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In the present paper, we have constructed the equations for generalized thermoelasticity of a 
fiber-reinforced anisotropic hollow cylinder. The formulation is applied in the context of 
dualphase-lag model. An application of hollow cylinder is investigated for the outer surface is 
traction free and thermally isolated, while the inner surface is traction free and subjected to 
thermal shock. The problem is solved numerically using a finite element method. The results 
of displacement, temperature and radial and hoop stress are obtained and then presented 
graphically. Finally, the comparisons are made between the results predicted by the coupled 
theory, Lord and Shulman theory and dual-phase-lag model in presence and absence of 
reinforcement. 

Introduction. Materials such as resins reinforced by strong aligned fibers 
exhibit highly anisotropic elastic behavior in the sense that their elastic 
moduli for extension in the fiber direction are frequently of the order of 50 or 
more times greater than their elastic moduli in transverse extension or in 
shear. Due to their low weight and high strength, the fiber-reinforced 
composites are used in a variety of structures. The mechanical behavior of 
many fiber-reinforced composite materials is adequately modeled by the 
theory of linear elasticity for transversely isotropic materials, with the 
preferred direction coinciding with the fiber direction. The theory of strongly 
anisotropic materials has been widely discussed in the literature, Belfield et 
al. [1] investigated the stress in plates reinforced by fibers lying in concentric 
circles. Hashin and Rosen [2] studied the elastic moduli for fiber-reinforced 
materials. 

The first of such modeling is the extended thermoelasticity theory of Lord 
and Shulman [3], who introduced the concept of thermal relaxation time into 
the classical Fourier law of heat conduction. Subsequently, modifying the 
stress versus strain relationship as well as the entropy relationship with 
relaxation time, Green and Lindsay [4] proposed the temperature rate-
dependent thermoelasticity (GL) theory. The theory was extended for 
anisotropic body by Dhaliwal and Sherief [5]. Tzou [6, 7] proposed the dual-
phase-lag (DPL) model, which describes the interactions between phonons 
and electrons on the microscopic level as retarding sources causing a delayed 
response on the macroscopic scale. The DPL model proposed by Tzou [8] is 
such a modification of the classical thermoelastic model in which the Fourier 
law is replaced by an approximation to a modified Fourier law with two 
different time translations: a phase-lag of the heat flux tq and a phase-lag of 



temperature gradient tθ . Abouelregal [9] studied a problem of a semi-infinite 
medium subjected to exponential heating using a dual-phase-lag 
thermoelastic model. Verma [10] studied the shear waves in self-reinforced 
bodies. Singh [11] discussed the wave propagation in thermally conducting 
linear fiber-reinforced composite materials with one relaxation time. 
Othman and Abbas [12] studied the effect of rotation on plane waves at the 
free surface of a fiber-reinforced thermoelastic halfspace. Abbas [13] 
investigated the effect of magnetic field on thermoelastic interaction in a 
fiber-reinforced anisotropic hollow cylinder. Chattopadhyay and Choudhury 
[14] investigated the propagation, reflection and transmission of 
magnetoelastic shear waves in a self-reinforced media. Chattopadhyay and 
Choudhury [15] studied the propagation of magnetoelastic shear waves in an 
infinite self-reinforced plate. Tian et al. [16], Abbas et. al 
[17, 18, 19, 20, 21, 22, 23], applied the finite element method in different 
generalized thermoelastic problems. 

In the present paper, we have considered a problem of dual-phase-lag model 
on generalized thermoelasticity of a fiber-reinforced anisotropic hollow 
cylinder. The problem has been solved numerically using a finite element 
method (FEM). Numerical results for the temperature distribution, 
displacement, radial stress and hoop stress are represented graphically. The 
results indicate that the different between the coupled theory (CT), Lord and 
Shulman (LS) theory, and DPL model are very pronounced. 

Basic Equations and Formulation of the Problem. For a fiber-
reinforced linearly thermoelastic anisotropic medium, the constitutive 
equations preferred to whose direction is that of a unit vector a [11]: 

 (1) 

 
(2) 

The equation of heat conduction under DPL model [9] 
 (3) 

The equation of motion 
 

(4) 

Three cases arise: 

(i) classical dynamical coupled theory 
(ii) LS theory 
(iii) DPL model 
where ui are the displacement vector components, ρ is the mass density, eij is 
the strain tensor, T is the temperature change of a material particle, τij is the 
stress tensor, βij is the thermal elastic coupling tensor, ce is the specific heat at 



constant strain, T0 is the reference uniform temperature of the body, tq is a 
phase-lag of heat flux, tθ is a phase-lag of temperature gradient, Kij is the 
thermal conductivity, α, β, (μL - μT) are reinforced anisotropic elastic 
parameters, and λ and μT are elastic parameters and the component of the 
vector a are (a1, a2, a3), where a21+a22+a23=1.a12+a22+a32=1. 

Let us consider a fiber-reinforced hollow cylinder with an external 
radius b and internal radius a. By using the cylindrical system of coordinates 
(r, θ, z) with the z-axis lying along the axis of the cylinder. Due to symmetry, 
the displacement vector has the components 

 
(5) 

For circumferential reinforcement, the equation of motion in the absence of 
body forces is given by 

 (6) 

The energy equation without heat sources has the form 
 (7) 

with 
 (8) 

 (9) 

where 
and α11 and α22 are coefficients of linear thermal expansion. It is convenient to 
change the preceding equations into the dimensionless forms. To do this, the 
dimensionless parameters are introduced as 

 (10) 

From Eqs. (10) into Eqs. (6)–(9) one may obtain (after dropping the 
superscript ′ for convenience) 

 (11) 

 (12) 

 (13) 

 
(14) 

where 
From preceding description, the initial and boundary conditions may be 
expressed as 

 (15) 

 (16) 

where a and b are inner and outer radii of the hollow cylinder, respectively, 
and H(t ) is the Heaviside unit step function. 



Finite Element Method. The FEM is a powerful technique originally 
developed for the numerical solution of complex problems in structural 
mechanics, and it remains the method of choice for complex systems. In this 
section, the governing equations of generalized thermoelasticity with dual-
phase-lag are summarized, using the corresponding finite element equations. 
In the FEM, the three isoperimetric, quadrilateral element is used for 
displacement and temperature. Thus, the displacement component u and 
temperature T are related to the corresponding nodal values by 

where m denotes the number of nodes per element, and N the shape 
functions. In the framework of standard Galerkin procedure, the weighting 
functions and the shape functions coincide: 

 (18) 

 
(19) 

 
(20) 

hus, Eqs. (11) and (12) corresponding to the finite element equations can be 
written as 

 (21) 

where me is the total number of elements. Appendix presented the 
coefficients of Eq. (21). 

The matrix form of Eq. (21) can be written as 
Md¨+Cd˙+Kd=Fext,Md¨+Cd˙+Kd=Fext, 

(22) 

where d = [u T]T, Fext, M, C, and K represent external force vectors, the mass, 
damping, and stiffness matrices, respectively. Finally, the Newmark time 
integration method or other methods have to be used to determine the time 
derivatives of the unknown variables (see [24]). 

Numerical Example. To study the effect of reinforcement on wave 
propagation, we use the following physical constants for generalized fiber-
reinforced thermoelastic materials [11]: ρ =2660 kg/m3, λ = 5 65 · 1010. N/m2, 
μT = 2 46 ·1010. N/m2, μL= 5 66 ·1010. N/m2 ,α = –1.28 ·1010. N/m2 , β = 220.9 
·1010. N/m2 ,α11 = 0.017 ·10–4 deg–1, T1 =1, α22 = 0.015 ·10–4 deg –1, ce= 0.787 
·103 J/(kg ·deg), T0 = 293 K, tq = 0.2, tθ = 0.1, K11 = 0.0921·103 J/(m · s 
·deg), K22 = 0.0963 ·103 J/(m· s ·deg), and t = 0.5. 

These physical quantities are represented and plotted in Figs. 1–8 with 
respect to radial distance for T1 =1 and t = 0.5. Furthermore, all the variables 
and parameters are taken in non-dimensional forms. In Figs. 1, 3, 5, 



and 7 refer to thermoelastic solid without reinforcement (NRE), while in 
Figs. 2, 4, 6, and 8 – with reinforcement (WRE). 

 
Fig. 1 
Displacement distribution for different theories without reinforcement. 



 
Fig. 2 
Displacement distribution for different theories with reinforcement. 

 
Fig. 3 
Temperature distribution for different theories without reinforcement. 



 
Fig. 4 
Temperature distribution for different theories with reinforcement. 

 
Fig. 5 
Radial stress distribution for different theories without reinforcement. 



 
Fig. 6 
Radial stress distribution for different theories with reinforcement. 

 
Fig. 7 
Hoop stress distribution for different theories without reinforcement. 



 
Fig. 8 
Hoop stress distribution for different theories with reinforcement. 

From Figs. 1–8 is seen that, there is no significant difference in the value of 
temperature for WRE and NRE as in Figs. 3 and 4. Figures 1 and 2 show the 
variation of displacement for NRE and WRE. It is noticed that the 
displacement is continuous and the displacement gradually decreases 
with r and is zero at r = b. This is also in agreement with the theoretical 
result where beyond the thermal wave front displacement vanishes. 
Figures 5 and 6 represent the variation of stress with respect to distance, 
which we observed that, the stress, always starts from the zero value and 
terminates at the zero value to obey the boundary conditions. 
Figures 7 and 8gives the variation of hoop stress versus r. Also, for each 
theory the hoop stress have a maximum magnitude at the boundary. 
Figures 9, 10, 11, and 12 display the distribution of the displacement, 
temperature, radial and hoop stresses for a wide range of r (1≤ r ≤ 4) and for 
a wide range of dimensionless time t (0 ≤ t ≤ 0.5). The reinforcement has a 
great effect on the distribution of displacement and stresses. Finally, it is 
obvious that the phase-lag parameters tθand tq have very pronounced effect 
on the temperature and displacement, radial and hoop stresses. 



 
Fig. 9 
Displacement distribution with reinforcement. 



 
Fig. 10 
Temperature distribution with reinforcement. 



 
Fig. 11 
Radial stress distribution with reinforcement. 
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Fig. 12 
Hoop stress distribution with reinforcement. 


