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Abstract 

In this paper, a novel geometric method combined with the piecewise linear function method is 
introduced into the extended finite element method (XFEM) to determine the crack tip element and 
crack surface element. Then, by combining with the advanced mesh technique, a novel method is 
proposed to improve the modelling of crack propagation in triangular 2D structure with the XFEM. 
The numerical tests show that the accuracy, the convergence, and the stability of the XFEM can be 
improved using the proposed method. Moreover, the applicability of the conventional multiple 
enrichment scheme is discussed. Compared with the proposed method, the conventional multiple 
enrichment scheme has deficiency in mixed mode I and II crack. Finally, a comparative study shows 
that the performance of the XFEM by using the proposed method to model the crack propagation 
can be greatly improved. 

1 INTRODUCTION 

The discontinuity problem is one of the most complex problems in computational mechanics. 
Therefore, many numerical methods have been developed to solve the discontinuities problem. In 
the previous studies, the embedded finite element method (E‐FEM) is used to describe the 
discontinuities by embedding a displacement discontinuity model in the element.1 To model the 
thermomechanical fracture processes of the concrete, the zero‐thickness interfaces, which are 
obtained by a proper node duplication and update of the finite element connectivity matrix, are 
employed to capture the cracks.2, 3 To model the microstructure, the lattice‐particle model is 
proposed, in which each element of the lattice is considered as a beam element with three degrees 
of freedom per node, and the discontinuity of the structure is described by the failure of the beam.4 
In the recent years, the XFEM has become one of the most widely used methods for solving the 
discontinuity problems.5, 6 It employs the partition of unity method and level set method to solve 
the discontinuous problem. More importantly, it can overcome the distortion of the mesh and 
achieve the continuous propagation of cracks. Hence, the XFEM had been employed in many fields. 
Zhou and Yang7 employed the XFEM to model the deformation and failure of surrounding rock mass 
around the underground cavern. Patil et al8 used the XFEM to evaluate the elastic properties of 
heterogeneous materials. Yazdani et al9 applied the XFEM to investigate the delamination problem 
in composite laminates. Based on the XFEM, Shi et al10 used a kind of reduction technique to model 
the hydraulic fracture propagation in formations containing water. Kumar et al11, 12 introduced the 
virtual node into the XFEM to simulate kinked cracks in the XFEM and proposed the new 
enrichments to model dynamic crack response of 2‐D elastic solids. Meanwhile, it also comes up 
many new situations with the perfection of the XFEM. Therefore, many studies are carried out to 
make an improvement of the XFEM. Laborde et al13 proposed a high‐order method to obtain the 
optimal accuracy in the XFEM. Chahine et al14 introduced a cutoff function into the crack tip 
enrichment, which can be used to obtain an optimal convergence rate. Xiao and Karihaloo15 
employed a higher order quadrature and statically admissible stress recovery to improve the 
accuracy of XFEM. From the above studies, it can be recognized that the XFEM still exists some 
problems in the numerical simulation. Therefore, this paper mainly aims at the improvement of 
crack propagation modelling. Actually, in the conventional XFEM, it is found that there exist two 
problems, which can be described as follows: 



 

Problem 1: In the triangle‐based XFEM, we discover an interesting phenomenon. The location of the 
crack tip can affect the propagation of cracks in some cases. It can be illustrated by Figure 1A,B. For 
the XFEM, the important item is the crack‐tip enrichment function F(r, θ), which is expressed as 
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where r, θ are the local polar coordinates defined at the crack tip. It is noticed that the enrichment 
terms are related with the distance term r. That is to say, the location of the crack tip in the element 
can affect the numerical results. As shown in Figure 1, the line segment AC in Figure 1A and the line 
segment BC in Figure 1B have the different length. When we consider the XFEM problems, the two 
line segments are treated as the different radius r by using the crack‐tip enrichment function. Hence, 
for the same problems, the different solutions can be obtained. Additionally, in general, the 
propagation of the cracks does not accomplish immediately, and the mesh keeps unchanged during 
the numerical computation of the XFEM. Hence, it implies that the different crack growth increment 
leads to the different crack propagation path for the same problem. Therefore, a novel method 
should be proposed to reduce this effect at the crack tip. 

Problem 2: In the numerical computation, the computation of the J‐integral always converts the 
curvilinear integral into the surface integral.5 For the numerical computation, the smaller the 
integral domain, the higher the dispersion of the numerical results. Hence, the integral radius has 
significant influence on the J‐integral. If a satisfied value of the J‐integral is obtained, a proper 
integral radius is necessary. Additionally, the computation should also satisfy the J‐integral 
hypothesis, which means that the integral is closed, and the crack is the straight crack in the integral 
domain. However, for the crack coalescence problem, when a crack passes through the integral 
radius of the other crack, the accuracy problem for the computation of the J‐integral arises. 
Moreover, as shown in Figure 1C, if the straight‐line portion of the crack at the crack tip domain is 
too short, the computation of the J‐integral cannot satisfy the hypothesis of the J‐integral. 
Therefore, the method should be proposed to decrease the integral radius to calculate the value of 
J‐integral. 

  

Details for the problems in XFEM: A, crack tip at the center of the triangle; B, crack tip near the side 
of the element; C, the J‐integral domain at the crack tip; and D, the multiscale mesh for quadrilateral 
element 

In addition, the triangular mesh is employed in the numerical model when we implement the XFEM. 
It is known that the triangular element has obvious advantage over other polygons. The triangular 
element cannot only smoothly deal with the consistency of the displacement between different sizes 
of meshes but also can avoid the distortion of the mesh. As shown in Figure 1D, if the quadrilateral 
elements are employed, the boundary problems between coarse meshes and the fine mesh are 
necessary to conquer. The problem is relatively simple for the virtual element method.16, 17 
However, it is complex for the XFEM. Zhou and Yang7 solved the same problems by combining the 
displacement projecting method and the displacement loading method in the framework of XFEM, 
but it leads to the distortion of the mesh when the boundary is not regular. Fortunately, with the 
development of the computational science, the mesh technology makes considerable advances in 
recent years, particularly the triangular mesh. It benefits from the optimized Delaunay algorithm and 
the new mesh method. Actually, the Delaunay algorithm is optimized for proper use in many fields, 
such as the mapping science, the imaging science, the computational science, etc. Based on the 



Matlab, Persson and Strang18 employed a force‐displacement relationship in their algorithm and 
proposed a new triangular mesh generator for numerical computation. In GIS 3D, the triangular 
mesh is used to rebuild the texture of the structure.19 In face recognition, the triangular mesh was 
applied to do the image processing.20 Therefore, the triangle mesh has a flourishing prospect in the 
future. 

 

In this paper, based on the triangular mesh, the authors aim to solve the problems mentioned 
above. First, a novel geometric method is proposed to describe the crack tip elements and the crack 
surface elements. Then, an advanced mesh technique is developed to improve the modelling of the 
crack propagation in triangular 2D structures in the framework of the XFEM. 

 

This paper is organized as follows: Section 2 depicts the fundamentals of XFEM. Section 3 illustrates 
the novel geometric method. Section 4 describes the proposed advanced mesh technique in detail. 
Section 5 presents the conventional multiple enrichment scheme and its deficiency. Finally, the 
comparative study is carried out to show the advantage of the proposed method. 

 

2 THE FUNDAMENTALS OF THE XFEM 

In this section, a brief introduction to the XFEM and the integral scheme are mentioned. In the 
XFEM, the Heaviside jump function is used to depict the crack surface faces, and the asymptotic 
functions are employed to describe the characteristics of stress fields at crack tip. The standard 
formulation of XFEM takes the following form: 

where r, θ are the local polar coordinates defined at the crack tip. 

Based on the equilibrium equation of virtual work principle, the discretization of the equilibrium 
equation using XFEM can be written as 

 

where u is the classical degree of nodal freedom, ae is the Heaviside function enriched DOF, and be 
is the crack‐tip function enriched DOF 

and 

where Ni, x denotes the partial derivative of shape function Ni with respect to x, and Ni, y denotes 
the partial derivative of shape function Ni with respect to y. It is noted that Equations 10 and 11 
employ the shifting amendments to take the effects of interpolation into consideration. The details 
about the shifting amendments can be found in the work conducted by Khoei.21 

To discuss the accuracy problem, we prescribe the scheme of gauss integral in the XFEM. The circled 
nodes are ones enriched by the Heaviside function, and the nodes marked with the square are 
enriched by crack‐tip function, as shown in Figure 2A. Then, to calculate the stiffness matrix of the 
element and the J‐integral, the enriched elements are subdivided into subtriangles for numerical 
integral. Figure 2B is the subdivided scheme for the crack tip elements which is corresponding to the 
elements labeled by ① in Figure 2A; Figure 2C is the subdivided scheme for the crack surface 
elements which is corresponding to the elements labeled by ② in Figure 2A; Figure 2D is the 
subdivided scheme for partly enriched elements by the crack‐tip enrichments or crack surface which 



is corresponding to the elements labeled by ③ in Figure 2A. For the above three schemes, there are 
25 gauss integral points in each subtriangle. Figure 2E is the scheme for the ordinary elements that 
are corresponding to the elements labeled by ④ in Figure 2A, where only 13 gauss integral points 
are employed. 

 

  

A, The enriched nodes in the triangle element; B,C,D,F, the integral scheme for the 3 A NOVEL 
GEOMETRIC METHOD IN THE FRAMEWORK OF XFEM 

In this study, based on the characteristics of the triangle element, a novel geometric method is 
proposed. In the XFEM, the key step is to describe the crack tips and the crack surface, because they 
are related to the enrichment functions. Meanwhile, the enrichment functions are the key of the 
XFEM. In the previous studies, the most common way to describe the cracks was the level set 
method.22‐26 For the description of crack surface, the level set method considers the crack as the 
level set function; the crack separates the mesh into two parts in a proper range of the mesh in 
which one part is considered as the upper surface of the crack, and the other part is considered as 
the lower surface of the crack. For the description of the crack tips, the location of the crack tips 
must be obtained to determine the nodes that are enriched by the crack tip enrichment. Hence, in 
the level set method, the additional level set function is necessary, and each crack tip requires an 
additional level set function, which is complicated in some degree. The more details on the 
application of the level set method in the XFEM can be found in the work conducted by Stolarska et 
al.22 In our work, a simple and comprehensible method is proposed to describe the cracks based on 
the triangular element in the framework of XFEM. It is worthy to note that the proposed method is a 
geometric method and only needs the geometric information of the mesh and the crack. Hence, it 
can be easily promoted to all the 2D approaches that need to describe the crack. Meanwhile, the 
proposed method is not only suitable for the triangular element, but also it can be suitable for other 
geometric elements, such as the quadrilateral element. For the proposed method, to describe the 
crack surface, it employs the intersection of line segment to recognize the crack surface element. To 
describe the crack tip, the area of the element is introduced to judge the location of the crack tip. 
The details of the proposed method are written in the following subsections. 

 

3.1 The determination of the crack tip elements 

As shown in Figure 3, when we know the specific location of crack tip A, by computing the areas, we 
can judge which type the element belongs to. In Figure 3A, in light of point B,C, D and a crack tip A, 
the triangle element can be subdivided into three subtriangles ∆ABC, ∆ADC, and ∆ABD. Then, the 
areas of ∆BCD, ∆ABC, ∆ADC, and ∆BCD can be easily calculated by the coordinates of B,C, D and the 
crack tip A. When ∆BCD is the tip element, the following expression can be obtained: 

 

where S denotes the areas of the triangle. However, as shown in Figure 3B,C, when ∆BCD is not the 
tip element, Equation 12 cannot be adopted. 

 image 

Figure 3 



The sketch of the proposed geometric method: A, the crack tip element; B, crack surface element; C, 
the standard FEM element; D, a side of an element located at the opposite sides of the crack; E, a 
side of an element located at the same side of the crack; and F, the intersection of the crack surface 
and the side of the element 

3.2 The determination of the crack surface elements 

It is known that the element intersected by the crack can be recognized as the crack surface 
element. To define the crack surface element, the crack surface and the element sides are 
considered as a line segment. Then, the following two steps can be used to define the crack surface 
element. 

 

The definition of the element side intersected by the crack 

As shown in Figure 3D, AB is a side of an element, and CD represents the crack. Therefore, the vector  
urn:x‐wiley:8756758X:media:ffe12918:ffe12918‐math‐0017,  urn:x‐ When Equation 13 is satisfied,  

The important meaning of the first step is to reduce computation cost at the next step. Therefore, 
Equation 13 is the necessary condition but not the sufficient condition to find the crack surface 
elements. 

 

The definition of the intersected element by the crack 

In this step, to judge the crack surface element, more vectors relative to the crack surface and the 
side of element are added into the equation. As shown in Figure 3E, the vectors  urn:x‐ 

It is noted that the crack surface elements found by Equation 14 contain the tip elements. Therefore, 
the tip elements should be moved from the crack surface elements in the programming. 
Furthermore, from the above descriptions, it is easy to see that the novel method rather than the 
level set method can indeed provide an effective way to describe the crack based on the triangular 
element. 

 

3.3 Combination of the geometric method with the piecewise linear function in the framework of 
XFEM 

The crack is a straight line or a curve in the real application. Therefore, the original crack can always 
be approximated by the piecewise linear function.27 Then, it is convenient to acquire the crack‐tip 
elements and crack surface elements by using the novel geometric method. To clearly illustrate the 
novel method, it is expressed in the following mathematic forms. 

 

For a crack, a specific piecewise linear function is applied to denote it. It can be written as 

 

where xi, yi are the x− and y−coordinate of the piecewise point i, respecƟvely. φ(x, y, t) represents 
the state of the crack at a certain time t. Therefore, if we want to update the crack after the crack 
propagation, the original piecewise points can be retained, we only need to update the propagation 



segment of the crack. In fact, what we need to do is to make the propagation segment be piecewise 
and add it into the updated φ(x, y, t). 

For the crack surface elements and the crack‐tip elements, we, respectively, use two functions 
ψ1(nj, t) and ψ2(nk, t) to denote them. They are written as 
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where ψ1 is the function of crack surface elements, ψ2 is the function of crack tip elements, ϕl 
denotes the location function of the enriched nodes, nj and nk are, respectively, the number of crack 
surface elements and the crack‐tip elements, l denotes the number of enriched nodes, t is 
corresponding to the state of crack in the φ(x, y, t),  urn:x‐wiley:8756758X:media:ffe12918:ffe12918‐
math‐0031 denotes the location parameter of the first node for elements k, xl and yl, respectively, 
denote the x− and y−coordinate of the element node l, and ψ1 and ψ2 can be obtained by the 
proposed method mentioned in Sections 3.1 and 3.2. 

Then, to distinguish the specific location of the nodes around the crack and to describe the condition 
of the crack, a judging criterion is proposed as follows: 

 

It is noteworthy to recognize that φ(x, y, t) is defined along the posiƟve direcƟon of the x−coordinate 
to help us strictly define the location of the nodes. Hence, as shown in Figure 4, the crack can be 
described in the XFEM as in the level set method. In Figure 4, the area containing the crack is divided 
into four parts that are marked by the sequence of the circled number. The relation describing the 
four parts can be written as 
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Figure 4 
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The description of the crack [Colour figure can be viewed at wileyonlinelibrary.com] 

It is noteworthy to note that the assumed propagation direction of the crack is along the direction of 
the crack tip when we define the crack. The direction is not the final propagation direction, it is only 
used to help the judgment of Equation 19. Hence, based on the above description, we can clearly 
define the location of the crack. 

 

Next, the updating of the functions φ(x, y, t), ψ1(nj, t), and ψ2(nk, t) is necessary when the crack 
propagates. The crack function φ(x, y, t) is a piecewise linear function, when it updates, it means that 
the crack propagates at one end or both ends of a crack. Because a crack always keeps continuous, 
we can directly add the propagation segment into the function φ(x, y, t) based on the characteristics 
of the piecewise linear function. Hence, it is a relatively simple operation. If the propagation 
segments of the crack are assumed as φp(x′, y′, t) at the present crack state, then, the crack at the 
next time step can be expressed as 



 

where x, x′, x′′are the x‐coordinate in the corresponding functions, and y, y′, y′′are the y‐coordinate 
in the corresponding functions. It is worthy to notice that Equation 21 only expresses the 
propagation of a crack tip. When the propagation occurs at two tips of the crack, the propagation 
segments of the crack should be, respectively, added into the crack function. It can be expressed as 

where φp1 and φp2 are the piecewise linear functions at both crack tips of the propagative crack. 
Therefore, the updating crack can be obtained. Based on the above description, by combining with 
the proposed method mentioned in Sections 3.1 and 3.2, the updating of the function of crack 
surface elements ψ1 and the function of crack tip elements ψ2 can also be determined. In 
conclusion, it can be recognized that the novel geometric method is useful to describe the crack. 

3.4 The advantage of the proposed geometric method 

Compared with the level set method, the advantage of the proposed geometric method is that the 
proposed method is a local analytical method. For some special cracks, the novel geometric method 
is very useful. As shown in Figure 5A, to illustrate the deficiency of the level set method, the crack is 
divided into three parts. For a specific mesh, the crack surface can be described by the level set 
function. Based on the definition of the crack surface enrichment, as shown in Figure 5B, one side of 
the crack should be defined as the upper crack surface, and the other side of the crack is the 
corresponding lower crack surface. However, the level set method is a global analytical method. 
When the level set method is used to describe the crack surface in Figure 5A, the definition of the 
crack surface may be misunderstood. Because the lower crack surface in the first part of the crack 
can be considered as the upper crack surface in the third part of the crack. Hence, some more level 
set functions should be established to clearly distinguish the crack. If there exist many cracks as in 
Figure 5A, the level set method may be much troublesome. However, the proposed geometric 
method is the local analytical method, which only needs the crack surface function and the local 
location of the line segment. It is easy to describe the crack as in Figure 5A. Therefore, it can be 
concluded that the proposed geometric method has the advantage over the level set method. In the 
following sections, by combining with the advanced mesh technique, the feasibility of the proposed 
geometric method is tested; the result shows that the novel geometric method is applicable. 
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Figure 5 
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The advantage of the geometric method: A, the spiral crack in the model and B, the definition of the 
crack surface enrichment 

4 THE ADVANCED MESH TECHNIQUE IN THE FRAMEWORK OF XFEM 

4.1 The advanced mesh technique 

It is known from Section 1 that the location of the crack tip in the crack tip element can have an 
effect on the crack tip enrichment of the XFEM. Hence, the authors aim to diminish the r term in the 
crack tip enrichment to decrease the effect of the location of the crack tip. In addition, the 
assumption of the straight crack to obtain the J‐integral cannot be satisfied if the integral radius is 
too large. In this paper, the advanced mesh technique is put forward to solve these problems. The 



proposed method is valuable for crack propagation problems and large‐scale engineering problems, 
when the mesh size is not small enough to get the satisfactory solution in a proper range. 
Additionally, it is the common sense that the propagation of the crack is pending when the crack 
problems are considered. Therefore, if we want to keep the accuracy of the solution all the time, a 
fine mesh grid, which cause the increase of the computation cost, is necessary in all the cracked 
parts. When the large‐scale problems are encountered, this problem becomes much severe. The fine 
mesh occupies much computation cost and greatly slows the computational efficiency. However, the 
proposed mesh technique aims to obtain the accurate results by using a relatively coarse mesh. 
Therefore, the technique has a great potential in the future. 

 

For the crack propagation problems, the determination of stress intensity factors (SIFs) of crack tips 
in structures under complicated loading conditions is one of the most important problems.28 
Therefore, we seek to improve the computation of the SIF to optimize the propagation of the crack. 
The approach is inspired by the multiple enrichment scheme method, the automatic remeshing 
technique, and the hierarchical approach in finite element method.15, 28‐35 For the multiple 
enrichment scheme, as shown in Figure 6A, to obtain a higher accuracy in the traditional XFEM, it 
defines the elements that include the crack tip as the first layer elements. The elements near the 
first layer elements are called the second layer elements. Additionally, the next layer of elements is 
defined as the third layer elements in a similar manner. All the three layers of elements are enriched 
by the crack tip asymptotic field. In this way, the accuracy of the XFEM can get a promotion. The 
multiple enrichment scheme considers that the promotion is obtained by adding some extra degree 
of freedoms around the crack tip element. In view of this, in the proposed method, we carefully 
make good use of these three layers. Instead of the multiple enrichment method, we employ a much 
fine mesh to substitute the three‐layer elements at the crack tip domain as in Figure 6B,C. However, 
the proposed method is not the remeshing one which has much computation cost. Considering the 
shape characteristics of the triangle elements, the most used way for the proposed method is based 
on the mesh substitution. Since the obtained three‐layer elements always consists of a hexagon as in 
Figure 6A. We can employ a prescribed fine mesh as in Figure 6B,C to substitute the original mesh in 
most cases. However, when the quality of the mesh is not satisfied, the remeshing operation is 
necessary. In this paper, when the mesh substitution occurs, the original mesh is called “the 
replaced part,” and the new mesh is “the substitutive part.” As shown in Figure 7, the dash line 
quadrangle describes the proposed approach, which is illustrated as follows: 

 

Step 1: 

The pre‐processing. The program needs two input parameters. The input 1 is the initial global mesh 
for the problem. The input 2 is the standard local mesh for the substitutive part. 

 

Step 2: 

The beginning of the program. The crack tips, which need to be replaced, are ascertained. Then, the 
substitution is carried out. 

 

Step 3: 



Check of the mesh quality of the substitutive part. If the mesh quality of the substitutive parts 
satisfies the demands, the next step is carried out. If the mesh quality of the substitutive parts does 
not satisfy the demands, the remeshing operation is needed. 

 

Step 4: 

The XFEM solver. For the plane stress problem or the plane strain problem, based on the 
discretization equation of XFEM, which has been described in Section 2, the fracture problem can be 
solved. Then, the displacement and the stress at the nodes can be obtained. Next, the SIF can be 
calculated by employing the interaction integral.5 Finally, according to the failure criterion of the 
fracture mechanics, the crack growth condition can be determined. 

 

Step 5: 

The crack is updated. If the program reaches the termination conditions, the results are given out. 
Otherwise, the crack is updated, and Step 2 is carried out. 

It is worthy to note that the XFEM is independent of the mesh. The proposed method tracks the 
crack tip, and substitutes or remeshes the crack‐tip domain with a finer mesh. The original mesh 
remains unchanged. 

4.2 The implementation of the program 

4.2.1 The Delaunay algorithm coupled with the piecewise‐linear force‐displacement relations 

It is known that the Delaunay algorithm can form non‐overlapping triangles to fill the convex hull of 
the input points.36 Therefore, the Delaunay algorithm is employed. Because of the mesh 
substitution or the remeshing, the boundary problem of the mesh between the replaced part and 
substitutive part should be addressed. Hence, the Delaunay algorithm coupled with the piecewise‐
linear force‐displacement relations is employed in this paper. For the algorithm, the connection 
between two points corresponds to the bars; the points correspond to the joints of the mesh in the 
algorithm. Hence, each bar has a force‐displacement relationship f(ℓ, ℓ0). ℓ is the current side length 
of the mesh, ℓ0 is the expected side length of the mesh and it will be discussed in Section 4.2.2, and 
f is the force function. The force function has many choices. One of the types can be expressed as18 
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where k can be treated as the convergent constant. It is used to control the rate of convergence. 
Actually, the function can always obtain good results when we set k = 1. Then, to solve the force 
equilibrium, it is assumed that the point set p is arranged in the following form of N‐by‐2 array 

where x, y are the x‐ and y‐coordinates of the point set p, respectively. Then, the force vector can be 
written as 

where fint denotes the internal force, and fext represents the external force (reaction from the 
boundary). It can be known that f(p)is a piecewise‐linear function. Since the Delaunay algorithm 
changes the topology when the points move. Hence, if the exact mesh is obtained, the global force‐
displacement can be written as 



It is noteworthy that Equation 26 is hard to obtain a satisfied result in the common way because of 
the discontinuity in the force function. A time‐dependent solution scheme is introduced into the 
equation. It can be expressed as 

 

When the stationary p is found in Equation 27, it is also suitable for Equation 26. At the discretized 
time tn = n∆t, the approximate solution is determined by 

 

If an initial value p0 is set, Equation 28 can be solved. In addition, to satisfy the boundary condition, 
all the points going out the boundary are forced to move back to the closest boundary during the 
update from pn to pn + 1. Hence, if the boundary condition of the nodes obtained from the three‐
layer elements in the original mesh is known, the algorithm will be feasible. 

 

4.2.2 The principle to generate distance function 

In Section 4.2.1, we refer to the desired length of the bars, which reflects the density of the mesh. It 
is necessary to illustrate the generation of the distance function. Firstly, the boundary of mesh can 
be denoted by a level set function g(x, y). Moreover, it is easy to set g(x, y) to be a zero level set. For 
the point p0(x0, y0), the closest point P on the level set is obtained. Hence, g(P) = 0, and P − p0 is 
parallel to the gradient (gx, gy) at point P. Therefore, the following expression can be obtained: 

Hence, all the points in the range of the boundary have a definite distance. Based on the distance, 
the mesh density can be defined. Additionally, the sign function can help us to distinguish the 
direction of the distance. Therefore, through the union, difference, and intersection of the distance 
set of the points, the demanded mesh density can always be satisfied. If A and B represent the 
regions which are projected by the different level set function g(x, y), the mathematical operation 
mentioned above can be expressed as 

4.2.3 The vertex‐welding algorithm 

Through the above description, the substitutive mesh can be obtained. However, when the original 
mesh is replaced by the substitutive mesh, the node problem arises. Actually, the substitution of the 
mesh leads to the redundant node problem in the original mesh. Therefore, based on the mesh 
requirement of the proposed method, we developed a new vertex‐welding algorithm in the paper. 
Firstly, to keep the original grid unchanged, the original grid is duplicated when the vertex‐welding 
algorithm is performed. Secondly, the boundary of the replaced mesh is found using the vertex‐
welding algorithm in the duplicated original grid. Thirdly, the elements of the replaced mesh are 
removed in the duplicated original grid. Meanwhile, the nodes of the replaced mesh are also deleted 
except for the boundary nodes because the replaced mesh shares the same boundary with the 
duplicated original grid. Fourthly, the substitutive mesh is inserted into the duplicated original grid, 
and the boundary of the substitutive mesh can be defined. Fifthly, the nodes on the boundary of the 
duplicated original grid and the nodes on the boundary of substitutive mesh are merged. It is worth 
noting that the nodes of the substitutive mesh should be shifted and rotated when the substitutive 
mesh is merged with the duplicated original mesh. The displacement and rotation of the nodes of 
the substitutive mesh are measured by the centroid of the mesh. Sixthly, the elements of the 
substitutive mesh are inserted into the duplicated original grid. After that, the redundant nodes, 



which are located on the boundaries of the duplicated original grid and the substitutive grid, are 
erased. Finally, the node information of the element is updated. 

 

4.2.4 The mesh quality 

Owing to the substitution operation, the mesh quality may change, and the problem of degenerate 
triangles may arise, which leads to the mathematical error of the XFEM. Therefore, to assure the 
accuracy of the computation, after the substitution operation is carried out, the check of the mesh 
quality is necessary. Researchers commonly assess the shapes of triangles via aspect ratios.37, 38 
The aspect ratios denote fractions determined by dividing length of edges, altitudes, and angles, etc. 
One mostly used quality measure is the ratio of the radius of the largest inscribed circle (times two) 
to the radius of the smallest circumscribed circle of triangles,38 which can be denoted as 
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where rin denotes the radius of the largest inscribed circle of the triangles, rout represents the 
radius of the largest inscribed circle of the triangles, and A, B, and C are the side lengths. An 
equilateral triangle has q = 1, and a degenerate triangle has q = 0. As a rule of thumb, if all triangles 
have q > 0.5, the results are good.37 When Equation 36 cannot be satisfied, the remeshing is 
necessary. A typical operation for the substitution of the mesh is shown in Figure 8A,B. Figure 8C,D 
shows the values of ratio aspect q. In Figure 8C,D, the horizontal axis is the sequence number of the 
elements; the vertical axis is the value of q. Figure 8C is the result obtained from the substitution 
operation. Figure 8D is the result obtained from the remeshing operation. It can be seen from Figure 
8C,D that the mesh quality of the substitutive part is very good, and the value of q is larger than 0.6. 
Therefore, we can say that the proposed method is successful. 
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Figure 8 
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The mesh quality: A, the original mesh; B, the mesh after the substitution; C, the q value for 
substitution operation; and D, the q value for remeshing operation [Colour figure can be viewed at 
wileyonlinelibrary.com] 

4.3 The feasibility and convergence of the proposed method 

As shown in Figure 9, some numerical examples are illustrated to verify the feasibility and 
convergence of the proposed method. The classical plane plate problem with a central straight crack 
is used to verify the accuracy, the efficiency, and the convergence of the method. As shown in Figure 
9A‐D, a plane plate with a central straight crack is discretized by the adaptive mesh. The side length 
of the fine mesh part, respectively, takes 0.02, 0.04, 0.06, and 0.08 m, as shown in Figure 9A‐D. All 
the four kinds of mesh are formed in the same way. The dimension of the plane plate is plotted in 
Figure 9E. A unit uniform force is applied on the plate in the vertical direction when the numerical 
test is done. Additionally, the novel geometric method mentioned in Section 3 is tested in this 
subsection. 

 



The different side length of the element in the middle uniform mesh in the plane plate with a central 
straight crack: A, 0.02 m; B, 0.04 m; C, 0.06 m; D, 0.08 m; and E, the overall dimension of the plane 
plate [Colour figure can be viewed at wileyonlinelibrary.com] 

For the XFEM, the common way to define the accuracy of the method is that the numerical SIF at 
crack tip is compared with the theoretical solution. The theoretical solution in this plane stress 
problem can be found in the work conducted by Mohammadi.39 The SIF at the tips of the crack can 
be expressed as 
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where the correction coefficient is  urn:x‐wiley:8756758X:media:ffe12918:ffe12918‐math‐0051, a 
denotes the half length of the crack, and b is the width of the plane plate. The convergent results of 
SIF obtained by the above meshes are recorded in Table 1. To show the capability of the method to 
avoid the mesh dependence of the results, two kinds of refined meshes are employed. The 
substitutive meshes in Figure 6B,C are, respectively, called the “mesh 1” scheme and the “mesh 2” 
scheme. In Table 1, the values in bracket are obtained by the mesh 2 scheme. It can be seen from 
Table 1 that the values of SIF obtained by the proposed method are more accurate than those 
obtained by the traditional method. Moreover, Figure 10 shows the convergence process of the 
meshes. It is obviously found from Figure 10 that the two mesh schemes have the same 
convergence. Hence, we can say that the proposed method is of mesh independence. Moreover, 
compared with the traditional method, the proposed method can obtain the convergent J‐integral 
value in a much smaller integral radius. In other words, it means that the proposed method can be 
helpful to solve the problems mentioned in Section 1, ie, if the crack is curved at the crack tip, the 
traditional method cannot satisfy the assumption of the straight crack when the SIF is calculated by 
the J‐integral. While, the proposed method can greatly diminish the integral radius to obtain the 
convergent SIF and to make the computation of the J‐integral satisfy the assumption of the straight 
crack. Meanwhile, as mentioned in Section 4.1, the fine mesh at the crack tip can diminish the r term 
in the crack tip enrichment to decrease the effect of the location of the crack tip. Therefore, the 
proposed method can obtain the more accurate SIF and the smoother crack path. 

Table 1. The SIF value for all the meshes 

The value of SIF KI vs the J‐integral radius curve for all the four kinds of meshes: A, the result of 
Figure 9A; B, the result of Figure 9B; C, the result of Figure 9C; and D, the result of Figure 9D [Colour 
figure can be viewed at wileyonlinelibrary.com] 

Figure 11 shows the results of the computation time obtained by the mesh in Figure 9C. The mesh 1 
scheme is employed during the computational process. It can be seen from Figure 11A that the 
proposed method is relatively stable. For the proposed method, as shown in Figure 11B, the 
increased average time is about 4 seconds, and the maximum time difference is 12 seconds. In some 
cases, the proposed method is slightly faster than the traditional method. That is to say, the 
computation time does not obviously increase. Therefore, it can be concluded that the advanced 
mesh method is feasible. 

 

A, The computation time of the two methods and B, the time difference of the two methods [Colour 
figure can be viewed at wileyonlinelibrary.com] 



5 DISCUSSION ON THE CONVENTIONAL MULTIPLE ENRICHMENT SCHEME 

In this section, the familiar multiple enrichment schemes for the XFEM were discussed.15, 40‐43 In 
many previous works, it was applied to improve the accuracy of the XFEM algorithm. As shown in 
Figure 12A, there are three‐layer elements enriched by the crack‐tip enrichment function. However, 
because of the unstructured mesh, the works conducted by Bordas et al29 are taken into 
consideration, as shown in Figure 12B. The radius R is defined as the farthest distance from the 
three‐layer enriched nodes to the crack tip. Within the radius R, the nodes are enriched by the crack‐
tip enrichment functions. Therefore, in the following section, we consider Bordas' method as the 
multiple enrichment scheme. 
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The enriched scheme: A, the three‐layer enrichment scheme and B, Bordas' scheme for unstructured 
mesh [Colour figure can be viewed at wileyonlinelibrary.com] 

However, we find that the multiple enrichment scheme is not suitable for all the problems. As shown 
in Figure 13A,B, in the mixed mode I and II crack, it is found that the stress concentration is not 
located at the crack tip when the multiple enrichment scheme is employed. Obviously, the stress 
contour at the crack tip is not correct. The correct stress distribution contour for the problem is 
shown in Figure 13C. Actually, because of the multiple enrichment scheme, the enriched elements 
cover up the real crack tip. Although the multiple enrichment scheme has the ability to improve the 
accuracy of the XFEM in some degree.15, 40‐43 It is considered that the multiple enrichment 
scheme has a disadvantage in solving the problem of mixed mode I and II crack. 
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The multiple enrichment schemes for XFEM: A, the enriched scheme at the crack tip; B, the 
horizontal stress distribution at crack tip (unit: Pa); and C, the correct horizontal stress distribution 
(unit: Pa) [Colour figure can be viewed at wileyonlinelibrary.com] 

6 COMPARATIVE STUDY 

In this section, a three‐point bending (TPB) test is illustrated to prove the feasibility and superiority 
of the proposed mesh. The dimension of the numerical model is shown in Figure 14A. The location of 
the crack is defined by γ. When γ = 0, it corresponds to the pure mode I configuration. Therefore, a 
value of γ other than zero can result in a mixed mode failure at the crack tip. Actually, we take γ = 
0.5 and γ = 0.75 in the numerical model. Furthermore, the crack growth region has employed the 
fine mesh. The material used in the numerical model is concrete, and some parameters were given 
by John and Shah.34 As shown in Figure 14A, the height of the beam H is 15 m, the length of the 
crack h is 3.75 m, the span of the beam L is 40 m, and the displacement loading P is applied on the 
top of the beam. Additionally, the Young's modulus is 32.5 GPa, Poisson's ratio is 0.24, and fracture 



toughness is 1 MPa·√m. The maximum tangential stress criterion is employed as the failure 
criterion,7, 39 which can be expressed as 
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where KI is the SIF for mode I loading, KII is the SIF for mode II loading, and KIC is the fracture 
toughness for mode I loading. The crack initiation angle with respect to the pre‐existing crack (θc) is 
defined as 

Figure 14 
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A, The sketch of the numerical model; B,C,D,E, the implementation of the proposed method [Colour 
figure can be viewed at wileyonlinelibrary.com] 

When γ = 0.5, there are 4090 nodes and 7941 elements in the numerical model. When γ = 0.75, 
there are 4436 nodes and 8625 elements in the numerical model. To illustrate the superiority of the 
proposed method, the same crack growth increment is employed in the two models. Meanwhile, 
when the numerical test is conducted, the displacement loading control method is employed. The 
loading rate is 0.00005 m per time step. 

 

Figure 14B,C,D,E simply illustrates the implementation of the proposed method in the numerical 
model with γ = 0.75. Figure 15A,C shows the crack propagation path for γ = 0.5 and γ = 0.75 in the 
numerical TPB test, respectively. Only half of the beam with the initial crack is depicted in Figure 
15A,C. The force vs crack mouth opening displacement (CMOD) curves for γ = 0.5 and γ = 0.75 in the 
numerical TPB test are plotted in Figure 15B,D, respectively. As shown in Figure 15A,C, the thick 
black line represents the initial crack, the blue line defines the crack propagation path predicted by 
the linear elastic fracture mechanics,44‐46 the green line presents the crack propagation path 
predicted by multiple enrichment scheme method, and the black line represents the numerical 
result predicted by the proposed method. It can be observed from Figure 15A,C that the proposed 
method has the higher accuracy and can obtain the smoother crack path than the multiple 
enrichment scheme. In addition, it can also be seen from Figure 15B,D that the multiple enrichment 
scheme has great effect on the crack initiation load; it obtains the lower crack initiation load than 
the proposed method when γ is 0.5, while it obtains the higher crack initiation load than the 
proposed method when γ is 0.75. Moreover, the influence is more noticeable for γ = 0.75 than for γ 
= 0.5 in the multiple enrichment scheme. For γ = 0.5, KI dominates the propagation of the crack. For 
γ = 0.75, KII dominates the propagation of the crack. Therefore, it can be concluded that multiple 
enrichment scheme can greatly affect the value of KII, and the proposed method has the advantage 
over the multiple enrichment scheme in the XFEM. 
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The comparison of the two methods: A, the crack propagation path when γ = 0.5 (unit: m); B, the 
force vs CMOD when γ = 0.5; C, the crack propagation path when γ = 0.75 (unit: m); and D, the force 
vs CMOD when γ = 0.75 [Colour figure can be viewed at wileyonlinelibrary.com] 

7 CONCLUSIONS 

In this paper, a novel geometric method combined with the piecewise linear function method is 
introduced into the XFEM to determine the crack tip element and the crack surface element. Then, 
by combining with the advanced mesh technique, a novel method is proposed to improve the 
modelling of crack propagation in the XFEM. The main conclusions are summarized as follows: 

 

Based on the geometrical feature of the triangle, a novel geometric method is proposed to define 
the crack tip element and the crack surface element in the XFEM, which is different from the 
conventional level set method. Then, by combining with the piecewise linear function, the geometric 
method can be used to describe some complex cracks. It is worthy to note that the geometric 
method is a local analytical method, and it only needs some geometric information of the mesh and 
the crack. Hence, the geometric method can also be applied to other numerical methods, which 
needs to describe the characteristic of the crack. 

It is found that the multiple enrichment scheme has a disadvantage in the computation of KII. While, 
the advanced mesh technique can improve the accuracy of the computation and can obtain the 
smooth crack path. Additionally, the proposed method can greatly diminish the integral radius to 
obtain the convergent SIF and to make the computation of the J‐integral satisfy the assumption of 
the straight crack. Meanwhile, the fine mesh at the crack tip can diminish the r term in the crack tip 
enrichment to decrease the effect of the location of the crack tip. Therefore, the proposed method 
has an advantage over the multiple enrichment scheme. 

The proposed geometric method only needs the geometric information of the mesh and the crack, 
which can be easily applied to the 3D problems of the XFEM in the future studies. In addition, the 
advanced mesh technique can also be easily extended to solve the 3D problems of the XFEM. 
Moreover, for the proposed mesh technique, the substitutive mesh can be in other shapes. 
Therefore, the proposed mesh technique can still be an effective way to establish the complicated 
mesh or to create the microstructure for other works in the future studies. 


