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Problem Description
The primary purpose of this thesis is to exploit the excessive floating-point capabilities of a
Graphical Processing Unit (GPU) to implement a mathematical model and get the most
performance benefits compared to an (existing) CPU implementation. Among the few available
GPU programming architectures, we have chosen to make the implementations using NVIDIA's
CUDA on an NVIDIA GPU.

We study a well-known mathematical model in the form of an elliptic partial differential equation
(PDE) that describes the incompressible single-phase fluid flow through a porous medium. The
model is based on mass conservation, Darcy's Law and the physical concepts of porosity and
permeability of a spatial body. The application of this model is made in oil reservoir simulation,
where the reservoir is the porous medium. The reservoir model is most generally represented by
corner-point grids that capture the main features of a real reservoir, such as faults. The model
also incorporates injection and production wells in the model.

We solve this PDE numerically and discretise the model using the numerical technique of Mimetic
Finite Difference (MFD) method. This results in a linear system that with physically correct
boundary conditions provides an symmetric positive definite system. The linear solver has been
chosen to be the Jacobi-preconditioned conjugate gradient method. The system is built by
assembling the local stiffness cell matrices.

During the primary discussions there has not been any well-defined plan as to how we proceed,
but we intend to start with a method where we avoid assembling the linear system and try to solve
it using only the cell matrices.

Assignment given: 15. February 2010
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Abstract

Heterogeneous and parallel computing systems are increasingly appealing
to high-performance computing. Among heterogeneous systems, the GPUs
have become an attractive device for compute-intensive problems. Their
many-core architecture, primarily customized for graphics processing, is now
widely available through programming architectures that exploit parallelism
in GPUs. We follow this new trend and attempt an implementation of a
classical mathematical model describing incompressible single-phase fluid
flow through a porous medium. The porous medium is an oil reservoir
represented by means of corner-point grids. Important geological and
mathematical properties of corner-point grids will be discussed. The model
will also incorporate pressure- and rate-controlled wells to be used for some
realistic simulations. Among the test models are the 10th SPE Comparative
Solution Project Model 2. After deriving the underlying mathematical
model, it will be discretised using the numerical technique of Mimetic Finite
Difference methods. The heterogeneous system utilised is a desktop computer
with an NVIDIA GPU, and the programming architecture to be used is
CUDA, which will be described. Two different versions of the final discretised
system have been implemented; a traditional way of using an assembled
global stiffness sparse matrix, and a Matrix-free version, in which only the
element stiffness matrices are used. The former version evaluates two GPU
libraries; CUSP and THRUST. These libraries will be briefly decribed. The
linear system is solved using the iterative Jacobi-preconditioned conjugate
gradient method. Numerical tests on realistic and complex reservoir models
shows significant performance benefits compared to corresponding CPU
implementations.
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Chapter 1

Introduction

Mathematical modeling is an important scientific discipline applied by
scientists to simulate physical phenomena which are difficult to experiment
on in practice. In combination with computer science’s continuing progress
in computational power, the underlying mathematical models, often driven
by scientific research and industry, are growing more complex and accurate.
The demand for computational power from such models is ever-expanding.

In combination with the CPU’s relatively slow development in terms of
floating-point operations, a new paradigm shift is about to be established
in computational science. The now almost obsolete way of performing
calculations sequentially is beginning to be taken over by computing systems
that exploit parallelism[1]. There are supercomputers with thousands of
CPUs, and integrated many-core systems in a single device also exist. The
latter model is well-known in computer graphics and gaming industry, namely
the Graphical Processing Unit, GPU for short. Gaming industry’s enormous
growth has pushed the prices of GPUs to a manageable level, and the GPU
has evolved, and continues to evolve, at a pace that now seems to be over for
the CPU. This disparity in performance can be attributed to fundamental
architectural differences: CPUs are optimized for high performance on
sequential code, so many of their transistors are dedicated to supporting non-
computational tasks such as branch prediction and caching. On the other
hand, the highly parallel nature of graphics computations enables GPUs
to use additional transistors for computation, achieving higher arithmetic
intensity with the same transistor count[2].

The computational power and memory bandwidth of GPUs have significantly
overwhelmed CPU specifications. For example, an Intel Core i7-965 Extreme
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Edition CPU has a theoretical peak double precision performance of 53.28
GFlops1, with a memory bandwidth of maximum 25.6 GB/s. The recent
NVIDIA GTX 480 GPU has a theoretical single precision peak performance
of 1344.96 GFlops2, with a memory bandwidth of 177.4 GB/s (GTX 480 has
480 cored each capable of doing 1 multiply-add operation per cycle. This
gives 480x2x1401 = 1344.96 GFlops). GTX 480 performs at half the speed
in double precision, giving 672.48 GFlops. Currently, in July 2010, the price
of GTX 480 is half of the price of the CPU.

However, it has not been possible to exploit the GPU’s computational
power primarily because it is fixed-function[2]. Until recently, there has
not been any programming interface to access GPUs beyond its strong
graphics context. Several hetereogeneous architectures have emerged during
this decade. GPU manufacturers such as NVIDIA and AMD/ATI have
introduced new dedicated APIs to general-purpose computations on GPUs[3,
1]: The Compute Unified Device Architecture (CUDA) from NVIDIA and
the ATI Stream SDK from AMD/ATI. These APIs provide low-level or direct
access to GPUs, exposing them as large arrays of parallel processors. Future
applications will require heterogeneous processing[1].

The problem we shall examine in this thesis is an existing mathematical
model that describes the incompressible single-phase fluid flow through a
porous medium. The implementation will focus on reservoir simulation with
an oil reservoir as the porous medium. We will take this one step further and
add production and injection wells in the model and simulate some realistic
reservoir models. This part of the problem involves a mathematical model.
The other half of the problem includes the implementation of this model
on a desktop computer with a GPU. We will implement the solution using
NVIDIA’s GPUs and their programming architecture CUDA. The choice of
using CUDA has been based on the experience SINTEF has accrued using
CUDA and my own modest experience with CUDA from my last year’s thesis
project.

The mathematical model is in the form of an elliptic partial differential
equation. After deriving the model, we will describe how we discretise
it using the Mimetic Finite Difference method (MFD) with a hybrid
formulation technique. The reservoir model, the underlying porous medium,
is represented using corner-point grid, the properties of which will be
described. The resulting linear system will be solved on GPU using two
techniques; the traditional technique of representing the global stiffness

1http://www.intel.com/support/processors/sb/cs-023143.htm
2http://www.nvidia.com/object/product geforce gtx 480 us.html
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matrix in various sparse matrix formats (Full-matrix version), as well as
a Matrix-free implementation which never actually assembles the matrix
(Matrix-free version).

The linear system Ax = b resulting from the mimetic discretisation on
general corner-point grids is sparse and unstructured. The dimension of this
system on realistic reservoir models does not prevail the use of direct solvers.
It is common practice to apply iterative solvers on large sparse systems.
The implementation in this thesis uses the Jacobi-preconditioned iterative
conjugate gradient method [4] to solve the system. This method has a much
smaller memory footprint than direct solvers such as Gaussian elimination ,
and can be applied to very large sparse systems. This method is aslo easier
to parallelize and implement on the GPU. The method will be described to
approriate details.

The Full-matrix version stores the sparse matrix A using different sparse
matrix formats. These include CSR (Compressed Sparse Row), HYB (Hybrid
format), COO (Coordinate Format), and ELLPACK. We shall describe these
formats. The Full-matrix version evaluates two CUDA libraries developed
by people in NVIDIA; the libraries CUSP and THRUST. THRUST is
a CUDA library of parallel algorithms with an interface resembling the
C++ Standard Template Library (STL). CUSP is a library for sparse
linear algebra and graph computations on CUDA. CUDA SDK provides an
optimised GPU implementation of BLAS called CuBLAS, but currently it
only supports dense matrices. CUSP implements these sparse formats and
important matrix operations such as matrix-vector multiplication. CUSP
also includes Jacobi-preconditioned conjugate gradient and biconjugate
gradients stabilized method. The more advanced AMG preconditioner is
currently under development.

The extent to which it is a question of implementation on the GPU, the
main purpose is speedup compared with existing CPU implementations. We
also want to test how the two implementations, Full-matrix and Matrix-
free, perform relative to each other. The systems we solve in this project
are impossible to solve with single floating-point precision, and it has been
taken into account that modern GPUs adapted to scientific computing now
have support for double precision. Only double precision has been used,
even though it is posssible to switch to single precision when solving smaller
systems.
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1.1 Outline

The report is outlined as follows. Chapter 2 is a brief note on mathematical
modeling. Chapter 3 introduces briefly the most important concepts used
in the derivation of the mathematical model, such as reservoir description
(Section 3.1), reservoir porosity (Section 3.1.1) and permeability (Section
3.1.2). Section 3.2 discusses and derives the elliptic partial differential
equation (PDE) describing the incompressible single-phase fluid flow through
porous medium. The most important results referred to in this chapter
are the conservation of mass and the well-known Darcy’s Law. Chapter
4 begins with an introduction of the MFD method, which will be used
to discretise the PDE. Subsequent sections discuss the mixed formulation
and the hybrid formulation, which is the point of departure for the final
discretisation. Section 4.1.6 derives the approximate bilinear form used in the
discretisation, motivating the primary difference between MFD and mixed
finite element methods. Section 4.2 describes modeling of wells. Wells are
modeled as Dirichlet and Neumann boundary conditions, and we discuss a
slight modification of the linear system without wells from Section 4.1.4, and
add wells to this system. Finally, Section 4.3 provides a brief description of
corner-point grids. Chapter 5 is an introduction to the conjugate gradient
method, which is described as a line search method. Chapters 6 and
7 are dedicated to GPU computing and the CUDA programming model.
Chapter 6 discusses the role of GPU and heterogeneous systems in scientific
computing and explains the primary differences between the GPU and CPU.
Chapter 7 begins with an overview of the GPU architecture in the context
of CUDA, and also explains some of major new features of the recent next-
generation NVIDIA GPU architecture named Fermi. The rest of this chapter
introduces the CUDA programming model. Chapter 8 describes the most
important implementation details. Section 8.2 is a description of the Matrix-
free implementation, followed by a description of the Full-matrix version
in Section 8.3. Section 8.4 is primarily a reference to papers [5] and [6],
and explains the data structure of the sparse matrix formats. A concise
introduction to CUSP and THRUST is given in Sections 8.4.2 and 8.4.3,
respectively. Chapter 9 includes a verification of the implementations, as well
as simulation of realistic test reservoir models. Section 9.2 gives a description
of the test models, and in Section 9.3 we discuss the CPU and GPU timing
results. This section also includes some timing results from existing solvers
at SINTEF. Chapter 10 gives a summary and conclusion of the report.
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Chapter 2

A Brief Note on Mathematical
Modeling

To define the context within which this work can be placed, scientifically
speaking, let us start by referring to some words on applied mathematics and
mathematical modeling. After that we will continue with the introduction of
reservoir modeling, discuss the different assumptions and the mathematical
model for single-phase incompressible fluid flow.

To a certain extent, mathematics is about explaining organized structures.
Different patterns in nature, for example spiral galactic patterns, demand an
investigation, not only for reasons of aesthetics, but the patterns offers an
important clue to the fundamental laws of nature.

Applied mathematics is the sub-discipline of mathematics which examines
the real-world through mathematical models. It is guided by the spirit
of and belief in the interdependence of mathematics and the sciences.
Historically, the development of mathematics and physics had a very close
connection. Classical examples may be found in the works of Newton,
Gauss, Euler, Cauchy, and others. Under the contemplation of applied
mathematics, we think about mathematical models formulated through
hypothetical assumptions and empirical observations. Natural sciences, as
well as social sciences, take advantage of mathematical models. Important
application fields include engineering, physics, geology, physiology, ecology,
chemistry. Instead of undertaking experiments in the real world, a modeler
simulates the experiment using mathematical representations. There are
thousands of mathematical models which have been successfully developed
and applied to gain insight into tens of thousands of situations. The
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Fig. 2.1: The modeling diagram. The nodes represent information to be collected,
sorted, evaluated and organized. The arrows represent two-way communication.

development of powerful computers has enabled a much larger number of
situations to be mathematically simulated. Medical imaging and weather
modeling are two well-known examples. Moreover, it has been possible to
make more realistic models and to obtain better agreement with observations.

Let us attempt to give a brief description of the objectives and the
methodology of applied mathematics. The purpose of applied mathematics is
to elucidate scientific concepts and describe scientific phenomena through the
use of mathematics, and to stimulate the development of new mathematics
through such studies. The process of using mathematics for increasing
scientific understanding can be conveniently divided into the following three
steps:

• The formulation of the scientific problem in mathematical terms.

• The solution of the mathematical problems thus created.

• The interpretation of the solution and its empirical verification in
scientific terms.

Thus, applied mathematics is concerned with the construction, analysis,
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and interpretation of mathematical models that shed light on significant
problems in the natural sciences. Generally speaking, all three steps are
equally important. In a given class of problems, one step might stand out as
more important or more difficult than another.

Realism of mathematical models is always considered. We want a mathemat-
ical model to be as realistic as possible and to represent reality as closely as
possible. However, if a model is very realistic, it may not be mathematically
tractable. In making a mathematical model, there has to be a trade-off
between tractability and reality. A mathematical model is said to be robust
if small perturbations in the parameters lead to small changes in the behavior
of the model. The challenge in mathematical modeling is not to produce the
most comprehensive descriptive model, but to produce the simplest possible
model that incorporates the major features of the phenomenon of interest.
Some of the main principles often used in formulating mathematical models
are1:

• Balance and conservation

• Flow, transport and logistics

• Equilibrium, stability, bifurcations

• Optimisation and variational principles

• Input - Filter - Output

1http://www.math.ntnu.no/ hek/MatMod2009/IntroduksjonTilFaget.pdf
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• Feedback and control

• Kinetics, growth and decay

• Invariance principles

2.1 Mathematical Modeling Through

Differential Equations

Mathematical modeling in terms of differential equations arises when the
situation modeled involves some continuous variable(s) varying with respect
to some other continuous variable(s) and we have some reasonable hypotheses
about the rates of change of dependent variable(s) with respect to indepen-
dent variable(s).

When we have one dependent variable x (say population size) depending on
one independent variable (say time t), the mathematical model is expressed
in terms of ordinary differential equation of the first order, if the hypothesis
is about the of rate dx/dt. If the hypothesis involves the rate of change of
dx/dt, the model will be in terms of an ordinary differential equation of the
second order .

If there are a number of dependent continuous variables and only one
independent variable, the hypothesis may give a mathematical model in
terms of a system of first or higher order ordinary differential equations.
If there is one dependent continuous variable (say pressure p) and a number
of independent continuous variables (say space coordinates x, y, z and time
t), the mathematical model is expressed in terms of a partial differential

equation, PDE for short. Similarly we can have situations where we have a
system of partial differential equations.
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Chapter 3

Reservoir Modeling

The primary objective of an oil reservoir study is to predict future perfor-
mance of a reservoir in terms of production rate, production characterics,
reservoir parameters, etc[7, 8]. Generally, a reservoir model consists of basic
physical laws that govern fluid flow through porous media, conservation of
mass law and the diffiusivity equation in addition to the fluid behavoir.
A computer implementation that incorporates this model relative to some
reservoir data constitues a reservoir model.

The following section gives a brief explanation of the key terms to be used
in the description of the mathematical model. These include description of
the reservoir formation, porosity, and permeability. A detailed and lucid
overview of general reservoir parameters and derivation of the mathematical
model is given in [7] and [9]. The most relevant parts will be extracted.

3.1 Reservoir Description

Millions of years ago the oceans were awash with countless tiny plants and
animals which died and fell to the seabed. Mud and sand from rivers covered
the plant and animal remains and over time more and more layers were
added. As the old layers were burried deeper by new layers, the remains were
subjected to pressure and heat. Over millions of years the remains of dead
plants and animals decomposed into petroleum1 - crude oil and natural gas.
Petroleum as it occurs in nature is a mixture of organic materials composed
only of carbon and hydrogen.

1from Greek word petra (rock) and Latin word oleum (oil).
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The depoists of petroleum were trapped by the movements of the earth’s
crust when the flat layers became bent into folds and broken faults. The
petroleum moved upwards through sandstone and other porous materials
until it was trapped by barriers of dense/impermeable rock which it could
not get through. There are several types of traps in which petroelum has
accumulated. The most common are domes and faults. The pressures are
usually high (10000 psi) and fluids are able to flow within these reservoirs, if
the pressure gradient can be eshablished. This causes hydrocarbons to exist
in both fluid and gas state. The trapped gas and liquids will separate into
three layers inside the porous rock; on top a layer of gas, then a layer of
liquid petroleum and at the bottom a layer of water. A volume of porous
rock containing petroelum is called the “reservoir”.

The geologists look for oil by studying the earth for signs of ancient seabeds
and typical traps, such as a dome or a fault. By analysing the information
from seismic data, the geophysicists construct a map of the underground rock
formations (for instance by tomographic reconstruction). When they locate
a possible trap in the form of a dome or a fault, a drilling rig is moved in
and a hole drilled from the surface to the trap. Only by drilling is it possible
to find out if there is oil in the identified trap. Drilling can be done both on
land and in the sea.

Drilling a well can take from a few days up to several months. Oil wells are
typically 1 to 5 km deep. Modern wells can be drilled at an angle to reach
areas up to 6 to 8 km away from the drilling rig. It is even possible to drill
horizontally and such wells may reach a total length of up to 10 km.

When the valves installed at the top of an oil well are opened, the oil flows
to the surface by itself. Production resulting from reservoir pressure is called
the primary production. This is because the pressure in the reservoir rock is
higher than the pressure created by the weight of the oil in the well. After a
period of production, the pressure in the reservoir falls and the oil eventually
stops flowing naturally. Various methods for increasing the recovery factor
(enhanced production) can be utilised to increase the production, for example
by water injection or gas injection, and pumping.

3.1.1 Reservoir Porosity

The rock porosity, denoted by φ, is the void volume-fraction of a volume,
and 0 ≤ φ < 1. The rock porosity usually is affected by the pressure. The
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rock is compressible, and the rock compressibility is defined by:

cr =
1

φ

dφ

dp
, (3.1)

where p is the overall reservoir pressure. For simplified models it is customary
to neglect the rock comressibility and assume that φ only depends on the
spatial coordinates. If compressibility cannot be neglected, it is common to
use a linearization so that:

φ = φ0(1 + cr(p− p0)). (3.2)

Since the dimension of the pores is very small compared to any interesting
scale for reservoir simulation, one normally assumes that porosity is a
piecewise continous spatial function.

3.1.2 Permeability

The permeability K is a measure of the rock’s ability to transmit a single
fluid at certain conditions. Since the orientation and interconnection of the
pores are essential for flow, the permeability is not necessarily proportional
to the porosity, but K is normally strongly correlated to φ. A rock with
well-connected or large pores which transmits fluids readily is described as
permeable. Formations with smaller, fewer, or less interconnected pores are
described as impermeable. The SI-unit for permeability is m2, but it is
commonly represented in Darcy (D). One Darcy is approximately 0.987·10−12

m2.

Since permeability is dependent on the direction in which the fluid flows, in
general K is a tensor. The medium is described as isotropic (as opposed to
anisotropic) if K can be represented as a scalar function, e.g., if the horisontal
permeability is equal to the vertical permeability. Due to seismic fractures
in reservoirs, permeability distribution in a reservoir may vary rapidly over
several orders of magnitude. This is the case for the test reservoir models we
will use in numerical tests (See Chapter 9 on page 73).

Having good estimates of K gives a better characterization of the flow
problem. On small scales, the permeability is a diagonal tensor. Still,
though, full tensor permeabilities occur when an upscaling of a reservoir
is performed. Upscaling is an important tool in reservoir simulation to
solve large systems by means of coarsening the reservoir grid, thereby using
small scale permeabilities to construct a tensor which represents a reasonable
picture of coarse scale [9, 10, 11]. In this thesis, we only consider diagonal
permeability tensors aligned with the Cartesian coordinate directions.
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3.2 Incompressible Single-Phase Flow

In this report, we will only consider single-phase flow. Multi-phase flow
models are treated in [7].

If we look at a closed volume Ω of a porous medium, we know from the law of
conservation of mass that the fluid mass is conserved. A change in the fluid
mass within this volume is a result of flux through the boundary ∂Ω of Ω,
or a variation in fluid density or medium porosity. The law of conservation
thus gives

∂

∂t

∫

Ω
(φρ)dV +

∫

∂Ω
(ρv) · n̂dA =

∫

Ω
qdV . (3.3)

Here, q models sources or sinks, that is, outflow and inflow per volume at
desginated well locations. Mass density is denoted by ρ, n̂ is the outward-
pointing normal vector of the volume, and v is the average flux, also called
flow velocity.

Using the Divergence Theorem, we can also write Eq. 3.3 in differential form

∂(φρ)

∂t
+ ∇ · (ρv) = q. (3.4)

In addition to Eq. 3.4, which contains the flux velocity v, we need to consider
the well-known Darcy’s law which relates v to the pressure gradient ∇p and
gravity forces.

3.2.1 Darcy’s Law

Empirical experiments done by the French engineer Henry Darcy (in 1856),
showed that the average flux v through a cross-section of a porous medium
is linearly proportional to a combination of the gradient of the fluid pressure
p and pull-down effects due to gravity. It is given by

v = −K

µ
(∇p+ ρg∇z). (3.5)

In Eq. 3.5, µ is the fluid viscosity, g the gravitional constant, and z is the
upward vertical direction. Darcy’s law is valid under non-turbulent fluid flow,
that is, when the fluid velocity is low.

3.2.2 Elliptic Pressure Equation

If we assume that the porosity φ is constant in time and the flow is
incompressible (which means ρ is constant in time), then the first term in
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Eq. 3.4 on the preceding page vanishes. Compined with Eq. 3.5 on the
previous page, we obtain

∇ · v = ∇ ·
[

−K

µ
(∇p+ ρg∇z)

]

≡ ∇ ·
[

−K

µ
∇u

]

=
q

ρ
. (3.6)

We will equivalently write Eq. 3.6 as the system (of first order)

v = −K∇
p
µ

∇ · v = f ≡ q

ρ
.

(3.7)

In 3.7, we have set ∇u = ∇p, including in p the total driving force. To
close the model, we must specify boundary conditions, which may be of
Dirichlet type, where p is given at the boundary, or of Neumann type, which
specifies the flux v · n̂ through the boudary. In the following, we go with
the assumption that our reservoir is a closed system, so we specify no-flow

boundary condition by imposing v · n̂ = 0 on the reservoir boundary ∂Ω. The
only way to put the reservoir out of equilibrium is by adding wells into it,
which will be considered in Section 4.2.
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Chapter 4

Discretisation of Elliptic
Pressure Equation

The elliptic pressure equation in the system 3.7 on the preceding page and
no-flow boundary condition on the reservoir boundary will be our initial
model. Additional requirements, such as Dirichlet boundary conditions, will
be discussed as and when needed. The only technique applied to discretise
this model in this report is Mimetic Finite Difference method (MFD). This
chapter begins with a discussion of the MFD method. Then we will lead our
PDE through the strong and the more general mixed (weak) formulation.
After discussing the mixed and the hybrid discretisation principles, we will
formulate the final discretized system Ax = b. We will then modify
the system slightly and add wells to the system, both pressure- and rate-
constrained wells. This will primarily involve multiple links between non-
adjacent cells. Finally, we shall refer to some properties of corner-point
grids.

4.1 Mimetic Finite Difference Method (MFD)

Let Ω ∈ R
3 be a polyhedral domain, and let n be the outward unit normal

to ∂Ω. We restate Eq. 3.7 on the previous page as the strong form:

v = −K∇p x ∈ Ω

∇ · v = f x ∈ Ω

v · n = 0 x ∈ ∂Ω

(4.1)

The general idea in MFD is to split the strong formulation of a PDE into
a system of first-order PDEs (which Eq. 4.1 already is) and to discretise

14



this system by giving discrete analog of the usual first-order continuum
differential operators, such as gradient ∇, curl (∇×), divergence (∇·), etc.
These analogs are constructed by mimicking important properties of the
underlying gemometrical, mathematical and physical models; the continuum
operators such as conservation, operator symmetrices, kernels of operators,
basic theorems of vector calculus, such as Gauss, Stokes, Green, etc1.

Motivation behind MFD is that it creates locally conservative schemes,
works on unstructured computational grids, and higher order methods for
unstrcutured meshes. There are no constraints on the number of vertices
of a cell, nor on the angles2. Polyhedral meshes naturally arise in the
treatment of complex solution domains and heterogeneous materials, e.g.
reservoir models[12, 13]. This allows for a large degree of freedom in using
unstructured grids consisting of general polyhedral cells to model complex
geology[11].

The MFD method was designed to provide accurate approximation of
differential operators on general meshes. These meshes may include
degenerate elements, as in adaptive mesh refinement methods, non-convex
elements, as in moving mesh methods, and even elements with curved edges
near curvilinear boundaries[14].

The MFD method has many similarities with a low-order finite element
(FE) method. Both methods try to preserve fundamental properties of
physical and mathematical models. Various approaches to extend the FE
method to non-simplicial elements have been developed over the last decade.
Construction of basis functions for such elements is a challenging task and
may require extensive analysis of geometry. Contrary to the FE method,
the MFD method uses only boundary representation of discrete unknowns
to build stiffness and mass matrices. Since no extension inside the mesh
element is required, practical implementation of the MFD method is simple
for general polygonal meshes3.

In the discretisation of Eq. 4.1 on the previous page, the scalar function p
is represented by one unknown; its average value in each grid cell. The flux
v is represented, in each cell, by one unknown on each cell face/edge. Face
pressure, denoted by π, on each grid face is also represented by one unknown.

1http://www.ima.umn.edu/talks/workshops/5-11-15.2004/shashkov/talk.pdf
2http://math.lanl.gov/Research/Highlights/PDF/homfdmmesh.pdf
3http://math.lanl.gov/Research/Highlights/mimetic-stokes.shtml
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We have

p ∈ U(Ω) : scalar “pressure” space

v ∈ Hdiv
0 (Ω) : vector “velocity” space,

(4.2)

where U and Hdiv
0 are appropriate function spaces. The primary property we

intend to mimic is the integration by parts formula

∫

Ω
∇p · v = −

∫

Ω
p∇ · v +

∫

∂Ω
pv · ndS (4.3)

We can write this in terms of inner-products:

(∇p, v)Hdiv
0

(Ω) = (p,−∇ · v)U +
∫

∂Ω
pv · ndS (4.4)

Given discrete subspaces Uh ⊂ U and Hdivh

0 ⊂ Hdiv
0 , we seek discrete

operators (∇·)h and ∇h such that

(

∇hp, v
)

Hdivh

0

=
(

p,−∇h · v
)

Uh
+
∫

∂Ω
pv · ndS, (4.5)

for meaningful inner-products (·, ·)
Hdivh

0

and (·, ·)Uh .

4.1.1 Mixed Formulation

The name “mixed” is applied to a variety of finite element methods which
have more than one approximation space. Typically one or more of the
spaces play the role of Lagrange multipliers which enforce constraints. One
characteristic of mixed formulations is that not all choices of finite element
spaces will lead to convergent approximations. Standard approximation
alone is not sufficient to guarantee success. For a mathematical treatment of
the well-posedness of mixed methods, see [15].

To discretise Eq. 4.1 on page 14, let us partition Ω into a set of polyhedral-
like cells T = {T}. We want each component of flux vector v = (vx, vy, vz)
to be well-behaved on each cell, and we want it to be continous across cell
boundaries. We impose this by making v and ∇ · v square-integrable on each
cell, as well as on Ω. This can be expressed by the following function spaces:

Hdiv(T ) =
{

v ∈ L2(T )d : ∇ · v ∈ L2(T )
}

Hdiv
0 (T ) =

{

v ∈ Hdiv(∪T ∈T T ) : v · n = 0 on ∂Ω
}

Hdiv
0 (Ω) = Hdiv

0 (T ) ∩Hdiv(Ω)

(4.6)

16



Let us multiply the first equation in 4.1 on page 14 with an arbitrary
function from Hdiv

0 (Ω), the second with an arbitrary function from L2(Ω),
and integrate on Ω. Integrating by parts the first equation results in the
weak form:

∑

T ∈T

∫

T
q1 · v −

∑

T ∈T

∫

T
K∇q1 · p = 0 ∀q1 ∈ Hdiv

0 (Ω)

∫

Ω
q2∇ · v =

∫

Ω
q2f ∀q2 ∈ L2(Ω)

(4.7)

We introduce three bilinear forms:

(·, ·) : L2(Ω) × L2(Ω) 7→ R

b(·, ·) : Hdiv
0 (Ω) ×Hdiv

0 (Ω) 7→ R

c(·, ·) : Hdiv
0 (Ω) × L2(Ω) 7→ R.

(4.8)

In the general mixed formulation of 4.1 on page 14, one seeks a pair of
functions (p, v) ∈ L2(Ω) ×Hdiv

0 (Ω) such that

b(q1, v)−c(q1, p) = 0 ∀q1 ∈ Hdiv
0 (Ω)

c(v, q2) = (f, q2) ∀q2 ∈ L2(Ω)
(4.9)

This is the point of departure for both Mixed Finite Element method and
Mimetic Finite Difference method. The solution of 4.9 is a saddle point of
the Langrange functional

L(v, p) =
1

2
b(v, v) − c(v, p) + (p, f). (4.10)

This is apparent from variational analysis setting dL = ∂L
∂v
dv+ ∂L

∂p
dp = 0, and

then letting the variation q1 = dv and q2 = dp be arbitrary. Looking at the
determinant of the Hessian matrix ∆L = ∂2L

∂v2

∂2L
∂p2 −

(
∂2L
∂v∂p

)

= −c(~1, 1)2, we
see that the stationary point is a saddle point. Consequently, discretisation
based on mixed formulation leads to indefinite linear system. Indefinite
systems results in a linear system with both positive and negative eigenvalues.
Such linear systems require special solvers and are often considerably harder
to solve. We will therefore introduce a different technique that involves a
positive definite system.

4.1.2 Hybrid Formulation

Continuity of flux through the cell faces in 4.9 is reflected in the function
space Hdiv

0 (Ω). In the alternative hybrid formulation, we allow this space
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to also include discontinuous functions across the cell boundaries, which
means that we now consider v to be in Hdiv

0 (T ). Instead, a slight change
is imposeed on the mixed formulation by adding an extra set of equations.
These additional equations impose the continuity of the flux through the cell
faces by the Langrange multiplier method, where the pressure at the cell
faces plays the role of Lagrange multipliers. This method preserves both v
and p, but incorporates pressure values at cell faces in the linear system.

We replace the mixed formulation 4.9 on the previous page with the following
hybrid formulation: find (v, p, π) ∈ Hdiv

0 (T ) ×L2(Ω) ×L2(∂T /∂Ω) such that

b(u, v) − c(u, p)+d(u, π) = 0 ∀u ∈ Hdiv
0 (T )

c(v, q) = (f, q) ∀q ∈ L2(Ω)

d(v, µ) = 0 ∀q ∈ L2(∂T /∂Ω)

(4.11)

In 4.11, the bilinear form d(v, π) : Hdiv
0 (Ω) × L2(∂T ) 7→ R is given by

d(v, π) =
∑

T ∈T

∫

∂T
πv · nTdS (4.12)

The Lagrange function for the hybrid formulation is now

L(v, p) =
1

2
b(v, v) − c(v, p) + (f, p) + (d, π), (4.13)

and the Hessian is a 3 × 3 matrix, the eigenvalues of which should be greater
than or equal to 0. The system is still positive semi-definite since we have not
assigned any Dirichlet boundary conditions to the system. We write b, c, and
d, for b(~1, 1), c(~1, 1), and d(~1, 1), respectively. The Hessian then expresses

∆L =

∣
∣
∣
∣
∣
∣
∣

b− λ c d
c −λ 0
d 0 −λ

∣
∣
∣
∣
∣
∣
∣

. = λ((b− λ) − c2 + d2) = 0,

which implies that λ is nonzero or

λ =
b

2
±
√

b2

4
− (d2 − c2). (4.14)

Since b(·, ·) is positive definite and c = 0, the eigenvalues are non-negative.

To discretise 4.11, one selects finite-dimensional subspaces V ⊂ Hdiv
0 (T ),

U ⊂ L2(Ω), and Π ⊂ L2(∂T /∂Ω), and seeks (v, p, π) ∈ V × U × Π such
that 4.11 holds for all (u, q, µ) ∈ V × U × Π. The space V is often what
is required in mixed FE methods (which requires the definition of V ’s basis
functions), but the MFD method approaches the discretisation by a slight
twist, which is what makes MFD easier on general grids than mixed FE.
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4.1.3 Discrete Formulation

In MFD, the discretisation is introduced already in the variational formula-
tion in the form of a discrete inner-product. Mathematically, this means that
the subspace V in Hdiv

0 (T ) is replaced by a discrete subspace of L2(∂T ), and
the associated bilinear form b(·, ·) is replaced by a bilinear form that acts on
L2(∂T ) × L2(∂T ). This means that instead of seeking an unknown velocity
field v that acts on each cell T , one seeks a set of fluxes defined over cell faces
∂T . This is similar to Finite Difference Methods, where (only) differential
operators are discretized.

4.1.4 An MFD Formulation

The subspace U in which the cell pressures p reside consists of cell-wise
constant functions:

U = span {χm : Tm ∈ T } , χm(x) =

{

1 if x ∈ Tm

0 otherwise

For v ∈ Hdiv
0 (T ) and p ∈ U , this implies

c(v, p) =
∑

m

pm

∫

Tm

∇ · v =
∑

m

pm

∫

∂Tm

v · nTm
ds. (4.16)

The last sum shows that an explicit representation of flux v inside each cell
is not needed, only values on the cell boundaries. Face pressure π is also
located on cell boundaries, and thus the same is true for d(v, π) for any
π ∈ Π ⊂ L2(∂T ). The subspace Π consists of face-wise constant functions:

Π = span
{

πi
j : |γi

j| > 0, γi
j = ∂Ti ∩ ∂Tj

}

, πj
i (x) =

{

1 if x ∈ γi
j

0 otherwise

The third subspace we need to consider is V ⊂ Hdiv
0 (T ). In mixed/hybrid

finite element methods ones usually discretizes the space in which V is
located, and the differential operators remain untouched; computation of
b(·, ·) requires explicit representations of the flux velocity in each cell. This
is not trivial for irregular grids, such as general corner-point grids. MFD
finds instead a replacement m(·, ·) that mimics b(·, ·) (and avoids Hdiv

0 (T )).

For the moment, let us assume that a “velocity” basis function ψm
i is

associated with each face γm
i of cell Tm. Remember that there is only one face
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pressure π associated with each cell face, while there are two flux velocities
for internal cell faces, and a single value for boundary faces, which is zero as a
result of no-flow boundary conditions. MFD with the hybrid formulation 4.11
on page 18 implies the following linear system:






B −CT ΠT

C 0 0
Π 0 0











v
p
π




 =






f
g
h




 (4.18)

The matrices C and Π are now given by

C = [c(ψm
i , χn)] and Π = [d(ψm

k , µ
i
j)], (4.19)

and the matrices B is given by

B = [m(ψm
i , ψ

n
j )]. (4.20)

Note that b(·, ·) has been replaced by an approximative bilinear form m(·, ·).
This will be explained soon.

4.1.5 Schur-complement Reduction

The hybrid system 4.21 is indefinite, but b(ψm
i , ψ

n
j ) and m(ψm

i , ψ
n
j ) are

nonzero only for n = m, that is, for the same cell, and by numbering the flux
velocities on a cell-by-cell basis, the matrix B becomes block-diagonal, where
each block has the same dimension as the number of faces the corresponding
cell has. B is invertible since the system is positive definite, and a Schur-
complement reduction with respect to B eliminates v and results in the
system

[

D −FT

F −ΠB−1ΠT

] [

p
π

]

=

[

g − CB−1f
h− ΠB−1f

]

, (4.21)

where D = CB−1CT and F = ΠB−1CT . D is a diagonal matrix resulting
from the fact that c(ψm

i , χn) = 0 for n 6= m. A Schur-complement with
respect to D eliminates p and gives us the following semi-definite linear
system

Sπ = R = h− FD−1(g − CB−1f) − ΠB−1f (4.22)

The system is only semi-definite because no Dirichlet face pressure boundary
conditions has been specified yet. Here, S = FD−1FT − ΠB−1ΠT . We
actually solve −Sπ = −R, because 4.22 gives a negative semi-definite
system4. Once π is computed, one can easily compute p and v by solving
a diagonal and a block-diagnonal system, respectively. In 4.21, f in the
right-hand side is the gravity effects. For simplicity, we have set f = 0.

4Pointed out to me by my supervisor B̊ard Skaflestad
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Fig. 4.1: The matrix B is block-diagonal, where each block corresponds to a single
cell and the dimension is equal to the number of cell faces. In a corner-point grid,
the number of cell faces is variable.

4.1.6 Motivation for the Approximate Bilinear Form

To this end, denote by Fm the set of cell faces of cell Tm and expand v and
u in the basis {ψm

i : Fm ∈ Fm, Tm ∈ T }:

v =
∑

i,m

vm
i ψ

m
i and v =

∑

i,m

um
i ψ

m
i . (4.23)

Since b(ψm
i , ψ

n
j ) is nonzero only if n = m, we may write

b(u, v) =
∑

Tm∈T

uT
mBmvm. (4.24)

As from 4.21 on the previous page, Bm is the matrix in the block-diagonal
B associated with cell Tm (See Figure 4.1), and vm, um ∈ R

Nm where Nm

21



   n̂3
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n̂1

n2ˆ

   n̂6

Fig. 4.2: Figure showing a Cartesian cell with six faces. The pressure p and π

at the cell center and cell boundaries, respectively, are supposed to be linearly
dependent.

is the number of faces of Tm. We have already mentioned some of the
reasons why MFD is appropriate on general grids; mainly imposed by the
difficulty of finding appropriate subspaces of Hdiv

0 (T ). In the following,
we will motivate the form of the discrete analog of b(·, ·)m on each cell,
equivalent to Bm (as well as C and Π). Since 4.21 on page 20 uses the symbol
B = diag {B1,B2, · · ·}, we will continue to use Bm also for the approximate
matrix. We present a geometric approach to find the approximate Bm. We
will use Finite Difference method to obtain a system of equations in the same
form as 4.21 on page 20. This system gives the exact solution of the hybrid
form if p is linear and K is constant in each cell.

Consider the three-dimensional illustration of a Cartesian grid cell e in
Figure 4.2. The flux is only used at the cell faces. We can write the flux v|i
that goes through face i as a scalar vi times an average unit normal vector
n̂i

v|i = vin̂i =
∫

γi

~v · n̂ (4.25)
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From the equation system 4.1 on page 14, we know that the flux v is a linear
transformation of ∇p. Assume therefore that the fluxes through each face i
can be written as a linear transformation of the drops in pressure at the face
compared to the mass-center of the cell. Let us create a vector vf containing
the values vi at the n faces of the cell; vf = [v1, v2, · · ·, vn]T , then there is a
matrix B−1

m such that
vf = B−1

m (pc − πf ), (4.26)

where the right-hand side gives the drops in driving force from the mass-
center ~xc of the cell to the centroid of each face (pc here is a vector of the
same length as vf repeating the cell centroid pressure). Notice that we use
two different symbols, π and p, to distinguish face pressure from the centroid
pressure, respectively. Although MFD is able to handle curved surfaces, we
will henceforth consider only planar cell faces.

If we assume that the pressure is linear internally to each cell with (pc −πi) =
(~xi − ~xc)~a, we get,

vi = −µ−1Ain̂
T
i Ke∇p = −µ−1Ain̂

T
i Ke~a, (4.27)

where Ai is the area of face i. This gives two equations for vf in each cell
and we get

vf = B−1
m












~x1 − ~xc

~x2 − ~xc

~x3 − ~xc
...

~xn − ~xc












︸ ︷︷ ︸

X

~a = µ−1












A1n̂
T
1

A2n̂
T
2

A3n̂
T
3

...
Ann̂

T
n












︸ ︷︷ ︸

Ne

Ke~a ⇒ B−1
m X = µ−1NeKe. (4.28)

Lemma 1. We find a solution of 4.28 by setting B−1
m = µ−1

|e|
NeKeN

T
e + T2,

where T2X = 0 and |e| is the cell volume.

Proof. This is clearly the case if NT
e X = |e|I3 for the three-dimensional

identity. We then check index zij in the matrix NeX = [zij], Writing Ne =

[n1|n2|n3] and X = [x1|x2|x3] and using the superscript n̂
(i)
k to represent the

i-th Cartesian coordinate of n̂k gives

zij = nT
i xj =

n∑

k=1

Akn
(i)
k (~xk − ~xc)

(j). (4.29)

We can extend n
(i)
k to be written as n

(i)
k = êin̂k, where êk is the Cartesian unit

vector in the i-th direction. Since (~xk − ~xc) is the average unit vector from
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the center to a cell face, we can use the Divergence Theorem to conclude

zij =
n∑

k=1

Akêi · n̂k
1

Ak

∫

γk

(~x− ~xc)
(j)dA

=
n∑

k=1

êi ·
∫

γi

(~x− ~xc)
(j) · n̂kdA

= êi ·
∫

Ω
(∇ · ~x− ∇ · ~xc)

(j)dV

= êi · êjV = δijV,

(4.30)

and the proof is complete.

Equation 4.26 on the preceding page gives the following expression for each
cell in the grid:

Bmvf − pc + πf = 0 (4.31)

This equation together with the other two equations according to the hybrid
formulation 4.11 on page 18, assembles the system 4.21 on page 20. However,
B−1

m is positive semi-definite and not strictly positive definite. We are
therefore not guaranteed that B−1

m is invertible for any T2 satifying Lemma
1. The following Theorem is presented by F. Brezzi in [12] and gives a recipe
for choosing T2 in a way that will ensure positive definiteness.

Theorem 1. Let F be an n × (n − d) matrix whose columns span the null

space of the matrix XT , so that FT X = 0. Then for every (n− d) × (n− d)
symmetric positive definite matrix U we can set

B−1
m =

µ−1

|e| NeKeN
T
e + FUFT , (4.32)

which makes B−1
m symmetric and positive definite, satisfying B−1

m X =
µ−1NeKe

Proof. Lemma 1. with T2 = FUFT states that TX = NKe since T2X =
FUFT X = 0. The matrix B−1

m is positive definite by construction, and we
only need to show that it is non-singular.

If we assume that there exists a nonzero vector v 6= 0 such that B−1
m v = 0,

then we have

||µ
−1/2

√

|e|
√

KeN
T
e v||22 + ||

√
UFTv||22 = 0. (4.33)

This implies that NT
e v = ~0 and FTv = 0, since both K1/2

e and U1/2 are
positive definite. This means that v ∈ ker(FT ) = {im(F)}T = {ker(X)}T =
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im(X), and we can write v as a linear combination of the columns of X on
the form v = Xw for a vector w. Hence, NTv = NT Xw. From Lemma 1,
NT X = |e|Id, which implies that w has to be zero since NTv = 0. Thus, v is
also zero, which is a contradiction to our assumption of v. Hence, the matrix
B−1

m is SPD.

Structure of cell matrices C and Π is simple according to Eq. 4.31 on the
previous page; on each cell Te, Ce is a matrix of dimension 1 × Nm, and Πe

is the identity matrix of dimensionNm ×Nm. Nm is the number of cell faces.

This is the cell matrix we have used in this report:

B−1
e =

1

|e|(NeKeN
T
e +

6

d
trace(Ke)DA(INm

− QeQ
T
e )DA) (4.34)

Matrix DA is the diagonal matrix containing face areas, and INm
is the

identity with dimension Nm. Matrix Qe is an orthonormal matrix, composed
by applying (for instance) the Modified Gram-Schmidt orthogonalization
algorithm to the matrix DACe.

4.2 Well Modeling

As stated earlier, the linear system 4.21 on page 20 is semi-definite because
we have not imposed any Dirichlet conditions on the system; the pressure
is floating. Before we modify this system to include wells, let us see how
the system will look like when we impose Dirichlet conditions. Our hybrid
system looks like






B −CT ΠT

C 0 0
Π 0 0











v
p
π




 =






0
g
h




 , (4.35)

where we set f = 0 explicitly. The right-hand side h is the Neumann bondary
conditions. To incorporate pressure (Dirichlet) boundary conditions, we split
the vector πT = (πT

I,N πT
D) and the matrix Π = (ΠI,N ΠD) in two parts

where the first corresponds to the interior and Neumann faces, and the second
corresponds to the Dirichlet faces. That is, the Dirichlet contribution is
shifted into the right-hand side. Then the system reduces to






B −CT ΠT
I,N

C 0 0
ΠI,N 0 0











v
p

πI,N




 =






−ΠT
DπD

g
h




 , (4.36)

and the final SPD system is obtained according to Schur-complement
reduction as in 4.22 on page 20 (with respect to B and then D).
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In the following, we will represent wells as boundary conditions. Hence,
a well w with boundary γw is conceptually represented as a hole in our
domain Ω. We consider both pressure- and rate-constrained wells. Pressure-
constrained wells result in Dirichlet conditions, while rate-constrained wells
give Neumann conditions. A well w consists of a number of perforations
located at different locations in the reservoir grid model. We assume that
wells do not intersect, and that each perforation goes through the centroid
of a grid cell.

Since typical wells in reservoirs have small diameters compared to the size
of the cells, it is common to employ a well index or productivity index WI
to relate the local flow rate q to the difference in well pressure (bottom hole
pressure) pw and numerically computed pressure pE in the perforated cell by

−q = λt(sE)WI(pE − pw), (4.37)

where λt(s) is the totalt mobility. Total mobility is a measure of how easily
fluid flows with respect to each other. Total mobility is important when
we have multi-phase equations. It is a positive number in each cell through
which a well is perforated. Depending on units of measurement, it often
ranges between 0.001 and 1000. Since we consider only single-phase fluid, we
hereby assume λt = 1

Productivity index WI is a parameter that is part of the Peaceman’s well
model. It measures how strongly the flow in a well affects the flow of cells
passing through the well (and vice versa). It is a positive number in each
perforation (assuming that the permeability is nonzero). For a vertical well
in a Cartesian cell with dimensions ∆X × ∆Y × ∆Z is given by

WI =
2πk∆z

ln(r0/rw)
. (4.38)

For isotropic media, k is given by K = kI, and r0 = 0.14(∆x2 + ∆y2)1/2.
Here, r0 is the effective well-cell radius, and can be interpreted as (ideally)
the radius at which the actual pressure equals the numerically computed
pressure. For validity of the index and other considerations, see [16].

Consider a system containg Nw wells w1, . . . , wNw
. For a well wk, let nk

be the number of cells perforated by the well, and denote these cells by
Eki

, i = 1, . . . , nk. Furthermore, let WIk
i be the well index corresponding to

the perforation of well wk in cell Eki
. The set of equations for all wells is the
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given, for k = 1, . . . , Nw

−qk
i = λt(ski

)WIk
i (pEki

− pwk
), i = 1, . . . , nk

pk
tot =

nk∑

i=1

qk
i .

(4.39)

Assuming no-well boundary conditions (our reservoir is a closed system)
except at wells and that there are no additions sources (we set g = 0 in 4.21
on page 20), the system 4.21 on page 20, coupled with 4.39, results in an
expanded linear system
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. (4.40)

This system is a direct result of incorporating the equation system 4.39
into 4.21 on page 20. Here, each well perforation results in an additional face
at the centroid of the cell (theoretically the perforation could be anywhere
in the cell), and the linear system 4.40 treats these perforations separately
from the other cell faces, giving rise to Bw,Cw and Dw. Here, these matrices
has the form

Bw =







B1

. . .

BNw






,Cw =







C1
...

CNw






,Dw =







d1

. . .

dNw






. (4.41)

Matrix Bk is nx × nk diagonal matrix containging well indices WI for
all perforations for well wk, according to the numbering we use for these
additional perforation faces. Matrix Cw is the sparse nw ×N matrix having
unit entries in positions (i, ki) = 1, . . . , nk, and dw is a nk × 1 vector with
all entries equal to one. The vectors qw, pw and qw,tot contain local well
rates, well pressure, and total well rates, respectively. A well is pressure-
constrained when pwk

is given, and rate-constrained when qtotk is given. For
pressure-constrained wells, the system reduces according to 4.36 on page 25.

In the actual implementation, we have merged the matrix Bw into B, Dw into
Π and the matrix Cw into C. This can be done because each well perforation
is modeled as an additional face at the centroid of the corresponding cell. A
well introduces a system coupling non-adjacent cells, and all perforations of
a given well represent the same pressure unknown; well pressure, also called
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bottom hole pressure. Each perforation has its own perforation flux. In the
reduced system 4.22 on page 20, the dimension of the matrix S increases by
the same number as there are wells.

If a well goes through cell E, the cell matrix BE in 4.21 on page 20 look like

BE =

[

BE 0
0 WI−1

]

, (4.42)

that is, the dimension of BE increases by one. Note that the local numbering
of cell faces puts the well perforation at the end (even though any numbering
can be used). If N is the number of global faces, global numbering of well
perforations begin at N + 1. The dimension of CE and ΠE is also increased
by one.

4.3 Corner-point Grids

In reservoir engineering, the reservoir is modelled in terms of a three-
dimensional grid, in which the layered structure of sedimentary beds in the
reservoir is reflected in the geometry of the grid cells [10, 11]. The physcial
properties of the reservoir rock (porosity and permeability) are represented
as constant values inside each grid cell. Due to the highly heterogeneous
nature of porous rock formations, geomodels tend to have strongly irregular
geometries and very complex hydraulic connectivities.

To model such geological structures, a standard approach is to introduce
what is called a corner-point grid. A corner-point grid consists of a set
of hexahedral cells that are aligned in a logical Cartesian fashion. One
horisontal layer in the grid is then assigned to each sedimentary bed to be
modelled. In its simplest form, a corner-point grid is specified in terms
of a set of vertical or inclined pillars defined over an Cartesian 2D-mesh
in the lateral direction. Each cell in the volumetric corner-point grid is
restricted by four pillars and is defined by specifying the eight corner points
of the cell, two on each pillar. The corner-point format easily allows for
degeneracies in the cells and discontinuities, for example, fracture and faults,
across faces. Fractures are cracks in the rock, across which there has been no
movement. Faults are fractures across which the layers in the rock have been
displaced. Faults are usually modeled as hyperplanes, i.e., as surfaces. Across
fault-faces, the corner-point grids are generally non-conforming, having non-
matching interfaces.

Hence, using corner-point format it is possible to construct very complex
geological models that match the geologist’s perception of the underlying

28



Fig. 4.3: Side-view of a corner-point grid showing vertical pillars and different
sedimentary layers showing complex strucutre.

Fig. 4.4: Figure showing a simple corner-point grid model with single seismic fault.
The fault creates a narrow passage, creating a narrowing of the permeable area.

rock formations. Figure 4.3 shows a side-view of such a corner-point grid.
Notice the occurence of degenerate cells with less than eight non-identical
corners where the beds are partially eroded away. Some cells also disappear
completely and hence introduce new connections between cells that are not
neighbours in the underlying logical Cartesian grid.

Corner-point cells may have zero volume, which introduces coupling between
non-adjacent cells and gives rise to discretisation matrices with complex
sparsity patterns. The presence of degenerate cells, in which the corner-
points collapse in pairs, means that the cells will generally be polyhedral
and possibly contain both triangular and bilinear faces. This calls for a very
flexible discretisation that is not sensitive to the geometry of each cell or the
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Fig. 4.5: Figure showing a simple corner-point grid model showing two faults. This
is an example of fault-crossing, which gives high condition numbers of the linear
system.

number of faces and corner points.
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Chapter 5

Conjugate Gradient Method

In this brief chapter, we discuss the linear conjugate gradient method
(CG) to solve the SPD linear system we have discussed in the previous
chapters. We will also refer to important convergence results, and then
discuss preconditioning techniques used for improvement of the convergence
rate.

The conjugate gradient method of Hestens and Stiefel was orignially
developed as a direct method designed to solve an n × n SPD linear
system[17]. As a direct method it is generally inferior to Gaussian elimination
with pivoting since both methods require n steps to determine a solution,
and the steps of the CG method are more computationally expensive than in
Gaussian elimination. However, the CG method is particularly advantageous
when employed as an iterative method for large sparse systems[4]. Gaussian
and other direct methods are not very effective on sparse matrices; they alter
the coefficient matrix themselves when solving the system, which causes fill-
in. Iterative techniques work with the original matrix and rely on repeatedly
applying the matrix on vectors, and can therefore fully exploit the sparsity of
a linear system. The CG method sometimes approaches the solution quickly,
as we will discuss.

The systems resulting from partial differential equations are usually very
sparse, and realistic models result in millions of unknowns, making them
improper for direct methods. Fortunately, the larger the system, the more
impressive the CG method becomes since it significantly reduces the number
of iterations required.
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5.1 Theory and Background

CG is well-known as an iterative solver, but can also be studied as a type
of line search method[4]. Line search metods are, in addition to for example
trust-region methods, used to find solutions of problems such as minx f(x)
where the domain is constrained or unconstrained. In line search strategy,
the algorithm applies some technique for choosing a direction pk and searches
along this direction from the current iterate xk for a new iterate xk+1 =
xk + αpk such that f(xk+1) < f(xk). The distance to move along pk can be
found by approximately solving the following minimization problem to find
a step length α:

min
α>0

f(xk + αpk). (5.1)

The success of a line search method depends on effective choices of the the
direction pk and the step length α.

Solving the linear SPD system Ax = b is equivalent to solving the quadratic
minimization problem

minφ(x) =
1

2
xT Ax− bTx. (5.2)

The gradient of φ equals the residual of the linear system:

∇φ(x) = Ax− b = r(x), (5.3)

so in particular at x = xk we have Axk − b = rk.

One of the remarkable properties of the CG method is its ability to generate,
in a very economical fahsion, a set of vectors with a property known as
conjugacy. A set of nonzero vectors {p0, p1, . . . , pl} is said to be conjugate

with respect to an SPD matrix A if

pT
i Apj = 0 ∀i 6= j (5.4)

In fact, this set also shows to be linearly independent. The importance of
conjugacy lies in the fact that we can minimize φ(·) in n steps by successively

minimizing it along the individual directions in a conjugate set (given that
we have n conjugate vectors with repsect to A). This can be shown very
easily, but here we just refer to two Theorems. The successive iterates are
set by

xk+1 = xk + αkpk, (5.5)
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where αk is given by

αk = − rT
k pk

pT
k Apk

.1 (5.6)

Theorem 1. For any x0 ∈ R
n the sequence {xk} generated by applying

formulas 5.5 on the preceding page and 5.6 converges to the solution x∗ of

the linear system Ax = b in at most n steps.

Proof. See [4].

Theorem 2. Let x0 ∈ R
n be any starting point and suppose that the sequence

{xk} is generated by the method of Theorem 1. Then

rT
k pi = 0 ∀i = 0, 1, . . . , k − 1, (5.7)

and xk is the minimizer of φ(x) over the set

{x|x = x0 + span {p0, p1, . . . , pk−1}} . (5.8)

Proof. See [4].

So far, we have referred to the conjugate directions, but the question we
pose next is how we find this set of n vectors? Theoretically, they can be
based on any procedure giving a conjugate set {p0, . . . , pn−1}. For instance,
eigenvectors v1, v2, . . . , vn of A are mutually orthogonal as well as conjugate.
For large sparse matrices, however, finding them requires an unacceptable
amount of computation. It is also possible to modify the Gram-Schmidt
orthogonalization to produce conjugate set. However, the Gram-Schmidt is
also expensive, and requires that the entire direction set is stored.

It is here the conjugate gradient method manifests itself; it can generate a new
conjugate direction pk by using only the previous vector pk−1. The direction
pk is conjugate to all the previous directions. This property makes the
conjugate gradient extremely scalable with respect to memory requirements.
Direction pk is given by

pk = −rk + βkpk−1, (5.9)

1If f is a convex quadratic, f(x) = 1

2
xT

Ax − bT x, its one-dimensional minimizer along
the ray xk + αpk can be computed analytically and is given by

αk = −∇fT

k
pk

pT

k
Apk

.
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where the scalar βk is to be determinded by the requirement that pk−1 and pk

must be conjugate with respect to A. By premultiplying 5.9 on the preceding
page by pT

k−1A and imposing the condition pk−1Apk = 0 gives

βk =
rT

k Apk−1

pT
k−1Apk

. (5.10)

The first iteration often starts with choosing an initial guess x0, and the
first direction is chosen to be −∇φ(x0) = b − Ax0, which gives the steepest
descent direction. Before we state the final conjugate gradient algorithm, we
should state an important theorem:

Threom 3. Suppose that the k-th iterate generated by the conjugate gradient

method is not the solution point x∗. Then the following four properties hold:

rT
k ri = 0, ∀i = 0, 1, . . . , k − 1, (5.11)

span {r0, r1, . . . , rk} = span
{

r0,Ar0, . . . ,A
kr0

}

, (5.12)

span {p0, p1, . . . , pk} = span
{

r0,Ar0, . . . ,A
kr0

}

, (5.13)

pT
k Api = 0, ∀i = 0, 1, . . . , k − 1. (5.14)

Therefore, the sequence {xk} convergence to x∗ in at most n steps.

Proof. See [4].

It is approriate to mention that the space K(r0; k) = span
{

r0,Ar0, . . . ,A
kr0

}

is called the Krylov subspace of degree k for r0. The CG method is categorized
under so-called Krylov space methods.

A slightly more economical form of the CG method, using Eq. 5.7 on
the previous page, 5.9 on the preceding page, and 5.11, uses the follwing
expressions for αk and βk+1:

αk =
rT

k rk

pT
k Apk

βk+1 =
rT

k+1rk+1

rT
k rk

. (5.15)

By using these expressions, we obtain the following standard conjugate
gradient algorithm.

5.1.1 Rate of Convergence

As we have seen, CG is guarranted to convergence after at most n iterasjons.
However, the number of iterations used by CG is dependent of A. The rate at
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Algorithm 1 Conjugate Gradient Method

r0 = b− Ax0, p0 = r0

For k = 0, 1, 2, ..until convergence
αk = rk

T rk

pk
T Apk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk = rk+1
T rk+1

rT

k
rk

pk+1 = rk+1 + βkpk

End

which the CG method converges to the solution depends on the distribution
of eigenvalues of A. Firstly, if A has only r distinct eigenvalues, then the
CG iteration will terminate at the solution in at most r iterations. This is a
special case of the following result; if A has eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn,
we have

||xk+1 − x∗||2
A

≤
(

λn−k − λ1

λn−k + λ1

)2

||x0 − x∗||2
A
, (5.16)

where x∗ is the theoretical solution of Ax = b. We note that if the eigenvalues
are uniformly distributed, then each iteration contributes to decrease the
error by the same factor. This results in a slow and uniform convergence. If
the eigenvalues are distributed in r clusters of numerically close eigenvalues
(where the cluster may be a repetition), then we would expect the error to fall
sharply each time the iteration number k went from one cluster to another.

Another, more approximate, convergence expression for CG is based on the
Euclidean condition number of A, which is defined by

κ(A) = ||A||2||A−1||2 = λn/λ1. (5.17)

It can be shown that

||xk − x∗||A ≤ 2





√

κ(A) − 1
√

κ(A) + 1





k

||x0 − x∗||A. (5.18)

Matrix A is said to be ill-conditioned if the condition number is big. This
bound gives a large overestimate of the error, but it can be useful when it
is the only information we have about the eigenvalues of A. The matrices
resulting from the mimetic discretisation, when we use highly heterogeneous
permeability fields and complex geometry, are very ill-conditioned, and the
CG method is useless without precondition techniques for convergence rate
improvement, which we discuss next.

35



5.2 Preconditioned CG-Algorithm

When the distribution of the eigenvalues of A is not favourable and the
matrix is ill-conditioned, number of iterations for big systems can reach
several hundred thousands. The method of preconditioning transforms
or preconditions the linear system such that we can make the eigenvalue
distribution more favourable and improve the convergence of the method
significantly. No single preconditioing strategy is “best” for all conceivable
types of matrices. In general, the reliability of iterative techniques depends
much more on the quality of the preconditioner than on the iterative
technique.

A preconditioner is a matrix M of the same dimension as A and is supposed
to be SPD. The additional requirement is that it is should be inexpensive
to solve the system My = r (compared to Ax = b), because each iteration
requires the solution of such a system. In the preconditioned CG version, we
solve the system

M−1Ax = M−1b (5.19)

The preconditioner has the original form as M = CT C to preserve symmetry,
because M−1A is not symmetric. M results from a change of variable x̂ =
Cx, which results in the system C−1AC−1x̂ = C−1b.

The convergence rate will depend on the eigenvalues of C−1AC−1. C and
the preconditioner can be attempted chosen such that the condition number
is much smaller than that of A or that the eigenvalues of C−1AC−1 are
clustered, also reducing the number of iterations.

To obtain the preconditioned CG-algorithm, we apply the CG method
without preconditioing to the new system C−1AC−1x̂ = C−1b, and then
invert x̂ to x. This results in the following algorithm which uses only
M.

5.2.1 Practical Preconditioners

Often, the preconditioner M is defined in such a way that the system My = r
amounts to a simplified version of the original system Ax = b. In the
case of a linear system representing a discretisation of a partial differential
equation, M could come from a coarser discretisation. These types of
preconditioners are often categorized under multi-grid preconditioners, where
we may use knowledge of the underlying grid (geometric multigrid) or
approximate this from the structure of the matrix A (algebraic multigrid).
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Algorithm 2 Preconditioned Conjugate Gradient Method

r0 = b− Ax0, y0 = M−1r0, p0 = y0

For k = 0, 1, 2, ..until convergence
αk = rk

T yk

pk
T Apk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

yk+1 = M−1rk+1

βk = rk+1
T yk+1

rT

k
yk

pk+1 = yk+1 + βkpk

End

Such preconditioners are difficult to implement, and we have not considered
them as possible candidate preconditioners in this report.

General-purpose preconditioners using only the matrix A include Jacobi,
symmetric successive overrelaxation (SSOR), incomplete Cholesky, sparse
approximate inverse (SPAI). The Jacobi preconditioner is the simplest one
among these, in which the preconditioner is chosen to be the diagonal of the
matrix A; M = diag(A). In SSOR, M is given by

M =
(

D

ω
+ L

)
ω

2 − ω
D−1

(
D

ω
+ U

)

, (5.20)

where U = LT is the upper triangluar part of A. The parameter ω is
between 0 and 2. Incomplete Cholesky is probably the most effective in
general. The basic idea is simple; we follow the Cholesky procedure, but
instead of computing the exact Cholesky factor L such that A = LT L, we
compute an approximate factor L̃ sparser than L. We then choose C = L̃.
There are several other considerations in this preconditioner, but we leave
them out.

The implementation in this report implements only the Jacobi precondi-
tioner. For a detailed discussion of the preconditioner mentioned above, see
[18].
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Chapter 6

GPGPU - General-Purpose
Computing on GPUs

GPGPU stands for General-Purpose Computation on GPUs. GPUs are
high-performance many-core processors capable of high computation and
data throughput. The GPU was traditionally designed for use in computer
graphics, where 2D images of 3D triangles and other geometric objects are
rendered[2, 1]. Each element in the output image is referred to as a pixel,
and the GPU used a set of processors to compute the color of such pixels
in parallel. Recent GPUs are more general, with rendering only as a special
case. The theoretical performance of GPUs is now close to three teraflops
(tera = 1×1012 ), making them attractive for high-performance computing[1].
Today’s GPUs are general-purpose parallel processors with support for
accessible programming interfaces and industry-standard languages such as
C.

The term GPGPU was coined by Mark Harris in 2002[3]. Interest in GPGPU
has since been on the rise. Initial attempts at running non-graphics related
software on GPUs were largely proof-of-concepts, and often relied on clever
use of the hardware and a substantial knowledge of the inner workings
of the GPU. GPUs could only be programmed using graphics APIs such
as OpenGL. General-purpose stream-computing was achieved by mapping
stream elements to pixels, and that required a through understanding of
the inner workings of the GPU[2, 1]. In an attempt to appeal to a broader
audience of scientific communities, and to provide a more direct access to
the GPU, AMD released Stream SDK and NVIDIA CUDA. CUDA Toolkit
provides the means to program CUDA-enabled NVIDIA GPUs, and is
available on Windows, Linux and Mac OS X. CUDA consists of a runtime
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Fig. 6.1: GPUs are scaling with a rate much greater than CPUs. The Figure shows
how some of the modern CPUs compare with modern GPUs in producing flops.
From [19]

library and a set of compiler tools, and exposes an SPMD programming
model where a large number of threads, grouped into blocks, run the same
kernel.

This recent emergence of techniques of General-purpose Computing on GPUs
has caused a breakthrough in computational science[2]. The performance in
terms of FLOPs today offered by GPUs was for not long ago only accessible
through supercomputers[20]. Numerical simulation does very clearly benefit
from this new architecture, as shown by many successful experiments[21,
22, 23, 24, 25, 26]. The only drawback is that porting applications to
heterogeneous architechtures often require complete algorithm redesign, as
some programming patterns, which in principle are trivial, require great care
for efficient implementation on a heterogeneous platform. It often takes time
to develop and redesign algorithms, and there is almost no automization in
the process. Issues with traditional approach often involve significant code
change, and progress is often tedious and error-prone[1, 27]. In addition,
the GPU architecture requires an extensive manipulation of array indices
and data structures for management and optimisation. Attempts have been
made by others to eliminate or simplify mechanical steps in the process of
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converting single-threaded programs to CUDA programs[28]. Still, though,
the development activity for GPU libraries is high, and there exist a number
of commerical and non-commerical libraries for GPU computing which makes
the interface between CPU and GPU fairly intuitive[29, 30, 31, 32, 33, 34].
As stated earlier, two of the libraries currently undergoing high development
activity has a major role in the implmentations in this thesis; the CUSP [35]
and THRUST [36] libraries. A relevant description of them will be included
when we discuss implementation.

6.1 Contrast to CPUs

The reason why the GPU has manifested itself in scientific disciplines has to
do with the evolution of CPUs. Not long ago CPUs ceased to evolve with
the scalability that is often desirable among science’s increasingly insistent
demands for more computational power. It is not long ago we got news about
the newer CPUs with more and more powerful cores. Such news has now
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begun to be infrequent, and newer CPUs are also fairly expensive.

Traditionally, the processor frequency closely followed Moore’s law[37].
However, physical contraints have stopped and even slightly reversed this
exponential growth in frequency rate[1]. A key physical constraint is power
density, often referred to as the power wall. The relationship between power
density P in watts per unit area, the total capacitance C, the transistor
density ρ, the processor frequency f , and supply voltage Vdd is given by

P = CρfV 2
dd. (6.1)

The frequency and supply voltage are related, as higher supply voltages
allow transistors to charge and discharge more radiply, enabling higher clock
frequencies. The power density in processors has already surpassed that of a
hot plate, and is approaching the physcial limit of what silicon can withstand
with current cooling techniques. GPUs, however, have continued to evolve
in pace with the enormous development of the gaming industry. Figures 6.1
on page 39 and 6.2 on the previous page shows this development and the
dividing gap between the CPU and GPU.

We can think of a GPU as a kind of primitive or simpler CPU, but with a
force that greatly exceeds the CPU power. CPU is intended for a task that
is not as specific as what the GPU is designed for. A CPU will generally be
able to run any problem without any additional consideration. CPU is much
more complex in terms of design, and a much larger part of it is occupied by
the control unit and the cache. GPU, however, is intended for a very specific
task, which is graphics. A pixel do not differ much from other nearby or
far left pixels; they often undergo the same calculations, and this can be
done in parallel without any form of advanced control since the same task is
performed on many indepedent units. The GPU therefore has a much larger
space devoted to data processing rather than data caching and flow control.

6.2 GPUs and Scientific Computing

The appeal of using GPUs in scientific computing is in taking advantage
of a hardware architecture that provides a high level of parallelism and
computational power for a relatively small amount of money. Using
GPUs for scientific applications such as numerics does, however, often pose
different requirements to the hardware than the graphics programs the GPUs
traditionally have been developed for. One of the most important such
aspects is double precision. Double precision is important both for exact
results, as well as rapid convergence in numerical solvers. On modern CPUs
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this basically comes for free, but on the current generation of NVIDIA GPUs
single precision floating-point units outnumber double precision 8 units to 1.
This means that the speedup one usually obtains for less-precision dependent
programs is much more limited when requiring double precision. This has,
however, given the GPU industry something to think about, and the next-
generation GT300 GPU architecture from NVIDIA, code-named “Fermi”,
has some interesting features for the scientific community.

The double precision performance has improved, now running at half the
speed of single precision[1]. Another important aspect of programming
on GPU is the need for decent development and debugging tools. Both
CUDA from NVIDIA and OpenCL are frameworks developed for making
development of more general applications easier. NVIDIA will also launch
its new GPU development tool NVIDIA Parallel Nsight to be integrated with
Microsoft Visual Studio[38, 39].

6.3 Heterogeneous Computing Model

In order to achieve higher and higher computing performance, current and
future computer architechtures are based on parallelism. However, even
modern multi-core CPUs (2-8 cores) use up to 80% of its resources on
non-computational tasks. At the same time, dedicated stream accelerator
cards, which contain hundreds of lightweight cores, are available. Such
stream accelerators are designed for high computational throughput, while
sacrificing complexity, thus disabling their ability to run operating systems.
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Fig. 6.4: A CPU in combination with a GPU is a heterogeneous system. From [1]

They are typically managed by traditional cores to offload resource-intensive
operations. Most applications contain a mixture of tasks, some are
best suited for multi-cores and others for streaming accelerators, and will
ultimately perform best on heterogeneous architectures[1]. The concept of
heterogeneous computing is the use of a GPU to do general-purpose scientific
and engineering computing. The sequential part of the application runs on
the CPU and the computationally-intensive part runs on the GPU. From
the user’s perspective, the application just runs faster because it is using the
high-performance of the GPU to boost performance. In literature, CPU is
often called the host and GPU is called the device. The terms processor
and co-processor are also used. The application developer has to modify the
serial application by mapping compute-intensive parts of the program to the
GPU. The rest of the application remains on the CPU. The CPU is desgined
as a general-purpose processor capable and designed for handling advanced
flow control and data caching. The GPU on the other hand is developed
for handling code that can run in parallel, is computational intensive and
that requires a high memory bandwidth. This is typical for the graphical
operations performed in games, with high-resolution textures and 3D-models
with a high polygon count. In a typical program the CPU will handle the
overall program execution and serial code, while the GPU performs tasks with
a high degree of parallelization. The bottleneck in heterogenous computing
such as GPU programming is very often the transfer of data between the
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Fig. 6.5: Schematic illustration of sub-division of a problem into coarser and fine
grain sub-problems.

two devices. For the CPU and GPU, all communication must go through
the PCI-express interface (which is slow). A programmer wants to transfer
as much data as possible in as few transfers as possible, in order to reduce
overhead costs. We also want to design our program such that it does as
many computations as possible on the data each device has locally before
transfering more data. Figure 6.4 on the preceding page shows a GPU with 30
highly multi-threaded SIMD (Single Instruction Multiple Data) accelerator
cores in combination with a standard multi-core CPU. The GPU is optimised
for running SPMD (Single Program Multiple Data) programs with little or
no synchronization.

6.4 GPU Computing with CUDA

CUDA is the name of a general-purpose parallel computing architecture of
modern NVIDIA GPUs. In the litterature, CUDA refers to both hardware
architecture of the GPU, and the software components used to program the
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hardware[19]. The reason why CUDA is associated with general-purpose
computing on GPUs is that the programmer does not need to have any
extensive knowledge about the primary GPU architecture or traditional GPU
programming, such as OpenGL. CUDA is an abstraction which gives the
programmer a very clearly defined interface which maps nicely to problems
that can be parallelized both on a coarse and fine grained level. The
programmer can choose to express the parallelism in high-level languages
such as C, C++, Fortran or driver APIs such as OpenCL and DirectX-
11 Compute. CUDA is a fairly new technology but there are already
many examples in the literature and on the Internet highlighting significant
performance boosts using GPU hardware, cf. [21, 22, 23, 24, 25, 26].

The CUDA parallel programming model guides programmers to partition
the problem into coarse sub-problems that can be solved independently in
parallel. Fine grain parallelism in the sub-problems is then expressed such
that each sub-problem can be solved cooperatively in parallel (See Figure 6.5
on the previous page).
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Chapter 7

CUDA Programming Model

7.1 GPU Device Architecture Overview

Fig. 7.1: The NVIDIA GT200 architecture. The abbreviations have the following
meaning: TPC - texture processing cluster; SM - streaming multiprocessor; Tex
unit - texture unit; Tex cache - texture cache; SP - scalar processor. From [1]

Before we explain the basic CUDA for the further purpose of the algorithm,
it is perhaps appropriate to mention some few words about the GPU
architecture from the point of view of CUDA. Simultaneously, an attempt
will be made to introduce the new GT300 Fermi architecture and compare
its main features with the previous GT200.

Figure 7.1 shows the NVIDIA GT200 GPU architecture. It has 10
TPCs, texture processing units, each containging 3 so-called streaming
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multiprocessors (SM). Each SM has 8 scalar processors (SP). SPs execute
individual threads. Hence, the total number of threads that can run in
parallel are 240 (the G80 architecture before GT200 had two SMs per TPC,
enabling 128 threads). Along with the SPs, each SM has its own shared

memory which is shared by all the SPs in the SM. In addition to the SPs,
it contains two Special Function Units (SFUs) and a double precision core.
Each SP is fully pipelined arithmtic-logic unit capable of integer and single
precision floating-point operations, while the SFUs contain four arithemtic-
logic units, mainly used for vertex attribute interpolation in graphics and
available to handle transcendental and other special operations such as sin,
cos, exp, and rcp (reciprocal). The SMs have an SIMD (Single Instruction
Multiple Data) architecture. That is, at each clock-cycle, the SP of each SM
executes the same instruction on potentially different data. Each SM has
16,382 of 32-bit registers divided among all SPs. The shared memory is of
size 16 KB. Each SM has 8 KB of read-only constant cache that is shared
by all the processors and speeds up reads from the constant memory space,
which is implemented as a read-only region of device memory. Only the host
has write access to the constant memory. The GT200 has 8 KB of read-only
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texture cache that is shared by all the processors and speeds up reads from
the texture memory space, which is implemented as a read-only region of
device memory. The on-chip shared memory has virtually no latency and is
not limited by the bandwidth of the memory bus. When accessing the device
memory (off-chip) there is a latency of about 400 to 600 clock cycles[19]. A
GPU is built up by connecting a number of SMs through the RAM (random
access memory). An SM is a type of sub-system, and the GPU connects
these independent sub-systems through device memory.

7.2 Introducing Fermi

NVIDIA’s first GPU supporting general-purpose computing, the G80-based
GeForce 8800 introduced in November 2006, could provide up to 500 single
precision GFlops. The fastest CPU at the time could not provide more than
20 GFlops. G80 architecture replaced separate vertex and pixel processors
from NVIDIA GPUs at that time with unified computing processors that
could be programmed in C. This, along with other innovations, enabled
the GPU’s enormous floating-point computing capacity in non-graphical
applications. In 2008, NVIDIA launched their GT200-based GeForce 280.
GT200 nearly doubled the performance compared to G80 reaching up to
900 single precision GFlops. GT200 also added support for double precision
floating-point operations (FP64), which G80 lacked. FP64 is vital for many
scientific and engineering programs, and unnecessary for 3D graphics.

Again, the agendas of the autumn 2009 and spring 2010 have been marked
by the launch of NDIVIA’s new Fermi architecture. At a high level, Fermi
does not look much different from GT200. Fermi has three billion transistors
distributed among the 480 (the GTX 480 GPU) cores/SPs (GT200 had 1.4
billion transistors on 240 cores). Despite the similarities, large parts of the
architecture have evolved[39].

Fermi is based around the same concepts as GT200, with some major
improvements. The number of SPs has doubled. The double precision
performance has also improved dramatically, now running at half the speed
of single precision. The memory space is also unified, so that shared memory
and global memory use the same address space, thus enabling execution of
C++ code directly on the GPU[1].

All of the processing done at the core level is now IEEE-specific. That is,
IEEE-754 2008 for floating-point math and a full 32-bit integer. In the past
32-bit integer multiplier had to be emulated; the hardware could only do 24-
bit integer muls. Fused Multiply Add (FMA) is also included. Each core can
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write to device memory, as well as Constant and Textures. From [40].

perform one FMA operation in each clock cycle and one double-precision
FMA in two clock cycles. FP64 performance is improved tremendously.
Peak FP64 execution rate is now half of 32-bit floating-point (FP32); it
is 1/8 on GT200. In GT200 double precision processing was handled by a
single dedicated unit per SM with much lower throughput. G80 and GT200
group eight cores into one SM. Fermi puts 32 cores per SM. In addition to
the cores, each SM has a Special Function Unit (SFU), available to handle
transcendental and other special operations such as sin, cos, exp, and rcp
(reciprocal). In GT200 this SFU had two pipelines, in Fermi it now has four.

Each SM in GT200 had 16 KB of shared memory that could be used by all
of the cores. This shared memory is not cache, but rather software-managed
memory. The application would have to knowingly move data in and out
of it. The benefit here is predictability; you always know if something is in
shared memory because it is explicitly put there. The downside is it does
not work so well if the application is not very predictable.

Each SM in Fermi has 64 KB of configurable memory. It can be partitioned
as 16 KB/48 KB or 48 KB/16 KB; one partition is shared memory, the
other partition is an L1 cache. The 16 KB minimum partition means that
applications written for GT200 that require 16 KB of shared memory will
still work just fine on Fermi. GT200 did have an L1 texture cache, but the
cache was mostly useless when the GPU ran in compute mode.
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7.3 CUDA Architecture

The foundation of the CUDA software stack is CUDA PTX, which defines
a virtual machine for parallel thread execution. This provides a stable low-
level interface decoupled from specific target GPU. The set of threads within
a block is referred to as a co-operative thread array (CTA) in PTX terms.
All threads of a CTA run concurrently, communicate through the software-
managed shared memory, and synchronize using barrier instructions. Multi-
ple CTAs run concurrently, but communication between CTAs is limited to
atom operations on global memory. Each CTA has a position within the grid,
and each thread has a position within a CTA, which threads use to explicitly
manage input and output of data. A kernel is compiled into a PTX program,
and executed for all threads in a CTA[19, 1].

A thread block can be understood conceptually as a type of thread aggregate
in which threads are aware of each other in terms of data dependecncy and
synchronization (see Figure 7.2 on page 47). A thread block in CUDA is
software-mangaged and gives a convenient interface to the programmer to
partition the problem into independent subproblems. From the hardware
point of view, CUDA is implemented by organizing the GPU around the
concept of SM (see Figure 7.1 on page 46, 7.3 on page 47 and 7.5 on the
following page).

A modern NVIDIA GPU, such as GTX 285, contains tens of SMs. Each SM
consists of multiple SPs (see Figures 7.1 on page 46 and 7.5 on the following
page), each capable of executing an independent thread. So the GPU runs
many threads in parallel on different SMs. When we write parallel code
using CUDA, we essentially write a sequential code for one thread. When
executed, the same code runs on different threads (on SPs). This is called
single instruction multiple thread (SIMT), and is similar to single instruction
multiple data, SIMD, since each thread can work on its own data (each SM
is SIMD). In that sense, it is similar to writing the code for one single CPU
in, for instance, MPI[41]. Just as in MPI, the threads can also branch into
different paths, even though this is never a recommendation based on the
fact that branching implies serialization of instructions [19].

Whenever we launch threads on a GPU, we actually launch all the threads
in a two level hierarchy. We have a collection of blocks called a grid, and
each block is a collection of threads (See Figure 7.2 on page 47). There are
essentially two reasons why we have two levels of threads. Each block is an
independent unit which represents a coarse grained parallelism and all the
threads in a block can cooperate and synchronize with each other. Thread
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synchronization here means that we can set up a barrier at a point in the
thread code such that right at the point of the barrier, all the threads in
the block will wait until each thread has arrived at this stage during the
execution. Threads within a block run on a single SM (each thread running
on single SP). This is exactly what gives them the possibility to synchronize
and share information efficiently using the on-chip shared memory of the
SM. Thus, we can understand the naming convention shared memory (See
Figure 7.3 on page 47). Shared memory will be discussed in Section 7.6.

The CUDA programming model is based upon the concept of a kernel. A
kernel is a function that is executed multiple times in parallel, each instance
running in a separate thread. The threads are organized into one-, two-
or three-dimensional blocks, which in turn are organized into one- or two-
dimensional grids. The blocks are completely independent of each other and
can be executed in any order. Figures 7.2 on page 47 shows an illustration. As
opposed to different blocks of one grid, two grids represented by two kernels
can have an dependency (See Figure 7.7 on the following page). In this
project, we have used one-dimensional grids and blocks. Two-dimensional
blocks are approriate when using for example Finite Difference Method on
structured grids.
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7.4 CUDA Memory Model

Figure 7.4 on page 49 shows how the host and the device co-operate with
each other. The device has read-only access to the constant and texture
memory, to which only the host can write. In the case an SM runs out of
registers, the threads can spill to the per-thread local memory which resides
in global memory.

7.4.1 Memory Hierarchy

The memory structures are part of the CUDA architecture. Threads in a
block will in most programs have to exchange data, and the shared memory
allows for this. The shared memory will have the same lifetime as the the
block it is attached to, while the global memory is persistent throughout the
program, and hence can be used for communication between different kernels.
Two blocks of the grid cannot communicate. They represent parallel units.

In addition to the private, shared and global memory spaces, threads have
read access to the texture memory and the constant memory. The constant
memory is cached and, so it is extremely fast. It is, however, very limited
in space, only 64 KB, hence of limited use. Constant memory cannot be
alloced dynamically, even from host. The host and the device will maintain
different memory spaces, and pointers from one cannot be dereferenced in
the other. Before executing a kernel function, the necessary memory must be
allocated on the GPU, and data must be transferred from the host system.
This transfer goes over the PCI-express interface. Table 7.8 on the following
page gives a summary of access level and lifetime of different memory spaces.
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Memory Loca!on Cached  Access Scope Life!me 

Register On-chip N/A R/W One thread Thread 

Local Off-chip No R/W One thread Thread 

Shared On-chip N/A R/W Block Block 

Global Off-chip No R/W All threads + host Applica"on 

Constant Off-chip Yes R All threads Applica"on 

Texture Off-chip Yes R All threads + host Applica"on 

 

Fig. 7.8: Table showing access level and lifetime of different memories on the GPU.
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Fig. 7.9: Scalability of a CUDA program. From [44]

7.5 CUDA Execution Model

The GPU is designed as a stream processor, which means that it takes a large
set of data (a stream) and applies a series of operations (a kernel function)
to each element in the stream. The processing of each element must be
independent of each other so that they can be executed in parallel. Another
way of seeing it is as if we have a large set of threads, each executing the
same kernel function in parallel on its respective element of the dataset.

As we know, in the CUDA architecture, not all threads need to be
independent. Whereas each block has to be completely independent of each
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other, the threads within the blocks can share data and synchronize their
execution if neccessary. This is possible because each block is executed
on only one SM. This fact also implies that the resources each block uses
determines the total number of blocks that can run per MP. This puts a
limit on the number of blocks we can run. Another point is scalability of
a CUDA program. Since a CUDA program is not bound to one particular
GPU, we would expect roughly halving in execution time if running on a
GPU with twice the number of SMs, given that the grid size is large enough.
This is indeed an important point. Figure 7.9 on the previous page shows
a grid with 8 blocks. If run a GPU with only two SMS, 4 blocks must be
sheduled on each SM. If run with 4 SMs, only two blocks are run on each
SM.

The thread execution manager schedules the blocks for execution by passing
it to one of the SMs (see Figure 7.5 on page 51). Each SM can run up to 8
blocks at a time. The blocks that are running are called active blocks. When
all the threads of an active block have finished, a new block is scheduled.
This goes on until there are no more blocks in the grid. A new kernel can
only be launched when all the blocks of the previous launch have finished.

On GT200, since block size can be up to 512 threads large [19], and the
number of SPs in each SM is only 8, not all the threads in a block can run at
the same time. The blocks are automatically split into warps consisting of 32
consecutive threads (See Figure 7.6 on page 51). The blocks are scheduled
to the SMs at runtime, and each warp in executed in SIMD manner. Every
4th clock cycle, the warp scheduler (instruction dispatch unit) selects one of
the active warps that are ready to go (all operands are available), and loads
the next instruction for that warp into the SPs. That instruction is then
executed on all 8 SPs for 4 clock cycles (once for each of the 32 threads of
the warp). Divergent code flow between threads is handled in hardware by
automatic thread masking and serialization, and thus, divergence withing a
warp reduces performance, while divergence between warps has on impact[1].
Active warps are scheduled in a way that maximizes utilization and try to
hide the delays associated with memory loads.

7.6 Shared Memory

Shared memory is a type of user-managed cache in a couple of considerations
when we are making use of that. The amount of shared memory is very
limited in comparison to the total global memory available on a GPU. Its
advantage lies in the access time. It is roughly 100x faster than accessing
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the GPUs global memory. Threads can co-operate their data accesses and
computations via shared memory. For example it is possible to use one or
a few threads to load data from global memory into shared memory that is
going to be used by all the threads, thereby negating the need to go to the
global memory[19].

Let us first say a few words about the architecture of the shared memory.
The shared memory is divided into banks of successive 32-bit. Each 32-
bit word is assigned to successive banks. Each bank can service one single
address per clock cycle. Hence, shared memory can service as many one-cycle
accesses as it has banks. Multiple simultaneous accesses to one bank result
in what is called bank conflict. If two threads look up the same bank, they
are conflicting, and so one has to wait for the other, making the two accesses
several cycles long. Bank conflicts therefore results in serialization of these
shared memory requests. Figure 7.10 shows an access pattern which is a
very orderly pattern. There are no bank conflicts and each access is served
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in one cycle. It is appropriate to note that the bank accesses do not need
to be ordered in any sense. As the simultaneous accesses increases, we get
more and more degradation in access time, bank conflicts of higher order (see
Figure 7.11 on the previous page). On the level of half-warp, we can have
from 1 to 16-way bank conflict, in the latter case all 16 threads accessing
the same bank. To summarize, to maximize usage, we want each thread in
a half-warp to get shared memory at the same time. This can only happen
in certain situation, similar in concept to global memory coalescing.

7.7 Memory Coalescing

The threads of a warp are also free to use arbitrary addresses when accessing
on-chip memory with load/store operations. Accessing scattered locations
results in memory divergence and requires the processor to perform one
memory transaction per thread. On the other hand, if the locations being
accessed are sufficiently close together, the per-thread operations can be
coalesced for greater memory efficiency. Global memory is conceptually
organized into a sequence of 128-byte segments. Memory requests are
serviced for 16 threads (a half-warp) at a time. The number of memory
transactions performed for a half-warp will be the number of segments
touched by the addresses used by that half-warp. If a memory request
performed by a half-warp touches precisely one segment, we call this request
fully coalesced, and one in which each thread touches a separate segment we
call uncoalesced. If only the upper or lower half of a segment is accessed, the
size of the transaction is reduced[19, 5].
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Chapter 8

Implementation

The subsequent sections in this chapter discuss important details and
procedures in the implementations. Both the Full-matrix and the Matrix-
free version use the conjugate gradient method for solving the resulting
linear system. Matrix-free only requires that the local cell matrices are
calculated, while the Full-matrix version requires an additional assembling
of them to create the global stiffness matrix. To the extent it is a question
of implementation, that is essentially the main difference between these
versions.

The CG-algorithms in the previous chapter show that the preconditioned
CG method requires, during each iteration, one matrix-vector multiplication,
two inner-products, two saxpy operations, one vector scaling (bpk = βkpk),
and one vector addition (pk+1 = yk+1 + bpk). The operations M−1rk+1 in
the case of Jacobi preconditioing is trivial. Except for the matrix-vector
multiplication, all operations are computationally inexpensive and straight-
forward to implement, both on host and device. The challenging and
expensive operation is the matrix-vector multiplication, which is possibly also
one of the most important numerical operations in numerical mathematics.
It is this operation that ultimately make up our primary focus when it comes
to optimisation.

Our primary goal has been to create an iterative linear solver that works
on general corner-point grids using the MFD discretisation we discussed in
Chapter 4. In a matrix resulting from MFD discretisation, the number of
nonzero elements in a row is one less than the total number of cell faces
in the two neighboring cells that share the face representing the given row
(given that we no wells). For a 3D Cartesian grid without wells, each row
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representing an internal face has 11 nonzero elements, and each face residing
on the boundary gives only 6 nonzero entries in the given row. For a Cartesian
grid with three million cell faces, the number of nonzero elements in the
matrix corresponds to approx. 3.7e−4 % nonzeros compared to total entries.
Thus, this poses an inherent requirement that the global matrix is represented
in a sparse format. In this regard, we will discuss various sparse matrix
formats and say a few words about which ones are eligible for the host and
the device.

A library for sparse matrices is not yet included in the current CUDA
SDK. This will most probably change in the future releases1. A thesis
was written last year at SINTEF which treated the same theme as this
thesis, that is, a mimetic implementation (in addition to other methods)
on corner-point grids[45]. The author of this thesis computed all the global
matrices in MATLAB using a toolbox developed by SINTEF (described next)
and imported the matrix (and the right-hand side) from MATLAB to the
CUDA-program. The system Sπ = R was then solved using different sparse
matrix formats, created by converting the matrices imported from MATLAB.
The implementations was on based [5] and used the same formats that are
discussed here.

In this thesis, we read the grid and geometry data from two files created using
the MATLAB toolbox; a file containging grid information and well data, and
the second file containing permeability data. Local cell matrices are then
calculated using this data. Right-hand side is also calculated. For the Full-
matrix version, the cell matrices are assembled to the global matrix S in 4.22
on page 20. In addition, this thesis evaluates the CUDA-libraries CUSP and
THRUST, which were made available recently. CUSP is a library for sparse
linear algebra and graph computations on CUDA and is based on[5]. CUSP
provides a flexible, high-level interface for manipulating sparse matrices and
solving sparse linear systems. Thrust is a CUDA library of parallel algorithms
with an interface resembling the C++ Standard Template Library (STL).
Thrust provides a flexible high-level interface for GPU programming that
greatly enhances developer productivity. The primary purpose has been not
to repeat the material from the thesis mentioned. Kernel implementations for
different sparse matrix formats are also open source. Moreover, using CUSP
and THRUST implies a significant improvement with respect to performance
and the interface between the host and device.

1According to one of the authors of [5], and the designer of CUSP, on NVIDIA forums,
future CUDA SDK releases may include the sparse matrix-vector multiplication kernels
implemented in CUSP.
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8.1 MRST - MATLAB Reservoir Simulation

Toolbox

The geometry and grid representation of coner-point grids is a difficult
task. For that reason, a GNU MATLAB Reservoir Simulation Toolbox
(MRST) developed by SINTEF has been used to compute the required grid
and permeability information. The toolbox consists of a comprehensive set
of routines and data structures for reading, representing, processing, and
visualizing unstructured grids, with particular emphasis on the corner-point
format used within the petroleum industry. It also contains a wide range
of finite-dimensional discretisation schemes, such as MFD, Mixed Finite
Element, two-point flux approximation TPFA, as well as direct solvers for
resulting sytemes. All the visualization has been done using MRST functions
plotCelldata(...) and plotFacedata(...).

The MFD requires that the following geometry information is available for
all cells in grid: cell volumes, cell mass centers, face mass centers, face areas,
normal vector for each face. In addition to that, the implementation requires
the grid representation which is given by the following tables; cellFaces,

cellP, faceP, faceNodes, nodes, neigbhours. All of these are one di-
mensional arrays. Information about these arrays and additional information
about corner-point grid can be found in the MATLAB file grid structure.m

of MRST[46].

8.2 Matrix-free Implementation

The first thing to be said about the Matrix-free version is that it is
very specific. Before we say anything else about that version, let us see
how the algorithm looks. The following algorithm shows the precondi-
tioned CG-algorithm for the Matrix-free version. The algorithm starts
by computing r0, y0 and p0 (cf. Section 5.2). The one-dimensional
array CM = [S1, S2, . . . , SM ] (Cell Matrices) contains the the upper
symmetric portion of the cell matrices (a total of M cells). Cell matrix
Si is stored row-wise, the first row storing all entries, and the last
one storing only the last entry. The functions cell mvp(...) and
reduce(...) in the algorithm defines the Matrix-free functionality of the
algorithm. The rest is identical to Full-matrix version. These will be
explained.
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Algorithm 3 Preconditioned Matrix-free CG Method

r0 = b− Sx0, y0 = M−1r0, p0 = y0

For k = 0, 1, 2, ..until convergence
Rk = cell mvp(CM, pk)
Lk = reduce(Rk)

αk = rk
T yk

pk
T L k

xk+1 = xk + αkpk

rk+1 = rk − αkLk

yk+1 = M−1rk+1

βk = rk+1
T yk+1

rT

k
yk

pk+1 = yk+1 + βkpk

End

Each cell in the grid is assigned to a single thread. That is, the matrix-vector
product Sip

i
k = Ri

k, where pi
k is the vector of elements from pk corresponding

to the global faces of cell i, is computed by a single thread, and the result
Ri

k is stored in device memory. This means that a total of M threads are
needed to process the whole grid. These threads are organised into a number
of thread blocks. Knowing that two threads in two different blocks cannot
synchronize or co-operate, this also results in blocks of non-communicating
cells (cf. Section 7.5). Hence, two cells in two different blocks which share a
common face has to be done independent somehow.

Usually, one partitions or divides the grid into a set of connected sub-
grids, for example using metis[47], see Figure 8.1 on the next page. On
a supercomputer, for instance using MPI, one can assign each sub-grid
to different CPUs with their own random access memory. The interface
between the sub-grids still requires global reduction. Sometimes the problem
may nesscitate such a partitioning for parallelization. For a problem, for
example The Poisson Equation on an unstructured triangular grid, where the
unknowns are located at the nodes, and not on the faces, we may not have the
knowledge of how many cells/elements contribute to a given node. This often
changes throughout the grid (See Figure 8.1 on the following page). For an
effective implementation, such a partitioning is essential. Using MPI, a sub-
problem can be assigned to a single CPU where the sub-problem is solved
serially. On CUDA, a sub-problem is assigned to a single block, and the
sub-problem is solved using several co-operating threads. Then only a global
reduction is needed for the interface nodes. In MPI this can be realized in
multiple ways. On CUDA, we can split the problem into two kernels. Notice
that the GPU has only one RAM, so a partitioning of the grid just gives a
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Fig. 8.1: An example showing partitioning of an unstructured triangular grid.
Each node recieves contribution from a variable number of triangle elements, and
this information is usually not accessible. Partitioning is the only way to parallelize
such grids where the unknowns are located on grid nodes.

permutation of the cells; one sub-partition is stored continously in memory,
and a block knows where to read its partition by means of given offsets.

On the other hand, when the unknowns are located on the cell faces, such as
the face pressure π we have in the system Sπ = R, we can infer that a given
face only receive contribution from two cells. That is, the ones sharing that
face. We can use this information to avoid partition of the grid. Partitioning
of a grid often requires an excessive amount of preprocessing and often makes
the problem more difficult to implement and debug. Since we are solving the
system Sπ = R, the partitioning has been avoided.

In summary, the Matrix-free version assumes that only two cells can be
connected. It is correct when we look at the grid; each cell face is shared
by maximum two cells, and each row of S contains only contribution from
maximum two cells. That changes if we include wells into the system. A
well usually goes through multiple non-adjacent cells and thereby introduces
connections between multiple cells. For that reason, the Matrix-free version
does not support wells2.

2It was relatively late in the project that my supervisor B̊ard Skaflestad showed interest
in adding wells to the system 4.21 on page 20. The choice was between implementing other
discretizations, but the choice ultimately fell on the wells. That is when I discovered that
my assumption that only two cells share an internal cell face made it impossible to add
wells. Any partitioning would still demanded that all the well cells ended up in the same
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Fig. 8.2: This figure shows an example of how partitioning of the grid is avoided
based on the information that the unknowns are located on the cell faces. An
struct array is created with two doubles, and the integer arrays I1 and I2 contain
the information which tells each cell where to store its contributions for each of
its faces. Component-wise sum of the struct array is the result of a matrix-vector
multiplication.

One thread has been assigned to one cell, and the global thread number i
is associated with the global cell number i. That is, we may have adjacent
cells associated with threads in different blocks, because there is no logical
ordering of cells (which is essentially what partitioning does). If two cells
share a face, this face receive exactly two contributions. If the associated
threads live in different blocks, we need to store these contributions at
different places in global device memory. This problem has been solved by
telling each thread where to store its contributions in an double23 array,
which is a struct containing two doubles. Figure 8.2 shows a schematic

partition. On a supercomputer, that would be easier. The GPU introduces additional
constraints. I think that would be quite troublesome to achieve, given that the time was
limited.

3
double2 is an in-built struct in CUDA
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illustration of a grid with two cells. The global face 4, which is local face
number 2 for cell 1 and local face number 4 for cell 2, is shared by the two
cells. Each cell has its own index array, which contains the same number of
elements as the number of cell faces. If a face is shared, one of the cells has
entry 1 at the corresponding local face index. This index array is stored as
I = [I1, I2, . . . , IM ].

Let us now explain the functions cell mvp(. . .) and reduce(. . .). From
the discussion over, Rk is an one-dimensioanl double2 array. This array is
initialised to (0, 0) prior to the CG iterations, which after each invocation
of cell mvp(. . .) contains the contributions from grid cells. Both the first
and second entries of the struct double2 will be different from zero for all
shared faces. Notice that this array is N long, where N is the total number
of global faces. Rk is then added component-wise using the reduce(. . .)
function. This function updates Lk after each iteration. We then understand
that Lk = Spk + =

∑M
i=1 Sip

i
k. The rest of the algorithm is equivalent to the

Full-matrix version. Except cell mvp(. . .) and reduce(. . .), all the other
operations in the CG method has been done using CUBLAS. CUBLAS is an
implementation of BLAS (Basic Linear Algebra Subprograms) on top of the
CUDA driver[48].

It may be appropriate to mention that the function cell mvp(. . .) does
not contain any syncthreads(). Thus, each thread in the whole grid is
a completely independent unit. This follows directly from the index array I.

A further discussion of the Matrix-free will be made when we compare the
two versions in Chapter 9.

8.3 Full-matrix Implementation

The Full-matrix version is the traditional CG-algorithm where the matrix
S is stored in a sparse format. Instead of splitting the matrix-vector
multiplication in two kernel functions as in the Matrix-free version, the Full-
matrix version computes Spk directly using a single kernel. A single thread
in this case can, for instance, compute the contribution from a single row in
the matrix.

First, the cell matrices Si, i ∈ 0, 1, . . . ,M , are computed on the device. This
is done using multiple kernels. After reading the grid, well and permeability
data from files, the cell matrices Ci, Qi and Ni are computed in the given
order for each cell i. The matrix Qi is an orthonormalization of the matrix
DiCi computed using the Modified Gram-Schmidt algorithm. These matrices
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are then used to compute B−1
i , which is then used to compute the final cell

matrix Si. Since the dimensions of B−1
i and Si are equal, B−1

i is overwritten
by Si. Finally, we assemble Si, i ∈ 0, 1, . . . ,M to S in sparse CSR format.
This format will be described in the next section. The process of assembling
is done on CPU using std::map. That is, after computing Si for all cells, we
copy them to host and assemble them into the CSR format.

Computation of the right-hand side R is also done on CPU. In the case of
Dirichlet boundary conditions πD, the matrix is assembled twice. We follow
this process.

1. Assemble S from Si, i ∈ 0, 1, . . . ,M .

2. Assemble R for Neumann boundary conditions and, possibly, sources/sinks.

3. Set R = R − SπD.

4. Set R(k) = S(k, k)πD(k) ∀ Dirichlet faces k.

5. Set Si(:, j) = 0 ∀ local Dirichlet faces j, except Si(j, j).

6. Set Si(j, :) = 0 ∀ local Dirichlet faces j, except Si(j, j).

7. Assemble S from Si, i ∈ 0, 1, . . . ,M (again).

8. Solve Sπ = R using CG-algorithm on host or device.

Steps 5 and 6 are done in parallel on the device, which is very fast, and then
copied back to the host to be assembled to the final S.

8.4 Sparse Matrix-Vector Multiplication

on CUDA

We generally talk about two types of matrices; dense and sparse. Dense
matrices can both be structured and unstructured, and mostly have O(n2)
elements, and the number of nonzero elements in each row are uniformly
distributed. Sparse matrices, however, have far fewer nonzero elements and
each row may have variable or fixed number of nonzero elements. Matrices
resulting from PDE discretisations on structured/unstructured grids are
often (highly) irregular. MFD discretisation always gives unstructured sparse
matrices, even though nonzeros in each row can be of almost constant size
throughout the grid, as they are in Cartesian grids. Without wells, Cartesian
grids result in matrices with only 6 and 11 nonzeros per row, mostly 11 (on
big systems).
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Implementing dense matrix-vector multiplication operation on CUDA is
relatively simple. This operation is limited by arithmetic intensity (the
number of floating-point operations per loaded data from global memory),
and it is possible to approach to the theoretical memory bandwidth of
GPUs because each warp reads from a continuous memory segment, and
this is often done through a single memory transaction (cf. Section 7.7 on
page 56). Sparse matrix-vector multiplication (SpMV), however, has one
advantage: we need far fewer floating-point operations. SpMV is therefore
not limited by the floating-point throughput. If we are able to access the
matrix elements quickly enough, i.e., by utilising the memory bandwidth
of the GPU efficiently, we can increase the performance of this operation
significantly compared to an optimised CPU implementation.

The irregular nature of sparse matrices makes it difficult to exploit the
memory bandwidth of the GPUs. This obviously has to do with the very
constrained regularity in access patterns from global memory. GPUs require
regular access pattern on a fine-grained level, and sparse matrix operations
are typically much less regular in their access patterns and consequently
are generally limited purely by bandwidth; the MPs are idle a significant
amount of time just waiting for threads because it takes several memory
transcations to load data from the device memory. This happens because
each warp jumps in multiple memory segments, which requires the same
number of transcations, each transaction taking several hundreds of clock
cycles. optimisation of SpMV is therefore a data structure problem. With
an efficient and clever representation of nonzero elements of a sparse matrix,
we can exploit the bandwidth significantly, and thereby boost performance.

The following section is mostly a reference to [5] and [6]. These recent
papers discuss data structures and algorithms for SpMV that are efficiently
implemented on the CUDA platform for the fine-grained parallel architecture
of the GPU. Given the memory-bound nature of SpMV, the authors
emphasise memory bandwidth efficiency and compact storage formats. Both
regular and irregular matrices are considered.

8.4.1 Sparse Matrix Formats

There are a multitude of sparse matrix representations, each with different
storage requirements, computational characteristics, and methods of access-
ing and manipulating entries of the matrix. We will only be concerned with
static sparse matrix formats, as opposed to those suitable for rapid insertion
and deletion of elements. The CUSP library is based on [5] (and implemented
by the authors) and we start by introducing sparse matrix formats that we
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S =








1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4








row = [0 0 1 1 2 2 2 3 3]

col = [0 1 1 2 0 2 3 1 3]

data = [1 7 2 8 5 3 9 6 4].

Fig. 8.3: Coordinate representation of the sparse matrix S.

have used in our implementation.

Coordinate Format

The coordinate (COO) format stores a sparse matrix by three one dimensional
arrays; the arrays row, col and data store the row indices, column indices
and the nonzero matrix entries, respectively. This format represents a general

sparse format since it can store any sparsity pattern, and the required storage
is scalable. In order to store the rows continuously, the row array is sorted
(sorted COO). Figure 8.3 shows a simple example of the sorted COO format.

Compressed Sparse Row Format

Notice that the row array in the sorted COO format will mostly have the
row indices repeated. The compressed sparse row format (CSR) changes
this array (while keeping the others) with a new array row offsets. It has
dimension M + 1, where M is the number of rows. Row i starts at index
row offsets[i] ends at row offsets[i] − 1. Similarly, we have compressed

sparse column format (CSC) where the data is sorted after column indices.
Figure 8.4 on the next page show an example of CSR format. Convertion
between COO and CSR is straight-forward.

ELLPACK Format

This (ELL) format is interesting. Given an M × N sparse matrix having a
maximum of K nonzeros entries per row, we create a dense M ×K matrix,
where all the rows having less than K nonzeros elements are padded with
zeros. ELL stores the matrix using two one-dimensional array; data and
indices containing matrix entries (sorted by rows) and column indices,
respectively. When implementing ELL SpMV, we can either use some
sentinel value in the indices array to check whether we are at a padded
or a real nonzero entry, or we can use the data array and check whether the
current entry is nonzero. Figure 8.7 on page 69 shows an example of this
format. In ELL, data and indices are stored in column-major order, for
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S =








1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4








row offsets = [0 2 4 7 9]

indices = [0 1 1 2 0 2 3 1 3]

data = [1 7 2 8 5 3 9 6 4].

Fig. 8.4: CSR representation of the sparse matrix S.

reasons soon explained. When the maximum number of nonzeros per row
does not substantially differ from the average, the ELL format is an efficient
sparse matrix format for the GPU, though not for the CPU, as we will see in
the Chapter 9. Figure 8.5 on the next page shows a modified version of the
SpMV ELL kernel. The access pattern for both data and indices is fully
coalesced, which is the reason why the matrix entries and indices are stored
in a column-major order.

Figure 8.6 on page 69 compares the reading patterns of CSR and ELL for
a 3 × 3 dense matrix. Note that ELL is identical to CSC (in the case of
dense matrix). As can be seen, each warp of threads reads from adjacent
128-byte memory segments. In the CSR reading pattern, where each row is
also assigned to a single row, each thread reads continously in memory, and
each memory read requires the warp to read from multiple 128-byte segments
(not exactly in this Figure, but if we increase the matrix dimension to for
example 1000×1000), thus making the MPs idle. Coalescing works perfectly
with column-major order, but fails miserably with row-major.

Hybrid Format

In reservoir grid models we have used in this thesis, the number of nonzeros
in each row is uniformly distributed. As mentioned earlier, on Cartesian
3D grids, the number of nonzeros per row is mostly 11. MFD on (highly)
unstructured corner-point grids also gives well-suited sparse matrices for the
ELL format 4. The idea of the Hybrid format (HYB) is to represent a sparse
matrix initially ill-suited for ELL with a mixture of ELL and COO formats.
The rows with the most frequent number of nonzeros are (easily) extracted
and stored in the ELL format, and the rest is stored in the COO format.

4My knowledge of corner-point grids is limited, both in terms of their creation and
variety, but from talks with my supervisor B̊ard Skaflestad, I have the impression that
the number of cell faces may change drastically from cell to cell. On grids where that is
the case throughout many cells, ELL format is ill-suited since we have to zero-pad a lot
of rows. For corner-point grids I have been exposed to, the ELL format is very flexible, in
addition to the fact that this format is extremely easy to implement.
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__global__ void

spmv_ell_kernel ( const int num_rows,

    const int num_cols,

    const int num_cols_per_row,

    const int *indices,

    const �oat *data,

    const �oat *x,

    dobule *y)

{

 int row = blockDim.x * blockIdx.x + threadIdx.x ;

 if(row < num_rows ){

 �oat dot = 0;

 for ( int n = 0; n < num_cols_per_row ; n ++){

     int col = indices [ num_rows * n + row ];

     �oat val = data [ num_rows * n + row ];

     if( val != 0)

  dot += val * x[col ];

 }

 y[row] = dot;

 }

}

Fig. 8.5: SpMV kernel for the ELL sparse matrix format.

If not given a priori, this typical number is determined from the matrix. The
authors of the referred paper computes a histogram of the row size (in CSR
format this number given by row offsets[i + 1]−row offsets[i] for row i)
and determines the largest number K such that using K columns per row
in the ELL portion of the HYB format is best fitted to performance ratio
between ELL and COO. The ELL format is roughly three times faster than
COO [nathan]. All the nonzero entries of rows which exceed this number
are placed in the COO portion. See Figure 8.8 on page 70 for an example
of HYB format. The matrix-vector multiplication Sk = Lk using the HYB
format is done in two steps, first for the ELL part and then updated with
the remaining COO format; Lk = SELLpk + SCOOpk.

8.4.2 The THRUST Library

The implementations in this thesis depends extensively on THRUST and
CUSP. THRUST library is an STL analog on CUDA, and offers an intuitive
and clearly defined interface to the device. Among the modules of THRUST,
we can mention Iterator, Container Classes, Algorithms (including search,
copy, reduction, sorting, transform), Memory Management, and Random
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Fig. 8.6: Comparison between the reading patterns of CSR and ELL on GPU. In
ELL, consequtive threads read elements from consequtive memory segments. In
CSR, each thread reads data from consequtive segments, implying that consequtive
threds read data from multiple segments.

S =








1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4








indices = [0 1 0 1 1 2 2 3 ∗ ∗ 3 ∗]

data = [1 2 5 6 7 8 3 4 0 0 9 0].

Fig. 8.7: ELL representation of the sparse matrix S. Here, we can either use any
unique flag (∗) in indices to check for padded values, or directly check whether
the value itself is zero.

Number Generation.

The Container Classes provide two generic vector5 containers, host vector

5See: http://en.wikipedia.org/wiki/Vector (C++)
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S =








1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4








ELL indices = [1 2 5 6 7 8 3 4]

ELL data = [0 1 0 1 1 2 2 3]

COO data = 9

COO row = 2

COO col = 3.

Fig. 8.8: HYB representation of the sparse matrix S.

and device vector, residing in host and device memory, respectively. These
behave just like std::vector, and are able to support any data type
dynamically. There is no need for cudaMalloc or cudaMemcpy; the allocation
is automatic. Copying data between these two containers is very easy. Raw
pointers to these vector containers can be optained and are easy to send to
function kernels for read/write operations. For example,

thrust::device_vector<int> D(10, 1);

allocates storage for and initializes ten integers of a device vector to 1. This
vector can be copied to a vector on host using the overloaded = operator

thrust::host_vector<int> H = D;

All algorithms have implementations for both host and device. Many of
the algorithms have direct analogs in the STL, and we distinguish them by
using the namespace thrust, such as thrust::transform. Figure 8.9 on the
following page shows some simple examples.

8.4.3 The CUSP Library

CUSP builds upon THRUST, and implements all the sparse matrix formats
mentioned above, both on host and device. Hence, it is easy to run the same
code on host or device by storing the data on host or device, respectively.
CUSP makes it easy to transfer data between host and device. It supports
convertions between different matrix formats on host. For example,

cusp::csr_matrix<int,double,cusp::host_memory> A(5,8,12);

allocates storage for a CSR matrix on the host with 5 rows, 8 columns,
and 12 nonzero values. After initializing A.row offsets, A.values, and
A.column indices, we can transfer the matrix to device with a single line
of code,

cusp::csr_matrix<in,double,cusp::device_memory> B = A;

70



#include <thrust/device_vector.h>

#include <thrust/transform.h>

#include <thrust/sequence.h>

#include <thrust/copy.h>

#include <thrust/!ll.h>

#include <thrust/replace.h>

#include <thrust/functional.h>

#include <iostream>

int main(void)

{

    // allocate three device_vectors with 10 elements

    thrust::device_vector<int> X(10);

    thrust::device_vector<int> Y(10);

    thrust::device_vector<int> Z(10);

    // initialize X to 0,1,2,3, ....

    thrust::sequence(X.begin(), X.end());

    // compute Y = -X

    thrust::transform(X.begin(), X.end(), Y.begin(), thrust::negate<int>());

    // !ll Z with twos

    thrust::!ll(Z.begin(), Z.end(), 2);

    // compute Y = X mod 2

    thrust::transform(X.begin(), X.end(), Z.begin(), Y.begin(), thrust::modulus<int>());

    // replace all the ones in Y with tens

    thrust::replace(Y.begin(), Y.end(), 1, 10);

    // print Y

    thrust::copy(Y.begin(), Y.end(), std::ostream_iterator<int>(std::cout, "\n"));

   

    return 0;    

}

Fig. 8.9: Simple examples of usage of host and deivce thrust vector containers.

or transparently convert it to another format (conversion is done on host)

cusp::ell_matrix<in,double,cusp::device_memory> E = A;

cusp::hyb_matrix<in,double,cusp::device_memory> H = A;

cusp::coo_matrix<in,double,cusp::device_memory> C = A;

CUSP contains algorithms cusp::multiply and cusp::transpose for sparse
matrix-vector multiplication and matrix transpose, respectively. It provides
CG and BICGSTAB solvers cusp::krylov::cg and cusp::krylov::bicgstab.
Both runs on host or device depending on the memory location of the
matrix. Vector inner-products in these algorithms uses collection of level-
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#include <cusp/hyb_matrix.h>

#include <cusp/gallery/poisson.h>

#include <cusp/krylov/cg.h>

int main(void)

{

    // create an empty sparse matrix structure (HYB format)

    cusp::hyb_matrix<int, double, cusp::device_memory> A;

    // create a 2d Poisson problem on a 10x10 mesh

    cusp::gallery::poisson5pt(A, 10, 10);

    // allocate storage for solution (x) and right hand side (b)

    cusp::array1d<double, cusp::device_memory> x(A.num_rows, 0);

    cusp::array1d<double, cusp::device_memory> b(A.num_rows, 1);

    // set stopping criteria:

    //  iteration_limit    = 100

    //  relative_tolerance = 1e-6

    cusp::verbose_monitor<double> monitor(b, 100, 1e-6);

    // setup preconditioner

    cusp::precond::diagonal<double, cusp::device_memory> M(A);

    // solve the linear system A * x = b with the Conjugate Gradient method

    cusp::krylov::cg(A, x, b, monitor, M);

    return 0;

}

Fig. 8.10: Example code illustrating the usage of preconditioned CG on CUSP.

1 BLAS routines located in cusp::blas::*. Figure 8.10 shows an ex-
ample of how to solve a linear system on device using the HYB format.
Currently, CUSP provides only the diagonal/Jacobi preconditioners through
cusp::precond::diagonal. A smoothed aggregation preconditioner is
currently under development. A draft based on smoothed aggregation is
already out in CUSP repository. It has still limited functionality, and we
would not expect it to solve anything beyond isotropic Poisson on structured
grid6. Our use of these libraries makes the code more progressive and
relatively soon we can adopt a better preconditioning.

6See cusp/precond/smoothed aggregation.h
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Chapter 9

Numerical Experiments

This chapter starts with the verification of the Full-matrix and Matrix-free
versions. For this purpose we have chosen a simple 3D Cartesian grid.
Since the Matrix-free cannot handle wells, we have made two different tests,
one with wells and one without. This is followed by a description and
simulation of three reservoir models. These include BIG 1, SPE10 Model
2, and a SAIGUP model together with their permeability fields. We have
run simulations on three different GPU models. Test platform specifications
are shown Table 9.1. Then we present time and iteration measurements
followed by a discussion and interpretation of the results with respect to the
two methods.

Table 9.1: Test platform specifications. GTX 480 is based on Fermi GT300.
GPU 1 NVIDIA GeForce GTX 480 (480 cores) GT300
GPU 2 NVIDIA GeForce GTX 285 (240 cores) GT200
GPU 3 NVIDIA Quadro FX 4800 (192 cores) GT200
CPU Intel Core 2 Quad
Memory 3×2GB DDR2-6400
OS Ubuntu 9.04
CUDA CUDA 3.0 (Beta)
Host Compiler GCC 4.2.4

9.1 Verification of the Solvers

To test the two solver versions for correctness, we have chosen a small 10 ×
10 × 10 Cartesian 3D grid. To test the Full-matrix version, we add five wells
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Fig. 9.1: Figure showing face pressures
with five wells. The central well is
rate-constrained, and corner wells are
producers.
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Fig. 9.2: Figure showing the solution
with face pressure Dirichlet conditions
at top and bottom. The solution is a
linear pressure fall.

to the model, one injector in the center and four producers at the four corners
of the grid. The permeability has been set to K = I in each cell, where I
is the identity matrix. The other model specifies face pressure boundary
conditions at the top and bottom of the grid, that is, at z = 0 and z = 10.
This with K = I gives linear pressure fall. The Full-matrix version runs both
of these model, while the Matrix-free version tests only the latter. Figure 9.1
and 9.2 plots solution of the models. These solutions are identical to the
solutions MRST’s solveIncompFlow(. . .) gives with MFD hybrid.

9.2 Reservoir Models

All of the reservoir models we discuss below are corner-points grids with very
complex geometry. This results in a very ill-conditioned linear system which
is hard to solve. The SPE10 Model 2 is only solved on GTX 480 and Quadro
FX 4800 because of insufficient memory on GTX 285.

9.2.1 SAIGUP Reservoir Model 28

SAIGUP is an abbreviation for Sensitivity Analysis of the Impact of

Geological Uncertainties on Production forecasting in clastic hydrocarbon

reservoirs, and is an international research project funded through the Energy
Project ENK6-2000-2007.

Estimates of recovery from oil fields are often found to be significantly in
error. This can be caused by the uncertainty of the geological description
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within the simulation model[49]. The multidisciplinary SAIGUP project was
designed to analyse the sensitivity of estimates of recovery due to geological
uncertainty in a synthetic suite of shallow-marine reservoir models. These
sedimentological models were combined with structural models sharing a
common overall form but consisting of three different fault systems with
variable fault density and fault permeability characteristics and a common
unfaulted end-member[50].

The purpose of the project is stated as:

• to quantify objectively the sensitivity of geological complexity on
production forecasts, as a function of generic aspects of both the
sedimentological architecture and faulted structure of shallow-marine
hydrocarbon reservoirs, and

• to validate these results using real-case reservoirs and production data.

In this project we consider one of the many SAIGUP models 1, specifically
model realisation number 28. Figure 9.3 on the next page shows this model
with configuration wells. The x- and z-permeability components for this
model are shown in Figure 9.4 on page 77 and 9.5 on page 77. The y-
permeability is similar to x-permeability. The plots show that SAIGUP has
a highly heterogeneous permeability field. The red areas are permeable, and
the blue areas are impermeable or less permeable. This model has 78720 cells
and 264305 faces. The approximate condition number of the matrix resulting
from MFD discretisation has been found to be 2.3 × 1017, which gives a very
ill-conditioned system. The maximum and minimum number of cell faces is
20 and 6. Only about 16% of the cells have more than 6 faces, and less than
4% has more than 10 faces, making it an appropriate grid for ELL and/or
HYB format.

Figures 9.6 on page 77 and 9.7 on page 77 plot, respectively, the cell pressure
p and face pressure π. Figure 9.8 on page 78 shows a plot of a parameter
describing “flux intensity” given per cell. This value is derived from the
face fluxes v of a cell, and reduced to a single value for the cell. The plot
emphasizes both low and high flux regions. As we can see, the pressure
difference is extremely low. This is because the permeability values are very
small, as can be seen from the permeability plots (logarithmic scale). Another
permeability field would have given another pressure distribution.

1It was given to me by my supervisor B̊ard Skaflestad, together with the permeability
and well data
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Fig. 9.3: The SAIGUP model. The model streches about 9 kilometers in the x-
direction, 3 kilometers in the y-direction, and 600 meters in the vertical direction.
The model also has two vertical wells used for simulation in this thesis.

9.2.2 SPE10 Reservoir Model 2

This model is part of the 2001 SPE Comparative Solutions Project and
is provided by SPE, Society of Petroleum Engineers. The purpose of
the projects has been to provide bechnmark datasets which can be used
to compare the performance of different simulators or algorithms. The
synthetic reservoirs have been generated on the basis of how present shoreface
depositions are.
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Fig. 9.4: Plot of x-permeability field
of the SAIGUP model on a logarithmic
scale.
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Fig. 9.5: Plot of z-permeability field of
the SAIGUP model on a logarithmic
scale.

Fig. 9.6: Figure showing the cell
pressure p of the SAIGUP model.

Fig. 9.7: Figure showing face pressure
π of the SAIGUP model.

Reservoir Description

Model 2 is a million cell dataset where the CPU time to use classical
pseudoisation would be excessive. This model has a sufficiently fine grid
to make use of classical pseudoisation methods almost impossible. The
model has a simple geometry without any top structure or faults. At the
geological model scale, the model is described on a regular Cartesian grid
and has dimension 1200 × 2200 × 170 (ft3). The top 70 ft, corresponding
to 35 layers, represent the shallow-marine Tarbert formation, where the
permeability is relatively smooth, and the bottom 100 ft, corresponding to
50 layers, represents fluvial Upper Ness permeability. Both formations are
characterised by large permeability variations, 8–12 orders of magnitude. The
fine scale cell size is 20 × 10 × 2 ft3. The fine scale model size is 60 × 220 × 85
cell making up 1, 122, 000 cells and 3, 366, 000 faces. Since each cell has 6
faces, this Cartesian model is appropriate for the ELL/HYB formats.
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Fig. 9.8: Figure showing the flux intensity of the SAIGUP model.

Well Configuration

All wells are vertical, and the model contains five wells. Figure 9.9 on the next
page shows a scaled version of the grid with the well locations. The central
well is an injector with an injection rate of 5000 bbl/day. Max injection
bottom hole pressure is 10, 000 psi. The four producers at the four corners
with a bottom hole pressure of 400 psi.

Figure 9.9 on the following page shows a upscaled version of SPE10 to
illustrate the well locations. Figures 9.10 on the next page and 9.11 on
the following page show the permeability field of SPE10 on logarithmic scale.
The two permeability layers dividing the reservoir is clear. The ratio between
the maximum and minimum permeability in the grid is of order 1012. The
linear system resulting from the MFD discretisation has a condition number
of approximately the same order, making the matrix very ill-conditioned.
Figures 9.12 on page 80 and 9.13 on page 80 show the cell pressures and flux
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Fig. 9.9: Figure showing an upscaled version of the SPE10 model to illustrate the
well locations. The central well is an injector (rate-controlled) and the the four
wells at the corners are pressure-controlled producers.

Fig. 9.10: Plot of x-permeability field
of SPE10 on a logarithmic scale.

Fig. 9.11: Plot of z-permeability field of
SPE10 on a logarithmic scale.

intensity of the grid, respectively.

9.2.3 BIG 1 Reservoir Model

This is yet an unfinished reservoir model developed by SINTEF2. The
geometry of the grid looks very complex when perceived. Basically, BIG 1
consists of two layers; the upper portion of the model is a regular Cartesian
grid, joined with an irregular corner-point grid. Figure 9.14 on the next
page shows the model. It has 538, 765 cells and 1, 550, 505 faces. Each

2I have no knowledge about this model other than what I have been told by my
supervisor. The model remains to be upscaled.
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Fig. 9.12: Figure showing the cell
pressure of the SPE10 model.

Fig. 9.13: Figure showing the flux
intensity of the SPE10 model.

01002003004005006007008009001000

01002003004005006007008009001000

0

5

10

15

20

25

 

 

Fig. 9.14: Side-view of the BIG 1 model. The upper portion of the model is
Carteisan, jointed with a complex lower corner-point grid.

cell has faces between six and four, and apprx. 79% of the cells has six
cell faces. This makes BIG 1 a suitable grid for the ELL/HYB format.
Figures 9.15 on the following page and 9.16 on the next page shows the
x- and z-permeability fields, respectively. The y-component has a similar
distribution. The permeability distribution is heteregeneous, giving an ill-
conditioned system.

Since SAIGUP and SPE10 models contain wells, they can only be solved
using the Full-matrix version. BIG 1 has no well, so this is the only model
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Fig. 9.15: Plot of y-permeability field of BIG 1 on a logarithmic scale.
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Fig. 9.16: Plot of x-permeability field of BIG 1 on a logarithmic scale.

that has been used to test the Matrix-free version. This model includes
simple boundary conditions with a source and a sink at global cell numbers
1 and M , respectively. The rate of these sources was set to 10 and −10,
which does not have any physical motivation.
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Fig. 9.17: Timings for SAIGUP: The top Figure shows time in milliseonds per
CG-iteration for the different sparse matrix formats on the three GPU models and
the CPU. ELL and HYB perform fastest on the GPUs, being slowest for the CPU.
CSR performs best on the CPU, being slowest for the GPUs. The bottom Figure
shows total time in seconds for different sparse matrix formats.

9.3 Speedup Measurements

As mentioned above, we have used three different NVIDIA GPU models in
our tests. The three reservoir models were run separately on the individual
GPUs. To compare the running time of the GPUs with a CPU, the models
were simulated on the Intel Core 2 Quad CPU using the Full-matrix version.
The relative error tolerance for BIG 1, SAIGUP, and SPE10 has been set to,
respectively, 5.0 × 10−11, 5.0 × 10−11, and 4.0 × 10−7.

Figures 9.17, 9.18 on the next page, and 9.19 on page 85 plots a comparison
of the timing results for SAIGUP, SPE10, and BIG 1, respectively. It has
been appropriate to compare the total time needed for convergence to a given
relative tolerance, and the time per a single CG-iteration. The total run time
is shown in seconds, and the time per iteration is given in milliseconds. The
timing results compare run time for each sparse matrix format on the three
GPUs and the CPU. The general trend from the tests indicates that ELL and
HYB formats are the fastest formats on all GPUs. For the models we use,
there is essentially no performance deviation between HYB and ELL. HYB
will most probably provide better performance for models that are large and
contain several large wells resulting in a significant variation in the number
of nonzeros per row. HYB will also be more flexible on grids that have an
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Fig. 9.18: Timings for SPE10: The top Figure shows time in milliseonds per CG-
iteration for different sparse matrix formats on the three GPU models and the
CPU. ELL and HYB are fastest on the GPUs, being slowest for the CPU. CSR
performs best on the CPU, being slowest for the GPUs. The bottom Figure shows
total time in seconds for different sparse matrix formats.

uneven distribution of the number of faces per cell. CSR does not perform
well on any GPU, and the reasons has already been discussed in Section 8.4.1;
CSR suffers from non-coalescing, resulting in wasted bandwidth. It is still
the superior format for the CPU. It is nicely cached because of its regular
structure in memory. ELL and HYB are highly irregular for the CPU, becaue
each row is essentially scattered in the memory. It is interesting to learn that
the highly optimised data structures for the CPU are equally unoptimised
for the GPU, and vice versa.

Tables 9.2 on the next page gives a summary of the results. For each
combination of the models and the platforms, it shows the fastest sparse
matrix format, and gives the toal number of iterations, time[ms] per iteration
and the total time[s]. HYB and ELL perform equally well on each platform
and reservoir model. From this Table, it is interesting to note that all the
GPUs deliver better performance on bigger models. SAIGUP is the least
model, giving a maximam speedup of 9.0 on GTX 480. SPE10 and BIG
1 approach 21. SPE10 is almost twice as big as BIG 1, so the results also
indicate that there is an upper limit of the speedup factor.

Table 9.3 on the following page shows timing results for the Matrix-free
version. If we compare the performance of each GPU with respect to the two
versions (only BIG 1), we see that the Full-matrix version is about 1.38 times
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Table 9.2: Summary of the timing results. Each entry shows the fastest performing
format, the total number of iterations, time[ms] per iteration, and the total time
needed for convergence, in the same order. HYB and ELL formats are significantly
identical, so for the models used, both are optimal. Speedup is computed with
respect to the CSR times on Intel Core 2 Quad.

BIG 1 SAIGUP SPE10

Intel Core 2 Quad

CSR CSR CSR
45829 5235 13784
100.8 19.94 227.3
4621 104.4 3139

Quadro FX 4800

ELL (HYB) ELL (HYB) ELL (HYB)
45732 (45732) 5692 (5691) 13777 (13778)
18.24 (18.24) 7.44 (7.78) 30.25 (30.19)

834 (834) 42.24 (44.3) 416.7 (416)

GTX 285

ELL (HYB) ELL (HYB)
45771 (45771) 5692 (5691)
10.29 (10.25) 3.87 (4.00)
470.8 (469.2) 22 (22.85)

GTX 480

ELL (HYB) ELL (HYB) ELL (HYB)
45734 (45754) 5320 (5320) 13775 (13778)

4.83 (4.83) 2.18 (2.23) 11.18 (11.25)
221 (221) 11.6 (11.89) 154 (155)

Speedup (FX 4800) 5.54 2.47 7.53
Speedup (GTX 285) 9.81 4.74
Speedup (GTX 480) 20.91 9.0 20.38

Table 9.3: Timing results of BIG 1 on the Matrix-free version. Speedup indicates
how fast each Matrix-free iteration is running with respect to the fastest CPU
Full-matrix version.

Matrix-free Iterations Time[s] Time [ms/itr] Speedup
Quadro FX 4800 38127 958 25.13 4.0
GTX 285 38124 616-73 16.18 6.21
GTX 480 38118 508 13.32 7.54
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Fig. 9.19: Timings for BIG 1: The top Figure shows time in milliseonds per CG-
iteration for different sparse matrix formats on the three GPU models and the
CPU. ELL and HYB are fastest on the GPUs, being slowest for the CPU. CSR
and COO performs best on the CPU, being slowest for the GPUs. The bottom
Figure shows total time in seconds for different sparse matrix formats.

faster on Quadro FX 4800, 1.58 times faster on GTX 285, and 2.77 times
faster on GTX 480. It is interesting to note this increase in percentage as we
move to better GPU. We will discuss these results in subsequent sections.

9.3.1 Comparision with Solvers from SINTEF

It was desirable to compare the fastest GPU run times (GTX 480) with
existing iterative solvers at SINTEF. It should be noted that the GPU solvers
in this thesis are only Jacobi-preconditioned. SINTEF has only iterative
solvers with more advanced preconditioning, such as ILU and AMG. This
means that the comparison is only intended to compare the running time,
although the methods cannot be directly compared because of differences in
preconditioners.

Table 9.4 on the next page shows results obtained from solvers at SINTEF
with the same configuration of boundary conditions and convergence tol-
erance criteria as used for the tests described in Section 9.3. Solver 2 is
AMG-preconditioned CG, and Solver 1 has another preconditioner.

We notice that these advanced serial solvers have relatively heavy iterations of
several milliseconds. These require, however, very few iterations to converge
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Table 9.4: Test results from two preconditioned CPU iterative solvers developed
by SINTEF. The models have the same boundary and convergence conditions
as those run on the GPUs. The desktop computer running ubuntu OS has this
configuration; Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz, 12 GB RAM.

TOL Iterations Time[s] Time[ms/itr]
SPE10 4.6 × 10−7 Solver 1: 87 113 1299
SAIGUP 5.0 × 10−11 Solver 2: 188 20 106.4

BIG 1
5.0 × 10−11 Solver 1: 726 380 523.4
5.0 × 10−11 Solver 2: 45 47.7 1060

compared with the Jacobi-preconditioned CG on GPU. Solver 1 requires
only 113 iterations for SPE10. This is impressing compared to the 13, 775
iterations with Jacobi on GTX 480. Each iteration on GTX 480 is still
very fast compared to these serial solvers; SPE10 iterations are ca. 116 times
faster, SAIGUP iterations are ca. 49 times faster, and each BIG 1 iteration is
108 faster than Solver 1 and 219 faster than Solver 2. In terms of convergence
time, SPE10 is approx. 36% faster with Solver 1. BIG 1 with Solver 2 is
approx. 4.6 times faster. Solver 1, on the other hand, is approx. 72% slower
on CPU, and the same is SAIGUP with solver 2.

The main disadvantage with the GPU solver is that it requires too many
iterations because of the trivial preconditioner. This indicates that support
for advanced preconditioners on GPUs can significantly lower the iteration
number and boost performance. The developers of the CUSP library are
working on an AMG preconditioner.

9.3.2 Discussion of the Results

The Full-matrix version has already been discussed as far as the SpMV is
concerned, as well as different SpMV realisations through different sparse
matrix representations. The rest of this section discusses the primary reasons
for the slow performance of the Matrix-free version.

Based on the results we have from time measurements, it seems that the
only advantage of the Matrix-free version is that it uses less memory because
the cell matrices stores only the symmetric upper half portion. We will
now discuss some of the reasons for this speedup deviation between the two
versions, and also see if there is any possibility at all to optimise the Matrix-
free version.

It is hard to say with certainty how many memory accesses and floating-point
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operations these versions make compared to one another, but we make a little
heuristic reasoning to find the average case. On a Cartesian grid of dimension
1003 with one million cells and three million faces, we find that the Matrix-
free has approx. 15% more memory accesses, and 9% more floating-point
operations. It is difficult to say to what extent this contributes to extend
the time per iteration, but it certainly is a factor worth mentioning. We
could actually have lowered the number of memory accesses by only reading
the upper part of the matrix through shared memory, but that is very hard
because the amount of shared memory per block is very limited, even on
the new Fermi. With a block size of 64 threads (which is the minimum size
recommended for sheduling enough threads to avoid idle processors [19]),
each block would require more than 13 KB of shared memory (each cell
matrix is 6 × 6. We also need to store the right-hand side 6-element vector
for each thread, giving (21+6)·64·8 = 13824 KB memory), making only four
blocks run concurrently on Fermi using 48 KB shared memory. That would
rather degrade the performance. In the current Matrix-free implementation,
the matrix elements are not cached, as in the ELL kernel, but read directly
from global memory. A total of N2

i reads are carried out per thread, where
Ni is the number of faces of cell i.

The most important factor is, however, not that the Matrix-free does a little
more work in each iteration. The essential factor is due to the irregular and
scattered memory accesses. Memory coalescing was mentioned in Section 7.7
on page 56, and during the discussion of sparse matrix-vector multiplication
in Section 8.4 on page 64, the main focus was to create sparse matrix data
structures that would enable coalsecing. The HYB and ELL formats are
fully coalesced and hence optimised with respect to memory accesses, which
is essential on GPUs. The HYB and ELL utilises upto 63% of the memory
bandwidth[5].

In the early phase of the project I discussed with my supervisor implementa-
tion of a Matrix-free version that never actually assembles the full stiffness
matrix. During the first month, I implemented a Matrix-free version for
Cartesian grids and then modified it to run on general corner-point grids. At
that time I became more and more aware that any optimisation of this version
would be difficult, if worth optimizing at all, and certainly time consuming.
No immediate idea came into mind about any type of optimisation.

We have seen that the CSR format is difficult to optimise on GPU (cf.
Section 8.4 on page 64,[5] and timing results). The most straight-forward
way to process CSR on GPU is to let one thread take care of one row. Since
each row is stored continuously in memory, each warp reads far outside of the
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memory segment which would allow for coalescing and make all 16 readings
in a single transcation. For instance, having 11 nonzeros per row (in doubles),
each row would read 11 8-byte words from a continuous segment of memory,
and so the whole warp would read 176 words from a continous segment,
which in terms of a 128-byte segments are 11 segments. That is, the 16 reads
in a single warp takes 11 transcations, wasting more than 90% of the total
memory bandwidth of the GPU.

The authors of [5] also implemens a CSR-kernel called csr-vector implemen-
tation. This assigns each warp to a single row. This version is slightly better
than assigning single thread to a row, but coalescing is still only partial, and
the disadvantage is that occupancy of the device remains low because many
threads are doing what only a single thread does in the other version. From
the similarity between the CSR and Matrix-free version, speedup could be
improved, though not significantly, by assigning each matrix to a single warp
of thread. This could not be accomplished primarily because of the limited
time.

It is difficult to think of any way of reading CSR format such that the reads
are coalesced. The only very difficult and cumbersome way of doing this
would be to scatter the nonzero row elements at different places in the data

array. Given that the number of nonzeros varies across rows, this type of
way would be difficult to generalize.

The Matrix-free version suffers from the same type of irregular access pattern
and thereby wasted bandwidth. Each cell matrix can be compared to a single
CSR row. Cell matrices are stored consecutively in memory, which on CPU
is the most reasonable and straight-forward structure (remember that CSR
is fastest on CPU). If each cell has 6 faces, each cell matrix has 21 entries,
and a single warp reads in 21 different 128-byte memory segments, wasting
more than 95% of the total bandwidth. Given that the sparse matrix-vector
multiplication is bandwidth limited, this is disappointingly unoptimised.

It is very hard to think of any logical or reasonable data structure which
would eable each warp to read in fewer transcations. This would again mean
a scattering of cell matrix entries in such a way that the each warp could
read from nearby segments. In the Matrix-free case, this is even harder to
think of any such structure than CSR, essentially because we have two levels
of information stored in the cell matrix array; we store a large number of
cell matrices, located consecutively, and each cell matrix has multiple rows
(if the full cell matrix is stored, or, as in our case, row i has Ni − i, the first
row having Ni elements and the last having only one). Another point worth
mentioning is that if one thread is assigned to a single cell, then in order to
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read from a single segment, each matrix must only have 8 double elements,
which is not the case. Given that we have minimum 21 entries, each warp
still has to read in three segments.

The CSR Full-matrix versions on Quadro FX 4800, GTX 285, and GTX 480,
are, respectively, 39%, 46%, and 55% slower compared to ELL/HYB results
given in Table 9.2 on page 84. This is comparable to the Matrix-free speedups
given in Table 9.3 on page 84. Apart from miner implementation details,
these versions have identical structure and access the memory segments in a
similar way.

The conclusion we draw based on the discussion above is based on how the
GPU works with respect to global memory access. Given the data structure
we use to store the cell matrices in succession, it is almost impossible to
optimise it for regular reading pattern. Although this was the case, we do
not exploit a significant percentage of the memory bandwidth.

89



Chapter 10

Conclusions and Summary

This thesis has studied a mathematical model that describes a single-phase
incompressible fluid flow through porous medium. The application has been
made in reservoir simulation with the porous medium as an oil reservoir.
Pressure- and rate-controlled wells was also considered. This is a well-known
model and is based on the conservation law and Darcy’s law that combines
the pressure gradient and fluid flux through porous media. The model takes
the form of an elliptic partial differential equation, which is discretised by the
Mimetic Finite Difference method using the hybrid technique. The hybrid
Mimetic Finite Difference method can handle advanced and complex meshes
in a simple manner, compared to, for instance, Finite Element methods. The
discretisation results in an SPD linear system of the form Sπ = R.

The matrix S is sparse, and the system has been solved using the iterative
Jacobi-preconditioned conjugate gradient method. The CG method is
appropriate for large problems and has low storage requirements. In addition,
it is well-suited for parallellisation.

The matrix S is the global matrix assembled from local cell matrices Si

from each cell i in the grid. We also implement a second version of the CG-
algorithm that does not assemble S, but works directly from the cell matrices.
Instead of assembling the matrices, the matrix-vector product Sp needed in
each iteration of the CG is computed by calculating the contribution Li = Sip
from each cell i. Li is then assembled in the global L = Sp. This version
is named Matrix-free. The other method is named Full-matrix. Because of
implementation-specific details, the Matrix-free method cannot handle wells.

The matrix S has been represented in various sparse matrix formats. These
include CSR, COO, ELL, and HYB. Both the Full-matrix and Matrix-free
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versions make extensive use of CUSP and THRUST, two CUDA libraries.
THRUST is an STL analog in CUDA, and makes the interface to GPU much
more intuitive. CUSP is based on THRUST, and implements the sparse
matrix formats mentioned here. It includes operations such as sparse matrix-
vector multiplication, matrix transpose, matrix conversions, and wraps these
operations in a clearly set out library containing the CG- and BICGSTAB-
algorithm. Switching the code to run between host and device is very easy.

The primary purpose of the thesis has been to take advantage of a CPU-
GPU heterogeneous computing system and exploit GPU’s parallelism to
increase performance of the iterative solvers. Modern GPUs are no longer
function-specific targeted only for graphics processing. Nor do they require
exclusively any high-level shading languages or an intimate knowledge of
the hardware architecture to access their enormous capacity of performing
TFLOPs and memory bandwidth. Performance of GPUs in terms of FLOPs
and their programmability has increased, and high-performance computing
has benefited largely from GPUs during recent years. The implementations
in this thesis have used CUDA. CUDA is an extension to C++, but is also
a software and hardware architecture reflecting NVIDIA’s modern GPUs.

The underlying conclusion that can be drawn from numerical tests is that
the performance increase has been significant compared to the corresponding
CPU implementations. Given that we follow the optimisation techniqiues for
GPUs, porting of serial algorithms to heterogeneous systems by making them
parallel provide remarkable increase in performance.

The implementation starts by reading two files containing grid geometry and
permeability for the reservoir. This is used to compute the cell matrices on
the GPU. The Full-matrix method assembles the global matrix S on CPU,
and then solves the final system on the GPU. Only double precision is used.

For numerical experiments, we chose three reservoir models. Because of
heterogeneous permeability fields and complex reservoir geometry, the linear
systems resulting from each of these models are ill-conditioned with very high
condition numbers. SAIGUP, the least model, has an approximate condition
number of 2.3×1017, and for SPE10, the biggest model, the condition number
is of order 1012. Such matrices require many iterations to converge. Trivial
preconditioners such as Jacobi can decrease this number somewhat, but
still requires an order of 30 - 1000 times more iterations compared to more
advanced preconditioners such as ILU and AMG.

The Full-matrix version simulates the three models on three different GPUs
with various specifications. The latest among these is the GTX 480 based
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on the recent Fermi-architecture from NVIDIA. Compared to the Jacobi-
preconditioned CPU (Intel Core 2 Quad) run time, GTX 480 is about 21
times faster on the biggest SPE10 model, and 9 times faster on the least
SAIGUP model. The intermediate model, BIG 1, is about 20.38 times faster.
Given that we use only double precision, this is remarkable.

SAIGUP and SPE10 are both configured with wells, so the only model tested
on the Matrix-free version is BIG 1. Matrix-free is about 7.54 times faster on
GTX 480 than the Full-matrix CPU version, which is about 2.7 times slower
than the corresponding Full-matrix time on GTX 480.

Matrix-free is therefore significantly slower than Full-matrix, and the reason
has been discussed to be suffering from non-coalescing. Memory coalescing
on GPU is the most important optimisation. The data structure used for
storing the cell matrices on GPU does not allow for coalesced memory reads,
and essensially poses the same optimisation challenges as the CSR format.
This is because each CSR row is equivalent to a cell matrix in terms of
reading pattern. Any optimisation of a general CSR format would require
padding almost every row to equalize the number of words in memory for each
row storage, but this is done effectively and cleverly by the ELL and HYB
formats. Optimising the Matrix-free version is even more difficult because
each cell matrix stores more information than a CSR row; each cell matrix
stores several rows. Another disadvantage with the Matrix-free version is
that it may pose difficulties when implementing non-trivial preconditioners.

Finally, the numerical tests demonstrate that using only double precision
on recent GPUs is not neccessarily a disadvantage, given that the double
precision is invariant to problem sizes and problem difficulties in numerical
methods. We also observe that bigger problems on GPUs has clear benefits
in terms of performance.

10.1 Further Work

Models we have used in numerical tests are very complex in terms of solving
the resulting linear system effectively without good preconditioners. The
CG method is almost useless witout good preconditioners on such system.
Implementation of a non-trivial preconditioner in combination with what
has been implemented would increase the performance benefits compared
to any CPU implementations. Comparisions with advanced preconditioned
iterative solvers developed by SINTEF also shows that these trivial GPU
implementations can compete with these advanced solvers because of fast
iterations, so any non-trivial preconditioning on GPU would make these
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implementations very attractive.

The current mimetic method does not add the gravitational effects in the
model, which should be added to make the model more realistic. In addition
to that, other discretisation methods, such as TPFA, the O-method, and
Mixed Finite Element methods, would benefit from such implementations.
It could also be interesting to compare these methods to each other. An
MRST-like library, based on CUSP, THRUST, and some other libraries,
such as CUDPP, implementing all these numerical methods, where flexibility,
maintainability, and performance are the keywords, could give enormous
benefits.
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