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Abstract

This thesis evaluates risk measures for interest rate portfolios. First a model for interest
rates is established: the LIBOR market model. The model is applied to Norwegian and
international interest rate data and used to calculate the value of the portfolio by using
Monte Carlo simulation. Estimation of volatility and correlation is discussed as well as
the two risk measures value at risk and expected tail loss. The data used is analysed
before the results of the backtesting evaluating the two risk measures are presented.
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Chapter 1

Introduction

Finance is a field becoming increasingly important. This was clearly illustrated during
the recent financial crisis spreading throughout the world. The fundamental role that
finance plays in our society makes it particularly important to attain deeper insight in
this field. Mathematics is an excellent tool that helps quantify and interpret financial
data. One of many uses of mathematical finance is exploring the vast amount of data
through estimation and modelling. However, it should be noted that treating the data
as if it is physics is debatable. In the end, the data is created by humans and their
choices and they are all but rational. One should therefore keep this in mind and all
information attained should be used accordingly.

The models are implemented in C++ which is an efficient computer language when
performing large calculations. The rest of this chapter will be used to give a brief
discussion on some of the key concepts in the financial world.

1.1 Assets

An asset is a resource with economic value and the term can be used for any financial
product whose value is quoted or can in principle be measured. This thesis will mainly
discuss the two asset classes fixed-income (bonds) and cash equivalents (money market
instruments) which combined are modelled as interest rates.

This thesis does not discuss speculation of asset prices because it is assumed that
future asset prices are not known and cannot be predicted. According to the efficient
market hypothesis which is stated in [8], asset prices must move randomly:

e The past history is fully reflected in the present time, which does not hold any
further information.

e Markets respond immediately to any new information about an asset.

Thus the modelling of asset prices is really about modelling the arrival of new information
which affects the price. This does not mean that the historic values of the asset price
contains no information. On the contrary, the time series based on the historic data can
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be used to estimate the volatility and the mean as well as the most likely distribution
for the future asset price.

1.2 Derivatives

A derivative is a security whose price is dependent upon or derived from one or more
underlying assets. Hence the value of the derivative will change as the value of the
underlying assets change. A derivative can be used as an underlying asset for another
derivative and the derivative itself is a contract between two or more parties. The
derivative market is vast; the notional principal amount exceeds trillions of US$ and
is growing fast. The most common types of derivatives are: forward contracts, futures
contracts, options and swaps. A forward contract is an agreement between two parties
where one agrees to buy an asset for a given price at a given date in the future. A
futures contract is much like a forward contract, but a futures contract is standardised
and traded on an exchange. An option gives the holder the right to buy or sell an asset
for a given price at a given date in the future. Notice that an option gives the holder a
right, but not the obligation to buy or sell the asset. A swap is a contract between two
parties agreeing to exchange or swap future cashflows. How to calculate the sizes of the
cashflows are decided upon the agreement of the contract.

1.3 Hedging

Hedging is the reduction of risk by taking advantage of the correlation between deriva-
tives and the underlying assets. The main use of derivatives are in fact for the use of
hedging and not for the use of speculation. The reduction of risk can lead to an improved
risk /return ratio and is widely used. A perfect hedge reduces the risk to zero, but note
that this will greatly reduce the expected return as well.

Hedging is used in many other areas than finance. For example a farmer growing
potatoes knows that the price of potatoes fluctuates throughout the year. He will there-
fore like to sell some of the harvest before the fall to ensure some economic stability.
This is possible by signing a forward contract which specifies the price he will get for
the potatoes he sells when he harvests.

1.4 Arbitrage

Arbitrage is one of the fundamental concepts in finance. The concept states that there
are never any opportunities to make an instantaneous risk-free profit. In practice this
means that such an opportunity never exists for a significant period of time. Assume that
there exists a risk-free investment with a guaranteed return. An approximation to such
an investment is a government bond or a deposit in a sound bank. The greatest risk-free
return anyone can make is the return gained in any of the two examples mentioned.
An investment in a financial instrument will possibly have a greater return, but it is
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not guaranteed: greater return comes with greater risk. If a risk-free investment offered
greater return than the risk-free return, no investor would want to put their money
in the bank or buy a government bond. On the contrary, investors would want to
borrow money to invest in the risk-free investment having greater return and by doing
so exploit the arbitrage opportunity. This would cause the risk-free interest rate to
increase and the arbitrage opportunity would disappear. As noted earlier, in practice an
arbitrage opportunity will not exist in a significant period of time. Suppose an arbitrage
opportunity exists, then arbitragers and special computers programmed to find such
mispricings act quickly and the arbitrage opportunity will vanish.

1.5 Risk Neutral Pricing

When pricing an asset the concepts of hedging and arbitrage should be used. The
assumption of no arbitrage opportunities and the use of hedging leads to the fact that
there is no return above the risk-free return. If an asset was to be valued in the real world,
the expectation would be found and then adjusted for risk. Instead the probabilities of
future payoff can be changed in such a way that they incorporate the effect of risk before
the expectation is found. A so called risk-neutral world where the investors do not care
about risk, is created to find the future payoff incorporating the effect of risk. The
following qualities characterizes the risk-neutral world:

e Investors do not care about risk. They do not expect any extra return for taking
unnecessary risk.

e Investors do not need statistics for estimating probabilities of events happening.
e Investors believe everything is priced using simple expectations.

This is in strong contrast to what was discussed in the section concerning hedging where
risk was a highly unwanted quality of a financial instrument.
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Chapter 2

Interest Rates and Interest Rate
Derivatives

A bond is an agreement in which an investor loans money to a company or a government.
The variation of bonds is vast where factors as duration of the bond as well as the size
of the repayment affects the characteristics of the bond. The main works of reference
for this chapter are [8] and [12].

2.1 Bond and Bond Pricing

A more formal definition of a bond is: A bond is a contract paid for up-front that yields
a known amount on specified dates in the future. The simplest form of a bond is a zero-
coupon bond. This is a contract paying a fixed amount of money called the principal,
at a given date in the future called the maturity date T. A coupon-bearing bond pays
smaller quantities called coupons, up to and including the maturity date in addition to
the principal. The coupons are usually pre-specified fractions of the principal.
The value of a zero-coupon bond V(t), is a known function of time if the interest
rate r(t) is a known function of time. In a time-step dt the value of the bond changes by
av
—rdt. (2.1)
The change in value must depend on the interest rate and by using the arbitrage principle

the value is equal to
av
— =1r(t)V. 2.2
=TtV 22)

The solution of this ordinary differential equation is
T

V(;T) = Pe Je 70T (2.3)

where the value of the bond at time T is P. Let there be zero-coupon bonds quoted for
all possible maturity dates T. If V(¢; T') is differentiable with respect to T, solving (2.3)
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and differentiating gives
-1 oV

") = v o

This equation gives the value of the interest rate at future dates if the market of zero-
coupon bonds reflects a deterministic interest rate. Another interesting observation is
the value of %, which is negative since the interest rate is positive. Thus a bond’s

current value decreases the longer it has to live.

(2.4)

2.2 The Yield Curve

The rate of return on an investment is called the yield and for a zero-coupon bond it is
defined by
log(V(#:T)/ V(T T))
T—t ’
where V is the value of the zero-coupon bond. This definition has two important ad-
vantages compared to (2.4): The bond prices V' do not have to be differentiable and
continuous distribution of bonds with all maturities is not required. The two measures
are identical when the interest rates are constant. Plotting the values of Y against time
to maturity (7" — t), gives the yield curve. The dependence of the yield curve on the
time to maturity is called "the term structure of interest rates".

Due to non-deterministic interest rates, the shape of the yield curve varies. There
are three distinct shapes often seen in the market: The increasing yield curve is most
common. This shape is characterized by higher values for interest rates with longer time
to maturity than for those with short time to maturity. Under normal market conditions
the return should be higher the longer the money is tied up which is consistent with the
increasing yield curve. The decreasing and humped yield curves are typical when the
short rate is currently high but expected to fall. Examples of increasing and decreasing
yield curves can be seen in figure (2.1).

Y(;,T) =

(2.5)

2.3 Interest Rate Models

Modelling the interest rate can be done by introducing a random variable and letting
the interest rate follow a random walk. The simplest interest rate models have only
one source of randomness and are therefore called one-factor models. The interest rate
modelled is the spot rate which is the rate received by the shortest possible deposit.
Over a small period of time dt it is best modelled by both a deterministic and a random
part, which is common for several financial assets. The interest rate r is given by the
equation

dr = w(r, t)dX + u(r, t)dt, (2.6)

where dX is the random element modelled by a Brownian motion and different functions
for w(r,t) and wu(r, t) will give the interest rate different behaviours. A Brownian motion
has the following properties:
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Interest rate
3
|

Time to maturity

Figure 2.1: Yield curves for the US interest rate displaying a decreasing and an increasing
yield curve. The red yield curve (4th Dec 2006) is decreasing while the blue (29th Nov
2009) is increasing. Normally the yield curve is increasing, but under certain market
conditions it may be decreasing.

e dX(0)=0
e the mapping ¢ — W (t) is, with probability 1, a continuous function on [0,T]

e the increments W (t1) — Wi(to), W(t2) — W(t1),..., W(tx) — W(tg—1) are indepen-
dent of any k£ and any 0 < tg < t; < to... <tp <T

o W(t)—W(s)~N(@O,t—s)forany0<s<t<T

as can be seen in [5]. The random element dX can therefore be written dX = VdtZ
where Z is a standard normal variable. The use of a standard normal variable as the
random element is debatable and the validity of this assumption will be tested later.

One of the most sought after qualities for an interest rate model is the mean reverting
behaviour. The value of many financial assets e.g. stocks, have no upper limit and can
in theory tend to infinity when time tends to infinity. This is in contrast to interest
rates where extreme values rarely are seen. The mean reverting property ensures that
the interest rate tends towards the mean. It is also important to avoid negative interest
rates. Even though negative interest rates have occurred in some parts of the world it
is not common and negative interest rates should be avoided.

When pricing an equity option the underlying asset is used to hedge the derivative
to find a fair price. When pricing a bond, there is no underlying asset with which to
hedge. This makes pricing a bond more difficult than pricing an equity option and the
only alternative is to hedge a bond with a another bond maturing at a different date.
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This is used when the bond pricing equation is derived as can be seen in appendix (A.1).
The bond pricing equation is

2
%‘Z+;w2%:2/+(u—/\w)aa‘;—r‘/:0, (2.7)
where V' is the value of the zero-coupon bond, T is the maturity date, w is the volatility,
u is the drift and A is the market price of risk. Several interest rate models are chosen so
that the solution of (2.7) can be found analytically. Parameter estimation can be done
both by using historic values and by using values given by the market.

If a one-factor model is used for describing the whole yield curve, the curve will
be given from a specified interest rate at a specified time. This yield curve cannot
capture the diversity seen in a yield curve given by the market, thus the multi-factor
models are introduced. A multi-factor interest rate model comprises two or more sources
of randomness. Commonly the sources of randomness are different interest rates, for
example a short-term and a long-term interest rate, but some models use other measures
such as the yield curve slope or the volatility of the spot rate. When pricing a derivative
dependent on the difference of yields of different maturities, a one-factor model cannot
be used, but when pricing a derivative only dependent on the level of the yield curve,
a one-factor model may be sufficient. Examples of multi-factor models are the Heath,
Jarrow and Morton (HJM) framework and the LIBOR market model (LMM). The LMM
will be used for simulation in this thesis. It will be discussed in greater detail in the next
section.

When the Heath, Jarrow and Morton (HJM) approach was introduced it drastically
changed the pricing of fixed income products. Unlike most interest rate models at
that time the framework describes the evolution of the whole forward rate curve and
was a great improvement compared to the one-factor models which mostly models the
spot rate. Another advantage is that yield-curve fitting occurs naturally because of the
properties of a multi-factor model. A drawback is that the general model is not a Marcov
process and an infinite number of variables are needed to write the model as a partial
differential equation.

As many other multi-factor interest rate models, the HJM describes the evolution
of forward rates. As can be seen in [5], a forward rate is an interest rate set today for
both borrowing and lending some time in the future. If F'(¢,77,T>) denotes the forward
rate, it will be fixed at time ¢ for the interval [T1,T5] where t < T} < T,. An investor
borrowing at this rate will enter into the agreement at time ¢, borrow the money at time
Ty, repay the loan at time T and pay interest at rate F'(¢,T1,T3).
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2.4 Simple Compounded Forward Rates and the LIBOR
Market Model

The reference for this section is [5].

Simple Compounded Forward Rates

The London Inter-Bank Offered Rates (LIBOR) are among the most important bench-
mark interest rates. The rates are quoted daily for different maturities and currencies
and are based on simple interest. Even though the LIBOR rates are not completely
risk-free, they will be treated as if they are in this thesis. The forward LIBOR rate
L(0,T) is set at time 0 for the interval [T, T + 4]. It is given by the bond prices B to be

B(0,T) — B(0,T + §)
3B(0,T +9)

L(0,T) = (2.8)

A finite set of tenor dates are introduced. They specify the maturities by which the
interest rates are modelled

0=To<Ty <..<Ty <Trs1- (2.9)
The length of the intervals between the tenor dates are denoted
0; =Ty — 13,0 =0,1,..., M. (2.10)

These are often equal to a fixed interval, e.g. half a year. Let B,,(t) denote the price of
a bond at time ¢ maturing at time 7, (0 <t <T,,), instead of the notation used earlier
B(t,T). Similarly let L, (t) denote the forward rate at time ¢ for the interval [T},, T}, 41].
L, (t) is then given by

Bn (t) - Bn+1 (t)
5an+1(t)

Ln(t) = 0<t<T,n=0,1,.. M. (2.11)

The inverted relationship gives the value of the bond B,,(T;) in terms of the forward rate
Ly

n—1
1
BT:”i =14+1,....M + 1. 2.12
n( 7,) i 1+5JLJ(,I,Z)7’N 1+ g eeey + ( )

When (2.12) is used to price bonds they can only be determined at the maturity dates
because the discount factors are valid only for the specified time intervals. Further work
can be done to determine bond prices between the tenor dates.

The LIBOR Market Model under the Forward Measure

The LIBOR Market Model (LMM) describes the evolution of the arbitrage-free forward
rates. More precisely it describes simple compounded interest rates which, as seen
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previously in this section, are easily observed in the market. The model is therefore
called a "market model'. The LMM can be formulated both under spot measure and
under forward measure. The model is described by a system of stochastic differential
equations (SDEs) of the form

dLn(t)
Ln(t)

= pn(t)dt + o () TAW(1),0 <t < Tpon=1,..., M, (2.13)

where W is a d-dimensional standard Brownian motion, u, is the drift and o, is the
volatility. The LMM can be formulated both under spot measure and under forward
measure. The forward measure for maturity Tas41 uses the bond Bjs11 as numeraire
asset. The deflated bond prices are defined to be the ratios

M
B0 T (4 61,0)). (2.14)

j=n+1

b= g

The evolution of the forward LIBOR rates can be found by requiring that D,, from (2.14)
are martingales and by the use of induction, see [5]. It is given by

dLy(t) _ M 5ij(t)Un(t)To'j(t)
La(t) _jzn;l oL o AW, 0< < T, (215)

where WM+L ig a standard d-dimensional Browninan motion.

2.5 Interest Rate Derivatives

There is a vast number of different interest rate products. An interest rate derivative
derives its value from the interest rate or from another interest rate derivative. A bond
is one of the simplest and most common interest rate derivatives. Three other common
interest rate derivatives are studied in this section: swaps, caps and floors. It is important
to emphasize that when valuing interest rate derivatives, only the risk-free interest rate
should be used.

Swaps

An interest rate swap is a contract between two parties agreeing to exchange or swap
future cashflows represented by the interest on a notional principal. The principal is
notional in the sense that it is never paid by either party, it is only used to determine
the magnitudes of the payments. One party pays the other a fixed interest rate multiplied
by the principal while the other pays a floating interest rate multiplied by the principal.
Thus, the swap has the following payoff seen from the payer of the fixed cashflow

S=r—rs (2.16)

multiplied by the principal. r is the floating interest rate and rs is the fixed interest
rate. When the contract is entered into it is usual for the deal to have no value to either
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party. This is done by choosing the fixed interest rate in such a way that the net present
value of the two sides equal one another and no money changes hands on the day the of
the agreement.

Caps and Floors

The owner of a cap contract pays several cashflows determined by the floating interest
rate and the notional principal at specified dates. However, the owner is guaranteed
that the floating interest rate will not exceed a specified value, called the cap. Each of
the individual payments is called a caplet, thus a cap is the sum of several caplets. The
payoff for a caplet is

C=(r—ro)t, (2.17)

multiplied by the principal where r is the floating interest rate and r. is the cap. Thus
a caplet is a call option on the floating interest rate r as can be seen in [7].

A floor is similar to a cap except that the interest rate is bounded below by the floor.
Each of the individual cashflows is called a floorlet and the payoff for a floorlet is

F=(r;—rT, (2.18)

multiplied by the principal where r is the floating interest rate and ry is the floor. A
floorlet is similar to a put option on the floating interest rate r as can be seen in [7].
The cap-floor parity expresses the relationship between a cap, a floor and a swap.
Let a portfolio II consist of a long caplet and a short floorlet where r. = ;. The value
of this portfolio is
O=r—r)t —(re—r)t =r—r.. (2.19)

The last term is recognised as one of the cashflows of a swap. Thus there is a no-arbitrage
relationship between a cap, a floor and a swap:

swap = cap — floor. (2.20)

Options

An option gives the holder the right to buy or sell an asset for a given price at a given
date in the future. Notice than an option gives the holder the right but not the obligation
to buy or sell the asset. Examples of interest rate options are bond options, swaptions,
captions and floortions. A bond option is valued as an equity option except that the
underlying asset is a bond. For more information of how to value an equity option, see
[7]. Swaptions, captions and floortions are valued as swaps, caps and floors except that
the holder only exercises the option if it has positive value.
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Chapter 3

Estimation of Volatility and
Correlation

Volatility measures the dispersion of the value of a given asset. In this thesis volatility
is defined as the standard deviation of the returns of an asset and this chapter discusses
the estimation of volatility for prediction purposes. The main work of reference for this
chapter is [1].

3.1 Implied vs Historical Information

Estimation of volatility and correlation can be done using both implied and historical
information. Implied information means taking advantage of the relationship between
derivative prices and the volatility, as well as other variables that are used in analytical
formulas describing this relationship. Originally these formulas were used to estimate
the value of the derivative, but they might be used "the other way around" and estimate
the volatility or correlation given the derivative price. When using historic information
to estimate the future volatility, the historic prices of the underlying asset are used to
produce the estimate. This is more traditional and originates from the classical statistics.

Using implied volatility or correlation leads to several problems. One of the funda-
mental problems is that the analytical formulas are not exact. This implies that using
different models will lead to different estimates of the volatility or correlation. Many
assumptions are made to calculate an analytical solution of the derivative price. An
implied estimate should not be used if one of the assumptions in the formula used con-
tradicts an assumption of the model itself. l.e. an investor might want to avoid the
normality assumption in his model, but most analytical relationships are based on this
assumption. Using an implied estimate based on a model assuming normality would
then not be advisable. Another problem is that most models assume constant volatility
or correlation during the lifespan of the derivative, thus the estimation will have a fixed
forecast horizon. I.e. an investor might want to estimate the volatility for the next day.
If he uses a derivative with a lifespan of one year to estimate the implied volatility, this
will most likely be a poor estimate. Yet another problem concerning implied estimates

13
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is that it would require observable derivative prices on all instruments contained in a
portfolio. Generally the derivative prices are not liquid enough to produce consistent
estimates. At last it should be noted that the implied volatility is subject to what is
expected by the market. In comparison historical values used to calculate the historical
volatility contains both data that is expected by the market as well as unexpected. Thus
one can argue that historical information gives a richer and more realistic view of the
volatility and the correlation.

As concluded in [1], some research point towards implied estimation performing bet-
ter than historical estimation while other point towards historical estimation outperform-
ing implied estimation. An alternative of choosing one of the two estimation methods
would be to combine the two, but this is beyond the scope of this thesis. For the purposes
of this analysis historical estimates of the volatility and correlation will be used.

3.2 Simple Moving Average Model

The simple moving average (SMA) estimate is based on the traditional method of defin-
ing variances and covariances as can be seen in [6]. Let 75, be the i’th measurement of
the m’th component of the sample. The variance of a component is estimated by

1 X

22 2
8 =x—7 i:1(n )%, (3.1)

where N is the total number of samples and 7 is the estimated mean of the component.
Similarly, the covariance between the m’th and n’th component is estimated by
T

A

Sm,n = ﬁ i:1(Ti,m - ?m)(ri,n - ?n)' (32)
By letting r be the return of any asset, this method can be used to estimate the variance
and covariance of a multivariate time series. The return r;,, will be the return of the
1’th period of time for the m’th component.

Correlation is another measure of the influence two components have on each other.
It is defined by the standard deviation and the covariance to be

R 3
Pmn = LI (3.3)

A

Smbn

The coefficient measures the linear association between the two random variables 7,
and 7,.

3.3 Exponentially Weighted Moving Average Model

The US forward rate for the period of 1-2 years can be seen in figure (3.1). When
calculating the volatility and correlation of the interest rate, the log return of the time
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Figure 3.1: The US forward rate for the period of 1-2 years.

series is used. Figure (3.2) shows the log return of the time series in figure (3.1) and
it is clear that the volatility of the log return is not constant during the period of time
chosen.

As the variance and covariance is not constant over time, another model is suggested
to handle the time-dependence better. Using the exponentially weighted moving average
(EWMA) model to estimate the matrix allows for time-dependence and lets recent data
have greater impact on the estimate. The estimate of the variance using this model is

N

&= (1=X)) XN —7)> (3.4)
=1

Notice that compared to the SMA, the EWMA depends on the parameter A (0 < A < 1)
which is called the decay factor. Both the relative weights of the returns and the effective
amount of data used in estimating the volatility is dependent on the size of this factor.
The decay factor is chosen to be 0.94 when estimating daily volatility and 0.97 when
estimating monthly volatility. The reason for this seemingly arbitrary choice can be
found in [1].
Assuming that the sample mean 7 is zero, a recursive form of (3.4) can be obtained
671 = A67i + (1= N)rf. (3.5)
The subscript "i+1|i" can be interpreted as the forecast at time i+ 1 given all information
up to and including time ¢. The subscript "i|i — 1" can be interpreted similarly. The
ability to obtain the estimate recursively is also an advantage when it comes to computing
time.
The EWMA estimate of the covariance for the m’th and n’th component is found



16 CHAPTER 3. ESTIMATION OF VOLATILITY AND CORRELATION

Log return of the interest rate
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Figure 3.2: The log return of the US forward rate for the period of 1-2 years. The log
return of the interest rate will be used for calculating the variance and the covariance.
Notice that the volatility of the sample is not constant.

similarly

N
&m,n = (1 — )\) Z )\iil(rﬂm — Fm)(ri,n — Fn). (3.6)
=1

By making the assumption of zero mean, a recursive formula can be obtained for the
covariance as well

Git1limmn = AFili—1,mn + (L= A)TimTin. (3.7)

The correlation is defined by the relationship between the covariance and standard de-
viations and is therefore

. Git1limm
Pit1)i,mmn = (3.8)

Git1)imTitilin

Estimates of the volatility is made by using both SMA and EWMA to be able to
compare the two methods, the plot can be seen in figure (3.3). It is clear that a shock
effects the SMA and EWMA estimate differently. The EWMA estimate reacts faster to
the shock and peaks higher than the SMA estimate. It should also be mentioned that a
shock affects the SMA estimate over a longer period of time than it affects the EWMA
estimate. The SMA estimate remains quite large as long as the data from the shock is in
the sample while the EWMA estimate decreases earlier and more gradually. The sample
size is of great importance for the SMA estimate because the peaks last as many days
as the sample size is large. This is easily seen in figure (3.3) where the estimate using 3
months of data has thinner peaks than the estimate using 6 months of data.
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Figure 3.3: The SMA and the EWMA estimate of the volatility is calculated using 3 and
6 months of data in the sample. The red line is the SMA estimate while black line is the
EWMA estimate. The value of the decay factor is set to be 0.94. Notice that the EWMA
estimate peaks higher and adjusts faster whenever a shock occurs. In comparison the
SMA estimate has a lower value over a longer period of time after a shock. This effect
is strengthened when the size of the data in the sample increases and the value of the
SMA estimates are lower but lasts longer when using 6 months of data in the sample.
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3.4 Multiple Days

The variances and covariances estimated so far are defined over the period of time from
1 to i + 1, where each step represents one business day. Often an estimate over several
days is wanted and this can be estimated by

62, = M&? 3.9
M

and
a'm,n,M = Ma'n,m (310)

where M is the number of days for which the estimate is chosen to be valid, see [1]. The
approximation is valid for both the equally and the exponentially weighted estimation.
Remember that the value of the decay factor changes when the estimate is valid for a
longer period of time. In particular, as was commented in the last section, the decay
factor is set to 0.94 when the estimate is valid for a day and 0.97 when the estimate
is valid for a month. The standard deviation over a period of time IV is estimated by
&n = VN6 and this is often called the "square root of time" relationship. It should be
noted that the correlation does not change because the multiples will cancel each other
out.

A closer look at the "square root of time rule" reveals that the variance and covariance
are assumed to be constant over time. As previously shown, this is a poor assumption
and is a serious flaw of the model. In addition there are three scenarios in particular
where the the model performs poorly:

e When the time series is mean reverting.
e When boundaries limit the movement of the time series.

e When the estimate optimized for a particular time horizon is used for another
horizon.

As both the first two scenarios listed are characteristics of the interest rate it might be
tempting to reject this model, but finding a good replacement is not easy.

Both the SMA and the EWMA model have several flaws and efforts have been made
to make better models. Some models do seem to perform better, but they are far more
complicated and will not be discussed in this thesis. The SMA and EWMA models
provide adequate estimates and will be used for the purpose of this thesis.



Chapter 4

Measurement of Risk

Investing in assets exposes the investor to risk. Several models are made to describe the
risk, and in this chapter two of the most popular models will be described. The reference
for this chapter is [3].

4.1 Risk Measurement

According to [3], financial risk is defined as the prospect of financial loss - or gain - due
to unforeseen changes in underlying risk factors. The formal work of risk measurement
started in the middle of the 20th century, but has developed rapidly since then. The rapid
development is due to several factors, one being the more volatile environment in which
the firms operate. As more volatile environments exposed the firms to greater financial
risk the firms responded by improving their risk management. The factors contributing
to the volatile environment are volatility in the stock and commodity markets and the
volatile exchange and interest rates. Another factor contributing to the fast development
of risk measurement is the enormous growth in trading activity. The activity in the
stock exchange markets have increased tenfold. At the same time vast amounts of new
instruments, among them derivatives, have been created and the trading volumes in
these new instruments has grown rapidly as well. A third factor contributing to the
development is the improvements in information technology. Because of increases in
computing power and computing speed as well as reduction in computing costs, all
calculations relating to risk measurements are now done using information technology.
Financial risk can be separated into several forms of risk, among them market risk, credit
risk and operational risk. This chapter will discuss the measurement of market risk.
Even though risk measurement has improved the management of risk greatly, there
are some concerns that should be noted. All risk measures are based on models, and all
models are based on assumptions. If these assumptions are incorrect or fail to capture
important behaviour observed in the real world, the model will perform poorly. The
risk of a model performing poorly in this way is called model risk. Another risk issue is
the implementation risk which arises when a system is implemented. The same system
can be implemented in several ways and will perform differently depending on how it
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is done. Other flaws could be discussed, but the bottom line is that risk measurements
improve the monitoring of risk for the firms.

4.2 Value at Risk

The concept of value at risk (VaR) was created when the need for a better risk mea-
surement grew at the end of the 20th century. Previously the risk measures used were
crude and measures used in one area could not necessarily be compared with measures
used in another area. Several models were developed in this period and most of them
were based on VaR, which became the new standard of risk measurement.

As can be seen in [12], a common definition of VaR is:

Value at Risk is an estimate, with a given degree of confidence, of how much
one can lose from one’s portfolio over a given time horizon.

When the degree of confidence increases, the value of VaR increases as well. It should
carefully be noted that VaR often increases at an increasing rate which means that the
possible losses can be large. When the time horizen increases, VaR often increases with
the square root of the holding period. However, this is only a rule of thumb, and the
VaR might increase in a different way or even fall as the time horizon increases. It should
now be clear that the combination of increasing degree of confidence and increasing time
horizon might produce large VaR’s.

The confidence level is typically 95%, 97.5%, 99% etc. However, it should be noted
that for backtesting purposes a relatively low confidence level is an advantage to get
a reasonable proportion of excess-loss observations. The usual holding periods are one
day or one month, but any arbitrary holding period can be chosen. The time horizon is
amongst other things dependent upon the liquidity of the markets in which the assets
are bought and sold. Other things being equal, the ideal holding period in any given
market is the time it takes to ensure orderly liquidation of positions in that market.
However, a short holding period is favoured by other factors: The portfolio is assumed
not to change over the holding period and clearly this holds better for a short than a
long holding period. It is also preferred to have a short holding period when backtesting
or validating models because of the large amounts of data that is needed. To get a
better understanding of how the VaR depends on the confidence level and the holding
period, it is suggested that whenever applicable the point values of the variables should
be replaced by intervals of the variables. The result will be a VaR-surface which will
describe the risk more thoroughly than a point estimate. It should also be noted that
VaR is calculated assuming normal market conditions. Thus extreme market conditions
such as crashes are not considered and should be examined separately.

One of the advantages of the VaR is that the measure is consistent across different
positions and risk factors. Institutions can improve their management of the overall
risk by using VaR if their previous measure could not compare risk across the different
positions. Another important characteristic is that VaR takes the correlations between
different risk factors into account: If two risks offset each other, the value of the overall
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VaR will be fairly low. If two risks do not offset each other, the value of the overall VaR
will be greater.

A drawback of the VaR estimates is that they are rather imprecise. Different VaR
models can give large differences in the estimates. Even theoretically similar models can
produce different estimates because of different implementation. If an investor uses an
inaccurate VaR measurement and believes it to be correct, the risk and the loss can be
larger than he expected it to be. It is worse to believe one’s inaccurate estimate of VaR
is accurate than to not have an estimate of the VaR at all.

One of the other disadvantages of the VaR measure is that it gives no idea of the
behaviour of the tail. If a tail event occurs the loss is expected to be greater than the
VaR, but there is no information on how large the possible loss is. The lack of this
information is a large drawback of the VaR. It is in fact possible to construct different
portfolios with the same VaR, but where the loss in a possible tail event is much larger for
one of the portfolios. Even though the VaR is equal for the two portfolios the risk is not
and this can easily mislead investors. This drawback can even be exploited by traders
to construct portfolios with greater risk than first presumed. If applicable, this problem
can be avoided by the use of several confidence levels or by the use of VaR-surfaces as
earlier described.

Another drawback of the VaR measure is that it is in general, not sub-additive. Sub-
additivity means that adding up individual risks does not increase the overall risk. Let
p be a risk measure and let A and B be positions. Sub-additivity can then be expressed

p(A+ B) < p(A) + p(B). (4.1)

Sub-additivity is important because it gives an overestimate of combined risk which often
is convenient. If the returns are normally, or more generally elliptically, distributed, the
VaR is sub-additive. However, if we cannot assume an elliptical distribution, the measure
is not sub-additive. Sub-additivity will be discussed in greater depth in the next section.

4.3 Coherent Measure of Risk

It is clear that VaR has several weaknesses and the discussion of what a good risk
measure really is started in the late 1990’s. Philippe Artzner et al. proposed a theory of
the properties of a good risk measure: the theory of coherent risk measures. Let X and
Y represent any two portfolios and let p be a measure of risk over a chosen horizon. As
can be seen in [4], the properties of a coherent measure is:

1. Monotonicity : Y > X = p(Y) < p(X).
2. Subadditivity : p(X +Y) < p(X) + p(Y).

3. Positive homogeneity : p(hX) = hp(X) for h > 0.

W

. Translational invariance : p(X +n) = p(X) — n for some certain amount n.
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Monotonicity means that if a portfolio Y is always greater than X, it should have lower
risk as well. Positive homogeneity implies that the risk of a position is proportional to its
size, e.g. double the investment and the risk is doubled as well. Translational invariance
means that adding risk free capital to the portfolio reduces the risk. The reduction of
risk is at the same rate as the addition of the risk-free capital.

Subadditivity implies that the risk of a portfolio made up of subportfolios will be no
greater, and in some cases less than, the sum of the risks of the subportfolios. It is an
important property because non-subadditivity has some awkward characteristics. Non-
subadditivity might suggest that diversification increases the risk, which means that a
risk manager following this "rule" might end up betting all his money on one horse which
would be anything but a safe bet. Another characteristic of a non-subadditivity measure
of risk is that it might create extra risk when adding two subportfolios. This risk did
not exist before the merging of the subportfolios and one might wonder where this risk
should come from if it existed. Some consequences of non-subadditivity:

e Adding risk together would not give an overestimate of the combined risk. On
the contrary, adding the risk would give an underestimate which would be useless.
This means that a risk manager can not use the sum of risks reported to him as
a conservative measure of risk. It follows that decisions made on a decentralised
level is more risky than presumed and the consequence is that decisions should be
centralised.

e Traders using non-subadditive risk measures can break up their accounts at an
exchange to reduce the risk which will reduce the margin requirements. The ex-
change will itself be exposed to possible loss because the separate accounts would
no longer cover the combined risk.

e Financial institutions are required to have a certain amount of capital to ensure
that that they do not increase the risk of default in the market. If regulators
deciding the size of the capital requirement use non-subadditive risk measures,
a financial institution might be tempted to break itself up to reduce the capital
requirements. The sum of the capital requirements for the smaller units will be
less than the capital requirement for the institutions as a whole and the institution
will then make more money.

4.4 Expected Tail Loss

Expected tail loss (ETL) is a coherent measure and is also called expected shortfall (ES).
It is the expected loss if the loss exceeds VaR. Let the loss be denoted L, ETL is then
defined by

ETL = E[L|L > VaR). (4.2)

While the VaR estimates the maximum loss if a tail event does not occur, the ETL
estimates what is expected to loose if a tail event does occur. ETL is a consistent
measure of risk across different positions and also takes correlations into account. ETL
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increases when the level of confidence increases. Often the ETL increases at an increasing
rate which means that possible tail losses can be large. ETL is also dependent on
the holding period, usually the ETL increases when the holding period increases. The
discussion of the choice of parameters for ETL is similar as the discussion of the choice for
parameters for VaR. As the same arguments may be applied for ETL the arguments are
not repeated but can be found in the section on VaR. It should also be emphasised that
the ETL-surface, as the VaR-surface, gives more insight into the risk and provides more
information than a point estimate and therefore should be used whenever appropriate.
Since the ETL is a coherent measure, but still entails many of the good properties of
VaR, ETL is considered to be a better risk measure than VaR. The two most important
reasons are:

e The ETL estimates what to expect if a tail event occurs, e.g. how bad the situation
might turn out to be. VaR on the contrary, gives no more information than to
expect a loss greater than the VaR itself.

e The ETL is coherent and satisfies the subadditivity condition, while the VaR does
not. The consequence is that the VaR measure has some awkward characteristics
which is a major drawback of the risk measure.
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Chapter 5

Implementation

This chapter describes implementation of methods and models used in this thesis.

5.1 The LIBOR Market Model

The reference for this section is [5]. When simulating multi dimensional interest rates,
both time and maturity arguments must be discrete. When using the LIBOR market
model (LMM) the maturity is already discrete due to the use of a finite set of maturities
and it is only necessary to discretize the time argument. The Euler scheme is applied to
log L, and the LIBOR rates can be simulated using

Lu(tin) = Lo(t)esp ( [ (L(8),1) — 5ou(t)?

[tiv1 — ti] + /tiy1 — tian(ti)Zn(ti-i-l))
(5.1)
where

o L
'un(L(tz)th) - _j:znil 1+ (5 .Z/

i)oj(ti)
0 . (5.2)
The tildes are used to emphasize that these variables are discretized. The Z,,(t;)’s are
normal correlated variables, but the vectors Z(t;)’s are independent of each other. This
relationship will be discussed in more detail later. Notice that uy, = 0. If oy is
deterministic and constant between the ¢;’s, then (5.1) simulates the forward LIBOR
rates without discretization error. Another way to look at (5.1) is that it approximates
L, by a geometric Brownian motion over the time-interval [t;,t;11] where drift and
volatility parameters are fixed at time ;. So far no restrictions have been imposed on
the volatility parameter but a deterministic o,, will cause the L,, to be close to lognormal.
It is also worth mentioning that L, always stays non-negative.

Generation of correlated random variables can be done using Cholesky factorisation.
Let the matrix M be a triangular matrix satisfying

MM'" =p (5.3)
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where p is the correlation matrix and M| means the transpose of the matrix M. The
matrix M can be found using Cholesky decomposition as can be seen in [11]. This
decomposition is not unique and the Cholesky factorization is just one of several ways
to decide M.

With M decided, the correlated d-dimensional vector Z can be found by letting €
be a random d-dimensional vector of independent standard normal variables. Z is then
given by

Z = Me. (5.4)

The algorithm for simulating forward rates by the LMM can be seen in algorithm

(1).

Algorithm 1 LMM - Simulation of forward rates for one time-step

Input:
forward rates, f/n(ti), n=1,..,M
volatilities, 6, (t;),n =1,.... M
time between tenors, 6,,n=1,.... M
Do:
for n=1to M do

for j=n+1to M do

SR £ — b (B ) Gili(t)en(t)é;(t:)
fin(L(t:), i) = fin(L(t:), ;) . Jl+(5ji/j(ti)]

end for

fna (L(t;), ti) = 0
randomly calculate Z(t;41)
Ln(tis1) = Ln(tip1):
exp ([ fin(Ln(t:), i) = 36(8:)?] [tir — 8] + Vet — faom(t:) Z(ti11) )
end for
Return:
f/n(tiJrl), n = 1, ceey M

5.2 Estimation of Volatility and Correlation

When estimating the variances and covariances used in the LMM, the log return and
not the return itself is used as basis for the calculations. This is due to the fact that the
variances and covariances are used to describe the Brownian motion and not the interest
rate itself. The log return is only an approximation of the behaviour of the Brownian
motion and is not theoretically correct. It is still a common approximation often used
for this purpose. As the LMM does not specify interest rates between the tenor dates,
the variances and covariances are assumed to be constant between these dates.

The log return for the forward rates is calculated by lnLZ(t{: )l ). Notice that using NV
observations of the interest rate to calculate the returns will glive N — 1 returns. Two

estimates will be calculated: the SMA estimate and the EWMA estimate.
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The SMA estimate of the variance and covariance is

) 1 N:(ln (Lm(terl)) ) <Ln(tz+1)> — i), (5.5)

Smon = N < Lo (t:) Lo (t;)
where N1
X 1 = Ln(tm)) 1 <Ln(tN)>
n = 1 = 1 9 .
fn= N1 & ( Ln(t) N-1"\L.(t) (5:6)

N is the observed number of the interest rates L,, in the sample and 5,, ;, is the variance.
The covariance matrix can easily be calculated using matrix operations

& 1 T 1 T
§= X (I—N_111 )X. (5.7)
S is the covariance matrix, X is the log return matrix, I is the identity matrix, 1 is a
vector with only ones and N is the number of interest rates in the sample. The work of
reference for the SMA estimate is [6].
When calculating the EWMA estimate, the mean log return is assumed to be zero.
The reference for the EWMA estimate is [1] and the estimate is calculated by

N-1
. Lin(tiv1) Ly(tiv1)
= (=0 Y (1 (F) ) (w (50000 5.8
The covariance matrix can be calculated by using matrix operations

S =(1-MNEPATXT)X, (5.9)

where 3 is the covariance matrix, EP(AB) is the elementwise product of the matrix A
and B and A is the matrix

A0 A0 A0\
Al Al AL oA
A2 A2 A2 A2
A=| . . e (5.10)
)\]\}—l )\]\}—1 )\]\}_1 )\]\}—1

By using the recursive formula, the variance and covariances can easily be obtained

et = W + 0= (n (Z200Y) (i (Baee)) oy

The correlation is defined by the relationship between the covariance and the stan-
dard deviation and is the same for the two estimates

Py = (5.12)

Om0n
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5.3 Interpolation

The interest rates used are quoted for 6 months, 1 year, 2 years, 3 years, etc. Since cash-
flows every half a year is sometimes preferred, interpolation is used to give an estimate
of these cashflows. The oscillating nature of high-degree polynomials make piecewise-
polynomial approximation attractive. As the name suggests, this approach divide the
interval into subintervals and constructs different approximating polynomials on each
subinterval. The reference for this section is [2].

The most common piecewise-polynomial approximation is called cubic spline inter-
polation. Let [zg,x,] be the entire interval where interpolations is needed. The cubic
spline method fits cubic polynomials between each successive pair of nodes: One cubic
polynomial on [zg, z1] agrees with the function at z¢ and z1, the next cubic polynomial
on [z1,zo] agrees with the function at xz; and z9 etc. A general cubic polynomial has
four arbitrary constants: the constant term, the coefficient of x, the coefficient of 22
and the coefficient of 3. Fitting the polynomial to the endpoints of the interval only
requires two constants, so the remaining two can be used to ensure that the interpolant
has continuous first and second derivatives on the entire interval [zg, zy,].

Let a function f be defined on the interval [a,b] and a set of nodes a = x¢p < 1 <
... < xyp =b. A cubic spline interpolant S for f is a function that satisfies the following
conditions:

e S(z) is a cubic polynomial, denoted S;(z), on the subinterval [z;,2;41] for each
j=0,1,.,n—1

Sj(z;) = f(z;) and Sj(xj41) = f(xj41) for each j =0,1,...,n—1

Sj+1(xj+1) = Sj(l‘j.H) for each j = 0, 1, ey — 2

S% 11 (zj41) = Sj(xj41) for each j =0,1,...,n -2

SJ,»/+1(CCj+1) = S‘;',(:L‘jJrl) for each ] = O, ]_, ey, — 2

e Boundary conditions: S’(zg) = f/(xo) and S'(z,,) = f'(xp).

Cubic splines may be defined with other boundary conditions, but the clamped condi-
tions are preferred. Compared to other boundary conditions they lead to a more accurate
approximation because they include information that other boundary conditions may not
include: the values of the derivative at the endpoints. The algorithm for constructing
the interpolant can be seen in algorithm (2). Note that since both the node at half a
year and the node at one year is given, interpolation is not needed for the interest rate
during the first year. However, it is necessary for the interest rates the other years. Thus
the interval used for interpolation only contains equally spaced intervals of i.e. one year,
simplifying the calculations. The distance between the nodes is called h.

Since clamped cubic spline is chosen, values of the derivative at the endpoints must
be approximated. Let zg be the node at the end of the interval containing the shortest
interest rates. Let x_; be the node to the interest rate shorter than zg, i.e x_1 = 6
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Algorithm 2 Interpolation - Clamped Cubic Spline

Input:
distance between the nodes, h
values of function f at the nodes, ag = f(xg),a1 = f(xo+ h),...,an = f(xo + nh)
derivative at the endpoints, FPO = f'(x¢) and FPN = f'(x¢ + nh)
Do:
ap = 3(a1 — ao)/h —3FPO
an =3FPN —3(an, — an—1)/h
fori=1,2,..,n-1do
oy = %(%’4—1 —a;) — %(ai —a;-1)
end for
lop = 2h
Ho = 0.5
20 = ap/lo
fori=1,2,..n-1do
l; =4h — hpi—
wi = h/l;
Z; = (ai — hzi_l)/li
end for
ln = h(2 — ,un_l)
zn = (an — hzp—1)/ly
Cn = Zn
for j=n-1, n-2, ..., 0 do
Cj = 2j = [1jCj+1
bj = (aj41 — aj)/h — h(cji1 + 2¢5)/3
dj = (¢j+1 — ¢;)/(3hy)
end for
Return:
a;j for j=0,1,...,n—1
bj for j=0,1,...,n—1
cjfor j=0,1,...,n -1
dj for j =0,1,....,n—1
(Note: S(z) = S;(x) = aj +bj(x — z;) + ¢j(x — 2j)* + dj(x — x;)3 for z; <z < xj41.)
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months and z; be the first interest rate longer than xg, i.e. 1 = 2 years. The value
of the interest rates at these nodes together with Lagrange’s polynomial can be used
to approximate the derivative at z;. Lagrange’s polynomial is needed because of the
unequal space between the three nodes, otherwise a simpler method could have been
used. Let P’ be the approximated value of the derivative. Proof of the following result
can be found in [10]:

_ —ho
ho1(h 1+ ho)

h_1

hog — h_1
ho(h—1 + ho)

Pl(xg) =
(zo) hh

flz—1) + f(xo) + f(x1). (5.13)
h_1 is the length of the interval between z_; and zg and hg is the length of the interval
between xg and x.

The approximation of the derivative at the other endpoint cannot be found in the
same way. As opposed to the endpoint previously discussed, the length of the subintervals
at the end of the long-term interest rates are equal which is important for the method
chosen for approximating the derivative. As can be seen in [2], the approximation of the
derivative P’ can be found by

P'(zy) = —[=25f(2)+48 f (xr,—h) =36 f (21, —2h)+16 f (x,—3h) =3 f (x,—4h)]. (5.14)

12h

5.4 Pricing Derivatives

The references for this section are both [5] and [12]. The value of an interest rate
derivative is the expected present value of its payoff under risk neutral conditions. The
value can be found using Monte Carlo simulation, for more information on Monte Carlo
simulation see [9]. Let E[presentValuePayof f] be the expected present value of the
payoff. The value can be found by generating numerous realisations of the interest rate
by using the LMM, calculate the present value of the derivative and use the strong law
of large numbers:

. <= presentValuePayof f;
lim Z

= ElpresentValuePayof f]. (5.15)

A drawback of the Monte Carlo simulation is the poor convergence, an illustrating
example will later be provided.

The principal used for calculation of the cashflows is assumed to be 1. Let g(L(T},))
be the payoff of the derivative at time T;,. Under the forward measure the deflated payoff
is

g(L(Ty)) - Bars1(0 H (14 6;L;(Ty)), (5.16)

where Bjs41(0) is the value of a bond at time ¢ = 0 maturing at Th;4+1. The algorithm
for pricing a derivative can be seen in algorithm (3). It should carefully be noted that
when valuing derivatives generating cashflows every 6 months, the bond Bjsy1 is the
bond ending 6 months after the last cashflow of the derivative. If this bond is not quoted,
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its value must be estimated by the use of interpolation. Let ry;, be the coupon of the
bond or the fixed interest rate used in the swap, cap or floor. The bond is assumed to
be paid back at the end of the period specified. The deflated payoff-functions for the
the derivatives are:

M M
Z [(Snl’l“fm . BM+1 H + 5 L ) +1- BM_H(O)(I + 5MLM(TM)) (5.17)
n=1 J:n
for a bond,
M M
> |01 (Lai(Ta-1) = rfia) - Bua(0) [T+ 6;L5(T)) | (5.18)
n=1 j=n
for a swap,

M
> -1 (Lt (Tnm1) — rgia) ™t BM+1(0) (1+6;Li(Ty) |, (5.19)

n=1 L J

—=

T
3

for a cap and

M
Y {On-1(rpic = Lar(Tu1))™ - Baa (0) [T (1 4+ 6;5(T9)) | (5.20)

n=1 j=n

=

for a floor. Thousands of simulations are performed to estimate the derivative values.
If a portfolio of several derivatives is to be valued, all the derivatives may be valued
at the same time using the the same estimated interest rates to shorten the time of
computation. Let a swap, cap and floor have the same maturity, paying cashflows at the
same dates and having the same "fixed" interest rate ry;,. If the values of all the three
derivatives are to be estimated, the value of either of them may be found by exploiting
the cap-floor parity to reduce the time of computation.

To give an idea of the convergence of the Monte Carslo simulation a plot describing
the absolute relative error when valuing a caplet is made, see figure (5.1). The value
of reference of the caplet is found by the use of Blacks equation, see [5]. The caplet
valued matures in 5 years, have a cap rate of 5.0% and is otherwise dependent on the
American interest rates quoted on 17 Nov 2009. Note that due to discretization error,
the simulated price will not in general converge exactly to the price given by Blacks
equation even though the number of simulations increase towards infinity. After 10 000
simulations, the discrepancy between the two values is 0.59%.

5.5 Multinational LIBOR Market Model

So far the discussion has mainly concerned the modelling of interest rates for only one
currency. However, with a few adjustments, the LMM described can be expanded to
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Algorithm 3 Pricing derivatives using the LMM

Input:
variables needed for the calculation of the payoff
forward rates, ﬁn(ti), n=1,...M
volatilities, 6, (t;),n =1,..., M
time between tenors, d,,n=1,..., M
Do:
for k£ = 1 to numberO fSimulations do
calculate the forward rates according to algorithm (1)
calculate the deflatedPayof f
sumDerivative = sumDerivaive + deflated Payof f
end for
valueDerivative = sumDerivative /numberO f Simulations
Return:
valueDerivative
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04
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1
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T T T T T T
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Figure 5.1: The absolute value of the relative error of a cap maturing in 5 years, having
a cap rate of 5.0% and otherwise be dependent on the American interest rates quoted
on 17 Nov 2009. The relative error decreases as the number of simulations increases.
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be applicable for several currencies at the same time. The adjustments will result in a
multinational model which will be more realistic as the interest rates for a currency is
dependent on interest rates for other currencies.

Some remarks should be noted about the expansion of the LMM:

e The drift p in (5.1) is only dependent on other interest rates of the same currency
in the multinational as well as the regular LMM. l.e. the drift of a European
interest rate is only dependent on other European interest rates. It follows that
the calculation of the drift does not change when the model is adjusted to accept
several currencies.

e The covariance matrix of the multinational model includes all the interest rates
from all the currencies. This is the biggest difference between the multinational
and the regular LMM and it is what makes the model multinational as all the
normal correlated random variables Z,(¢;)’s from all the currencies are dependent
on each other.

It should also be noted that the currencies are interpolated individually. This means
that when interpolating, the only variables determining the value of an intermediate
interest rate are other interest rates of the same currency. At last it should be noted
that derivatives in this thesis will only be dependent on interest rates based on one
currency even though the contrary is possible.

5.6 Value at Risk and Expected Tail Loss

The references for this section are [3] and [4]. Calculating the Value at Risk (VaR) and
the expected tail loss (ETL) is done by simulation as the distribution of the profit/loss
(P/L) only can be found in this way. The P/L over the time period s for the asset A is

P/LS = At+5 + ar — At, (521)

where Ay s is the value of the asset at time ¢t + s and a;4 is any interim payments. The
definition can be used for a portfolio as well letting A be several assets and not only one.
Incorporating the time value of money is necessary to make the definition theoretically
correct. It is done by valuing the portfolios either at time ¢ or at time ¢t + s. As will
be clear later, this might be difficult for some time periods. Letting P be the value of a
portfolio, the distribution of P/L can be found by this stepwise procedure.

1. Find the value of P at time ¢, P;, as described in section (5.4), but do not use
the values for finding the mean. Instead the values should be kept for further
calculations.

2. Find the value of PSimyis: Simulate all the interest rates L, (¢;) from time t to
time ¢ + s by using the real and not the risk neutral drift p. This is done by
replacing the risk neutral drift p,(L(t;),%;) in (5.2) with the real drift

pn(t + 8) = A (8) + (L= A)(L(t:) — L(ti-s)), (5.22)
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where A (0 < A < 1) is the decay factor. The value of PSim; is found as it was
described in section (5.4), but by using the simulation of the real interest rate as
basis. One path of the simulated interest rates L, (t;+s), should be used for basis
for one path of the simulated value of PSim; . The values of the portfolio should
not be used for finding the mean, but rather kept for the calculations of the P/L’s.

3. Calculate the P/L for each pair of P, and PSims. The values are called P/LSimys.

The accuracy of the P/L distribution increases as the number of paths and number of
P/L pairs increases, but so does the computing time. A compromise must therefore be
made between the accuracy of the calculations and the computing time.

Some drawbacks of the stepwise procedure described should be mentioned. The
portfolio is valued at two different times, ¢t and ¢ 4+ s and the time value of money is not
incorporated. As mentioned earlier, this is not correct, but the time period s is often
quite short: a day or a month. As bonds maturing later than a year are only quoted
every whole year, it is difficult to correct this flaw. It should also be mentioned that a
portfolio generating the next cashflow in 6 months should after the period s generate the
next cahsflow in 6-s months. This will not be taken into account and the portfolio will
be valued at time ¢ + s as if the next cashflow occurs in 6 months. Another drawback
is the calculation of the bond Bjs11. At time %, this is obtained by the interest rates
given, but at time t + s they have to be obtained by the estimated forward rates using
the real drift. As all these interest rates are forward rates, they cannot calculate the
bond Bps+1(t + s) and therefore a rather rough estimate is used: When forward rates
are calculated every 6 months, the forward rate for the period 6-12 months is used as an
estimate for the interest rate for the period 0-6 months. When forward rates are only
calculated every year, the forward rate for the period 1-2 years is used as an estimate
for the interest rate for the period 0-1 year. At last it should be mentioned that the
covariance matrix used at time ¢ + s for valuing the portfolio is the same as used at time
t. This is a simplification making the calculation easier.

Finding the VaR and ETL is relatively easy when the distribution of P/L is calcu-
lated. Assuming n simulations and letting the confident level be ¢, the risk measures
can be found:

1. Remove the n5; lowest values from the sample.
2. The VaR is the lowest value left in the sample.

3. The ETL is the average of the sample removed.

5.7 Backtesting the Value at Risk and the Expected Tail
Loss

The principle of backtesting is to test whether the model used provides satisfying results.
It is carried out using historic values and tests whether the model performs well or not.
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The main focus of the backtesting in this thesis is the two risk risk measures VaR and
ETL.
The bactesting is performed in the following way:

1. Estimate the VaR and ETL at time ¢ over a time horizon s as described in section
(5.6).

2. Estimate the real value of the portfolio P at time t + s, P;4s, using real interest
rates as it was described in section (5.4). Do not use the values of the portfolio to
estimate the mean, but keep the values for calculation of the P/L.

3. The P/L for each pair of P, and P, is found and called P/L;4s.
4. The values of P/L;;s are compared to the estimated VaR and ETL.
5. Move a time s forward in the data and repeat the procedure.

It is important to remember to update the covariance matrix used in the calculations
each time one returns to step one in the procedure. It s clear that the variance and
covariance is not stable and therefore this update is important. It is also important to
remember that if the risk measures with multiple days s are tested, each period of length
s cannot overlap another period of length s. This is because each period is supposed to
be independent and overlapping would contradict this assumption. The result is that
fewer periods are tested when the horizon is multiple days than when the horizon is only
one day. lL.e. if the data used for testing a method consist of 252 days, a one day horizon
would have 252 periods for testing while a horizon of one month would have 12 periods
available for testing assuming 21 days in one month. In this thesis it will be assumed
that there are 252 business days in one year and 21 in one month.
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Chapter 6

Preliminary Data Analysis

The data used for backtesting the risk measures is analysed in this chapter.

6.1 Volatility and Correlation

The volatility and correlation is assumed to be constant over time. A part of the pre-
liminary data analysis is to test this assumption, and as was seen in chapter (3) this
assumption does not hold. When it comes to the future volatilities and correlations, they
are not known. The best way to estimate them is therefore by calculating the present
volatilities and correlations and use them as an estimate, even though they are known
not to be constant over time. For more details on volatility and correlation, see chapter

(3)-

6.2 Independence

The reference for this section is [1]. The random variables in equation (5.1) are assumed
to be dependent on other random variables occurring at the same time, but independent
of all random variables occurring at another time. Independence of random variables
occurring at different times will be discussed in this section. A random variable is auto-
correlated if its returns are statistically dependent over time. It is therefore possible to
test whether a random variable is statistically independent by testing if it is autocorre-
lated with other random variables. Autocorrelation is defined by

Ott—k
Ok = Lt ) (61)
Ot0t—k

where gy, is the autocorrelation of order k, oy ;—j, is the covariance between the ¢t'th and ¢t —
k’th time steps and oy and oy_y, is the standard deviation at time ¢ and ¢ — k respectively.
Note that since the autocorrelation operates only on one time series, the subscript refers
to the time index and not a specific time series. The autocorrelation of order k is also
called the lag-k autocorrelation. As the data sample tested for independence is large

37
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compared to the lags tested, the standard deviations are assumed to be equal which

results in _— _—
tt— ti—
Ok = = —5. (6.2)

Ot0¢_[ (o

The sample autocorrelation is given by

T _ _
e Lk (1 =) (e = T)
Ok = 1 T 2 y (63)
71 2t=1(rt —T)
where r; is the return at time ¢, k is the lag and 7 is the sample mean. When using the
autocorrelation to test the independence of the residuals in the LMM, r is replaced by
Z. Z is calculated by

Zn(tiv1) = [ln <%> - (Mn(i(ti)yti) - ;Un(ti)2> (tiv1 — ti)] [Vtis1 — tmn((zz)

where ~
Py iy N~ SiLi(t)on(t)og(t)
(L) ) = — 3 !

J—) 1+ 5ij(ti)
A time series with randomly generated steps will not be autocorrelated and the values
of ¢ will not differ significantly from zero. The autocorrelation of the US forward rate
for the period 0.5 — 1 year can be seen in figure (6.1). The first lag is noticeable larger
in absolute value than the other lags and most likely there is a dependence between 7
and 74_1.

Another measure illustrating the dependency of the random variables in the time
series is the autocorrelation of squared returns which is also called the autocorrelation
of the variances of returns. Commonly the autocorrelation of squared returns imply de-
pendency even though the autocorrelation of returns do not, and it is therefore common
to analyse both measures. The sample autocorrelation of the squared return is

T i .
T 0m1) Lt (17 = T2 (= 72)
T —
ﬁ S (rf —72)2

The autocorrelation of squared returns of the US forward rate for the period 0.5 —1 year
can be found in figure (6.2). The dependence of the first lag is more distinct than was

seen in figure (6.1). There is no clear evidence of dependence except from the first lag.
Even though there is some evidence of dependency, independence will be assumed.

Dependency between lags complicate the calculations and is beyond the scope of this
thesis.

(6.5)

05qr = (6.6)

6.3 Normality

The residuals are calculated according to (6.4) and assessed for multi normality as sug-
gested in [6]. The normality behaviour will be checked in one and two dimensions be-
cause of the lack of a "good" overall test of joint normality in more than two dimensions.
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Figure 6.1: The autocorrelation of the US forward rate for the period 0.5 — 1 year
using the EWMA model to estimate the volatility and correlation. 3 months of data is
used to estimate the covariance matrix. Significant values of the autocorrelation imply
dependency between the lags. The first lag is noticeably larger in absolute value than
the other lags and is the only lag that may be dependent.
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Figure 6.2: The autocorrelation of squared returns for the US forward rate for the
period 0.5 — 1 year using the EWMA model to estimate the volatility and correlation.
3 months of data is used to estimate the covariance matrix. Significant values of the
autocorrelation of squared returns imply dependency between the lags. The first lag is
noticeably larger than the other lags, no other lag is likely to be dependent.
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Figure 6.3: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 0,5 — 1 year. The correlation and the volatility is estimated by the use of 3
months of data and the SMA model. Notice especially that the tails are thicker than
the tails of the normal distribution.

This means that there is always a possibility that nonnormal behaviour only revealed
in higher dimensions will never be detected. Fortunately many types of nonnormality
are often reflected in the marginal distribution, and for most practical work one- and
two-dimensional investigations are sufficient.

Histograms and QQ plots have been constructed for all the 18 interest rates, using
both the SMA model and the EWMA model for estimating the variances and covariances.
All the plots can be seen in appendix (B). Normally the distribution of financial data
has fatter tails than the normal distribution. In addition the distribution is higher
and narrower that the normal distribution. These characteristics are also seen in the
residuals of the LMM as can be seen in the appendix. The distributions seem to have
some differences dependent on which estimate is used as can be seen in the figures (6.3)
and (6.4). The "SMA-distribution" has more outliers than the "EWMA-distribution",
however the "EWMA-distribution" is more centralized around zero.

Three scatter plots are constructed to investigate the bivariate behaviour, each plot
contains the interest rate of one currency. The correct use of scatter plots would be to
include all the interest rate in one plot, but as this would be a 18 x 18 matrix three smaller
plots are preferred. Scatter plots from normal distributions have elliptical shapes. The
plot containing the American interest rates can be seen in figure (6.5) while all the plots
can be seen in appendix (B). All the plots are close to having an elliptical shape, except
from some outliers.

The assessment of the normal behaviour has made it is clear that the normal distribu-
tion does not describe the distribution of the residuals perfectly, but it may be sufficient
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Figure 6.4: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 0.5 — 1 year. The correlation and the volatility is estimated by the use of 3
months of data and the EWMA model. Notice in particular that the residuals are more
centralized around the zero than the normal distribution.

for the purposes at hand. Thus the distribution is chosen because of its relative good fit
and because it is easy to implement.
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Figure 6.5: The scatter plot of the residuals of the American interest rates. The co-
variance matrix is estimated by using 3 months of data and the EWMA model. The
ij'th scatter plot contains the residuals of L; plotted against L;. L; is the forward rate
for the period 6-12 months, Ly is the forward rate for the period 1-2 years, L3 is the
forward rate for the period 2-3 years etc. Scatter plots of normal distributed variables
have elliptical shapes which these plots seem to have.



Chapter 7

Results

The results of the backtesting are presented in this chapter.

7.1 Description of Data

The data used in this thesis consists of interest rates quoted from 4 Jan 1999 to 17
Nov 2009 for the three currencies USD, EURO and NOK.! The interest rates are valid
from the day they are quoted to the maturity date and are therefore not forward rates.
Forward rates are obtained by first calculating the values of zero-coupon bonds and then
use (2.11) to calculate the forward rates. The forward rates for the period 5-6 years for
the three currencies can be seen in figure (7.1).

7.2 Portfolio

The portfolio used for testing is intended to resemble a multinational bank’s portfolio of
mortgages. All the three currencies will be used, but the main focus will be on American
mortgages. The portfolio will consist of two types of derivatives: The first derivative is
a coupon-bearing bond. This derivative imitates fixed-rate mortgages even though the
principal is repaid on the maturity date and not partly throughout the term of the loan.
The other derivative is a cap but with a minor alteration: Instead of a notional principal,
the principal is repaid at the maturity date. Another way of describing this derivative
is as a mix between a cap and a zero-coupon bond. The cap ensures payments both
before and on the maturity date while the bond ensures the repayment of the loan at
the maturity date. This derivative imitates adjustable-rate mortgages with a cap even
though as for the first derivative, the principal is repaid on the maturity date and not
partly throughout the term of the loan. Two last remarks should be noted about both
the derivatives: The principal is always set to 1 unit and the maturity of the derivatives
will be 5 years but no longer as the maximum time to maturity of the interest rate in
the data used is 5 years. The terms of loans are usually longer than 5 years, so this is

!The data is provided by my supervisor Jacob Laading.
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Figure 7.1: Forward rates for the period 5-6 years for the three currencies USD, EURO
and NOK.
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Number | Currency Derivative Fixed interest

rate (%)
1 USD Coupon Bond e+ 0.25
2 USD Coupon Bond r¢ + 0.50
3 USD Coupon Bond re +0.75
4 USD Coupon Bond ¢ + 1.00
5 USD Cap and Zero-coupon Bond re + 1.50
6 USD Cap and Zero-coupon Bond re + 2.00
7 EURO Coupon Bond ry + 0.50
8 EURO Coupon Bond re + 1.00
9 EURO Cap and Zero-coupon Bond r¢ + 2.00
10 NOK Cap and Zero-coupon Bond re +2.00

Table 7.1: An overview of the derivatives in the portfolio used for testing the VaR
and ETL. The derivatives resemble a multinational bank’s portfolio of mortgages and
derivatives using the American, European and Norwegian interest rates are included.
The fixed interest rates used in the derivatives are dependent on the interest rates of
each day of the backtesting.

a drawback of the derivatives chosen. The exact portfolio chosen can be found in table
(7.1). The fixed interest rates used to decide the size of the cashflows for the derivatives
are dependent on the interest rate of the day of the backtesting. IL.e. if the interest rate
for USD at time ¢ for the forward rate between 5 and 6 years is 4.00%, the coupon of
the first bond in table (7.1) is 4.25%.

The value of the portfolio is calculated with both derivatives generating cashflows
every whole year and every 6 months. The values are first calculated for the portfolio
with annual cashflows then for the portfolio with semi-annual cashflows. As interpolation
is necessary when cashflows are generated semi-annually the estimates are more rough
and less precise. An example of the values of the derivatives in the portfolio can be
found in table (7.2). Notice that the values of the derivatives with annual cashflows
are generally worth more than the derivatives with semi-annual cashflows. As the bank
receives the payments earlier when the cashflows are generated semi-annually, these
derivatives should have a greater value than the derivatives generating annual cashflows.
This odd behaviour is an example that illustrates the need for including the portfolio
with annual cashflows in this thesis. The calculations are simpler and the measures are
not influenced by the effects of the interpolation.

7.3 The Backtesting

The backtesting will test the performance of the VaR and the ETL using all the data
provided. Two time horizons are tested, one day and one month, and three confidence
levels, 95%, 97.5% and 99%. 3 months of data is used to estimate the covariance matrix
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Number | Annual Cashflows | Semi-Annual
Cashflows
1 1.09 1.08
2 1.11 1.09
3 1.12 1.11
4 1.13 1.12
5 1.07 1.06
6 1.07 1.06
7 1.09 1.07
8 1.11 1.09
9 1.06 1.04
10 1.04 1.02
Total 10.89 10.74

Table 7.2: The table shows the values of the derivatives described in table (7.1) the
last day of the dataset. Data from the last 3 months is used for the calculation of
the covariance matrix based on the EWMA estimate and 10 000 simulations are used to
calculate the values of the portfolio. Notice the odd values of the derivatives: The values
of the derivatives generating annual cashflows are larger than the derivatives generating
semi-annual cashflows.

either based on the SMA model or the EWMA model and 10 000 simulations are carried
out each day.

The VaR measure is tested by verifying that the amount of data within the VaR
is correct. The confidence level determines how many percentages of the real profits
and losses that are expected to be within the measure. l.e. if the confidence level is
set to 95%, 95% of the profits and losses are expected to be within the VaR and only
5% of the losses are expected to be greater. The values in the last 5% will cause the
investor a greater loss than the VaR. The VaR can be examined by plotting the expected
percentage and the actual percentage of values within the VaR. The mean of how many
percentages of the real values that are within the VaR also gives information on the
overall performance of the measure.

The ETL is assessed by calculating the mean of the real losses greater than the VaR,
the tail losses, each day and compare them to the ETL of each day. The relative error
between the ETL and the mean of the tail losses each day are calculated in the following
way
Mean(TL;) — ETLy

ETL,

where the T'L;’s are the tail losses. The errors are displayed in a histogram to give an
overview of the distribution of the relative errors. Some extreme values are excluded
from the plots to better display the rest of the data. Another interesting measure is the
variance of the tail losses each day. The ETL does not describe this measure, never the

Relative error at time t = , (7.1)
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less it is interesting to investigate it to get an idea of the actual possible losses. The
variances are plotted in a histogram to give an idea of the different variances produced
each day. Some extreme values are excluded from the plots to better display the rest of
the data.

7.4 Value at Risk and Expected Tail Loss with a Daily
Horizon

VaR

The accuracy of the VaR of the portfolio generating annual cashflows is tested and
displayed in figure (7.2). Only the two confidence levels 95% and 99% are displayed in
the figure, but all the plots can be seen in appendix (C). The accuracy of the VaR varies
and there is a clear difference between the performance of the measure depending on
which estimate is used for the covariance matrix. The model using the EWMA estimate
performs better than the model using the SMA estimate. The model is both more
accurate and more stable than the SMA model. Another interesting observation is that
the VaR performs better when the confidence level increases. This could be caused by
the poor fit of the normal distribution to the actual distribution. It is often observed
that the fit is particularly poor where the normal density function bends and the tail
begins. This might be why the 95% confidence level performs poorly. The combination
of the EWMA model and the 99% confidence level is a particularly good match and the
VaR performs better for this combination than any other tested.

An interesting observation is made by comparing the interest rates in figure (7.1) with
the results in figure (7.2): The accuracy of the VaR seems to be affected by rapid changes
in the interest rate. When the interest rates change rapidly in the negative direction,
the percentage of the portfolio’s profits and losses within the VaR declines. When the
interest rates change rapidly in the positive direction, the percentage of the portfolio’s
profits and losses within the VaR increases. This behaviour is especially apparent for
the SMA model, but some of the same tendency is observed for the EWMA model at
the 95% confidence level.

The mean percentage of the profits and losses within the VaR each day is calculated
and displayed in table (7.3). Some of the same tendencies described above are also seen
in this table: The EMWA model performs better than the SMA model even though the
mean percentages of the model using the SMA estimate are higher. The means should
be as close to the given confidence levels as possible, and it is clear that the model using
the EWMA estimate performs best.

The VaR of the portfolio with semi-annual cashflows is also tested and the results
can be seen in figure (7.3) for the two confidence levels 95% and 99%. All the plots can
be seen in appendix (C). Both the EWMA model and the SMA model performs poorly,
but the SMA model performs worst and it is extremely unstable. The EWMA model is
both more accurate and more stable than the SMA model. The same but less apparent
tendency is observed for the portfolio with annual cashflows. It is also clear that the
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Figure 7.2: Percentages of the portfolio’s profits and losses within the VaR using either
the SMA model or the EWMA model when estimating the covariance matrix. The
portfolio tested generates annual cashflows and the percentage for each day is displayed
as a black circle while the given confidence level is displayed as a red line. Note that
the range of the values on the y-axis varies. Both the model using SMA estimate and
the model using the EWMA estimate perform reasonably well, but the model using the
EWMA estimate generally performs better.
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Confidence level (%)

Mean Percentage
Within the VaR,
SMA estimates (%)

Mean Percentage
Within the VaR,
EWMA estimates (%)

95.0
97.5
99.0

95.5
97.8
99.1

95.1
97.5
99.0

Table 7.3: The table displays the means of the percentages of the portfolio’s profits and
losses within the VaR each day as well as the given confidence level. The portfolio tested
is generating annual cashflows and has a time horizon of one day. The model using the
EWMA estimate is preferred as these results are more accurate than the models using

the SMA estimate.

Confidence level (%)

Mean Percentage
Within the VaR,
SMA estimates (%)

Mean Percentage
Within the VaR,
EWMA estimates (%)

95.0
97.5
99.0

38.9
52.6
69.0

88.8
95.9
98.7

Table 7.4: The table displays the means of the percentages of the portfolio’s profits and
losses within the VaR each day as well as the given confidence level. The portfolio tested
generates semi-annual cashflows and the time horizon is one day. Notice that the model
using the EWMA estimate performs significantly better than the model using the SMA
estimate and that both the models perform better when the confidence level increases.

VaR performs better when the confidence level increases. This tendency is also more
apparent for the semi-annual portfolio than the annual portfolio. In general both the
EWMA model and the SMA model performs worse for the semi-annual portfolio than
the annual portfolio.

The mean percentage of profits and losses within the limit of the VaR each day for
the semi-annual portfolio is calculated and displayed in table (7.4). Some of the same
tendencies described above are also seen in this table: The method using the EWMA
estimates outperforms the method using the SMA estimates and the accuracy of the
VaR becomes better as the confidence level increases. Again it is made clear that both
models perform worse for the semi-annual portfolio than the annual portfolio.

ETL

The ETL is assessed by examining the mean of the tail losses, the losses larger than
VaR, each day and compare it to the ETL. The results for the portfolio with annual
cashflows are seen in figure (7.4), for the 95% confidence level. All the plots can be seen



50

Percentage of the portfolio values within the VaR

Percentage of the portfolio values within the VaR

100

80

60

40

20

100

80

60

40

20

|
i
[
uﬁ:‘%

I i
o
Sargenso

onnn SRS

|
T,
- p B0
-

DB @O0 0 0 000 Wagy

P

00® o oo,
© 9

© W % o w00 g

om® o

T T T T T T T T T T T
1999 2001 2002 2004 2006 2007 2008 2009

Year

(a) SMA estimate, 95% confidence level

o N
k.9

i (|
-1 f
52;8
8§ 9%
4 e 8o
%g:a
|t

IS,

T T T T T T T T T T T
1999 2001 2002 2004 2006 2007 2008 2009

Year

(c) SMA estimate, 99% confidence level

Percentage of the portfolio values within the VaR

Percentage of the portfolio values within the VaR

96

94

92

90

88

86

84

82

CHAPTER 7. RESULTS

T
1999

T T T T T T T T T
2001 2002 2004 2006 2007 2008 2009

Year

(b) EWMA estimate, 95% confidence level

99.0

98.5

98.0

1999

T T T T T T T T T
2001 2002 2004 2006 2007 2008 2009

Year

(d) EWMA estimate, 99% confidence level

Figure 7.3: Percentages of the portfolio’s profits and losses within the VaR using either
the SMA model or the EWMA model when estimating the covariance matrix. The port-
folio tested generates semi-annual cashflows and the percentage for each day is displayed
as a black circle while the given confidence level is displayed as a red line. Note that
the range of the values on the y-axis varies. The estimated VaR using the SMA model
is quite poor while the VaR using the EWMA estimate generally performs better.
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Figure 7.4: Histograms of the relative error between the ETL and the mean of the tail
losses each day. The portfolio tested generates annual cashflows and both the SMA
model and the EWMA model is used when the covariance matrix is estimated. Some
extreme values are left out to better display the rest of the data. Both the models seem
to perform quite well as the mean of the relative error seems to be about zero and the
variance is relatively low.

in appendix (C). Both the SMA model and the EWMA model perform quite well. The
relative error seems to be centralised around zero for both models, and the variance is
not too large. The performance of the ETL is connected to the performance of the VaR.
If the VaR does not perform well, either more or less than expected tail losses will occur
and this might affect the performance of the ETL. The relatively good performance of
the ETL is therefore partly due to the relatively good performance of the VaR.

The variance of the tail losses each day for the annual portfolio are displayed in figure
(7.5) for the 95% confidence interval. All the plots can be seen in appendix (C). The
variance of the EWMA model is large compared to the SMA model which implies that
the EWMA model produces more extreme values than the SMA model. It is not possible
to say if this is good or bad as the objective is to imitate the real world. Further studies
are needed to draw a conclusion, but this is beyond the scope of this thesis. The same
behaviour is found for the confidence levels 97.5% and 99%. The plots emphasise that
extreme variances occur which means that extreme losses occur even though they are
rare. One should therefore keep in mind that even though both VaR and ETL perform
well, larger losses are possible.

The mean of the tail losses are calculated for each day and compared to the ETL
for the portfolio with semi-annual cashflows. The result of the test with 95% confidence
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Figure 7.5: Histograms of the variances of the tail losses each day for the portfolio with
annual cashflows. Some extreme values are left out of the histograms to better display
the remaining data. Notice that the variance of the EWMA model is large compared to
the SMA model. It should also be commented that even though most of the variances
are relatively low, a few are extremely large.
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Figure 7.6: Histograms of the relative error between the ETL and the mean of the tail
losses each day. The portfolio tested generates semi-annual cashflows and both the SMA
model and the EWMA model is used when the covariance matrix is estimated. Some
extreme values are left out to better display the rest of the data. Notice that the variance
of the relative error is greater for the SMA model. Notice also the difference of the mean
of the relative errors for the two models.

level can be seen in figure (7.6), while all the plots can be found in appendix (C). There
is a great difference between the results depending on which estimate is used for the
covariance matrix. The mean of the relative error for the EWMA model is negative and
relative few values at all are greater than zero. The mean of the relative error for the SMA
model is positive and the variance is clearly larger. It is important to remember that the
VaR estimate for the semi-annual portfolio performs poorly and that the performance of
the ETL is affected. It is likely that at least some of the poor performance of the ETL is
due to the poor performance of the VaR. The similar plot with a 99% confidence interval
performs better in the sense that the mean of the relative error is closer to zero and that
the variance is smaller. It is clear that the ETL for the annual portfolio performs better
than the ETL for the semi-annual portfolio.

The variances of the tail losses each day are also examined for the semi-annual
portfolio. The plots generated from the 95% confidence level can be seen in (7.7) while
all the plots can be seen in appendix (C). The model using the EWMA estimate has
in general larger variance of its tail losses than the model using the SMA estimate as
was seen for the annual portfolio. Some variances are extremely large and one should
therefore keep in mind that large losses may occur.
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Figure 7.7: Histograms of the variances of the tail losses each day for the portfolio with
semi-annual cashflows. Some extreme values are left out of the histograms to better
display the remaining data. Notice that the variance of the EWMA model is large
compared to the SMA model. It should also be commented that even though most of
the variances are relatively low, a few are extremely large.
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Mean Percentage Mean Percentage
Confidence level (%) | Within the VaR, Within the VaR,
SMA estimates (%) | EWMA estimates (%)
95.0 95.6 95.3
97.5 97.8 97.6
99.0 99.1 99.0

Table 7.5: The table displays the means of the percentages of the portfolio’s profits and
losses within the VaR each day as well as the given confidence level. The portfolio tested
is generating annual cashflows and has a time horizon of one month. The model using
the EWMA estimate is preferred as these results are more accurate than the models
using the SMA estimate.

7.5 Value at Risk and Expected Tail Loss with a Monthly
Horizon

All plots of the results where the horizon is one month are left out of this chapter because
they contribute little new information. The same tendencies are discovered when the
monthly horizon is tested as when the daily horizon is tested. All the plots are displayed
in appendix (C).

VaR

The VaR for the portfolio with annual cashflows generally performs quite well. The
EWMA model performs better than the SMA model in the sense that it is more accurate
and more stable. There are in general too many profits and losses within the VaR for
the SMA model and some of the same behaviour is observed for the EWMA model. The
effect decreases as the confidence level rises. The same tendencies are seen in similar
tests with a daily horizon. The VaR seems to perform worse when the horizon is one
month instead of one day. This is to be expected: The further into the future one wishes
to make a prediction, the more inaccurate the estimate becomes due to the fact that
some of the key assumptions become less and less true as the horizon increases. The
means of the percentages within the VaR are calculated and displayed in table (7.5). The
means show that too many profits and losses are within the VaR for the SMA model.

The VaR of the semi-annual portfolio is tested and the performance of the estimate
varies greatly depending on whether the SMA model or the EWMA model is used to
estimate the covariance matrix. The SMA model performs terribly as both the accuracy
and the stability is poor. The VaR for both the EWMA model and the SMA model
improves when the confidence level increases. The means of the percentages within the
VaR are calculated and displayed in table (7.6). Comparing this table to the similar
table for the daily horizon, table (7.4), makes it clear that the VaR performs better with
a daily horizon than a monthly horizon.
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Mean Percentage Mean Percentage
Confidence level (%) | Within the VaR, Within the VaR,
SMA estimates (%) | EWMA estimates (%)
95.0 32.0 88.9
97.5 45.9 95.8
99.0 62.7 98.7

Table 7.6: The table displays the means of the percentages of the portfolio’s profits and
losses within the VaR each day as well as the given confidence level. The portfolio tested
generates semi-annual cashflows and the time horizon is one month. Notice that the
model using the EWMA estimate performs significantly better than the model using
the SMA estimate and that both the models perform better when the confidence level
increases. It is clear that the VaR performs far better for the annual portfolio than the
semi-annual portfolio.

ETL

The mean of the tail losses are compared to the ETL for each day and it is clear that
the ETL for the portfolio with annual cashflows performs well even though the horizon
is a month. The relative error is centralised around zero and the variance is not too
large. The variance of the tail losses with a monthly horizon behaves as the variances
of the tail losses with a daily horizon: The variances of the EWMA model are large
compared to the variances of the SMA model. However, it should be noted that both
models occasionally produce large variances and that large losses therefore are possible.

A similar comparison is performed for the portfolio with semi-annual cashflows. The
mean of the relative error is negative for the EWMA model while it is positive for the
SMA model. The variance of the SMA model is larger than the variance of the EWMA
model. It is important to remember that the VaR of both models perform poorly and
that this will affect the performance of the ETL. Both models perform better at the 99%
confidence level in the sense that the mean of the relative error is closer to zero. The
variances of the tail losses behave exactly as the other variances, and it should therefore
be clear that large losses may occur.



Chapter 8

Conclusion

This thesis has discussed the calculation of the two risk measures value at risk (VaR) and
expected tail loss (ETL). The calculations are based on simulations of interest rates using
the LIBOR market model, and two different models are used to estimate the covariance
matrix: the SMA model and the EWMA model.

The performance of the VaR varies greatly depending on which estimate is used for
the covariance matrix. In general the EWMA model produces better estimates of the
VaR than the SMA model. The VaR based on the EWMA model is more accurate and
more stable. It is clear that the interpolation has a negative effect on the performance
of the VaR because the estimates perform significantly worse when interpolation is used.
The VaR’s for the portfolio with the semi-annual cashflows were expected to perform
worse because of the uncertainty that arises from the calculations, but the difference is
surprisingly large. The performance of the ETL varies in the same manner as the VaR.
The annual portfolio performs quite well for both the SMA model and the EWMA model.
The mean of the relative error is approximately zero and the variance is relatively low.
The performance of the semi-annual portfolio is worse, but some of the bad performance
may be due to the relatively poor performance of the VaR for this portfolio.

In statistics the SMA model is traditionally used to estimate the covariance matrix,
but this is not the best estimate when it comes to the time series studied in this thesis.
Since the variance of the time series investigated in this thesis is not constant with respect
to time, the EWMA model gives a better estimate. The EWMA estimate adjusts quicker
to changes in the variance, and quick changes are common when it comes to interest rates.
The effect of the estimation model chosen is in particular clear when the VaR is tested.

Throughout this thesis many assumptions have been made and many of them do not
hold as well as hoped. It is therefore no surprise that neither the VaR nor the ETL is
a perfect risk measure. However, under the right circumstances both perform well and
are sufficient risk measures. It is often debated which risk measure is the best, but one
should not need to choose only one as they both contribute different information: The
VaR estimates the maximum loss at a given confidence level while the ETL estimates
the likely loss if the loss exceeds the VaR. The conclusion is therefore that both measures
should be calculated whenever possible, but the values should not be treated as absolutes
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but more as a frame of reference.

Further Work

Two estimates for the covariance matrix have been calculated in this thesis. There are
however several other estimates and combinations of them that have not been tested.
Exploring the different models used for the estimation as well as test the effect it has on
the VaR and ETL would be interesting. It is also clear that the performance of the risk
measures is dependent upon whether a portfolio with annual or semi-annual cashflows
is tested. In general the VaR and the ETL performs better for the annual portfolio
than the semi-annual. It would therefore be interesting to explore different interpolation
methods and see if the performance improves. It would also be interesting to explore
the interest rate model, the LMM, and its variations and how they affect the two risk
measures.
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Appendix A

Proof

A.1 The bond pricing equation

This derivation can be found in [8]. A portfolio consisting of two bonds maturing at
different dates is constructed. The bond maturing at time 77 has the value V7 and the
bond maturing at time 75 has the value V5. The portfolio is constructed in such a way
that its value is

M=V — AV,. (A.1)
The value of the portfolio over time-step dt changes by

Vi oy 1 ,0°V
M= Z - il
d 5 dt + o dr + 2w 52

Vo Ve, 1 ,0%,
A( St + 5 e st )

dt

(A.2)

This result is found by applying Itd’s lemma to functions of » and ¢. The value of A is

chosen to be
A oVy ,0Vy

S o
to eliminate the randomness. Substituting (A.3) into (A.2) gives

(A.3)

8V1 1 2 82V1 8V1/({’)7’ 8V2 1 2 82V2
o 1 _ o 1 . A4
4 <8t T3 “avjar \ae T2 o ) ) (4-4)

The arbitrage principle states that the value of the portfolio must equal the return given
by the risk-free interest rate

dIl = rI1dt

B Vi OV (A.5)
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Gathering all V; terms on the left-hand side and all V5 terms on the right-hand side
gives

i, 1,0 Vi _ [0V 1,0, oy
(aﬁz“ o2 ‘TV1> /87'_<8t T e )/ (A0

Since the left-hand side is only a function of 77 and the right-hand side is only a function
of T, both sides have to be independent of the maturity date. Thus the function can

be written )
oV 1,0V Y%

Later development will show that it is convenient to write the function a(r,t) as
alr,1) = w(r, HA(r, 1) — u(r, ), (A.8)

where w(r,t) is not identically zero. Inserting (A.8) into (A.7) gives the zero-coupon
bond pricing equation
ov 5 02V ov
2

1
- — - _ =0. A.
; + 5w " + (u — Iw) o rV =0 (A.9)



Appendix B

Normal Probability Plots

This chapter contains histograms and QQ plots of the forward rates described in section

(6.3).

B.1 Histograms and QQ Plots using the SM A Estimate

This section contains histograms and QQ plots where the volatility and correlation is

based on the SMA estimate.

Density

Figure B.1: Histogram and QQ plot of the residuals of the American forward rate for
the period 0.5 — 1 year. The correlation and the volatility is estimated by the use of the

SMA model.
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Figure B.2: Histogram and QQ plot of the residuals of the American forward rate for
the period 1 — 2 years. The correlation and the volatility is estimated by the use of the
SMA model.
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Figure B.3: Histogram and QQ plot of the residuals of the American forward rate for
the period 2 — 3 years. The correlation and the volatility is estimated by the use of the
SMA model.
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Figure B.6: Histogram and QQ plot of the residuals of the American forward rate for
the period 5 — 6 years. The correlation and the volatility is estimated by the use of the
SMA model.
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Figure B.7: Histogram and QQ plot of the residuals of the European forward rate for
the period 0.5 — 1 year. The correlation and the volatility is estimated by the use of the
SMA model.
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Figure B.10: Histogram and QQ plot of the residuals of the European forward rate for
the period 3 — 4 years. The correlation and the volatility is estimated by the use of the

SMA model.
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Figure B.11: Histogram and QQ plot of the residuals of the European forward rate for
the period 4 — 5 years. The correlation and the volatility is estimated by the use of the

SMA model.
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Figure B.12: Histogram and QQ plot of the residuals of the European forward rate for
the period 5 — 6 years. The correlation and the volatility is estimated by the use of the

SMA model.
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Figure B.13: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 0.5 — 1 year. The correlation and the volatility is estimated by the use of the

SMA model.
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Figure B.14: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 1 — 2 years. The correlation and the volatility is estimated by the use of the

SMA model.
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Figure B.15: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 2 — 3 years. The correlation and the volatility is estimated by the use of the

SMA model.
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Figure B.16: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 3 — 4 years. The correlation and the volatility is estimated by the use of the
SMA model.
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Figure B.17: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 4 — 5 years. The correlation and the volatility is estimated by the use of the
SMA model.
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Figure B.18: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 5 — 6 years. The correlation and the volatility is estimated by the use of the
SMA model.
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B.2 Histograms and QQ Plots using the EWMA Estimates

This section contains histograms and QQ plots where the volatility and correlation is
based on the EWMA estimate.
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Figure B.19: Histogram and QQ plot of the residuals of the American forward rate for
the period 0.5 — 1 years. The correlation and the volatility is estimated by the use of
the EWMA model.
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Figure B.20: Histogram and QQ plot of the residuals of the American forward rate for
the period 1 — 2 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.21: Histogram and QQ plot of the residuals of the American forward rate for
the period 2 — 3 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.22: Histogram and QQ plot of the residuals of the American forward rate for
the period 3 — 4 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.23: Histogram and QQ plot of the residuals of the American forward rate for
the period 4 — 5 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.24: Histogram and QQ plot of the residuals of the American forward rate for
the period 5 — 6 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.25: Histogram and QQ plot of the residuals of the European forward rate for
the period 0.5 — 1 year. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.26: Histogram and QQ plot of the residuals of the European forward rate for
the period 1 — 2 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.27: Histogram and QQ plot of the residuals of the European forward rate for
the period 2 — 3 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.28: Histogram and QQ plot of the residuals of the European forward rate for
the period 3 — 4 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.29: Histogram and QQ plot of the residuals of the European forward rate for
the period 4 — 5 years. The correlation and the volatility is estimated by the use of the
EWMA model.



B.2. HISTOGRAMS AND QQ PLOTS USING THE EWMA ESTIMATES 79

0.4 0.5 0.6
1
2

Density

0.3
Sample Quantiles

0.2

0.0

T T 1 T T T T T T T
1 0 1 2 -3 -2 -1 0 1 2 3

il i
T T

T
-3

Values of the Residuals Theoretical Quantiles

Figure B.30: Histogram and QQ plot of the residuals of the European forward rate for
the period 5 — 6 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.31: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 0.5 — 1 year. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.32: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 1 — 2 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.33: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 2 — 3 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.34: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 3 — 4 years. The correlation and the volatility is estimated by the use of the

EWMA model.
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Figure B.35: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 4 — 5 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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Figure B.36: Histogram and QQ plot of the residuals of the Norwegian forward rate for
the period 5 — 6 years. The correlation and the volatility is estimated by the use of the
EWMA model.
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B.3 Scatter Plots

This section contains scatter plots for the three currencies USD, EURO and NOK.

USD L6

83

Figure B.37: The scatter plot of the residuals of the American interest rates. The ij’th
scatter plot contains the residuals of L; plotted against L;. L; is the forward rate for
the period 6-12 months, Ly is the forward rate for the period 1-2 years, L3 is the forward

rate for the period 2-3 years etc.



84 APPENDIX B. NORMAL PROBABILITY PLOTS

EURO L1

EURO L2

EURO L6

Figure B.38: The scatter plot of the residuals of the European interest rates. The ¢j’th
scatter plot contains the residuals of L; plotted against L;. L; is the forward rate for
the period 6-12 months, Ly is the forward rate for the period 1-2 years, Lj is the forward
rate for the period 2-3 years etc.
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Figure B.39: The scatter plot of the residuals of the Norwegian interest rates. The ij’th
scatter plot contains the residuals of L; plotted against L;. L; is the forward rate for
the period 6-12 months, Ly is the forward rate for the period 1-2 years, Lj is the forward
rate for the period 2-3 years etc.
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Appendix C

Plots describing the Results

This chapter contains plots describing the results found in this thesis.

C.1 Value at Risk with a Daily Horizon

This section contains plots describing the performance of the VaR with a daily horizon.
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Figure C.1: Percentages of the portfolio’s profits and losses within the VaR with a
daily horizon using either the SMA model or the EWMA model when estimating the
covariance matrix. The portfolio tested generates annual cashflows and the percentage
for each day is displayed as a black circle while the given confidence level is displayed as
a red line. Note that the range of the values on the y-axis varies.
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Figure C.1: Percentages of the portfolio’s profits and losses within the VaR with a
daily horizon using either the SMA model or the EWMA model when estimating the
covariance matrix. The portfolio tested generates annual cashflows and the percentage
for each day is displayed as a black circle while the given confidence level is displayed as
a red line. Note that the range of the values on the y-axis varies.



C.1. VALUE AT RISK WITH A DAILY HORIZON 89

94
1

92
1

@B

90
1

40
o
@ @96 o o
88

86
1

20
|
Percentage of the portfolio values within the VaR

Percentage of the portfolio values within the VaR

o @0

84
1

o % -
T T T T T T T T T T T T T T T T T T
1999 2001 2002 2004 2006 2007 2008 2009 1999 2001 2002 2004 2006 2007 2008 2009
Year Year
(a) SMA estimate, 95% confidence level (b) EWMA estimate, 95% confidence level
ER EN

97

Soiee

80
I
TBW cofyRsRg
= Y

uﬁ‘:g

Percentage of the portfolio values within the VaR

8 ¢ 1) : g 8
%y 5 H
gaiﬂ iyl iﬁ
< 3§aso
2 5o 3
g L3 ISP 8
“35@_@
sf $5 3

Percentage of the portfolio values within the VaR

20
1
B,
RS

T T T T T T T T T T T T T T T T T T T T T T
1999 2001 2002 2004 2006 2007 2008 2009 1999 2001 2002 2004 2006 2007 2008 2009

Year Year

(c) SMA estimate, 97.5% confidence level (d) EWMA estimate, 97.5% confidence level

Figure C.2: Percentages of the portfolio’s profits and losses within the VaR with a daily
horizon using either the SMA model or the EWMA model when estimating the covariance
matrix. The portfolio tested generates semi-annual cashflows and the percentage for each
day is displayed as a black circle while the given confidence level is displayed as a red
line. Note that the range of the values on the y-axis varies.
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Figure C.2: Percentages of the portfolio’s profits and losses within the VaR with a daily
horizon using either the SMA model or the EWMA model when estimating the covariance
matrix. The portfolio tested generates semi-annual cashflows and the percentage for each
day is displayed as a black circle while the given confidence level is displayed as a red
line. Note that the range of the values on the y-axis varies.
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C.2 Expected Tail Loss with a Daily Horizon

This section contains plots describing the performance of the ETL with a daily horizon.
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Figure C.3: Histograms of the relative error between the ETL with a daily horizon and
the mean of the tail losses each day. The portfolio tested generates annual cashflows
and both the SMA model and the EWMA model is used when the covariance matrix is
estimated. Some extreme values are left out to to better display the remaining data.
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Figure C.3: Histograms of the relative error between the ETL with a daily horizon and
the mean of the tail losses each day. The portfolio tested generates annual cashflows
and both the SMA model and the EWMA model is used when the covariance matrix is
estimated. Some extreme values are left out to to better display the remaining data.
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Figure C.4: Histograms of the variances of the tail losses each day for the portfolio with
annual cashflows and a daily horizon. Some extreme values are left out of the histograms
to better display the remaining data.
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Figure C.4: Histograms of the variances of the tail losses each day for the portfolio with
annual cashflows and a daily horizon. Some extreme values are left out of the histograms
to better display the remaining data.
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Figure C.5: Histograms of the relative error between the ETL with a daily horizon and
the mean of the tail losses each day. The portfolio tested generates semi-annual cashflows
and both the SMA model and the EWMA model is used when the covariance matrix is
estimated. Some extreme values are left out to to better display the remaining data.
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Figure C.5: Histograms of the relative error between the ETL with a daily horizon and
the mean of the tail losses each day. The portfolio tested generates semi-annual cashflows
and both the SMA model and the EWMA model is used when the covariance matrix is
estimated. Some extreme values are left out to to better display the remaining data.
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Figure C.6: Histograms of the variances of the tail losses each day for the portfolio
with semi-annual cashflows and a daily horizon. Some extreme values are left out of the
histograms to better display the remaining data.
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Figure C.6: Histograms of the variances of the tail losses each day for the portfolio
with semi-annual cashflows and a daily horizon. Some extreme values are left out of the
histograms to better display the remaining data.
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C.3 Value at Risk with a Monthly Horizon

This section contains plots describing the performance of the VaR with a monthly hori-
zon.
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Figure C.7: Percentages of the portfolio’s profits and losses within the VaR with a
monthly horizon using either the SMA model or the EWMA model when estimating the
covariance matrix. The portfolio tested generates annual cashflows and the percentage
for each day is displayed as a black circle while the given confidence level is displayed as
a red line. Note that the range of the values on the y-axis varies.



100 APPENDIX C. PLOTS DESCRIBING THE RESULTS

100

99

98
o
o

97
o

96

®
Percentage of the portfolio values within the VaR
97.0 975
|
4
o

Percentage of the portfolio values within the VaR

95

94

n
< -
>
T T T T T T T T T T T T T T T T T T
1999 2001 2002 2003 2005 2006 2007 2008 2009 1999 2001 2002 2003 2005 2006 2007 2008 2009

Year Year

(c) SMA estimate, 97.5% confidence level (d) EWMA estimate, 97.5% confidence level

99.5 100.0

99.5
1

99.0

98.0
o

Percentage of the portfolio values within the VaR
98.5
o H
Percentage of the portfolio values within the VaR
98.5 99.0
1
o

97.5

97.0

T T T T T T T T T T T T T T T T T T T T T
1999 2001 2002 2003 2005 2006 2007 2008 2009 1999 2001 2002 2003 2005 2006 2007 2008 2009

Year Year

(e) SMA estimate, 99% confidence level (f) EWMA estimate, 99% confidence level

Figure C.7: Percentages of the portfolio’s profits and losses within the VaR with a
monthly horizon using either the SMA model or the EWMA model when estimating the
covariance matrix. The portfolio tested generates annual cashflows and the percentage
for each day is displayed as a black circle while the given confidence level is displayed as
a red line. Note that the range of the values on the y-axis varies.
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Figure C.8: Percentages of the portfolio’s profits and losses within the VaR with a
monthly horizon using either the SMA model or the EWMA model when estimating
the covariance matrix. The portfolio tested generates semi-annual cashflows and the
percentage for each day is displayed as a black circle while the given confidence level is
displayed as a red line. Note that the range of the values on the y-axis varies.
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Figure C.8: Percentages of the portfolio’s profits and losses within the VaR with a
monthly horizon using either the SMA model or the EWMA model when estimating
the covariance matrix. The portfolio tested generates semi-annual cashflows and the
percentage for each day is displayed as a black circle while the given confidence level is
displayed as a red line. Note that the range of the values on the y-axis varies.
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C.4 Expected Tail Loss with a Monthly Horizon

103

This section contains plots describing the performance of the ETL with a monthly hori-

zon.
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Figure C.9: Histograms of the relative error between the ETL with a monthly horizon
and the mean of the tail losses each day. The portfolio tested generates annual cashflows
and either the SMA model or the EWMA model is used when the covariance matrix is
estimated. Some extreme values are left out to better display the remaining data.
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Figure C.9: Histograms of the relative error between the ETL with a monthly horizon
and the mean of the tail losses each day. The portfolio tested generates annual cashflows
and either the SMA model or the EWMA model is used when the covariance matrix is
estimated. Some extreme values are left out to better display the remaining data.
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Figure C.10: Histograms of the variances of the tail losses each day for the portfolio
with annual cashflows and a monthly horizon. Some extreme values are left out of the
histograms to better display the remaining data.
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Figure C.10: Histograms of the variances of the tail losses each day for the portfolio
with annual cashflows and a monthly horizon. Some extreme values are left out of the
histograms to better display the remaining data.
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Figure C.11: Histograms of the relative error between the ETL with a monthly horizon
and the mean of the tail losses each day. The portfolio tested generates semi-annual
cashflows and either the SMA model or the EWMA model is used when the covariance
matrix is estimated. Some extreme values are left out to better display the remaining
data.
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Figure C.11: Histograms of the relative error between the ETL with a monthly horizon
and the mean of the tail losses each day. The portfolio tested generates semi-annual
cashflows and either the SMA model or the EWMA model is used when the covariance
matrix is estimated. Some extreme values are left out to better display the remaining

data.
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Figure C.12: Histograms of the variances of the tail losses each day for the portfolio
with semi-annual cashflows and a monthly horizon. Some extreme values are left out of
the histograms to better display the remaining data.
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Figure C.12: Histograms of the variances of the tail losses each day for the portfolio
with semi-annual cashflows and a monthly horizon. Some extreme values are left out of
the histograms to better display the remaining data.



	Title Page
	Problem Description
	masteroppgave.pdf

