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Abstract:
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK13][bookmark: OLE_LINK12][bookmark: OLE_LINK8][bookmark: OLE_LINK9][bookmark: OLE_LINK5][bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: OLE_LINK6][bookmark: OLE_LINK7]A new uniform analytical formulation is proposed to predict the low cycle fatigue assessment indicator of non-loading cruciform welded joints under tensile cyclic loading considering the effects of plasticity and mechanical heterogeneity of the welded materials and geometry configurations. Particularly, weld toe of the joints is dealt with a notch rounding in order to avoid the notch tip singularity in accordance with generalized Neuber concept of Fictitious Notch Rounding (FNR). The relationship between elastic and plastic energy concentration factor of weld toe is firstly determined by the combination of notch stress and strain distribution with the increases of nominal loading, then the main parameters affecting the energy concentration factor are investigated by separating elastic and plastic stages. Stress and strain field intensities are finally expressed in terms of total energy values, which are linked to the nominal energy ones. The energy prediction function which takes into account the material and geometry factors is capable of providing a closed form analytical expression about the state of energy both under small and large-scale yielding for industrial facilities by the comparison against finite element analysis results. 
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1. Introduction:
[bookmark: OLE_LINK51][bookmark: OLE_LINK50]Due to cyclic loading of engineering welded structures and components such as truck cranes, pressure vessels, ships, offshore platforms, they are frequently subjected to fatigue failure. For these structures, typically, fatigue failure initiates from the vicinity of welded joints, where there are intensified stress levels due to geometrical discontinuity or weld defects. The fatigue life assessment of welded joints is commonly based on nominal, structural stress, notch stress approaches [1, 2], which utilizes S-N curves to describe the fatigue strength by linear-elastic analysis for average weld geometry. However, considering the complex geometries of the weldments made by some advanced welding process (e.g. laser or laser-hybrid welding process), the fatigue life cannot be easily predicted using the traditional stress-based methods [3, 4]. In some circumstances, Low Cycle Fatigue (LCF) may occur when cyclic applied stress locally exceeds yield strength of the material due to high stress concentration. Thus, the variation of weldment geometry and material properties needs to be considered into the models for LCF assessment. In order to exploit the potential of stress-strain evolution of welded joints under LCF, the accuracy of fatigue life predictions must be improved by considering the elastic-plastic behavior of material. This requires further understanding of the factors affecting the assessment characters, such as notch effects and elastic-plastic stress-strain relationships.	Comment by Seyed Mohammed Javad Razavi: Please add these references:
1) P.Gallo, M.Guglielmo, J.Romanoff, H.Remes, Influence of crack tip plasticity on fatigue behaviour of laser stake-welded T-joints made of thin plates, International Journal of Mechanical Sciences
136, 2018, 112-123. 
2) P. Gallo, H. Remes, J. Romanoff, Influence of crack tip plasticity on the slope of fatigue curves for laser stake-welded T-joints loaded under tension and bending, International Journal of Fatigue, 99, 1, 2017, 125-136. 

[bookmark: OLE_LINK43][bookmark: OLE_LINK44][bookmark: MTBlankEqn]For fatigue strength assessment of welds, the geometry variation and notch sensitivity are commonly dealt by utilization of the FNR approach proposed by Radaj. Some stress concentration analytical formulations for different geometrical joint types have been widely investigated based on FNR concept in studies available in open literature [2, 5, 6]. Meanwhile, Radaj proposal has been recommended as a standardized design procedure within International Institute of Welding (IIW) [7]. The fictitious notch radiusis commonly suggested for normal quality welds, which is defined as effective notch approach. The corresponding fatigue class FAT 225 (Ps = 97.7%) from this recommendation is given for this specific notch rounding. Pedersen et al. [8] reanalyzed a large amount of different welded joints fatigue experiments data reported in the literature and further confirmed the validity of IIW guidance. Actually, the original fictitious notch rounding concept comes from the Neuber microstructural support theory [9]. The fictitious notch radius is given in the following form: 

                                (1)



[bookmark: OLE_LINK31][bookmark: OLE_LINK30][bookmark: OLE_LINK32][bookmark: OLE_LINK33][bookmark: OLE_LINK40][bookmark: OLE_LINK39]where the  is the actual radius of the notch,  is the support factor which takes multiaxial stress effects on failure into account, and  is a material dependent microstructural length. Although the introduction of FNR avoids V-shaped notch singularity effectively, the notch stress distribution around different notch rounding radii and notch opening angles is not described quantitively. Afterward, Lazzarin proposed a generalized form of Stress Intensity Factor (SIF) considering the influence of aforementioned factors [10]. The maximum principal stress at the notch tip can be expressed linking to the generalized SIF with reference to mode I. FNR concept which has taken different notch opening angles into account is further systematically evaluated under plane stress and plane strain conditions by Berto et al. [11, 12]. The generalized SIF was then used for calculation of strain energy density to predict the static failure loads and also fatigue life of notched components made of various materials in a range between ductile to brittle [X-XX]. 	Comment by Seyed Mohammed Javad Razavi: Please add these references:
1) P. Gallo, T. Sumigawa, T. Kitamura, F. Berto, Static assessment of nanoscale notched silicon beams using the averaged strain energy density method, Theoretical and Applied Fracture Mechanics
95, 2018, 261-269. 
2) P. Gallo, F. Berto, Advanced Materials for Applications at High Temperature: Fatigue Assessment by Means of Local Strain Energy Density, https://doi.org/10.1002/adem.201500547
3) M.R.M. Aliha, F. Berto, A. Mousavi, S.M.J. Razavi, On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material. Theoretical and Applied Fracture Mechanics, Vol. 92, pp. 198-204 (2017) (DOI: 10.1016/j.tafmec.2017.07.022)
4) B. Saboori, A.R. Torabi, F. Berto, S.M.J. Razavi, Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples, Structural Engineering and Mechanics, Vol. 65, Issue 6, pp. 699-706 (2018). (DOI: 10.12989/sem.2018.65.6.699)
5) S.M.J. Razavi, M.R. Aliha, F. Berto, Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens, Theoretical and Applied Fracture Mechanics (in press) (DOI: 10.1016/j.tafmec.2017.07.004)



[bookmark: OLE_LINK41][bookmark: OLE_LINK42][bookmark: OLE_LINK35][bookmark: OLE_LINK34]On the other hand, some recent applications [13] of FNR approach to notches with root hole under mode I loading have been proposed by employing some accurate closed analytical solutions derived for that notch configurations [14]. NSIF analytical expressions have been reported for non-load-carrying fillet welded joints (NLCJ) subjected to tension and bending loads [15]. Thus, the elastic stress concentration factors of NLCJ can be predicted from known analytical equations. Using fictitious notch rounding concept, we can evaluate the effects of geometrical characters of welded joints and mechanical heterogeneity under elastic-plastic stress-strain relationships. The notch approach is capable of calculation of the local stress or strain, plastic notch stress intensity factors and plastic strain energy density [16-19] of notch specimens in combination with material constitutive models and Neuber notch theory. It means that a LCF life assessment for notched specimens becomes possible. 
[bookmark: OLE_LINK63][bookmark: OLE_LINK64][bookmark: OLE_LINK65][bookmark: OLE_LINK66][bookmark: OLE_LINK10][bookmark: OLE_LINK11][bookmark: OLE_LINK16]When the magnitude of the applied loading is large enough that make local stress exceed material yield strength, localized plastic deformation needs to be accounted for notch components and structures. Over the years, various approximated methods have been proposed to calculate the elastic-plastic strain at notch root. As most popular local stress strain evaluated method for notch specimens, Neuber rule has been widely used to estimate the notch stress and strain under monotonic or cycle, axial or multiaxial, proportional or non-proportional loadings in different fracture and fatigue researches [20-25]. Although this rule or its extensive formations can illustrate the notch elastic-plastic behaviors by correcting related functions, the notch stress predictions are still overestimated compared to the real notch stresses. Another widely used method to analyze notch stress is the Equivalent Strain Energy Density (ESED) method proposed by Molski and Glinka [26]. The origin version is defined in terms of the assumption that the plasticity zone of notch deformation is controlled by surrounding elastic stress field and energy density distribution. The notch stress results based on the ESED method are slightly underestimated than the experimental data. Lately, Ye et al. [27] established the physical relationship between Neuber’s rule and ESED method by analyzing the elastic-plastic body and introducing dissipated heat energy into plastic energy density under monotonic and uniaxial cyclic loading. The modified version further improved the precision of local stress prediction in contrast to the original ESED method. Additionally, Li et al. [28] extended the Ye’s ESED model by correcting the dissipated heat energy taking the effect of Poisson’s ratio into account. The results demonstrated good agreement with measured data under both axial and multiaxial cycle loadings. These researches are focused on fatigue behaviors of local stress and strain for small-scale notch specimens, however, very limited literature is related to low cycle fatigue of notch welded components or structures under large scale yield conditions. Not like materials low cycle fatigue assessment, low cycle fatigue life of welded structures is significantly affected by the welds inherent defects and material mechanical heterogeneity. Since geometric parameters, loading conditions and material properties impose strong influences on the fatigue life of structural components [29]. It is necessary to clarify the relationship between these factors under high and low cycle fatigue behaviors. To the best of the authors’ knowledge, limited literature is related to elastic-plastic behavior, or energy evolution of components or structures critical area, such as joints weld toe or root. 
[bookmark: OLE_LINK68][bookmark: OLE_LINK67][bookmark: OLE_LINK45]On the other hand, although non-linear finite element analysis (FEA) techniques are capable of calculating highly accurate local stress-strain solutions under arbitrary loading conditions, the process is computationally expensive and highly impractical in cases involving complex component geometries and/or long loading histories. Due to the presence of plastic strain deformation in low cycle fatigue, strain-based or energy-based approaches can better account for this behavior. The analytical formulations for fatigue assessment based on the deviatoric form of Neuber rule can estimate elastic-plastic strains or energy at weld toe in NCLJ. From this perspective, some researchers have established some analytical solutions for different joints. Kawin Saiprasertkit et al. conducted low cycle fatigue experiments and numerical simulations to examine the low and high cycle fatigue for load-carrying cruciform joints considering different strength matching conditions and weldments geometries [30]. An effective notch strain analytical model based on the effective notch concept was established to predict the notch strain according to numerical simulations. The model was used successfully to assess the fatigue strength with a narrow scatter band. Recently, an energy-based close-form analytical formulation of NCLJ based on modified Neuber’s rule was proposed to assess the low cycle fatigue behaviors [31]. The material plastic properties and geometric effects on this new indicator have been considered into prediction formulation. The energy-based approach for fatigue assessment can provide more integral and accurate estimation around crack tip in different yielding states. Especially, it can efficiently characterize the LCF behavior. According to above available literature, the combination effects between welded joint geometric configurations and mechanical heterogeneity on the LCF indicator have not been systematically evaluated. 
The current study is concerned with the fatigue behavior of NCLJ in the as-welded condition and cyclic tensile loading. Taking effects of material elastic-plastic properties and mechanical heterogeneity of welded joint and geometrical configurations on low cycle fatigue performance of NCLJ into account, a new energy-based fatigue assessment indicator is proposed, which employs cycle Ramberg-Osgood stress-strain relationship and generalized Neuber fictitious notch rounding concept for notch elastic-plastic estimation. The primary goal is to develop an analytical formulation using the new energy indicator which can be used in fatigue assessment. The paper is composed of three parts. The first part illustrates the theoretical background for notch fatigue assessment, such as generalized Neuber concept of fictitious, elastic-plastic notch estimation theory, and elastic-plastic stress-strain constitutive models. The subsequent section examines the evolution of weld toe stress and strain concentration factor in cruciform joints based on the effective notch approach and illustrates the availability of the new energy-based fatigue indicator. Further discussions on the relationship between the new elastic and plastic energy magnitude for a large strain loading by non-dimension analysis are demonstrated. Then the key factors affecting the energy characters in non-load-carrying cruciform joints, such as material yield stress, hardening exponent, welded joints strength mismatch, joints geometrical configurations are systematically investigated by numerical simulation. Combining the fictitious notch rounding concept, an analytical formulation is proposed to estimate the new energy indicator for engineering application. In order to verify the rationality of the proposed formulation, the numerical simulation results of various material and geometric integrated models are compared with analytical solutions. Finally, the proposed model is used to predict the energy indicator for low cycle fatigue life assessment by taking new parameters into accounts.
2. Theoretical background for notch fatigue assessment
2.1. Generalized Neuber concept of fictitious notch rounding



[bookmark: OLE_LINK54][bookmark: OLE_LINK55][bookmark: OLE_LINK56]In the present study, FNR approach, as the pioneering contribution of Neuber, was applied to characterize the strength of points or sharply notches by maximum stress. The averaged notch stress is generally evaluated by designing a fictitious enlarged notch radius, and introducing a material dependent microstructural support length. In an infinite plate with a transverse internal crack, the stress concentration  of a corresponding elliptical hole is given as follows:  

                              (2)







With the maximum stress, nominal stress, notch depth or semi-axis  and notch radius. The average stress  can be expressed over the support length  ahead of corresponding crack () is given by [32]:

                             (3)
The stress distribution around a blunted crack-tip in an infinite plate is expanded Westergaard mode I stress solutions by Creager and Paris [32], which can be expressed as follows:

                  (4)
By expanding the Creager and Paris formulation from blunt cracks to common notches, Glinka expressed the maximum stress by correlated Mode I generalized SIF of pointed crack tip:

                                (5)
However, the equation seems to be satisfactorily applied to narrow V-notches due to the weak variability for different degrees of singularity. Thus, Lazzarin [10] represented a generalized form linking the generalized stress intensity factor to the maximum principal stress at the notch tip for large V-notches.

                             (6)




Generally, generalized SIF  can be simplified to NSIF  of the pointed notch.  is the distance between the origin coordinate system and the notch root, which is dependent on the notch opening angles and notch radius, as shown in Fig. 1. The  can be calculated by introducing the follow relationship:

                             (7)



Substituting  and  for, the resultant s is 4.48. Finally, the maximum stress of blunt notches based on the nominal stress is obtained. Then the stress concentration factors are calculated for different shape blunt notches under the elastic mechanical theory using generalized FNR concept.

Fig. 1. Coordinate system and geometric parameters of fictitious notch rounding
2.2. Notch stress intensity factor expression for NCLJ


In the polar coordinate system (r, θ), the NSIFs  and  related to Mode I and Mode II can be expressed by the notch stress fields, which are defined as follow equations:

                        (3)

                        (4)




According to the linear elastic mechanics, the  value is same as the stress intensity factor  when the notch opening angleis equal to. Then, the Williams’ formulae of stress components containing NSIFs are expressed as following. The stress components for Mode I are given by [33], tension cases:

    (5)
For Mode II (shear):

   (6)


For some different typical V-notch angles, the parametersandfor mode I and mode II stress distributions have been given.


To simplify the expressions of  and  for the application of different geometric welded joints, Livieri et al. and Lazzarin et al. modified the forms of NSIF functions, which is defined as following:

                                 (7)

                                 (8)




where  is the remote nominal stress,  denotes the main plate thickness,  and  are the non-dimensional coefficients, which depend on the joints overall geometry and the applied load. According to the introduction of geometry and loading modes, NSIFs variations of welded joints can be calculated by analytical equations, which have been proposed by Lazarrin [34].
[bookmark: OLE_LINK57]2.3. Elastic-plastic notch Neuber rule and ESED method



[bookmark: OLE_LINK59][bookmark: OLE_LINK58][bookmark: OLE_LINK60]In 1960s, Neuber proposed a method for plastic correction using elastic analysis of notched component, which is known as Neuber’s rule. The original Neuber’s formulation stated that the notch tip elastic stress concentration factor  is equivalent to the geometry mean of elastic-plastic stress concentration factor and the strain concentration factor. The relationship is expressed as follows:

                                (9)








In the equation, the  and  where the  and  are the elastic-plastic stress and strain at notch tip.  and  are the nominal elastic stress and strain, respectively. Thus, the relations for and can be written in the following form:


 or                         (10)
However, for monotonic loading and uniaxial stress condition at notch root, the ESED or its extended methods can be described in the following form:

                            (11)
If assume the elastic stress and strain are not influenced by notch effect, the equation can be rewritten as:

                            (12)
For the cycle loading, Topper modified Neuber rule and ESED methods in terms of stress and strain ranges, which can be shown as follows:

 (Neuber rule)                       (13)

 (ESED method)                  (14)



Ye et al. [27] calculated the plastic strain hysteresis energy , the stored energy , and the dissipated heat energy  in one loading cycle based on heat energy dissipation, as follows:

                            (15)

                            (16)

                       (17)
The ESED method is thus modified during uniaxial cycle loading for better calculation of notch stress-strain, which gives:

                         (18)
[bookmark: OLE_LINK99][bookmark: OLE_LINK100]To differentiate these methods with measured data, two models are selected to compare the notch stress-strain curves using them. Fig. 2 shows the comparisons of notch strain range between the estimations of Neuber’s rule, ESED method, modified ESED method and experimental data for different materials and notch geometry. The results illustrate that the ESED method demonstrates similar calculation with ESED-YE method, and both have improved the estimation of notched strain ranges in contrast to Neuber’s method. Therefore, the notch stress, strain and energy can be estimated based on the SED method. On the other hand, the interpretation of the relationship between notch energy concentration factor and SED-Ye method has been stated in reference [31]. 




Fig. 2. Calculated and measured local strain data for a key-hole notch specimen (a) and a bend single edge notched specimen (b).
2.4. The constitutive material models


[bookmark: OLE_LINK80][bookmark: OLE_LINK90][bookmark: OLE_LINK103][bookmark: OLE_LINK104]Under cycle loadings, different material constitutive models can illustrate hysteresis material behavior and cyclic plastic behavior. As most commonly used models, Ramberg-Osgood relationship and Chaboche nonlinear kinematic hardening model are employed to simulate cycle elastic-plastic behavior of material. The former is suitable for the calculation of mechanical components using material stable stress-strain relationship, which is widely used in engineering calculations. Whereas, the latter is more susceptible to explore the evolution of stress and strain with the increases of cycles considering cyclic plastic hardening or softening. Therefore, the material cyclic constitutive functions of these model show significant difference. For the original values for  and , an additional constitutive relationship between stress and strain under monotonic or cycle loading conditions is required. 
The cycle Ramberg-Osgood model is simply used to calculate the material cycle elastic-plastic stress-strain behavior, which is fitted by the steady stress-strain response at half-life of material:

                        (19)






where the  and  are the elastic and plastic strain part of total strain range , respectively.  is the modulus of elasticity,  and  represent the cycle strength coefficient and cycle strain hardening exponent, respectively.
[bookmark: OLE_LINK93][bookmark: OLE_LINK94][bookmark: OLE_LINK97][bookmark: OLE_LINK98]However, Chaboche nonlinear kinematic hardening model can accurately predict the cycle stress-strain response of materials taking Bauschinger effect, cycle hardening/softening and ratcheting behaviors into account. The adapted model in our study consists in a combined isotropic-kinematic hardening formulation Armstrong and Frederick concept [35] and modified by Chaboche [36]. The yield surface of a purely hardening von Mises material is written as below:

                     (20)





where , ,  and  are the second order stress, backstress, deviatoric stress, and deviatoric backstress tensors, respectively.  stands for the yield stress. According to eq. (20), the backstress tensor defines the current center of the yield surface in the stress space. The kinematic hardening is described by a decomposition rule of the Armstrong and Frederick concept [35], as Chaboche proposed [36]. It is described by following equations:

                       (21)

                               (22)



where  and  are the material constants,  is the plastic strain tensor, and M is the number of decomposed AF rules utilized, which is set to five in this study. 
Cycle softening/hardening is described by isotropic hardening term with a simple exponential law: 

                         (23)



where  is the initial size of yield surface,  and  are limit of isotropic hardening and the rate of isotropic hardening, respectively. The non-uniformity of the isotropic hardening through loading cycles of the material is well described by these two material parameters.


[bookmark: OLE_LINK105][bookmark: OLE_LINK106]To clarity the difference between the cycle Ramberg-Osgood model and Chaboche cycle plastic model, uniaxial strain fatigue experiments and constitutive model calculations are conducted on the cycle behavior of 10CrNi3MoV high strength steel. Fig .3 shows 10CrNi3MoV steel half-life steady cycle stress-strain curves under different strain amplitudes (0.3% to 0.8%) and corresponding cycle Ramberg-Osgood relationship at room temperature. The parameters of  and  in this constitutive model, which derived from non-linear fitting of testing data, are 857.16 MPa and 0.079, respectively. 


[bookmark: OLE_LINK107][bookmark: OLE_LINK108][bookmark: OLE_LINK109][bookmark: OLE_LINK79]The variation of the stress-strain relationship with different cycles for a typical specimen at ±0.8% strain amplitude is illustrated in Fig. 4(a). As expected, an obvious softening phenomenon occurs from beginning (3th cycle) to steady state (0.25Nf). Initially, the maximum stress reduction is large, indicating a relative rapid softening regime, which can be attributed to strong dynamic recovery induced by the annihilation of the dislocation and the formation of a subgrain structure [37]. However, when the cycle 0.25Nf, the cycle maximum stress reaches a stable state compared with 0.75Nf. Even at the cycle of 0.9 Nf, there is a small stress softening portion. Finally, a steep stress reduction is observed at failure cycle due to the crack growth. According to the cycle softening behavior, the parameters of the Chaboche nonlinear kinematic hardening model are obtained from fitting equations, which are tabulated in table 1.  and  for 10CrNi3MoV steel are -80 and 2, respectively. A cycle stress-strain comparison between the Chaboche model predictions for softening behavior with experiment data in Fig .4(b) shows good agreement in the first 100 cycles. On the other hand, the stable cycle Ramberg-Osgood relationship has demonstrated consistent estimations of stress-strain with Chaboche model and experiment data after material softening. In the process, the cycle Ramberg-Osgood model can effectively estimate stress-strain values for most engineering structural steels. Therefore, it is not necessary to characterize the stable stress-strain for the fatigue assessment using Chaboche cycle plastic model.


Fig .3. 10Ni3CrMoV steel half-life steady cyclic stress-strain curves under different strain amplitudes and corresponding cycle Ramberg-Osgood relationship. 

Table 1. Chaboche nonlinear kinematic hardening model parameter of 10CrNi3MoV steel 
	
	
(MPa) 
	C1(MPa)
	
 
	C2(MPa)
	
 
	C3(MPa)
	
 
	C4(MPa)
	
 
	C5(MPa)
	
 

	10CrNi3MoV
	450
	106844
	5085
	60486
	2881
	18041
	1633
	4935
	100.6
	2426
	9







Fig. 4. (a) 10CrNi3MoV steel cyclic stress-strain curves comparison at different number of cycle (b) 10CrNi3MoV steel cyclic stress-strain curves comparison among experiments, Chaboche plastic model and stable cycle Ramberg-Osgood model. 	Comment by Seyed Mohammed Javad Razavi: Please use different line style for Exp and Chaboche plastic model

3. Elastic-plastic stress-strain and energy analysis of NCLJ 
The section presents the evolution of stress-strain and energy at notch root under remote nominal axial tension loading. Firstly, the geometry and loading of non-load-carrying fillet cruciform joints are illustrated. Subsequently, the elastic plastic material properties are illustrated by comparing Ramberg-Osgood stress strain relationship with Chaboche cycle plasticity model for fatigue life prediction of welded joints. Finally, the new energy-based fatigue indicator is proposed for the low and high cycle fatigue assessment.
3.1. Geometry and EFM models of NCLJ 

[bookmark: OLE_LINK36][bookmark: OLE_LINK37]As showing in the Fig .5, a commonly used planar non-load-carrying cruciform joints with an effective notch rounding  were analyzed in the study, where the plate thickness was t, attachment plate thickness is L, h stood for the weld size. Finite element models for different configuration conditions with detailed dimensions, including the geometric effects and material heterogeneity of welded joints, were generated using 2D plane-strain elements by the software package ABAQUS (version 6.14.4). Only one-quarter of it was modelled due to the axial-symmetry of NCLJ. Then appropriate symmetrical boundary conditions were applied on the two planes of symmetry. Finally, the analytical solutions from FEA results were obtained by the MATLAB software. It should be noted that only idealized weld without any heat affected zone (HAZ) was considered for the welds strength mismatch. The material of base metal and weldments were modeled as isotropic and obeying elastic plastic Von Mises yield criterion. Uniform rigid displacements were loaded on the remote edge of FE models. 


Fig. 5. Geometric configuration of NCLJ under tension loading
3.2. Elastic plastic material properties illustration
The stabilized stress-strain behavior of engineering materials is usually described by using Ramberg-Osgood relationship (Eq. (19)). When the event of 0.2% offset yield stress is determined by conducting the tension test on a uniaxial test specimen, the equation can be modified as follows:

                          (23)





where the cycle yield stress  is given in terms of 0.2% offset. Note that the hardening exponent  in modified R-O equation were the same with original R-O equation. Additionally, the modified R-O equation had been included into ABAQUS software for material deformation plasticity behaviors. Therefore, the material between base metal and weldments on NCLJ were assumed to have the same elastic modulus (210000MPa) and Poisson’s ratio (0.3) but mismatch on their hardening exponents and yield strength. In our study, the original material properties, hardening exponent and yield strength  were defined as 0.1 and 500 MPa. As the base metal and weldments mismatch effects included hardening exponent mismatch and yield strength mismatch, both of them could be incorporated into analytical formulations by changing mismatch ratios,  and , respectively. These two parameters were defined as follows:

                               (24)

                              (25)
Different overmatched and undermatched welded joints were modelled to simulate the variation of notch stress, strain and energy indicator. Material mismatch effects were systematically studied with combination of joints geometry. The cyclic Ramberg-Osgood stress-strain curves with variations of hardening exponents and yield strength were graphically shown in Fig .6 and Fig .7. 


Fig. 6. Cyclic Ramberg-Osgood stress-strain relationships under different hardening exponent.


Fig. 7. Cyclic Ramberg-Osgood stress-strain relationships under different yield strength.
3.3. New energy-based fatigue indicator
As the nominal loading of NCLJ increases, the maximum stress of weld toe exceeds the material yield strength. Inspiring from the reference [31], we define an energy concentration factor like the forms of the stress or strain concentration factors, as following: 

                              (26)




Where the  and  are the notch stress and notch strain of weld toe under elastic and plastic state.  and  represent corresponding remote nominal stress and strain range. When the remote nominal stress or strain ranges are so small that the notch stress does not exceed the material yield stress, the energy concentration factors can be shown as follows:

                               (27)



where  and  stand for linear-elastic stresses and strains at weld toe of NCLJ, respectively. From the perspective of stress state, the energy concentration factor can be characterized by separating energy into two stages, linear-elastic and elastic plastic states. Our study firstly examines the evolution of the stress, strain and energy concentration factors to illustrate the reasonability of  in NCLJ. A typical cruciform fillet welded joints was subjected to axial tension loading to assess the energy concentration factor variation by notch stress and strain analysis. The geometry configuration of this joints was chosen with the main plate thickness t of 10mm, the attachment plate thickness L of 10mm, the weld leg length of 10mm, and the weld toe notch angle θ of 45°. According to the effective notch approach in IIW, the fictitious rounding radius was defined as 1mm at weld toe. The nominal strain ranged from 0 to 5%. 
[bookmark: OLE_LINK17][bookmark: OLE_LINK18][bookmark: OLE_LINK19][bookmark: OLE_LINK20]The evolutions of stress, strain and energy concentration factors of NCLJ with the increases of nominal strain are shown in Fig. 8. As seen from these curves, the notch stress and strain concentration factors (SCFs and SNCFs) are consistent in elastic state, thus the notch energy concentration factors (ECFs) are also unvaried in elastic stage. With the increases of remote nominal strain, the SCFs decrease rapidly from the elastic SCF values and keep in a steady-state value, while the SNCFs reach its peak under small plastic strain range, then decrease gradually with increasing of nominal strain. The trends of SCFs and SNCFs do all not reflect the integrity character variation of weld toe under elastic-plastic stress-strain relationships. Whereas the ECFs can show a stable decreasing as the nominal strain increases. To facilitate manipulation of derivative appearing in plastic part, it conveniently proves to define a functional relationship for ECFs by an appropriate fitting equation. Meanwhile, the equation is formulated effectively from the FEA results including the notch elastic and plastic state. 



Fig. 8. The stress, strain and energy concentration factors under large-scale yield condition.



[bookmark: OLE_LINK21][bookmark: OLE_LINK22]To serve as a baseline for comparison and to fit for fatigue life assessment of welded joints, the fatigue energy indicator for NCLJ can be expressed as logarithm form. Then the indicator is modified into the form of  to fulfill the transability of fatigue assessment. The value  represents the yielding critical energy points, which can be formulated as follows:

                            (28)





When the weld toe is in elastic state, the value  is equal to  base on the original Neuber’s rule. In order to clearly compare the variation of ECFs, the logarithm indicator relationships between FEA results () and elastic-based energy concentration factor results () in elastic-plastic stages are shown in Fig. 9. The FEA values of elastic zone in this figure are almost consistent with predicted results. With the occurrence of weld toe plasticity deformation, the predicted elastic-based energy indicator reduced in the transition stage. After that, the relationship reaches stable state in complete plasticity phase. The Neuber’s rule by employing elastic concentration factor  is certified to overestimate the notch energy state in plastic phase, especially for the large-scale yielding conditions. This figure further illustrates that the evolutions of stress, strain and energy indicators are dependent on the original material constitute model. Thus, the energy indicator can be divided into three phases according to the trends of energy indicator logarithm form. The plastic phases including the elastic-plastic transition phase and plastic stable phase can be characterized into two formulations. 


Fig. 9. The energy indicators logarithm form comparison between EFA results and elastic-based prediction.

In order to drive local elastic-plastic energy with combination of Neuber’s rule and the reality FEA results, a plastic concentration factor is introduced to establish the analytical formulation. The overall relationship of the elastic and plastic energy concentration characteristics can be depicted graphically in Fig 10. An effective analytical formulation is proposed to estimate the notch energy from the elastic-plastic FEA results, which can be expressed by the following equation:

            (29)
Where:

                                 (30)

                                   (31)



The  is the elastic notch energy range,  and  represents the effective notch energy range and the nominal energy range, respectively. 






[bookmark: OLE_LINK23][bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: OLE_LINK26][bookmark: OLE_LINK27]The analytical formulation predicts the effective notch energy range from the nominal energy range by elastic-plastic analysis. The effective notch energy can be estimated from the elastic energy concentration factor  and plastic energy concentration factor .  is the ratio between the notch energy values and nominal energy calculated from the product of nominal stress and nominal strain by elastic-plastic constitutive relationship. Additionally,  is shown as the relationship between the effective notch energy range and elastic notch energy range. Due to the establishment of elastic-plastic energy formulation, the effective notch energy can be clearly estimated by determining energy concentration factors  and . 

[image: G:\origin\teacher\博士课题\001-课题相关\005-毕业论文-2017-2018\002-第四章-低周疲劳寿命评估-资料\非承载弹塑性转变图 .emf]
Fig. 10. Relationship of elastic-plastic energy concentration characteristics.




In the estimation function of , the generalized fictitious notch rounding concept was used to predict the notch maximum stress by assuming the notch radius as 1mm. According to the research conducted by Lazzarin et al [34], the analytical expressions of  and  for generalized notch stress intensity factors, were proposed to estimate the NSIFs of weld toe for NCLJ under tension loading in elastic state, which are shown as follows: 

          (32)

          (33)

Therefore, the stress concentration factor analytical expression in elastic mechanical field can be obtained when it combines with the maximum principal stress function. The function ofin elastic field can be obtained as following:


 for        (34)
From the trends of effective ECFs curve in Fig. 8, it is suitable to choose the exponential function as formulated expressions of plastic concentration factors. Therefore, the function in plastic stage was modified as follows:  


 for       (35)




where the coefficients ,  and  are generally functions related to the geometry and material properties of NCLJ, which are determined from the elastic-plastic FEA analysis. The effective notch energy  is the final target as determined from the following expression:

     (36)
Then the fatigue energy indicator is calculated as follows:

                    (37)
[bookmark: OLE_LINK38][bookmark: OLE_LINK46][bookmark: OLE_LINK47][bookmark: OLE_LINK48][bookmark: OLE_LINK49][bookmark: OLE_LINK28][bookmark: OLE_LINK29]In order to verify the validity of the estimation equation of elastic energy concentration factors, different geometry configurations of NCLJ were modelled in homogeneous elastic state. The prediction errors in elastic SCFs of different geometric models between the FEA and analytical formulations have good agreement from Fig. 11. The estimate maximum stresses of weld toe are very close to the FEA results. It can be concluded that the formulation based on generalized fictitious notch rounding concept accurately predicts the maximum elastic stresses at the notch toe. 


Fig. 11. The elastic SCFs comparison between FEA and analytical formulations.
4. Analytical formulation of effective notch energy
[bookmark: OLE_LINK61][bookmark: OLE_LINK62]In this study, effective notch energy analyses of NCLJ were performed using elastic-plastic material constitutive model for the analytical formulation. The FEA results of ECFs at weld toe were employed to analyze the elastic and plastic energy concentration factors. The effects of material properties and geometry of NCLJ were considered in elastic-plastic finite element models. To simplify the complexity between the material properties and geometry, attention was firstly focused on the variations of material properties in homogeneous state for the whole joints, including the effects of material hardening exponents and yield strength. Then the plastic concentration factors of material heterogeneity between the base metal and the weldments were investigated on the basis of elastic SCFs. Finally, the geometry effects were evaluated by a great mounts of FE models. The relationships between related efforts and energy concentration factors were further illustrated. More specific details of analyses on notch energy indicator are given in the following sections. It should be noted that, all the investigated cases are designed with perfect boundary conditions. There were no axial and angular misalignment effects between two intercostal members on the energy concentration factors. 

4.1. Base metal and welds homogeneity parametric study of 
The mechanical behavior of welded joints for low cycle fatigue regime is usually influenced on material elastic-plastic properties, therefore the FEA model could be a better option to quantify the relationship of material factors. The cycle Ramberg-Osgood relationship elaborated in Section 2 is selected to describe the material behavior in our cases. The results of plastic notch energy indicator performed on models of material properties variations are obtained. The analyses cover some elastic-plastic material effects under mechanical homogeneity of NCLJ such as material yield strength, hardening exponents. Table 2 provides the material properties variations and corresponding NCLJ specimen sizes to investigate above effects. It should be noted that the sizes of notch rounding radius and angle are set to 1mm and 45°. 

Table 2. Selected hardening exponent, yield stress and corresponding geometry sizes in FEA analysis.
	Effects
	t(mm)
	L(mm)
	h(mm)
	σy (MPa)
	n’

	Hardening Exponent
	10
	10
	10
	500
	0.05

	
	10
	10
	10
	500
	0.1

	
	10
	10
	10
	500
	0.15

	
	10
	10
	10
	500
	0.2

	Yield stress
	10
	10
	10
	300
	0.1

	
	10
	10
	10
	400
	0.1

	
	10
	10
	10
	500
	0.1

	
	10
	10
	10
	600
	0.1

	
	10
	10
	10
	700
	0.1


4.1.1. Hardening exponent effect 
[bookmark: OLE_LINK69]Figs. 12(a), (b), (c) exhibits the evolution of the stress, strain and energy concentration factors with different nominal strain at weld toe in NCLJ. Here, the concentration values of weld toe depend rather strongly on the hardening exponents in the plastic range. Since the elastic notch stress and strain are only related to the elasticity modulus, the elastic notch concentration factors are nearly constant in these three figures. With the increases of nominal strain, the SCFs have a drastic decrease to a stable value, as shown in Fig. 12(a). The stable SCFs in plastic stage decrease with hardening exponent increasing. In Fig. 12(b), the evolution of SNCFs is more complicated than SCFs. It grows to a peak and then decreases with nominal strain increasing. The SNCFs peak values are much lower when the hardening exponents are increasing. However, the magnitudes in stable plastic stage corresponding to small hardening exponents are lower than large exponents. Due to the combination of notch stress and strain, the notch energy concentration factors show decreasing trend with plastic deformation, as shown in Fig. 12(c). 







Fig. 12. Hardening exponent effect on notch stress (a), strain (b), energy (c) concentration factors.
















[bookmark: OLE_LINK72][bookmark: OLE_LINK70][bookmark: OLE_LINK71][bookmark: OLE_LINK82]To simplify the character of nominal plastic value  in the following figures, we define the  as the equivalent variation, then. The nominal plastic value  versus normalized plastic part  curves are plotted in Fig. 13(a). All the curves for different hardening exponents have similar trends and the normalized decreases gradually with the increases of nominal strain. In the process of declining, the values become larger with the increasing of hardening exponents. As mentioned above, the energy-based elastic-plastic notch fatigue assessment indicator () from FEA can be compared with elastic energy indicator () as logarithmic form. For the sake of simplifying the description in figures, we define the  and  to present elastic-plastic FEA indicator and elastic indicator, respectively. Fig. 13(b) shows the relationships of and under different hardening exponents ( ). Though these curves depicted by the logarithmic form, they still demonstrate the discrepancy in the transition and steady plastic zone. It is thus indicated that the hardening exponents should be consider into notch energy analytical formulation for the plastic part.





Fig. 13. Hardening exponents effect on non-dimensional plastic parts (a) and the fatigue assessment indicator (b) in homogeneous NCLJ.

4.1.2. Yield strength effect




Five different yield strength levels (  ) in homogenous joints have been investigated for the notch energy calculation. Fig. 14 shows the influence of the material yield strength of NCLJ on the normalized plastic energy concentration factors and fatigue assessment indicators. Though the yield strength has some influences on the transition zone of normalized plastic concentration factors, it has little discrepancy in the plastic zone. Meanwhile, the fatigue indicator curves between the FEA results and elastic-based energy predictions also have no effect on the yield strength variations, as shown in Fig. 14(b). It should be noted that the yield strength effect has been considered into the basic equations for the plastic notch energy assessments, which is expressed as , and . Thus, we do not need to correct this character in the analytical formulation. 





Fig. 14. Yield strength effect on non-dimensional plastic parts (a) and the fatigue assessment indicator (b) in homogeneous NCLJ.

4.2. Base metal and welds heterogeneity parametric study of 
The heterogeneity of base metal and weldments is considered in this section. The shape of weldments is assumed to be ideal compared with actual welded feature, which is shown in Fig. 10. The results of plastic notch energy indicator performed on models of material properties variations are obtained. The analyses cover some elastic-plastic material heterogeneity effects under mechanical heterogeneity of NCLJ, such as material yield strength mismatch, hardening exponents mismatch.
4.2.1. Hardening exponent mismatch effect 



Three different hardening exponent mismatch ratios () between base metal and weldments have been calculated in NCLJ for the notch energy calculation. The yield strength () and basic hardening exponents () are assumed for the study of mechanical heterogeneity of joints. Fig. 15 shows the influence of the material hardening exponent mismatch on the normalized plastic energy concentration factors and fatigue assessment indicators. 

The normalized plastic energy concentration factors in Fig. 15(a) exhibits obvious hardening exponent mismatch dependence with the increase of nominal plastic energy. On the other hand, the hardening exponent mismatch can exert a great influence on the fatigue indicator curves between the FEA results and elastic-based energy values, particularly in the plastic zone, see Fig. 15(b). Therefore, hardening exponents mismatch must be considered to retrieve the realistic effective plastic notch energy in analytical formulation.





Fig. 15. Hardening exponent mismatch effect on non-dimensional plastic parts (a) and the fatigue assessment indicator (b) in heterogeneous NCLJ.

[bookmark: OLE_LINK83][bookmark: OLE_LINK84][bookmark: OLE_LINK85][bookmark: OLE_LINK86]4.2.2. Yield strength mismatch effect 



[bookmark: OLE_LINK75][bookmark: OLE_LINK76][bookmark: OLE_LINK87]Another heterogeneity parameter considered in NCLJ is the yield strength mismatch ratio. To reduce the negative impact of mesh distortion between the interface of base metal and weldments, the yield strengths of these two materials are not allowed to have excessive discrepancy. In our study, five different yield strength mismatch ratios () between base metal and weldments have been quantified to apply in NCLJ for the notch energy calculation. The yield strength of  and basic hardening exponents of  are assumed for the study of mechanical heterogeneity of joints. Fig. 16 depicts the influence of the material yield strength mismatch on the normalized plastic energy concentration factors and fatigue assessment indicators. 

[bookmark: OLE_LINK88][bookmark: OLE_LINK89]According to Fig. 16(a), yield strength mismatch shows some influence on normalized plastic energy part under different nominal plastic energy. The normalized plastic energy values have a decreasing trend when the mismatch ratio increases. There is a slight influence of yield strength mismatch on the fatigue indicator curves between the FEA results and elastic-based energy values for the full stage in Fig. 16(b). However, the variations should be taken the analytical equation into account due to the difference from the plastic stage.





Fig. 16. Yield strength mismatch effect on non-dimensional plastic parts (a) and the fatigue assessment indicator (b) in heterogeneous NCLJ.


4.3. Geometry parametric study of  on CNLJ
In order to consider the geometry effects of NCLJ on notch energy, such as the attached plate thickness, main plate thickness and weld length, the detailed geometry sizes are selected in following sections. Two parts of work are done as follows, and the results are illustrated separately. 
4.3.1. Thickness effects 
For the investigations of geometry parametric study on plastic energy concentration state in CNLJ, six geometry configurations were chosen to study the thickness influences of attached plate and main plate, which are given in Table 3. All these specimens were subjected to fully reversed displacement-controlled loadings with nominal strain amplitude range of 1%. In this section, we assumed that yield strength and hardening exponent of the base metal and weldments were homogenous, 500 MPa and 0.1, respectively. 
[bookmark: OLE_LINK81]Fig. 17 depicts the effects of attachment plate thickness and main plate thickness in cyclic axial tensile loading conditions. It can be seen from the results that the notch stress, strain and energy concentration factors are insensitive to attachment plate thickness (L/t) in NCLJ from the variations of case1, 2, 3 curves. Whereas these values display a great dependency on the main plate thickness, which are shown from the case 4-6 curves. On the other hand, the geometry effects on the normalized plastic energy concentration factors and fatigue assessment indicators have reported the similar results for the plastic stage, which are shown in Fig. 18. Thus, it provides to a guidance to include the main plate thickness into the plastic part of analytical formulation and ignore the attachment plate thickness effect in such plastic part.

Table 3 Details of different geometric configurations in NCLJ.
	
	t(mm)
	L(mm)
	h(mm)
	ρ(mm)
	θ
	L/t
	2h/t
	t/tref

	Case1
	10
	10
	10
	1
	45°
	1
	2
	1

	Case2
	10
	20
	10
	1
	45°
	2
	2
	1

	Case3
	10
	30
	10
	1
	45°
	3
	2
	1

	Case4
	20
	10
	10
	1
	45°
	0.5
	1
	2

	Case5
	30
	10
	15
	1
	45°
	0.33
	1
	3

	Case6
	40
	10
	20
	1
	45°
	0.25
	1
	4









Fig. 17. attachment plate and main plate thickness effects on notch stress (a), strain (b), energy (c) concentration factors.

   


Fig. 18. Attachment plate and main plate thickness effects on non-dimensional plastic parts (a) and the fatigue assessment indicator (b).

4.3.2. Weld length effect
With regard of weld length effect on plastic energy concentration state in CNLJ, six cases were used to study on specific material condition, which are given in Table 4. All these specimens were also subjected to the fully reversed displacement-controlled loadings with nominal strain amplitude range of 1%. The material properties of base metal and weldment are the same as the previous section.

In Fig. 19(a), the plastic energy concentration factors are similar under different weld length () in the range of 1.4-2.4. Fig. 19(b), (c) also illustrate that normalized form of plastic concentration state and logarithm form of fatigue indicator demonstrate the consistence values. Therefore, the effect of weld length is not considered in the plastic analytical equation.




Table 4 Details of different weld length in NCLJ.
	　
	t
	L
	h
	ρ(mm)
	θ
	L/t
	2h/t

	Case21
	10
	10
	7
	1
	45°
	1
	1.4

	Case22
	10
	10
	8
	1
	45°
	1
	1.6

	Case23
	10
	10
	9
	1
	45°
	1
	1.8

	Case24
	10
	10
	10
	1
	45°
	1
	2

	Case25
	10
	10
	11
	1
	45°
	1
	2.2

	Case26
	10
	10
	12
	1
	45°
	1
	2.4









Fig. 19. Weld length effect on notch energy concentration factors (a), non-dimensional plastic parts (b) and the fatigue assessment indicator (c).

4.4. Analytical formulation of effective energy at weld toe
So far, finite element analysis has been conducted on numerical models in plain strain state for NCLJ specimens described previously. Different elastic-plastic material properties and geometric configurations on energy concentration factors have been considered and analyzed. Specifically, the material yield strength, hardening exponents, yield strength mismatch ratio, hardening exponent mismatch ratio, attachment plate thickness, main plate thickness, weld length are assessed for the establishment of analytical formulation. The elastic analytical equation has been shown and verified in section 2. Based on FEA results of plastic energy part at notch toe, this integral analytical formulation is proposed to quantify the effects of elastic and plastic energy concentration factor as follows:

       (38)
Where:

                 (39)

                     (40)

                   (41)

           (42)
[bookmark: OLE_LINK52][bookmark: OLE_LINK53]Since we choose the effective notch approach as the fatigue assessment method, the notch rounding radius is assumed as 1mm. If the notch rounding radius be changed, the corresponding elastic concentration factor will be modified in this formulation. According to the illustration of notch rounding from Feng and Qian [31], the notch rounding radius has a significant influence on the elastic concentration, while the effect on the plastic energy part can be ignored. In our proposed analytical formulation, the notch effect can be reflected from the generalized notch stress intensity factor equation. 
5. Validation of analytical formulation





Through above parametric study, it can be concluded that the notch plastic behavior of NCLJ in small-scale and large-scale yield condition is clearly dependent on material properties and joint geometry. In this section, the material properties, hardening exponents, yield strength mismatch ratio and hardening exponent mismatch ratio were validated firstly. The energy concentration factors  versus normalized nominal energy values  curves were generated. As mentioned above, three hardening exponents  were selected for the homogeneous NCLJ specimens. For the mechanical heterogeneity between base metal and weldments, hardening exponent mismatch ratios  and yield strength mismatch ratios  were examined, respectively. In the other part, the specimen sizes of NCLJ were keep constant. Additionally, the accuracy of prediction results for the notch energy values were further discussed.
[bookmark: OLE_LINK73][bookmark: OLE_LINK74]The comparison between the analytical formulation and FEA results are given in Fig. 20. It is shown that the results of analytical formulation for the hardening exponent effect are slightly smaller deviation than FEA results, as shown in Fig. 20(a). It must note that there is some difference between analytical solutions and FEA results below the 0.2% nominal strain which belong to elastic stage in Fig. 20(a)-(c). Hence, it does not affect the integral notch plastic energy factors prediction under different material properties and geometry variation of NCLJ. In view of above-mentioned reason, the approximations for these cases are still satisfactory considering the effects of mechanical mismatch in the plastic zone.







Fig. 20. The comparison of energy concentration factors between analytical formulation and FEA results under different material effects, hardening exponents effect (a), hardening exponents mismatch effect (b), yield strength mismatch effect (c).

Further, the analytical formulation for the notch plastic energy under different geometry configurations is proved. Since the thickness of attachment plate and weld length have a limited influence on the notch plastic energy, the analytical model ignores these characters for plastic notch energy concentration factors predictions. The geometry effects on elastic notch energy have been included into the elastic part of equation and demonstrated in section 2. Therefore, we focus on the main plate thickness variations to validate the geometry effect of NCLJ on the plastic part. In the Fig. 21, the predictions for three geometric cases by the developed analytical equation give good agreement for the plastic part compared with the FEA results.


Fig. 21.  The comparison of energy concentration factors between analytical formulation and FEA results under different main plate thickness




[bookmark: OLE_LINK77][bookmark: OLE_LINK78]Considering the new fatigue assessment indicator  based on the energy values should be applied into the fatigue failure. The logarithmic form for indicator against fatigue life is usually employed to illustrate the fatigue performance of welded components. To verify the accuracy of analytical formulation, different geometry and material combined configurations, such as geometry configurations with main plate thickness 5mm to 30mm, material mechanical mismatch ratios from 0.7 to 1.2, are compared. Fig. 22 shows the  comparison between the FEA results and analytical formulation predictions by above four cases in the logarithmic scale. It can be seen that analytical prediction results give good agreement compared with FEA results. The validations show that the analytical formulation can be considered predicting the new fatigue assessment indicator based on the Neuber’s rule and generalized fictitious notch rounding concept. 



Fig. 22. The comparison of new fatigue assessment indicator between analytical formulation and FEA results under different conditions.
Conclusions:
The present paper studies the effects of elastic-plastic material properties and geometric factors on the new proposed fatigue assessment model in NCLJ. The analytical equation of elastic energy concentration factors is firstly summarized by combining generalized fictitious notch maximum stress equation with the existing SIF analytical solutions. For the plastic energy part, Neuber’s rule and ESED methods are employed to investigate notch stress, strain and energy concentration state of elastic-plastic mechanical behaviors by finite element analysis. Then the normalized plastic energy concentration analytical formulation is further proposed to estimate notch energy variation under the small-scale and large-scale yield condition. A comprehensive analytical formulation under various material properties and geometry in NCLJ is presented by finite element solutions. The validation of analytical equation has been examined in detail considering a great deal of more material properties and geometric conditions of practical interest. A good agreement in terms of effective elastic-plastic notch energy prediction has been found in corresponding cases. Additionally, this analytical model can be also applied to deal with quasi-static fracture behavior on plastic deformation using monotonic Ramberg-Osgood relationships. Finally, with the aid of analytical solutions, the new-proposed fatigue assessment indicator has confirmed its accuracy. 
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