, the estimation remains

trusful which means that the filtering process is effective.

Sililarely to what is done in section 1.2.2, the impact of error on three parameters of the system

are studied and compared next. The three parameters are :
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- Young modulus E because during a windturbine lifetime, corrosion or other factors can occur

and change the material properties of the monopile.

- Volumic mass ρ because a real turbine contains a lot of different equipement which add mass

to the monopile. This is taken into account through uncertainety on the volumic mass.

- Damping matrix Γ because on a windturbine, damping depends both on windspeed and

material properties. As no further concern is given to damping calculation in the algorithm,

this phenomenon is simply replaced by uncertainty on the damping matrix.

First, error on damping matrix is set to 0. The dimensionless standart deviation of the error

induced by modeling errors σ∗model
3 on the extrapolated output for different values of error on Young

modulus and on volumic mass is presented in table 2.1.

σ∗model × 10−4 1% 5% 10% 20% 50% 80%

1% 1.82 5.25 6.09 6.44 6.77 7.09

5% 4.81 6.02 6.36 6.55 6.81 7.10

10% 6.11 6.45 6.57 6.66 6.85 7.12

20% 6.79 6.80 6.80 6.81 6.91 7.14

50% 7.14 7.10 7.08 7.05 7.04 7.19

80% 7.22 7.20 7.19 7.16 7.11 7.21

Table 2.1: Values of σmodel for different relative error on Young modulus (rows) and volumic mass

(columns) without relative damping error.

For an error of 20% in damping matrix, the values of σmodel are significantly the same that

without error on damping matrix. This observation confirms that damping is not the most impor-

tant parameter in this algorithm.

Similarely to section 1.2.2, there is a limit on error introduced by modeling error on the output

estimate. However, when the model error reach this limit error, it means that the filtering process

is not efficient anymore and that the estimation relies almost completely on the measured quanti-

ties. The filtering inefficiency can be seen by looking at the standart deviation of the error induced

by modeling errors σinputmod
on the input. Indeed, contrary to the output, there is not any input

measurement that can prevent the input error to go to infinity.

Values of dimensionless σ∗inputmod

4 for different values of Young modulus and volumic mass error

and without error on damping matrix are displayed in table 2.2.

From table 2.2, one can see that the Young modulus is the more sensitive parameter, then comes

the volumic mass ρ and finally the damping which does not have any real impact on the modeling

error.
3σmodel is divided by the extrapolated output maximum value to obtain the dimensionless σ∗

model
4σinputmod

is divided by the input maximum value to obtain the dimensionless σ∗
inputmod
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σ∗inputmode [N ] 1% 5% 10% 20% 50% 80%

1% 0.088 0.255 0.302 0.360 0.556 1.040

5% 0.232 0.292 0.318 0.378 0.579 1.080

10% 0.295 0.314 0.332 0.399 0.609 1.131

20% 0.329 0.334 0.356 0.444 0.670 1.235

50% 0.345 0.362 0.425 0.592 0.860 1.549

80% 0.351 0.390 0.508 0.755 1.056 1.867

Table 2.2: Values of σ∗inputmode for different relative error on Young modulus (rows) and volumic mass

(columns) for a relative damping error of 20%

Algorithm efficicency

As the algorithm is ment to be used in windturbine structural monitoring, it is important to

be aware of its execution speed. Tipically, real-time monitoring is only possible if the algorithm

execution time is lower than the time sample on which the algorithm is run.

A quick look at the estimation process shows the algorithm order: if n is the number of time

steps, the algorithm is in O(n). Hence, if real-time monitoring is possible for one time sample size,

then it is possible for any size of time sample.

For a 100 s time sample with a sampling frequency of 1250Hz, when the model is reduced to

its three first modes, the estimation process achieved by Matlab R© takes 9.8 s. Then the real-time

monitoring is possible with this kind of filtering algorithm.

2.3.3 Optimization of sensor layout

In this section, the error on the extrapolated output estimation de is studied and compared for

different positions of the sensors: one accelerometer and one displacement sensor.

The error on the extrapolated output estimation - in case of zero mean and white stochastic

processes assumption - correspond to the trace of the extrapolated output error covariance matrix

Pde computed within the algorithm in equation 1.57.

In the following analysis, the measured output vector d includes a subset of ten horizontal

acceleration, a1 − a10, and ten horizontal displacement, d1 − d10. The input p to be estimated is

the force applied at the free end of the monopile. The output de to be estimated consists of the

tip displacement of the monopile. The locations of the specified inputs and outputs are shown in

figure 2.9.

For each sensor, the data are computed by FedEm R© for a 100 s time sample with a sampling

frequency of 1250 Hz.

The optimization process results are presented in figure 2.10.
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sensor height

a1,d1 9 m

a2,d2 20 m

a3,d3 31 m

a4,d4 42 m

a5,d5 53 m

a6,d6 64 m

a7,d7 75 m

a8,d8 86 m

a9,d9 97 m

a10,d10 108 m

Fig. 2.9 : Force and sensor configuration (p: force, ai accelerometer i, di displacement sensor i and de

the output to be estimated).

Two contrary phenomena impact the error on the extrapolated output estimate:

- When the measurement is taken far from the extrapolated output location, the extrapolation

process add a lot of error because of the modeling uncertainties. In the example of this

report, the extrapolated output is the tip displacement, hence the lower the measurement

will be taken, the bigger the error induced by modeling uncertainties will be.

- On an other hand, stochastic forces at a low level have less impact that stochastic forces

applied close to the tip of the monopile. Hence when the measurements are taken high on

the monopile, the error induced by stochastic forces is high.

The best sensor configuration is when the displacement measure is taken 97m above the mudline

and the accelerometer is placed 64m above the mudline. Note that this is the best configuration

between the configurations shown in figure 2.9, and that this optimizition process can be refined

around this area by applying the same process on a smaller length. The optimization process

writen in Matlab is given in Appendix E .

The transfer function analysis for each sensor position reveal that only sensors number 9 and 10

(displacement and acceleration) does not induce any unstable zeros. When the accelerometer does

not induce any unstable zero, the joint input-state estimation algorithm works for any position of

displacement sensor, even if some critical positions induce a very large error variance (position 1:

z = 9 m, 7: z = 75 m and 10: z = 107.6 m).

However, for most of the displacement sensor positions, the error variance hardly depends on
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Fig. 2.10 : Variance of the error on the estimated output de in m for different sensor configurations. The

configuration for which the smallest error variance is obtained is indicated by a blue square. Configurations

for which the error is so high that the algorithm is unable to compute the output estimation are indicated

in red.

the accelerometer position. This shows that the estimation mainly relies on the displacement data.

Indeed, for each frequency, the joint input-state estimation algorithm weights the displacement and

acceleration data in the estimation of system state. The weighting is based on the process noise

and measurement noise covariance matrices, Q, S and R (cf. section 1.2.2). At low frequencies, the

information is mostly contained in the displacement data but at higher frequencies, the measure-

ment noise disrupt the displacement information5. Accelerometers, especially piezoelectric ones

are often more efficient at high frequencies than at very low frequencies. In the example studied

in this report, the three first eigenfrequencies are 0.25 Hz, 2.4 Hz and 7.3 Hz, which are very low

frequencies compared to the sampling frequency of 1250 Hz. Hence, for the studied windturbine,

most of the information is contained in the displacement measure.

5A minimum of 4 points are necessary to describe a sinusöıdal wave. Hence the measurement can disrupt

measures at frequencies higher than 1/4 of the sampling frenquency, in our case 1250/4 = 312Hz



Chapter 2. Dynamic study of an offshore windturbine 43

Algorithm response in absence of displacement measurement with only accelerometer

As it is said in section 2.2, the displacement sensors are not easy to install. Thus, if displacement

measure can be avoided, it would save a large amount of money on the building process.

The algorithm is run for 3 acceleration measurements corresponding to a4, a9 and a10. The

extrapolated output data correspond to the acceleration taken at the tip of the monopile. Stochastic

forces and modeling uncertainties are still the same that in section 2.3.2. Measurement noise is

assumed to be 10−3m/s2 for each accelerometer. Output estimation and force measurement are

shown in figure 2.11.
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Fig. 2.11 : Extrapolated output and input force estimation with only acceleration measurement, in

presence of modeling errors, stochastic forces and measurement noise. The input force estimation with

displacement sensor is also plot in red for comparison

In the input force estimation, the small time shift between estimation with and without dis-

placement sensor is due to the fact that the initial displacement is not exactly zero. When a

displacement measure is given, the initial state can be known exactly but with only acceleration

measurement, the initial state is assumed to be 0 which already induce a small error.

Moreover, one can see that around t = 70s, the force become globaly larger. This information

can be seen with displacement sensor, as the monopile mean displacement will shift from zero to
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a non-null value, but without displacement sensor, this overall increase information is totally lost.

In practice, the wind is turbulent and can also show big time variation. In absence of displace-

ment sensor, the strain induced by a wind speed increase or drop would not be seen by the joint

input-state estimation algorithm. Variation on wind speed can induce charge/discharge cycles at

very low frequencies compared to the structural eigenfrequencies which are taken into account in

fatigue calculation.

The analysis of the joint-input estimation algorithm done so far does not enable to compute

accurate results without any displacement sensor. Nevertheless, this research axis stays very in-

teresting. The problem of overall displacement could for example be solved by adding the average

wind speed as another algorithm input. In absence of displacement sensor, the stability conditions

are violated but if the system does not include unstable zeros, i.e. if the accelerometers are located

in the right spot, the system inversion can still be marginally stable [16].

2.4 Perspectives

This thesis fall within a large process of research on the Kalman Filter and on structural moni-

toring, this part is ment to put forward the possible improvements of the research done during this

project.

First, in the windturbine model, the undamped natural frequencies and their corresponding

mode shapes are computed under the assumption of proportional damping. The three first eigen

frequencies (0.25 Hz, 2.4 Hz and 7.3 Hz) are quite high compared to eigen frequencies measured

on a real windturbine, e.g. in [12] (0.360 Hz, 1.560 Hz and 3.910 Hz). This shows that the model

of cantaliver beam with a tip mass under the assumption of proportional damping may be to sim-

ple and restrictive for an operating windturbine analysis. Instead of computing modal properties

analytically, it could be done through finite element methods which would enable more complexity

in the model.

Then, due to model reduction used in section 2.1.3, the algorithm keeps only the three first

modes and does not take any information from the higher ones. However, higher modes which are

responding in a quasistatic manner can be useful to measure the structure dynamic parameters

such as stiffness and damping. Hence, this higher modes could be used to feed the algorithm with

accurate and real-time model parameter and thus drasticly reduce the model uncertainties.

Thirdly, as it is said in section 2.3.3, deepening the research on the joint input-state estimation

algorithm with only acceleration measurement is a very interesting research area. Solutions for

periodical motion due to wind changes has to be found and then, an optimization process similar

to what is done in section 2.3.3 can establish the optimal accelerometer distribution along the

monopile.
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Finally, this master thesis focuses on windturbine monitoring, but the main reason why mon-

itoring is done is set aside. Indeed, calculation of fatigue damage is the final goal of the strain

estimation process. Hence, this work could be carried further by analysing the value brought by

the filtering process to fatigue analysis, and determine e.g. if filtering the signal with a such an

algorithm can lead to a significent increase of lifetime.



Conclusion

In this master thesis, the joint input-state estimation algorithm, which can be seen as an exten-

sion of Kalman Filter is analysed on different systems in order to understand the impact of the

different parameters which feed the algorithm.

A stability analysis of the algorithm revealed some conditions on the number and type of sensor.

In case of a windturbine monopile analyis,only one main force which correspond to the load applied

to the monopile tip through the action of wind on the rotor is to be estimated, then at least one

acceleration sensor is necessary to satisfy the condition of system identifiability. Furthermore, in

order to avoid the unstable transmission zeros defined in section 1.3.2 and to compute a unique

input-state estimation, at least one displacement sensor has to be set on the monopile.

As this last condition has a heavy impact on sensoring cost, some analysis has been made to try

to avoid the need of a displacement sensor. Unfortunately the results obtained in this thesis are not

convincing and the filtering process becomes inefficient without displacement sensor. Nevertheless,

this problematic stays really up to date as its resolution would lower the building and operation

costs.

A special attention has been given to detection and quantification of the model uncertainties,

almost always neglected in other studies for sake of simplicity. However, the model uncertainties

should be a real concern for the analysis of a windturbine along its lifetime. Indeed, corrosion,

cracks or other time factors can change the dynamical properties of the system. The main problem

of model uncertainties is that, the error quantities computed within the joint input-state estimation

algorithm are computed through system parameters hence, in presence of modeling errors, these

quantities does not represent the true error anymore. One of the advantage of virtual simulation is

that the input and output can be estimated with and without modeling errors and then, the error

is simply computed by difference between the two estimations. In case of modeling errors, these

are taken into accout in the algorithm in the covariance matrices.

Moreover, a process ment to detect the modeling errors based on Operational Modal Analysis

(OMA) has been explained in section 1.2.2. Thus, the user is able to either correct the model or

to include the uncertainty in the algorithm.

It is found that the filtering process is efficient only if the error induced by stochastic forces is

predominant compared to the modeling errors (cf. 1.2.4). Indeed, with too high model uncertain-

ties, the algorithm is unable to compute a proper input estimation, thus the algorithm does not
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rely on the model anymore but only on the measurements.

Finally, an optimization process of sensor layout is made in this report. As the modeling error

are assumed to have less impact than the stochastic forces and the measurement noise, the real

error variance on the output estimate is assumed to be not too far from the error variance com-

puted within the algorithm Pde. The optimization process search the sensor layout for which the

error variance is minimum, assuming that the sensor network is composed of one acceleration sen-

sor and one displacement sensor. This optimization process gives an optimum solution presented

in section 2.3.3 but shows also that most of the information is contained in the displacement sensor.

This work has been a great opportunity for me to deepen my knowledge and to learn a lot of

new concepts in structural mechanics. As my background was more oriented around energy and

fluid mechanics, a lot of concepts were totally new for me and they made my overall understanding

of a windturbine increasing a lot. Besides, the Kalman Filter is widely used for a lot of application,

even in a wider field that structural dynamics and it makes no doubt that my knowledge acquired

thanks to this project on the Kalman Filter will be valuable in my future engineer life.
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Appendix A

Steps of the Kalman Filter (with input estimation)

Fig. 12 : Sketch representing the different steps of the Kalman Filter Algorithm
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Appendix B

Matlab R© script for joint input state algorithm applied on a SDOF system. Files measures.xlsx

contains measurement for displacement and velocity and file mea accel.xlsx contains measurement

for acceleration.

Matlab script

1 %Kalman filter algorithm tracking a single dof system and estimating

2 mea = [];

3 %Measurements%

4 measures_dis_vel = xlsread(’measures.xlsx’)’;

5 mea(1,:) = measures_dis_vel (1,:);

6 mea(2,:) = xlsread(’mea_accel.xlsx’);

7 %Time%

8 t = linspace (0,10, length(mea));

9 dt = (t(end) - t(1))/( length(t) -1); %Time step%

10 % Noise in the measurements

11 sigma_dis = 10^( -3);

12 av_dis = 0;

13 sigma_acc = 10^( -2);

14 av_acc = 0;

15 Vm(1,:) = sigma_dis*randn(1,length(mea));

16 Vm(2,:) = sigma_acc*randn(1,length(mea));

17 mea = mea + Vm;

18

19 % System parameters %

20 m = 10; %[kg]%

21 k = 1000; %[N/m]%

22 c = 2.0; %[kg/s]%

23

24 %Define matrices

25 Rm = [( sigma_dis)^2 0; 0 (sigma_acc)^2]; % [(m/s^2) ^2] measure

uncertainty

26 Cp = (2)^2; %Covariance matrix (stochastic force with standart deviation

of 2 N)

27 %State matrices

28 A = [1 dt; -dt*k/m 1-dt*c/m];

29 B = [0; dt/m];

30 J = [0; 1/m];

31 G = [1 0 ;-k/m -c/m];

32 size_B = size(B);

33 size_A = size(A);
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34 np = size_B (2);

35 ns = size_A (2);

36 %Stochastic excitation matrix

37 Bs = [0; dt/m];

38 Js = [0; 1/m];

39 %Output quantity matrices

40 Ge = [1 0];

41 Je = 0;

42 Jes = 0;%Matrix relating extrapolated output vector to vector of

sthocastique forces

43 % Noise processes covariance matrices

44 n = length(B);

45 l = length(J);

46 COV = [Bs;Js]*Cp*[Bs’ Js ’];

47 Q = COV(1:n,1:n);

48 S = COV(1:n,n+1: length(COV));

49 R = COV(n+1: length(COV),n+1: length(COV)) + Rm;

50 Re = Jes*Cp*Jes ’;

51 Rc = Jes*Cp*Js ’;

52

53 %Pre -definition of variables

54 x = zeros(n,length(mea));

55 x_e = zeros(n,length(mea));

56 Px = zeros(n); %size of B matrix

57 Pp = zeros(length(J(1,:))); %size of J matrix

58 f = zeros(1,length(mea));

59 de = zeros(1,length(mea));

60

61 %Initialization

62 y0 = 0; %Initial position

63 v0 = 0; %Initial velocity

64 Px0 = [0 0;0 0];

65 x(:,1) = [y0; v0];

66 Px = Px0;

67 Px_e = Px;

68

69 %Looping process

70 for i=2: length(mea)

71 %Input estimation

72 R_k = G*Px_e*G’+R;

73 M_k = (J’/R_k*J)\(J’/R_k);

74 f(i) = M_k*(mea(:,i)-G*x(:,i-1));

75 Pp = eye(size(Pp))/(J’/R_k*J);
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76 %Measurement update

77 K = Px_e*G’/R_k;

78 x_e(:,i) = x(:,i-1)+K*(mea(:,i)-G*x(:,i-1)-J*f(i));

79 Px = Px_e -K*(R_k -J*Pp*J’)*K’;

80 Pxp = -K*J*Pp;

81 %Time update

82 x(:,i) = A*x_e(:,i)+B*f(i);

83 I=eye(size(J*M_k));

84 N_k = A*K*(I-J*M_k)+B*M_k;

85 Px_e = [A B]*[Px Pxp;Pxp ’ Pp]*[A’;B’]+Q+N_k*S’+S*N_k ’;

86 %Output vector

87 de(i) = Ge*x_e(:,i)+Je*f(i);

88 Z = Ge*K*(I-J*M_k)+Je*M_k;

89 Pde = Ge*Px*Ge ’+Je*Pp*Je ’+Ge*Pxp*Je ’+Je*Pxp ’*Ge ’+Re-Z*Rc’-Rc*Z’;

90 end
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Appendix C

Matlab R© script for joint input state algorithm applied on a euler-bernouilli cantaliver beam with a

tip mass at the free end. File position X 97m 100sec.xlsx contains position measurement for 100

sec at z = 97 m and acceleration X 64m 100sec.xlsx contains acceleration measurement for 100

sec at z = 64 m

Matlab script

1 %Kalman filter algorithm tracking a beam and estimating excitation

2 close all;clc;

3

4 %measurements

5 alt_d = 97; %altitude of displacement sensor

6 alt_a = 64; %altitude of accelerometer

7 mea_dis = xlsread(’position_X_97m_100sec.xlsx’);

8 mea_acc = xlsread(’acceleration_X_64m_100sec.xlsx’);

9 mea = [mea_dis (:,2)’ ; mea_acc (:,2) ’];

10

11 t = linspace (0,100, length(mea));

12 dt = (t(end) - t(1))/( length(t) -1); %Time step%

13

14 %System parameters

15 %Geometry

16 geometry.L = 107.6; % beam length (m)

17 geometry.E = 2.1e11; % Young Modulus (Pa)

18 geometry.nu = 0.3; % Poisson ratio

19 geometry.rho = 8500; % density (kg/m^3)

20 geometry.t = 0.06 ; %thikness of the tube (m)

21

22 % case of a tube

23 D = 6 ; % beam diameter (m)

24 d = D - geometry.t ; % Inner diameter of the tube (m)

25 % beam is symmetrical around axes y and z

26 Iy = pi.*(D.^4 - d.^4) ./64;

27 Ix = pi.*(D.^4 - d.^4) ./64;

28 geometry.I = Iy; % affectation of quadratic moment

29

30 %Mass at the tip of the beam

31 geometry.Mtip = 400*10^(3) ; %(kg)

32

33 ndisc = 108 ; % number of discretisation points for the beam

34 geometry.y = linspace(0,geometry.L ,ndisc);
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35 V = ((pi.*(D/2) .^2) -(pi.*(d/2) .^2))*geometry.L;

36 geometry.m = (geometry.rho.*V)./ geometry.L;

37

38

39 % Number of modes

40 Nmodes =3; % number of mode wanted

41 [phi ,wn] = eigenModes(geometry ,Nmodes);

42 %Eigen frequencies

43 Omega = diag(wn);

44 %Damping ratio

45 Gamma = 2/100* diag ([1.89 1.38 0.89]) .*Omega;

46

47 %Excitation force location

48 np = 1; %Number of forces applying on the structure

49 Sp = zeros(ndisc , np);

50 Sp(ndisc ,1) = 1; %1 force located on the tip of the beam

51 %Measurement transmission matrices

52 nd = 2; %number of measurement (disp , vel and acc)

53 Sdd = zeros(nd,ndisc);

54 Sdd(1,alt_d) = 1 ; %Displacement measurement taken at 20 m from the

bottom

55 Sdv = zeros(nd,ndisc); %No velocity measurement

56 Sda = zeros(nd,ndisc);

57 Sda(2,alt_a) = 1 ; %Acceleration measurement taken at 20 m from the tip

58

59 %Modeling errors

60 %Geometry

61 geometry_err.L = 1* geometry.L; % beam length (m)

62 geometry_err.E = (1+0.05)*geometry.E; % Young Modulus (Pa)

63 geometry_err.nu = 1* geometry.nu; % Poisson ratio

64 geometry_err.rho = (1 -0.01)*geometry.rho; % density (kg/m^3)

65 geometry_err.t = 1* geometry.t; % thikness (m)

66

67

68 % case of a tube

69 D_err = 6; % beam diameter (m)

70 d_err = D_err - geometry_err.t ; % Inner diameter of the tube (m)

71 % beam is symmetrical around axes y and z

72 Iy_err = pi.*( D_err .^4 - d_err .^4) ./64;

73 Ix_err = pi.*( D_err .^4 - d_err .^4) ./64;

74 geometry_err.I = Iy_err; % affectation of quadratic moment

75

76 geometry_err.y = linspace(0, geometry_err.L ,ndisc);
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77 V_err = ((pi.*( D_err /2) .^2) -(pi.*( d_err /2) .^2))*geometry_err.L;

78 geometry_err.m = geometry_err.rho.*V_err./ geometry_err.L;

79

80 % Number of modes

81 Nmodes =3; % number of mode wanted

82

83 [phi_err ,wn_err] = eigenModes(geometry_err ,Nmodes);

84

85 %Eigen frequencies

86 Omega_err = diag(wn_err);

87 %Damping ratio

88 Gamma_err = (1+0.1)*Gamma;

89

90 %State space model for model error

91 ns = 2* Nmodes;

92 A_err = exp([zeros(Nmodes) eye(Nmodes); -Omega_err .^2 -Gamma_err ]*dt);

93 B_err = (A_err - eye(ns))/[zeros(Nmodes) eye(Nmodes); -Omega_err .^2 -

Gamma_err ]*[ zeros(Nmodes ,np); phi_err*Sp];

94 G_err = [Sdd*phi_err ’ - Sda*phi_err ’* Omega_err ^2 , Sdv*phi_err ’ - Sda*

phi_err ’* Gamma_err ];

95 J_err = (Sda*(phi_err ’* phi_err)*Sp);

96

97 %State space model

98 A = exp([zeros(Nmodes) eye(Nmodes); -Omega .^2 -Gamma]*dt);

99 B = (A - eye(ns))/[zeros(Nmodes) eye(Nmodes); -Omega .^2 -Gamma ]*[ zeros(

Nmodes ,np); phi*Sp];

100 G = [Sdd*phi ’ - Sda*phi ’*Omega^2 , Sdv*phi ’ - Sda*phi ’*Gamma];

101 J = (Sda*(phi ’*phi)*Sp);

102

103 delta_A = abs(A_err - A);

104 delta_B = abs(B_err - B);

105 delta_G = abs(G_err - G);

106 delta_J = abs(J_err - J);

107

108 [x_est ,f_est] = Joint_input_state_beam_func(mea ,alt_d ,alt_a);

109

110 Cp = var(f_est)*eye(np,np);

111 Cx =diag(var(x_est ’));

112 Cxp = zeros(ns,np);

113 for i=1:ns

114 Cxp(i) = [1 0]*cov(x_est(i,:),f_est)*[0;1];

115 end

116 Cpx = Cxp ’;
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117

118 %Stochastic forces

119 nps = ndisc; %Number of stochastic forces

120 ps = ones(nps ,1); %Stochastic forces distributed all along the beam

121 ps (1:19) = 1000* ones (19,1);

122 ps(20) = 5000;

123 ps(21: nps) = 100* ones(nps -20,1);

124 Cps = diag(ps).^2; %Stochastic forces of 10 N standart deviation

125 Bs = zeros(ns,nps);

126 Js = zeros(nd,nps);

127 for i=1:nps

128 Sps = zeros(nps ,1);

129 Sps(i) = ps(i);

130 Bs(:,i)=(A - eye(ns))/[zeros(Nmodes) eye(Nmodes); -Omega .^2 -Gamma

]*[ zeros(Nmodes ,np); phi*Sps];

131 Js(:,i)=(Sda*(phi ’*phi)*Sps);

132 end

133

134 %error covariance matrices

135 Rm = zeros(nd);

136 Rm(1,1) = 10^( -1); %measurement error on first measure

137 Rm(2,2) = 10^( -1); %measurement error on second measure

138 %Rm(3,3) = ... %measurement error on third measure etc.

139 Q = Bs*Cps*Bs’ + delta_A*Cx*delta_A ’ + delta_B*Cp*delta_B ’ + delta_A*Cxp

*delta_B ’ + delta_B*Cpx*delta_A ’;

140 S = Bs*Cps*Js’ + delta_A*Cx*delta_G ’ + delta_B*Cp*delta_J ’ + delta_A*Cxp

*delta_J ’ + delta_B*Cpx*delta_G ’;

141 R = Js*Cps*Js’ + Rm + delta_G*Cx*delta_G ’ + delta_J*Cp*delta_J ’ +

delta_G*Cxp*delta_J ’ + delta_J*Cpx*delta_G ’ ;

142

143 %Output vector

144 nde = 1; %Number of output to be estimated

145 Sdde = zeros(nde ,ndisc);

146 Sdde (1 ,100) = 1 ; %Displacement measurement taken at the tip of the beam

147 Sdve = zeros(nde ,ndisc); %No velocity output

148 Sdae = zeros(nde ,ndisc); %No acceleration output

149 Ge = [Sdde*phi ’ - Sdae*phi ’*Omega^2 , Sdve*phi ’ - Sdae*phi ’*Gamma];

150 Je = (Sdae*(phi ’*phi)*Sp);

151 Jes = zeros(nde ,nps); %Relating output vector to stochastic forces

152

153 %output covariance matrices

154 Re = Jes*Cps*Jes ’;

155 Rc = Jes*Cps*Js ’;
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156

157 %Pre -definition of variables

158 x = zeros(ns,length(mea));

159 x_e = zeros(ns,length(mea));

160 Px = zeros(ns,ns);

161 Pp = zeros(np,np); %size of J matrix

162 f = zeros(np,length(mea));

163 de = zeros(nde ,length(mea));

164

165 %Initialization

166 y0 = phi*mea(1,1)*ones(ndisc ,1); %Initial position (modal coordinates)

for each element

167 v0 = phi*mea(2,1)*ones(ndisc ,1); %Initial velocity (modal coordinates)

for each element

168 Px0 = zeros(size(Px));

169 x(:,1) = [y0; v0];

170 Px = Px0;

171 Px_e = Px;

172

173 %Looping process

174 tic

175 for i=2: length(mea)

176 %Input estimation

177 R_k = G*Px_e*G’+R;

178 M_k = (J’/R_k*J)\(J’/R_k);

179 f(i) = M_k*(mea(:,i)-G*x(:,i-1));

180 Pp = eye(size(Pp))/(J’/R_k*J);

181 %Measurement update

182 K = Px_e*G’/R_k;

183 x_e(:,i) = x(:,i-1)+K*(mea(:,i)-G*x(:,i-1)-J*f(i));

184 Px = Px_e -K*(R_k -J*Pp*J’)*K’;

185 Pxp = -K*J*Pp;

186 %Time update

187 x(:,i) = A*x_e(:,i)+B*f(i);

188 I=eye(size(J*M_k));

189 N_k = A*K*(I-J*M_k)+B*M_k;

190 Px_e = [A B]*[Px Pxp;Pxp ’ Pp]*[A’;B’]+Q+N_k*S’+S*N_k ’;

191

192 %Output vector

193 de(i) = Ge*x_e(:,i)+Je*f(i);

194 Z = Ge*K*(I-J*M_k)+Je*M_k;

195 Pde = Ge*Px*Ge ’+Je*Pp*Je ’+Ge*Pxp*Je ’+Je*Pxp ’*Ge ’+Re-Z*Rc’-Rc*Z’;

196 end
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197 toc

eigenModes function

1 function [phi ,wn ,M] = eigenModes(geometry ,Nmodes)

2

3 y= geometry.y;

4 Nz = numel(y); % number of discrete elements

5

6 % volume V and mass m of the beam

7 m = geometry.m;

8 L = geometry.L;

9

10 D = 6 ; % beam diameter (m)

11 d = D - geometry.t ; % Inner diameter of the tube (m)

12 Mtip = 700000 ;

13 %Mass matrix for each element

14 m_el = (1/2)*geometry.rho*((pi.*(D/2) .^2) -(pi.*(d/2) .^2))*geometry.L/Nz

*[1 0;0 1];

15 %Mass matrix

16 M = zeros(Nz);

17 for i = 1:Nz -1

18 M(i:i+1,i:i+1) = M(i:i+1,i:i+1) + m_el ;

19 end

20 M(Nz ,Nz)=M(Nz,Nz)+Mtip;

21

22 % get the non trivial solution of f

23

24 if Nmodes <10,

25 Ndummy =1: Nmodes ^2; % the number is arbitrary fixed as the square of

the number of Nmodes.

26 else

27 Ndummy =1:100; % the number is arbitrary fixed as the square of the

number of Nmodes.

28 end

29 tolX = 1e-8;

30 tolFun = 1e-8;

31 options=optimset(’TolX’,tolX ,’TolFun ’,tolFun ,’Display ’,’off’);

32 h =fsolve(@modeShape ,Ndummy ,options);

33 % small values of h come from numerical errors

34 h(h<0.4) =[];

35 % Analytically , many solutions are identical to each other , but

numerically , it is not the

36 % case. Therefore I need to limit the prceision of the solutions to 1e
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-4.

37 h = round(h*1e4).*1e-4;

38 % the uniques solution are called beta:

39 beta = unique(h);

40 beta = beta (1:min(numel(beta),Nmodes));

41

42 %modes shapes calculations

43 wn = beta .^2.* sqrt(geometry.E*geometry.I./(m.* geometry.L^4)); % in rad

44 phi = zeros(Nmodes ,Nz);

45

46 for ii=1: Nmodes

47 phi(ii ,:)=(cosh(beta(ii)*y./L)-cos(beta(ii)*y./L))+...

48 ((cosh(beta(ii))+cos(beta(ii))).*(sin(beta(ii)*y./L)-

sinh(beta(ii)*y./L)))./...

49 (sin(beta(ii))+sinh(beta(ii)));

50

51 phi(ii ,:)=phi(ii ,:)/sqrt((phi(ii ,:)*M*phi(ii ,:) ’)); %Mass

normalization

52 end

53

54 end

modeShape function

1 function [f] = modeShape(y)

2 Mtip = 400*10^3; %[kg]

3 rho = 8500; %[kg/m^3]

4 l = 107.6; %[m]

5 D = 6; %[m]

6 t = 0.06 ; %[m]

7 d = D - t; %[m]

8 M = ((pi.*(D/2) .^2) -(pi.*(d/2) .^2))*l*rho ; %[kg]

9 f=cos(y).*cosh(y) + 1 + Mtip/M.*y.*(cos(y).*sinh(y) - sin(y).*cosh(

y)) ;

10 end

Joint input state beam func function

This function is the joint input state estimation algorithm without modeling error, used to have a first

estimate of the input and output.

1 function[x,f] = Joint_input_state_beam_func(mea ,alt_d ,alt_a)

2

3 t = linspace (0 ,100 ,125001);

4 dt = (t(end) - t(1))/( length(t) -1); %Time step%



62

5

6 %System parameters

7 %Geometry

8 geometry.L = 107.6; % beam length (m)

9 geometry.E = 2.1e11; % Young Modulus (Pa)

10 geometry.nu = 0.3; % Poisson ratio

11 geometry.rho = 8500; % density (kg/m^3)

12 geometry.t = 0.06 ; %thikness of the tube (m)

13

14 % case of a tube

15 D = 6 ; % beam diameter (m)

16 d = D - geometry.t ; % Inner diameter of the tube (m)

17 % beam is symmetrical around axes y and z

18 Iy = pi.*(D.^4 - d.^4) ./64;

19 Ix = pi.*(D.^4 - d.^4) ./64;

20 geometry.I = Iy; % affectation of quadratic moment

21

22 %Mass at the tip of the beam

23 geometry.Mtip = 400*10^(3) ; %(kg)

24

25 ndisc = 108 ; % number of discretisation points for the beam

26 geometry.y = linspace(0,geometry.L ,ndisc);

27 V = ((pi.*(D/2) .^2) -(pi.*(d/2) .^2))*geometry.L;

28 geometry.m = (geometry.rho.*V)./ geometry.L;

29

30

31 % Number of modes

32 Nmodes =3; % number of mode wanted

33 [phi ,wn] = eigenModes(geometry ,Nmodes);

34 %Eigen frequencies

35 Omega = diag(wn);

36 %Damping ratio

37 Gamma = 2/100* diag ([1.89 1.38 0.89]) .*Omega;

38

39 %Excitation force location

40 np = 1; %Number of forces applying on the structure

41 Sp = zeros(ndisc , np);

42 Sp(ndisc ,1) = 1; %1 force located on the tip of the beam

43 %Measurement transmission matrices

44 nd = 2; %number of measurement (disp , vel and acc)

45 Sdd = zeros(nd,ndisc);

46 Sdd(1,alt_d) = 1 ; %Displacement measurement taken at 20 m from the

bottom
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47 Sdv = zeros(nd,ndisc); %No velocity measurement

48 Sda = zeros(nd,ndisc);

49 Sda(2,alt_a) = 1 ; %Acceleration measurement taken at 20 m from the tip

50

51 %State space model

52 ns = 2* Nmodes;

53 A = exp([zeros(Nmodes) eye(Nmodes); -Omega .^2 -Gamma]*dt);

54 B = (A - eye(ns))/[zeros(Nmodes) eye(Nmodes); -Omega .^2 -Gamma ]*[ zeros(

Nmodes ,np); phi*Sp];

55 G = [Sdd*phi ’ - Sda*phi ’*Omega^2 , Sdv*phi ’ - Sda*phi ’*Gamma];

56 J = (Sda*(phi ’*phi)*Sp);

57

58 %Stochastic forces

59 nps = ndisc; %Number of stochastic forces

60 ps = ones(nps ,1); %Stochastic forces distributed all along the beam

61 ps (1:19) = 1000* ones (19,1);

62 ps(20) = 5000;

63 ps(21: nps) = 100* ones(nps -20,1);

64 Cps = diag(ps).^2; %Stochastic forces of 10 N standart deviation

65 Bs = zeros(ns,nps);

66 Js = zeros(nd,nps);

67 for i=1:nps

68 Sps = zeros(nps ,1);

69 Sps(i) = ps(i);

70 Bs(:,i)=(A - eye(ns))/[zeros(Nmodes) eye(Nmodes); -Omega .^2 -Gamma

]*[ zeros(Nmodes ,np); phi*Sps];

71 Js(:,i)=(Sda*(phi ’*phi)*Sps);

72 end

73

74 %error covariance matrices

75 Rm = [10^( -1) 0; 0 10^( -1)]; %measurement error on displacement and

acceleration

76 Q = Bs*Cps*Bs ’;

77 S = Bs*Cps*Js’ ;

78 R = Js*Cps*Js’ + Rm ;

79

80 %Output vector

81 nde = 1; %Number of output to be estimated

82 Sdde = zeros(nde ,ndisc);

83 Sdde (1 ,100) = 1 ; %Displacement measurement taken at the tip of the beam

84 Sdve = zeros(nde ,ndisc); %No velocity output

85 Sdae = zeros(nde ,ndisc); %No acceleration output

86 Ge = [Sdde*phi ’ - Sdae*phi ’*Omega^2 , Sdve*phi ’ - Sdae*phi ’*Gamma];
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87 Je = (Sdae*(phi ’*phi)*Sp);

88 Jes = zeros(nde ,nps); %Relating output vector to stochastic forces

89

90 %output covariance matrices

91 Re = Jes*Cps*Jes ’;

92 Rc = Jes*Cps*Js ’;

93

94 %Pre -definition of variables

95 x = zeros(ns,length(mea));

96 x_e = zeros(ns,length(mea));

97 Px = zeros(ns,ns);

98 Pp = zeros(np,np); %size of J matrix

99 f = zeros(np,length(mea));

100 de = zeros(nde ,length(mea));

101

102 %Initialization

103 y0 = phi*mea(1,1)*ones(ndisc ,1); %Initial position (modal coordinates)

for each element

104 v0 = phi*mea(2,1)*ones(ndisc ,1); %Initial velocity (modal coordinates)

for each element

105 Px0 = zeros(size(Px));

106 x(:,1) = [y0; v0];

107 Px = Px0;

108 Px_e = Px;

109 Rk_test = zeros(2,2,length(mea));

110 Px_test = zeros(ns,ns,length(mea));

111 Pp_test = zeros(np,np,length(mea));

112 Pxp_test = zeros(ns,np,length(mea));

113

114 %Looping process

115 for i=2: length(mea)

116 %Input estimation

117 R_k = G*Px_e*G’+R;

118 Rk_test(:,:,i) = R_k;

119 M_k = (J’/R_k*J)\(J’/R_k);

120 f(i) = M_k*(mea(:,i)-G*x(:,i-1));

121 Pp = eye(size(Pp))/(J’/R_k*J);

122 Pp_test(:,:,i) = Pp;

123 %Measurement update

124 K = Px_e*G’/R_k;

125 x_e(:,i) = x(:,i-1)+K*(mea(:,i)-G*x(:,i-1)-J*f(i));

126 Px = Px_e -K*(R_k -J*Pp*J’)*K’;

127 Px_test(:,:,i) = Px;
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128 Pxp = -K*J*Pp;

129 Pxp_test (:,:,i) = Pxp;

130 %Time update

131 x(:,i) = A*x_e(:,i)+B*f(i);

132 I=eye(size(J*M_k));

133 N_k = A*K*(I-J*M_k)+B*M_k;

134 Px_e = [A B]*[Px Pxp;Pxp ’ Pp]*[A’;B’]+Q+N_k*S’+S*N_k ’;

135

136 %Output vector

137 de(i) = Ge*x_e(:,i)+Je*f(i);

138 Z = Ge*K*(I-J*M_k)+Je*M_k;

139 Pde = Ge*Px*Ge ’+Je*Pp*Je ’+Ge*Pxp*Je ’+Je*Pxp ’*Ge ’+Re-Z*Rc’-Rc*Z’;

140 end
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Appendix D

Estimation results without modeling errors:

0 10 20 30 40 50 60 70 80 90 100

time [s]

0

0.05

0.1

0.15

0.2

di
sp

la
ce

m
en

t [
m

]

extrapolated output (tip displacement) estimation

10 20 30 40 50 60 70 80 90 100

time [s]

-2

-1

0

1

2

fo
rc

e 
[N

]

106 input (tip applied force) estimation

Fig. 13 : Joint input state test estimations without modeling error
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Fig. 14 : Error iduced by modeling uncertainties - difference between figure 13 and figure 2.8
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Appendix E

Optimization of the sensor layout process:

Matlab script

1 %measurements

2 mea = zeros (2 ,125001 ,10);

3 mea_dis_1 = xlsread(’position_X_9m_100sec.xlsx’);

4 mea_acc_1 = xlsread(’acceleration_X_9m_100sec.xlsx’);

5 mea(:,:,1) = [mea_dis_1 (:,2)’ ; mea_acc_1 (:,2) ’];

6 mea_dis_2 = xlsread(’position_X_20m_100sec.xlsx’);

7 mea_acc_2 = xlsread(’acceleration_X_20m_100sec.xlsx’);

8 mea(:,:,2) = [mea_dis_2 (:,2)’ ; mea_acc_2 (:,2) ’];

9 mea_dis_3 = xlsread(’position_X_31m_100sec.xlsx’);

10 mea_acc_3 = xlsread(’acceleration_X_31m_100sec.xlsx’);

11 mea(:,:,3) = [mea_dis_3 (:,2)’ ; mea_acc_3 (:,2) ’];

12 mea_dis_4 = xlsread(’position_X_42m_100sec.xlsx’);

13 mea_acc_4 = xlsread(’acceleration_X_42m_100sec.xlsx’);

14 mea(:,:,4) = [mea_dis_4 (:,2)’ ; mea_acc_4 (:,2) ’];

15 mea_dis_5 = xlsread(’position_X_53m_100sec.xlsx’);

16 mea_acc_5 = xlsread(’acceleration_X_53m_100sec.xlsx’);

17 mea(:,:,5) = [mea_dis_5 (:,2)’ ; mea_acc_5 (:,2) ’];

18 mea_dis_6 = xlsread(’position_X_64m_100sec.xlsx’);

19 mea_acc_6 = xlsread(’acceleration_X_64m_100sec.xlsx’);

20 mea(:,:,6) = [mea_dis_6 (:,2)’ ; mea_acc_6 (:,2) ’];

21 mea_dis_7 = xlsread(’position_X_75m_100sec.xlsx’);

22 mea_acc_7 = xlsread(’acceleration_X_75m_100sec.xlsx’);

23 mea(:,:,7) = [mea_dis_7 (:,2)’ ; mea_acc_7 (:,2) ’];

24 mea_dis_8 = xlsread(’position_X_86m_100sec.xlsx’);

25 mea_acc_8 = xlsread(’acceleration_X_86m_100sec.xlsx’);

26 mea(:,:,8) = [mea_dis_8 (:,2)’ ; mea_acc_8 (:,2) ’];

27 mea_dis_9 = xlsread(’position_X_97m_100sec.xlsx’);

28 mea_acc_9 = xlsread(’acceleration_X_97m_100sec.xlsx’);

29 mea(:,:,9) = [mea_dis_9 (:,2)’ ; mea_acc_9 (:,2) ’];

30 mea_dis_10 = xlsread(’position_X_107m_100sec.xlsx’);

31 mea_acc_10 = xlsread(’acceleration_X_107m_100sec.xlsx’);

32 mea(:,:,10) = [mea_dis_10 (:,2)’ ; mea_acc_10 (:,2) ’];

33

34 alt_d = [9 20 31 42 53 64 75 86 97 108];

35 alt_a = [9 20 31 42 53 64 75 86 97 108];

36

37 errE = 0.05; %errpr on young modulus
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38 errrho = 0.01; %error on volumic mass

39 errc = 0.1: %error on damping

40

41 opt_mat = zeros(length(alt_d),length(alt_a));

42

43 for i=1: length(alt_d)

44 for j=1: length(alt_a)

45 measure = [mea(1,:,i+9) ; mea(2,:,j+2)];

46 opt_mat(i,j) = Joint_input_state_beam_err(errE ,errrho ,errc ,

measure ,alt_d(i),alt_a(j));

47 end

48 end

The different excel files contains position and acceleration data for different sensor heigts. And

function Joint_input_state_beam_err is the main algorithm presented in Appendix B written

in a function with Pde for output.

For some sensor configuration, numerical error are too high so the final optimization matrix is

computed part by part.
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