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Abstract

Spectral discretization in space and time of the weak formulation of a partial
differential equations (PDE) is studied. The exact solution to the PDE, with
either Dirichlet or Neumann boundary conditions imposed, is approximated using
high order polynomials. This is known as a spectral Galerkin method.

The main focus of this work is the solution algorithm for the arising algebraic
system of equations. A direct fast tensor-product solver is presented for the Pois-
son problem in a rectangular domain. We also explore the possibility of using a
similar method in deformed domains, where the geometry of the domain is ap-
proximated using high order polynomials. Furthermore, time-dependent PDE’s
are studied. For the linear convection-diffusion equation in R we present a tensor-
product solver allowing for parallel implementation, solving O(N) independent
systems of equations. Lastly, an iterative tensor-product solver is considered for a
nonlinear time-dependent PDE. For most algorithms implemented, the computa-
tional cost is O(Np+1) floating point operations and a memory required of O(Np)
floating point numbers for O(Np) unknowns. In this work we only consider p = 2,
but the theory is easily extended to apply in higher dimensions. Numerical results
verify the expected convergence for both the iterative method and the spectral
discretization. Exponential convergence is obtained when the solution and domain
geometry are infinitely smooth.
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Chapter 1

Introduction

Spectral methods are mainly used to discretize partial differential equations (PDE’s)
in space [1]. Spectral discretization in space was first introduced in 1944 by Bli-
nova for the purpose of solving large scale computations in fluid dynamics. It was
first implemented by Silbermann in 1954. The application was extended to a wider
range of problems in the following decades and then thoroughly analyzed in the
1980’s.

Spectral discretization in time was first introduced in the 1980’s [2,3]. In the past
couple of decades the interest in this topic has increased and resulted in further
research, e.g. [4–6], but far from all aspects have been studied in detail.

In this master thesis we consider spectral discretization in both time and space
based on the weak formulation of the problem; a spectral Galerkin method. These
methods are closely related to finite element methods (FEM’s). The main dif-
ference is that FEM’s divide the domain into smaller sub-domains, or elements,
and approximate the solution with piece-wise continuous functions, whereas the
spectral methods approximate the solution in the entire domain with high order
smooth functions. We will also discuss spectral element methods, which are even
closer related to the FEM’s. The domain is then divided into elements, though
larger than those of a FEM, and the solution is approximated with high order
polynomials.

The advantage of using a spectral discretization is that the error depends on the
regularity of the exact solution and the given data. If the exact solution is infinitely
smooth, we can get exponential convergence. On the contrary, the FEM’s have a
fixed convergence rate [6].

We only discuss spectral methods based on high order polynomials. The reason
for this is that polynomials are applicable to a wider range of problems than other

1



2 Chapter 1. Introduction

function spaces. Fourier methods, for example, are limited to simple geometries
and periodic boundary conditions.

The motivation for using spectral methods is clear; the convergence rate is fast for
problems with a high degree of regularity. Another important aspect to take into
consideration is the computational cost of solving the derived algebraic system of
equations. Depending on the solution algorithm, the computational cost varies
greatly. Exploiting tensor-product properties and local data structure we find fast
solvers: fast tensor-product solvers. The computational cost for these methods
can be close to optimal [1]. What we mean by optimal is that the computational
cost and storage space is proportional to the degrees of freedom.

Tensor product solvers were introduced in the 60’s to solve certain partial differen-
tial equations in the simple two dimensional rectangular domain, e.g. the Poisson
problem [7]. In this work we consider simple rectangular domains, but we also
explore the possibility of finding tensor-product solvers in deformed domains and
for time-dependent PDE’s.



Chapter 2

Mathematical preliminaries

Before we discuss spectral methods on specific model problems and their solution
algorithm, we will introduce relevant mathematical theory and notation that will
be used throughout the paper.

2.1 Spaces and norms

The abbreviated notation for the partial derivative is defined as

ux ≡
∂u

∂x
, and uxx ≡

∂2u

∂x2 .

The Lebesgue space L2(Ω) is defined as

L2(Ω) =
{
v
∫

Ω
v2 dx <∞

}
,

with the associated inner-product and L2(Ω) norm,

(u, v)L2(Ω) =
∫

Ω
uvdx ∀u, v ∈ L2(Ω),

‖u‖2
L2(Ω) =

∫
Ω
u2 dx ∀u ∈ L2(Ω).

The Sobolev space Hm(Ω) is defined as

Hm(Ω) =

v
m∑
i=0

∫
Ω

(
dmv
dxm

)2

dx <∞

 ,
3



4 Chapter 2. Mathematical preliminaries

with the associated inner-product and Hm(Ω) norm,

(u, v)Hm(Ω) =
m∑
i=0

∫
Ω

(
dmu
dxm

)(
dmv
dxm

)
dx ∀u, v ∈ Hm(Ω),

‖u‖2
Hm(Ω) =

m∑
i=0

∫
Ω

(
dmu
dxm

)2

dx ∀u, v ∈ Hm(Ω).

For simplicity the spaces and norms are here introduced in R, but equivalent
definitions exist in RN [8].

2.2 Gauss-Labatto Legendre quadrature

Gauss Labatto Legendre (GLL) quadrature is a method of evaluating an integral
numerically over the domain Ω̂ = (−1, 1),

∫ 1

−1
f(ξ)dξ '

N∑
α=0

ραf(ξα) (2.1)

where

ξα ∈ [−1, 1] are the GLL quadrature points, where ξ0 = −1 and ξN = 1,

and ρα ∈ [0, 1] are the GLL qradrature weights, such that
N∑
α=0

ρα = 2.

The integral is evaluated exactly if f(ξ) is a polynomial of degree S, f(ξ) ∈ PS(Ω),
and S ≤ 2N − 1 [6]. The main difference between GLL quadrature and Gaussian
quadrature is that GLL quadrature includes the endpoints −1 and 1. This can
be beneficial when approximating an unknown function with known boundary
conditions. The L2(Ω̂) inner product can then be approximated with the GLL
quadrature and the discrete inner product is given by

(f, v)N =
N∑
α=0

ρα f(ξα)v(ξα). (2.2)

The subscript N indicates that the integral is evaluated with the GLL quadrature,
and it is not exact unless fv ∈ P2N−1. Let v ∈ PN(Ω̂) and f ∈ Hσ(Ω̂); then, the
quadrature error estimate of (2.2) is given by [1]

|(f, v)− (f, v)N | ≤ C ‖f‖
Hσ(Ω̂)‖v‖L2(Ω̂).
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2.3 Polynomial interpolation

We now consider interpolation in R. All concepts introduced here are easily ex-
tended to RN , as we will see in following chapters. Interpolation is a method
of approximating a function u for which we know a discrete set of data points
{xi, u(xi)}Ni=0. The interpolated function of u(x), INu(x), is exact at the discrete
set of points

INu(xi) = u(xi) for i = 0, 1, ..., N. (2.3)

There are different types of interpolation methods, but we will only consider poly-
nomial interpolation, where the function u(x) is approximated by a polynomial,

u(x) ≈ INu(x) ∈ PN(Ω).

In general, INu(x) can be written as INu(x) = ∑N
i=0 aix

i, where ai are the basis
coefficients and xi are the basis functions. However, the Lagrange polynomials
provide a more powerful basis for constructing higher order polynomial. These
polynomials possess the properties

`j(x) ∈ PN(Ω), (2.4)

`j(xi) = δij. (2.5)

One Lagrange function is plotted in section 3.4, see Figure 3.2. The interpolated
function can then be written as

uN(x) ≡ INu(x) =
N∑
i=0

ui `i(x), (2.6)

where ui = u(xi). The Kronecker delta property of `i(x) (2.5) makes uN(x) exact
at all the interpolation points xi, which is what (2.3) requires.

Consider the function u(ξ) ∈ Hσ(Ω̂), where Ω̂ = (−1, 1) and σ ∈ N. The ap-
proximated function uN(ξ) can then be written as (2.6). When we choose the in-
terpolation points to be the Gauss-Labatto Legrende points ξi, and if u is smooth
enough (in Rd, σ > d+1

2 ), then

‖u− uN‖L2(Ω̂) ≤ cN−σ‖u‖
Hσ(Ω̂).

It is important to notice that this error bound is with respect to the L2(Ω̂) norm,
i.e. u− uN measured in the H1(Ω̂) norm satisfies

‖u− uN‖H1(Ω̂) ≤ cN1−σ‖u‖
Hσ(Ω̂).
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It is of particular interest that we choose the GLL points as interpolation points,
as we will see in the following chapters. The GLL interpolation points give a more
stable approximation than what an equidistant set of points does. The GLL points
are distributed with higher density near the edges of Ω̂, this gives a more stable
solution. This is illustrated in Figure 2.1, where the interpolated solution INf(x)
of f(x) = 1

1+16x2 is shown. INf(x) is interpolated with equidistant interpolation
points and GLL points for N = 8 and N = 12. The equidistant points yield an
interpolated function with more oscillations near the edges of Ω̂ as N increases.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

 

 

f(x)
I
N
f(x), equidistant points

I
N
f(x), GLL points

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

x

 

 

f(x)
I
N
f(x), equidistant points

I
N
f(x) GLL points

Figure 2.1: The interplant of f(x), INf , is calculated with equidistant interpolation
points, and GLL interpolation points for N = 8 (left) and N = 12 (right). The
black dashed line is the analytical solution, f(x) = 1

1+16x2 . The blue line is INf
with equidistant points marked with blue circles. The red line is INf with GLL
points marked with red circles.

2.4 Floating point operations

In the following chapter we put emphasis on the computational complexity of the
algorithms presented. To evaluate the computational complexity we count the
number of floating point operations, such as addition, subtraction, multiplication
and division. Each such arithmetic operation takes a constant amount of time [9].



Chapter 3

Tensor product solvers in
rectangular domains

In this chapter we will introduce tensor-products, and how their properties can
be utilized to solve partial differential equations (PDE’s) efficiently in rectangular
domains.

3.1 Tensor products

First, we introduce some basic properties of tensor-products. A tensor-product
is denoted by the symbol ⊗. Let A ∈ Rn1×n2 and B ∈ Rn3×n4 , then the tensor-
product between the matrices A and B is defined as [7]

C = A⊗B ∈ Rn1n3×n2n4 ,

where

C =


a11B a12B . . . a1n2B
a21B a22B

...
...

. . .
...

an11B . . . . . . an1n2B

 .

The following properties apply for tensor-products [7, 10]:

1. (A⊗B)(C⊗D) = AC⊗BD

7



8 Chapter 3. Tensor product solvers in rectangular domains

2. (A + B)⊗C = A⊗C + B⊗C

3. If C = A⊗B, then C−1 = A−1 ⊗B−1

4. If C = A⊗B, then C = (A⊗ I)(I⊗B)

5. If A and B are diagonal, then C = A⊗B is diagonal.

For the first two properties we assume that the matrices have proper dimensions.
Later we will see how these properties can be applied in clever ways to find fast
solvers for the Poisson problem.

3.2 The Poisson problem

The Poisson problem is named after Siméon-Denis Poisson and has a wide range
of applications in physics and mathematics. The Poisson problem in R2 is defined
as

−
(
∂2u

∂x2 + ∂2u

∂y2

)
= f(x, y) in a domain Ω,

with a suitable set of boundary conditions. The boundary of the domain Ω is de-
noted by ∂Ω. Different types of boundary conditions where n is the normal vector
are listed below [11].

Proper name Boundary condition
Homogeneous Dirichlet u(x, y)|∂Ω = 0
Nonhomogeneous Dirichlet u(x, y)|∂Ω = f 6= 0
Homogeneous Neumann ∂u

∂n
= ∇u · n = 0

Nonhomogeneous Neumann ∂u
∂n

= f 6= 0

Without loss of generality we will study the Poisson problem with homogeneous
Dirichlet boundary conditions. The method can easily be extended to handle other
boundary conditions.

3.3 The reference domain

In this chapter we will consider the Poisson problem in a simple rectangular do-
main. To solve this problem with any method numerically we find it useful to
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0 Lx

Ly

Γ4

Γ1

Γ2

Γ3 n ∂Ω =
4⋃
i=1

Γi

Ω̂
Ω

Γ̂4

Γ̂1

Γ̂2

Γ̂3
∂Ω̂ =

4⋃
i=1

Γ̂i
y

x

η

ξ

F

F−1

Figure 3.1: Illustration of the mapping between the reference domain
Ω̂ = (−1, 1)× (−1, 1) and the rectangular physical domain Ω = (0, Lx)× (0, Ly).

introduce a reference domain Ω̂ = (−1, 1)× (−1, 1). The variables in the reference
domain are denoted with ξ and η. The physical domain Ω = (0, Lx)× (0, Ly) can
then be considered as an affine mapping F of the reference domain [10]

(x, y) = F(ξ, η), ∂Ω = F(∂Ω̂).

This is illustrated in Figure 3.1. We call it an affine mapping because it is just a
translation and stretching of the reference domain. The rectangular domain has
the affine mapping

x = x(ξ) = Lx
2 (ξ + 1), ∂x

∂ξ
= dx

dξ = Lx
2

y = y(η) = Ly
2 (ξ + 1), ∂y

∂η
= dy

dη = Ly
2 .

(3.1)

All coordinates (x, y) in the physical domain can thus be obtained uniquely from
the corresponding coordinates (ξ, η) in the reference domain. This allows us to
write a function u(x, y) as

u(x, y) = u ◦ F(ξ, η)

or
u(x, y) = u(x(ξ), y(η)) = û(ξ, η).

û indicates that u is a function of ξ and η. The partial derivatives of u can now
be evaluated in terms of the reference variables

∂u

∂x
= ∂û

∂ξ

∂ξ

∂x
= ∂û

∂ξ

2
Lx
,

∂u

∂y
= ∂û

∂η

∂η

∂y
= ∂û

∂η

2
Ly
.

(3.2)
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3.4 The strong and weak formulation

The strong formulation of the Poisson problem in a two dimensional space with
homogeneous Dirichlet boundary conditions is stated as: find u such that

−∇2u = f in Ω, (3.3)

u = 0 on ∂Ω, (3.4)

where ∇2 is the Laplace operator, ∇2 = ∆ = ∇ ·∇ = ∂2

∂x2 + ∂2

∂y2 and f ∈ L2(Ω) is
given. Define the function space

X =
{
v ∈ H1(Ω)

∣∣∣ v(x, y)|
∂Ω = 0

}
.

To obtain the weak formulation we multiply both sides of (3.3) by a test function
v ∈ X and integrate over the domain Ω. Green’s identity [11] then gives the
expression ∫

Ω
∇u ·∇v dxdy −

∫
∂Ω
v(∇u ·~n)dS =

∫
Ω
f v dxdy. (3.5)

Notice that since v ∈ X, v is zero on the boundary ∂Ω. Hence, the second term
on the left hand side of (3.5) is zero and the weak formulation can be stated as:
find u ∈ X such that

a(u, v) = (f, v) ∀ v ∈ X, (3.6)

where

a(u, v) =
∫

Ω
∇u ·∇v dxdy,

(f, v) =
∫

Ω
f v dxdy.

Let us now consider these two expressions mapped to the reference domain Ω̂.
With (3.1) and (3.2), we obtain

a(u, v) =
∫

Ω̂

(
Ly
Lx

∂û

∂ξ

∂v̂

∂ξ
+ Lx
Ly

∂û

∂η

∂v̂

∂η

)
dξdη (3.7)

and

(f, v) = LxLy
4

∫
Ω̂
f̂ v̂dξdη. (3.8)

The next step is to find an approximate solution uN of the problem. Let uN be a
polynomial of degree N in two dimensions; uN ∈ PN(Ω). The polynomial space in
the reference domain is defined as

PN(Ω̂) = {v(ξ, η)| v(ξ, η∗) ∈ PN((−1,−1)), v(ξ∗, η) ∈ PN((−1, 1))} ,
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where the notation η∗ and ξ∗ indicate that these values are fixed. We get a polyno-
mial of degree N in each spatial direction. There are many alternatives to seeking
a polynomial solution, i.e. seeking a trigonometric approximation. However, such
functions can only be applied to problems with periodic boundary conditions. The
best approximation depends on the analytical solution and the method, but a
polynomial approximation is well-fitted to solving general problems.

Define the discrete space

XN = {v(x, y) ∈ X | v ◦ F(ξ, η) ∈ PN(Ω̂)}. (3.9)

Notice that XN and PN(Ω) have different dimensions. XN looses two degrees
of freedom to the Dirichlet boundary conditions, dim(XN) = (N − 1)2, while
dim(PN) = (N + 1)2. Since (3.6) holds for all v ∈ X and XN ⊂ X the discrete
problem can be stated as: find uN ∈ XN such that

a(uN , v) = (f, v) ∀ v ∈ XN .

It is convenient to choose the bases for the polynomial space PN(Ω̂) and the discrete
space XN to be nodal tensor-product bases of the Lagrange polynomials,

PN(Ω̂) = span{ `m(ξ) `n(η)}Nn,m=0 , (3.10)

XN(Ω̂) = span{ `m(ξ)`n(η) }N−1
n,m=1 . (3.11)

Here `m(ξ) and `n(η) are the one-dimensional Lagrange polynomials through the
Gauss Lobatto Legendre (GLL) points in each spatial direction. One of these
functions is illustrated in Figure 3.2.

Recall that u(x, y) = û(ξ, η). The numerical solution can now be expressed as

ûN(ξ, η) =
N∑
m=0

N∑
n=0

umn `m(ξ)`n(η) =
N−1∑
m=1

N−1∑
n=1

umn `m(ξ)`n(η), (3.12)

where umn = u(ξm, ξn) are the nodal values. u0j = uNj = 0 for j = 0, ..., N and
ui0 = uiN = 0 are imposed by the boundary conditions. We call it a nodal tensor-
product basis since the coefficients umn equal the exact solution at each node in
the GLL grid. The GLL grid is illustrated in Figure 3.3.

We now return to our discrete problem a(uN , v) = (f, v), which holds for all
v ∈ XN . With the given basis functions we can choose v̂ = `i(ξ)`j(η) for i =
1, .., N − 1 and j = 1, .., N − 1. First we consider the bilinear form a(uN , v),
substitute v̂ and ûN from (3.12) into (3.7), and for simplicity we evaluate the first
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Figure 3.2: The one-dimensional Lagrange polynomial `4(ξ) ∈ P6((−1, 1)) through
the N + 1 = 7 GLL points, which are marked with red dots. `4(ξ) is zero at all
the GLL points except at ξ4, where it equals one.

n

m

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 3.3: The GLL grid on the reference domain Ω̂. The GLL points ξi, i = 0, .., 5
are distributed along each spatial directions.
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term∫
Ω̂

Ly
Lx

∂ûN
∂ξ

∂v̂

∂ξ
dξdη =

∫ 1

−1

∫ 1

−1

Ly
Lx

(
N−1∑
m=1

N−1∑
n=1

umn`
′
m(ξ)`n(η)

)
`′i(ξ)`j(η)dξdη

= Ly
Lx

N−1∑
m=1

N−1∑
n=1

∫ 1

−1
`′i(ξ)`′m(ξ)dξ︸ ︷︷ ︸

(`′i(ξ),`′m(ξ))1

∫ 1

−1
`j(η)`n(η)dη︸ ︷︷ ︸

(`j(η),`n(η))1

umn

= Ly
Lx

N−1∑
m=1

N−1∑
n=1

(`′i(ξ), `′m(ξ))1(`j(η), `n(η))1umn

Note that we get two separated one-dimensional integrals. The superscript 1 in-
dicates that the integrals are one-dimensional. The first integral is the matrix
elements of the stiffness matrix Â in the one-dimensional reference domain, and
the second is the matrix elements of the mass matrix B̂. Let us now evaluate the
integrals numerically using GLL quadrature. Define

Âij ≡ (`′i(ξ), `′j(ξ))1
N =

N∑
α=0

ρα`
′
i(ξα)`′j(ξα), (3.13)

B̂ij ≡ (`i(ξ), `j(ξ))1
N =

N∑
α=0

ρα`i(ξα)`j(ξα) = ρiδij. (3.14)

The subscript N indicates that the integrals are evaluated with GLL quadrature
(2.1). If the integrand is a polynomial of degree K, GLL quadrature evaluates it
exactly if K ≤ 2N − 1. Hence, Âij is evaluated exactly. We then get

∫
Ω̂

Ly
Lx

∂ûN
∂ξ

∂v̂

∂ξ
dξdη ≈ Ly

Lx

N−1∑
m=1

N−1∑
n=1

ÂimB̂jnumn.

With a similar evaluation of the second term we get the following expression

a(uN , v)N =
N−1∑
m=1

N−1∑
n=1

(
Ly
Lx
ÂimB̂jn + Lx

Ly
B̂imÂjn

)
umn. (3.15)

The linear term can be evaluated in the same way,

(f, v)N =
N−1∑
m=1

N−1∑
n=1

LyLy
4 B̂imB̂jnfmn, (3.16)

for i = 1, ..., N − 1 and j = 1, ..., N − 1. Combining (3.15) and (3.16) we finally
get

N−1∑
m=1

N−1∑
n=1

(
Ly
Lx
ÂimB̂jn + Lx

Ly
B̂imÂjn

)
umn =

N−1∑
m=1

N−1∑
n=1

LyLy
4 B̂imB̂jnfmn (3.17)
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for i = 1, ..., N − 1 and j = 1, ..., N − 1. When N increases the discrete error
‖u − uN‖ tends to zero according to the regularity of u. For analytical solutions
we expect exponential convergence [1]

‖u− uN‖H1(Ω) ∝ e−µN ,

where µ is a constant depending on the analytical solution. Later we will discuss
different methods for solving the algebraic system of equations in (3.17).

3.5 Local and global data representation

The derived algebraic system of equations for the Poisson problem can be solved in
several ways. There is a significant difference in the number of operations and stor-
age space required for the different methods. In this section we introduce local and
global data representation. The representation is essential for deriving fast solvers.

First, consider

wij =
N−1∑
m=1

N−1∑
n=1

ÂimB̂jnumn

or

wij =
N−1∑
m=1

N−1∑
n=1

ÂimumnB̂
T
nj (3.18)

for i = 1, .., N − 1 and j = 1, .., N − 1. The representation and evaluation of this
expression can be done in different ways. We can for instance represent umn, for
m,n = 1, ..., N − 1 in one long vector ux,

ux =


u1
u2
...

uny

 ∈ Rnxny , where uj =


u1j
u2j
...

unxj

 ∈ Rnx and nx = ny = N − 1.

The superscript x indicate that we stack the values of uij systematically by going
through the x direction first. The storage space required is O(N2). Making use of
this representation, we can apply the tensor-product to evaluate (3.18) [12],

wx =
(
B̂⊗ Â

)
ux. (3.19)

If we explicitly express B̂ ⊗ Â∈ R(N−1)2×(N−1)2
, the storage space required will

be O(N4) and the evaluation of wx requires O(N4) floating point operations.
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This representation of the data is called global data structure. Another way of
representing umn is in a matrix U,

U =


u11 u12 . . . u1ny

u21 u22
...

...
. . .

...
unx1 . . . . . . unxny

 ∈ Rnx×ny , nx = ny = N − 1.

The storage space required for this local data structure is O(N2), which is the same
as for the global data structure, ux. When making use of local data structure,
(3.18) can be evaluated with two matrix-matrix products

W = ÂUB̂T . (3.20)

The operational cost to evaluate W is O(N3) and the storage space is O(N2).
Hence, the evaluation of (3.18) is much more efficient with local data structure.

3.6 Computational approach

In this section we will derive fast tensor-product solvers for the Poisson problem
in the rectangular domain. The algebraic system of equations we want to solve is
(3.17). With tensor-product notation we can write the system as(

Ly
Lx

B̂⊗ Â + Lx
Ly

B̂⊗ Â
)

︸ ︷︷ ︸
A2D∈R(N−1)2×(N−1)2

ux = LyLy
4

(
B̂⊗ B̂

)
fx︸ ︷︷ ︸

f2D∈R(N−1)2

. (3.21)

First, consider the generalized eigenvalue problem to the one dimensional operators
[10]

Âqi = λiB̂qi.

The two matrices Â and B̂ are symmetric positive definite (SPD) and we therefore
expect the eigenvalues to be real and positive; λi ∈ R and λi > 0. Define the
matrices

Λ =


λ1 0 . . . 0
0 λ2

...
...

. . .
...

0 . . . . . . λN−1

 , Q =


...

...
...

q1, q1, . . . , qN−1
...

...
...

 . (3.22)
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The generalized eigenvalue problem can be written in matrix form as

ÂQ = B̂QΛ.

Further, we get

QT ÂQ = QT B̂Q︸ ︷︷ ︸
cI

Λ

= cΛ.

Let us assume that the eigenvectors are scaled such that c = 1. Then the following
expressions are obtained

Â = Q−TΛQ−1, (3.23)

B̂ = Q−TQ−1. (3.24)

Consider the expression of A2D from (3.21). When we replace Â and B̂ with (3.23)
and (3.24), we get

A2D =
(
Ly
Lx

Q−TQ−1 ⊗Q−TΛQ−1 + Lx
Ly

Q−TΛQ−1 ⊗Q−TQ−1
)

=
(
Q−T ⊗Q−T

) Ly
Lx

(I⊗Λ)
(
Q−1 ⊗Q−1

)
+
(
Q−T ⊗Q−T

) Lx
Ly

(Λ⊗ I)
(
Q−1 ⊗Q−1

)
=
(
Q−T ⊗Q−T

)(Ly
Lx

I⊗Λ + Lx
Ly

Λ⊗ I
)(

Q−1 ⊗Q−1
)
.

The next step is to construct the inverse of A2D. We know that the inverse of
A = B⊗C is A−1 = B−1 ⊗C−1, and we get

A−2D = (Q⊗Q)
(
Ly
Lx

I⊗Λ + Lx
Ly

Λ⊗ I
)−1 (

QT ⊗QT
)
.

We have now directly constructed the inverse of A2D and the solution vector ux

can be expressed as

ux = (Q⊗Q)
(
Ly
Lx

I⊗Λ + Lx
Ly

Λ⊗ I
)−1 (

QT ⊗QT
)(LyLy

4 B⊗B
)

fx︸ ︷︷ ︸
f2D

. (3.25)

The operational cost of evaluating Q, QT and Λ is O(N3). After this evaluation we
have a direct operator to compute the solution, ux = A−2Df2D. Both the storage
space required and the operational cost for the method will be O(N4). This is
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better than using Gaussian elimination on A2Dux = f2D, where the storage space
is the same, but the operational cost is O(N6).

To reduce the operational cost further, we can convert (3.25) back to local data
structure using the relation between (3.19) and (3.20). Let F be the local repre-
sentation of f2D, the final fast solution algorithm for the Poisson problem is then
stated in Algorithm 1.

Algorithm 1 Fast Poisson solver: spectral method with Dirichlet boundary con-
ditions

1. V = QTFQ
2. wij = vij /

(
Ly
Lx
λi + Lx

Ly
λj
)

for i, j = 1, .., N − 1

3. U = QWQT

The most expensive operation for this algorithm with O(N2) unknowns is the
matrix-matrix products. Hardware related, the matrix-matrix products are among
the most efficient operations and can be evaluated in O(N3) operations. The
storage space required isO(N2). Notice that we have only used the one dimensional
operators Â and B̂ to construct Q and Λ. The cost of evaluating Λ and Q are
O(N3).

Algorithm 1 is constructed for the model problem with homogeneous Dirichlet
boundary conditions. Problems with mixed boundary conditions, where the di-
mension of the algebraic system of equations is nx × ny and nx 6= ny, require that
we solve two generalized eigenvalue problems. With the same procedure as above
the algorithm for the fast solver for such a problem is stated in Algorithm 2,
where the subscript 1 and 2, indicate the dimension in the x and y direction, i.e
Q1 ∈ Rnx×nx and Q2 ∈ Rny×ny .

Algorithm 2 Fast Poisson solver: spectral method with mixed boundary condi-
tions

1. V = QT
1 FQ2

2. wij = vij/
(
Ly
Lx
λi + Lx

Ly
λj
)

for i, j = 1, .., N − 1

3. U = Q1WQT
2

Now consider the Poisson problem with homogeneous Neumann boundary condi-
tions. This problem does not have a unique solution. If u∗(x, y) solves the Poisson
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problem

∇2u = f in Ω,
∂u

∂n
= 0 on ∂Ω,

then so does u(x, y) = u∗(x, y)+C, where C is a constant. Solving the generalized
eigenvalue problem will give one λi = 0. We can not divide by zero. Therefore the
second step of the algorithm must be modified, while steps one and three remain
the same, see Algorithm 3.

Algorithm 3 Fast Poisson solver: spectral method with Neumann boundary con-
ditions

1. V = QTFQ

2. wij =
{
vij/

(
Ly
Lx
λi + Lx

Ly
λj
)

if λi 6= 0 or λj 6= 0
c1 if λi = λj = 0

∀ i, j

3. U = QWQT

Let us now explore what c1 in Algorithm 3 contributes to the solution. If we first
organize Q and Λ such that λ0 = 0, the corresponding eigenvector is a constant
vector; q0 = [a, a, .., a]T . Recall that we have scaled the eigenvectors such that
QT B̂Q = I, which means that qT0 B̂q0 = 1. We get

[
a · · · a

]
B̂


a
...
a

 = a2
[
1 · · · 1

]
B̂


1
...
1


︸ ︷︷ ︸

2

= a22 = 1 ⇒ a = 1√
2
.

The second argument comes from

[
1 · · · 1

]T
B̂


1
...
1

 =
N∑
i=0

N∑
j=0

ρiδij =
N∑
i

ρi =
∫ 1

−1
1dξ = 2.

After applying the second step of Algorithm 3 we have w00 = c1, the last step
becomes 

a | |
... q1 . . . qN
a | |


c1



a . . . a

q1
...

qN

 .
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This means that the contribution of c1 is an outer product

U = U∗ + c1q0q0
T = U∗ + c1


a2 . . . a2

...
...

a2 . . . a2

 = U∗ + c1a
2I.

And since a = 1√
2 , we finally get

U = U∗ + c1

2 I.

This means that we raise our solution by the constant C = c1
2 . The discrete

solution is now given by

uN = u∗N + c1

2 .

3.7 Finite differences

So far we have discussed tensor-product solvers for problems approximated with
spectral discretization. Fast tensor-product solvers are not constrained to spectral
methods; their applications can be applied on many numerical methods. The more
specific and structured the problem is, the easier it is to make fast and accurate
solvers. In this section we again solve the Poisson problem with homogeneous
Dirichlet boundary conditions

−
(
∂2u

∂x2 + ∂2u

∂y2

)
= f(x, y) in Ω,

u(x, y)|∂Ω = 0,

but now we use finite differences to solve the problem. Consider the central differ-
ences

∂2u(xm, yn)
∂x2 = 1

h2
x

(
u(xm + hx, yn)− 2u(xm, yn) + u(xm − hx, yn)

)
+O(h2

x),

∂2u(xm, yn)
∂y2 = 1

h2
y

(
u(xm, yn + hy)− 2u(xm, yn) + u(xm, yn − hy)

)
+O(h2

y),

for m,n = 1, .., N − 1, where x0 = y0 = 0, xN = Lx, yN = Ly, and the step size
in the x and y direction is hx = Lx/N and hy = Ly/N . Notice that we now use
a uniform grid, see Figure 3.4. With central differences we can approximate the
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y0

y1

yN

x1 xN−1 xN

y

xx0 · · · · · · · · ·

...

...
Ω

Figure 3.4: Uniform mesh of the domain Ω = (0, Lx)× (0, Ly).

Poisson problem by the following system of equations

1
h2
x

(
−u(xm + hx, yn) + 2u(xm, yn)− u(xm − hx, yn)

)
+ 1
h2
y

(
−u(xm, yn + hy) + 2u(xm, yn)− u(xm, yn − hy)

)
= f(xm, yn),

where m,n = 1, .., N − 1. In global form we write(
cxD̂⊗ I + cyI⊗ D̂

)
ux = fx, (3.26)

where cx = 1
h2
x
, cy = 1

h2
y
, fmn = f(xm, yn), umn = u(xm, yn), and

D̂ =



2 −1 0 · · · 0
−1 2 −1 ...

0 −1 . . . . . . 0
...

. . . . . . −1
0 . . . 0 −1 2


.

To obtain a fast solver we solve the eigenvalue problem

D̂R = RΛ,

where R is the eigenvector matrix and Λ is the eigenvalue matrix. We then obtain

D̂ = RΛR−1,
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which we substitute into (3.26), and with the general tensor-product properties
the following expressions are obtained(

RΛR−1 ⊗ cxRR−1 + cyRR−1 ⊗RΛR−1
)

ux = fx

(R ⊗R) (cxΛ⊗ I + I⊗ cyΛ)
(
R−1 ⊗R−1

)
︸ ︷︷ ︸

A2D

ux = fx.

Again, with the general tensor-product properties we can find the inverse of A2D

(
A2D

)−1
= (R ⊗R) (cxΛ⊗ I + I⊗ cyΛ)−1

(
R−1 ⊗R−1

)
,

and we get

ux = (R ⊗R) (cxΛ⊗ I + I⊗ cyΛ)−1
(
R−1 ⊗R−1

)
fx.

To explicitly construct this matrix will require O(N4) storage space and O(N6)
operations for finding ux. If we instead convert the system back to a local data
structure we obtain the fast solver that we want. Notice that D̂ is symmetric posi-
tive definite, and therefore R−1 = RT . The fast algorithm for the Poisson problem
with homogeneous Dirichlet boundary conditions is stated in Algorithm 4.

Algorithm 4 Fast Poisson solver: finite differences

1. V = RTFR
2. wij = vij/(cxλi + cyλj) for i, j = 1, .., N − 1
3. U = RWRT

Notice that the eigenvectors and eigenvalues here are different than those used
when solving the Poisson problem with a spectral method. The complexity of
finding R and Λ is O(N3). The total cost of finding U is O(N3) floating point
operations for O(N2) unknowns, similar to the spectral case.

3.8 The discrete L2 norm and energy norm

Before we proceed with the numerical results we briefly discuss the discrete L2

norm and the discrete energy norm [10] that will be used. The energy norm is
induced by the bilinear form in (3.6). Notice that the bilinear form a( · , · ) of the
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Poisson problem is symmetric

a(u, v) =
∫ Lx

0

∫ Ly

0
(uxvx + uyvy) dxdy

=
∫ Lx

0

∫ Ly

0
(vxux + vyuy) dxdy

=a(v, u) ∀u, v ∈ X

and positive definite

a(w,w) =
∫ Lx

0

∫ Ly

0

(
w2
x + w2

y

)
dxdy > 0 ∀w ∈ X, w 6= 0.

Given that a bilinear form a( · , · ) is symmetric positive definite (SPD), we can
use it to define a norm ||| · ||| by

|||w|||2 = a(w,w) ∀w ∈ X,

and this is what we call the energy norm on X. The bilinear form is problem
dependent. The discrete space X is not the same for different sets of boundary
conditions, and clearly a(u, v) is defined differently for different PDE’s. Accord-
ingly, the energy norm is also problem dependent.

Define the vector x = [x y ]. Consider the following expression of the error with
respect to any norm

‖uN(x)− u(x)‖ = ‖uN(x)− IMu(x) + IMu(x)− u(x)‖
≤ ‖uN(x)− IMu(x)‖+ ‖IMu(x)− u(x)‖.

Here, IMu(x) is the interpolated function of u(x) based on a finer grid than the
grid used for uN ; N ≤M . Later, in the numerical results, we choose M = 3N . It
is reasonable to assume that when M � N , the interpolation error of the exact
solution is much smaller than the discrete error:

‖IMu(x)− u(x)‖ � ‖uN(x)− u(x)‖.

The error with respect to a norm can thus be approximated by

‖uN(x)− u(x)‖ ≈ ‖uN(x)− IMu(x)‖.

Define uMij to be the discrete solution at the finer grid

uMij =
N∑
m=0

N∑
n=0

umn`(ξMi )`(ξMj )
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for i, j = 0, ..,M , where the superscript M indicates the order of the finer grid.
Define uMeij to be the exact solution on the finer grid

uMeij = û(ξMi , ξMj ) = u(x(ξMi ), y(ξMj )).
Then the discrete error at each point in the finer grid becomes

eMij = uMij − uMeij .

For simplicity, let Lx = Ly = 2. We then get the following expressions for the
discrete L2 norm error

‖uN(x)− IMu(x)‖2
L2(Ω) =

∫ 1

−1

∫ 1

−1
(ûN(ξ, η)− IM û(ξ, η))2 dξdη

=
∫ 1

−1

∫ 1

−1

 M∑
i=0

M∑
j=0

eMij `i(ξ)`j(η)
( M∑

m=0

M∑
n=0

eMmn`m(ξ)`n(η)
)

dξ

=
M∑
i=0

M∑
j=0

M∑
m=0

M∑
n=0

eMij

(∫ 1

−1
`i(ξ)`m(ξ)dξ

)
︸ ︷︷ ︸

(`i(ξ),`m(ξ))1

(∫ 1

−1
`j(η)`n(η)dη

)
︸ ︷︷ ︸

(`j(η),`n(η))1

eMmn

=
M∑
i=0

M∑
j=0

M∑
m=0

M∑
n=0

eMij (`i(ξ), `m(ξ))1 (`j(η), `n(η))1 eMmn.

Evaluating the inner products with GLL quadrature and applying (3.14) we obtain
the discrete L2 norm error

‖uN(x)− u(x)‖2
L2
N (Ω̂) =

M∑
i=0

M∑
j=0

M∑
m=0

M∑
n=0

eMij
(
B̂imB̂jn

)
︸ ︷︷ ︸
B̂2D

(ij)(mn)

eMmn.

The reason for evaluating the error at a finer grid is to make sure that the quadra-
ture error does not have a significant contribution [10]. Using global data repre-
sentation we can express the discrete L2 norm error in matrix form

‖uN(x)− u(x)‖2
L2
N (Ω) =

(
uM − uMe

)T
B̂2D

(
uM − uMe

)
.

The superscript 2D indicates that the mass matrix is two-dimensional. A similar
evaluation of the energy norm error gives

|||uN(x)− u(x)|||2N =
(
uM − uMe

)T
Â2D

(
uM − uMe

)
.

The cost of evaluating these two expressions in global forms is O(N4) for O(N2)
unknowns and the storage space required is O(N4). If we instead use a local data
representation the storage space required is O(N2) and the operational cost is
O(N3). Again, using a local data representation is much more efficient.



24 Chapter 3. Tensor product solvers in rectangular domains

3.9 Numerical results

In the following problems we will discuss both spectral discretization and finite
differences solved with fast tensor-product solvers. First, let us consider spectral
discretization for the following Poisson problem

−∇2u =
(2π
Lx

)2
cos

(2πx
Lx

)(
1− y

Ly

)
in Ω,

∂u

∂n
= 0 on Γ2,Γ4,

u(x, 0) = cos
(2π
Lx

)
(Γ1) ,

u(x, Lx) = 0 (Γ3) .

Here, Γi for i = 1, ..., 4 are the four edges of the deformed domain, see Figure 3.1.
This is a problem with mixed boundary conditions, homogeneous Neumann, non-
homogeneous and homogeneous Dirichlet. In the model problem we mainly dis-
cussed the simplest case, homogeneous Dirichlet boundary conditions. In this case
the discrete space XN will be

XN =
{
v ◦ F(ξ, η) ∈ PN(Ω̂), v = 0 on Γ̂1, Γ̂3

}
.

The dimension of the algebraic system of equations is N + 1 by N − 1. In the
linear form, we obtain an extra term since the numerical solution is nonzero at one
of the boundaries with Dirichlet condition,

ûN(ξ, η) =
N∑
m=0

N−1∑
n=0

umn `m(ξ)`n(η)

=
N∑
m=0

N−1∑
n=1

umn `m(ξ)`n(η) +
N∑
m=0

um0 `m(ξ)`n(η)︸ ︷︷ ︸
given

.

The bilinear and linear form can be expressed as

a(uN , v)N =
N∑
m=0

N−1∑
n=1

(
Ly
Lx
ÂimB̂jn + Lx

Ly
B̂imÂjn

)
umn

and

(f, v)N =
N∑
m=0

N−1∑
n=1

LyLy
4 B̂imB̂jnfmn +

N∑
m=0

(
Ly
Lx
ÂimB̂jn + Lx

Ly
B̂imÂjn

)
um0,
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Figure 3.5: The discretization error u(x) − uN(x) measured in the discrete L2

norm ‖ · ‖L2
N (Ω), and the discrete energy norm ||| · |||N , as a function of the poly-

nomial degree N . uN(x) is the discrete solution to the Poisson problem, where

f =
(

2π
3

)2
cos

(
2πx

3

) (
1− y

2

)
and u is subject to mixed boundary conditions in the

domain Ω = (0, 3)× (0, 2). The error is plotted on a logarithmic scale.

for i = 0, ..., N + 1 and j = 1, ..., N − 1, where the last term is given by the
nonhomogeneous Dirichlet condition.

The system of equations, a(uN , v)N = (f, v)N , are solved with Algorithm 2;
the fast tensor-product solver with two generalized eigenvalue problems. Figure
3.6 graphs the analytical and the discrete solution to the problem in the physical
domain Ω = (0, 3)× (0, 2). Here, the polynomial degree of the discrete solution is
N = 10, uN ∈ P10(Ω). The discrete solution seems to be a good approximation of
the analytical solution; they look the same.

In Figure 3.5 the error u− uN is plotted with respect to the discrete L2 norm and
the discrete energy norm as a function of the polynomial degree N . As expected,
we obtain exponential convergence, since the exact solution u is infinitely smooth.

Next, we consider the following Poisson problem with homogeneous Dirichlet
boundary conditions

−∇2u = 10π2

9 sin(πx) sin
(
πy

3

)
in Ω = (0, 2)× (0, 3),

u = 0 on ∂Ω.

To solve this problem we used Algorithm 4, the fast solver for finite differences.
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Figure 3.6: The analytical solution u(x, y) at the top and the discrete solution

uN(x, y) at the bottom of the Poisson problem, where f =
(

2π
3

)2
cos

(
2πx

3

) (
1− y

2

)
and u is subject to mixed boundary conditions. The domain is Ω = (0, 3)× (0, 2)
and the polynomial degree of the discrete solution is 10, uN ∈ P10(Ω).
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Figure 3.7 graphs the discrete solution to the problem. There are N + 1 = 11
uniform grid points in each spatial direction. In addition, we solved the problem
with a fast tensor-product solver for spectral discretization, Algorithm 1. In
Figure 3.8 we compare the two methods by plotting the error u− uN with respect
to the maximum norm as a function of N . Recall that in both methods there are
N + 1 grid points in each spatial direction. Recall that in the spectral case the
grid points are not uniformly spaced, and uN is a polynomial of degree N . As
expected, we obtain an algebraic convergence rate for the finite difference method

max
i,j
|ûN(ξi, ξj)− û(ξi, ξj)| ∼ O(N−2).

On the other hand, we obtain an exponential convergence rate for the spectral
method. For a fixed N (number of degrees of freedom) the cost of solving the
system of algebraic equations is the same for the spectral method and the finite
difference method. However, for a fixed N the error is smaller using a spectral
method if the solution is smooth.
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Figure 3.7: The discrete solution uN(x, y) of the Poisson problem with homoge-

neous Dirichlet boundary conditions and f = 10π2

9 sin(2πx) sin
(
πx
3

)
. The prob-

lem is solved using central differences with a uniform 11 × 11-grid in the domain
Ω = (0, 2)× (0, 3).
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Figure 3.8: The discretization error u(x)−uN(x) for both the spectral method and
the finite difference method measured in the maximum norm as a function of the
degrees of freedom N . uN(x) is the discrete solution to the Poisson problem, where

f = 10π2

9 sin(2πx) sin
(
πx
3

)
subject to homogenous Dirichlet boundary conditions

in the domain Ω = (0, 2)× (0, 3). Both axes has a logarithmic scale.



Chapter 4

Exploring tensor-product solvers
in deformed domains

So far we have only discussed fast tensor-product solvers in rectangular domains.
A naturally arising question is: can one extend this theory to deformed domains?
In this chapter we explore the possibility of exploiting fast tensor-product solvers
in a two dimensional deformed domain. First, we consider the mapping of the
reference domain into the deformed domain, and then the spectral discretization
of the Poisson problem. We will shortly discuss the conjugate gradient methods
as a way of solving the derived system of equations. Again, we observe that the
local data representation is essential for deriving a fast solver.

4.1 The reference domain

The mapping of the reference domain is no longer just a stretching and translation,
see figure 4.1. Now x and y are functions of both ξ and η,

x = x(ξ, η), dx = ∂x

∂ξ
dξ + ∂x

∂η
dη,

y = y(ξ, η), dy = ∂y

∂ξ
dξ + ∂y

∂η
dη.

In matrix form this can be written as(
dx
dy

)
=
(
xξ xη
yξ yη

)
︸ ︷︷ ︸

J

(
dξ
dη

)
, J = det(J) = xηyη − xηyξ, (4.1)

29
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Γ4
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Γ2
Γ̂4 Γ̂2

Γ̂1

Γ̂3

Ω̂Ω
y

x

η

ξ

F

F−1

Figure 4.1: The mapping of the reference domain Ω̂ = (−1, 1) × (−1, 1) to the
deformed physical domain Ω, F(ξ, η) = (x, y)

where J is the Jacobian matrix and J is the determinant of J. Similarly, ξ and η
are functions of x and y, and in matrix form we write(

dξ
dη

)
=
(
ξx ξy
ηx ηy

)(
dx
dy

)
. (4.2)

Alternatively, (4.1) allow us to express these variables as(
dξ
dη

)
= J−1

(
dx
dy

)
= 1
J

(
yη −xη
−yξ xξ

)(
dx
dy

)
. (4.3)

Combining (4.2) and (4.3) we get that

ξx = 1
J
yη, ξy = − 1

J
xη,

ηx = − 1
J
yξ, ηy = 1

J
xξ.

(4.4)

This relations will turn out to be of great significance. Another important relation
is the following property of the determinant of the Jacobian matrix J [10]

J = det(J) = dΩ
dΩ̂

. (4.5)

In the deformed domain, J will change throughout the whole domain, contrary to
the rectangular case where J = LxLy

4 is a constant.

4.2 The weak formulation of the Poisson problem

In the section concerning rectangular domains we found the following weak for-
mulation of our model Poisson problem with homogeneous Dirichlet boundary
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conditions: find u ∈ X such that∫
Ω
∇u ·∇v dxdy︸ ︷︷ ︸

a(u,v)

=
∫

Ω
f v dxdy︸ ︷︷ ︸

(f,v)

∀v ∈ X.

Let us first consider the gradient in the bilinear form

∇u =
(
ux
uy

)
=
(
ûξξx + ûηηx
ûξξy + ûηηy

)
=
(
ξx ηx
ξy ηy

)
︸ ︷︷ ︸

G∇

(
ûξ
ûη

)
︸ ︷︷ ︸
∇̂û

= G∇∇̂û. (4.6)

Here, ∇u is the gradient with respect to the physical variables and ∇̂û is the gradi-
ent with respect to the reference variables. Making use of the derived expressions
in (4.4), we can express the matrix in (4.6) as

G∇ = 1
J

(
yη −yξ
−xη xξ

)
. (4.7)

With the relations in (4.5) and (4.6) the bilinear form can be expressed as∫
Ω
∇u ·∇v dxdy =

∫
Ω

(∇v)T∇u dxdy

=
∫

Ω̂
(G∇∇̂v̂)T (G∇∇̂û)J dξdη

=
∫

Ω̂
(∇̂v̂)T (GT

∇G∇)︸ ︷︷ ︸
G

∇̂ûJ dξdη

=
∫

Ω̂
(∇̂v̂)TG∇̂ûJ dξdη.

Note that the matrix G∇ is not symmetric. However, G is a symmetric matrix:

G = GT
∇G∇.

We defining G̃ ≡ JG = JGT
∇G∇, where G∇ is expressed in (4.7). The matrix G̃

has the following matrix elements

g̃11 = 1
J

(y2
η + x2

η)

g̃12 = g̃21 = − 1
J

(yξyη + xηxξ)

g̃22 = 1
J

(y2
ξ + x2

ξ).

(4.8)

The weak formulation can now be stated as: find u ∈ X such that∫
Ω̂

(∇̂v̂)T G̃∇̂û dξdη =
∫

Ω̂
f̂ v̂ J dξdη ∀v ∈ X. (4.9)
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4.3 Isoparametric mapping

Let us now consider the mapping from the reference domain Ω̂ to the deformed
domain Ω using an isoparametric mapping

xN(ξ, η) =
N∑
i=0

N∑
j=0

xij `i(ξ)`j(η) ∈ PN(Ω̂),

yN(ξ, η) =
N∑
i=0

N∑
j=0

yij `i(ξ)`j(η) ∈ PN(Ω̂),

where xij = x(ξi, ξj) and yij = y(ξi, ξj). We call this an isoparametric mapping
since the geometry is approximated in the same way as the solution. In most cases,
the solution is more complex than the geometry. Therefore, using an isoparametric
mapping will not contribute significantly to the error in the numerical solution.

4.4 Discretization and computational approach

In this section we will discuss different aspects of the implementation to solve the
discrete Poisson problem [10]. According to the isoparametric mapping, the partial
derivative of xN(ξα, ξβ) can be expressed as

∂xN
∂ξ

∣∣∣∣∣
(ξα,ξβ)

=
N∑
i=0

N∑
j=0

xij `
′
i(ξα)`j(ξβ)

=
N+1∑
i=0

N+1∑
j=0

`′i(ξα)xij δβj

=
N+1∑
i=0

`′i(ξα)xiβ.

Define the following matrices

D with matrix elements, Dij = l′j(ξi) , i, j = 0, ..., N.

X with matrix elements, xij = x(ξi, ξj), i, j = 0, ..., N.

X,ξ with matrix elements, (X,ξ)ij = ∂xN
∂ξ

∣∣∣
(ξi,ξj)

, i, j = 0, ..., N.
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The above expression can then be written as

(X,ξ)αβ =
N+1∑
i=0

Dαixiβ,

or in matrix form as
X,ξ = DX. (4.10)

Thus, the partial derivative with respect to ξ for all points i, j = 0, ..., N is evalu-
ated by one matrix-matrix multiplication using local data structure. The compu-
tational cost is O(N3). Define X,η, Y, Y,ξ, Y,η, U, U,ξ, and U,η in the same way,
and the following results are obtained:

X,η = XDT , (4.11)

Y,ξ = DY, (4.12)

Y,η = YDT , (4.13)

U,ξ = DU, (4.14)

U,η = UDT . (4.15)

From the results above we can evaluate the Jacobian J in (4.1), and the matrix G̃
at the GLL grid points

Jij = (X,ξ)ij (Y,η)ij − (X,η)ij (Y,ξ)ij ,

G̃ij =


1
Jij

(
(Y,η)2

ij + (X,η)2
ij

)
− 1
Jij

(
(Y,ξ)ij (Y,η)ij + (X,η)ij (X,ξ)ij

)
− 1
Jij

(
(Y,ξ)ij (Y,η)ij + (X,η)ij (X,ξ)ij

)
1
Jij

(
(Y,ξ)2

ij + (X,ξ)2
ij

)
 ,

for i, j = 1, ..., N − 1. Let us now consider the discrete formulation of (4.9): find
uN ∈ XN such that∫

Ω̂
(∇̂v̂)T G̃∇̂ûN dξ dη =

∫
Ω̂
f̂ v̂J dξ dη ∀v ∈ XN , (4.16)

where XN is defined in (3.9). We are claiming that (4.16) holds for all v ∈ XN , so
with the same tensor-product bases as before we let

v̂(ξ, η) = `i(ξ)`j(η), 1 ≤ i, j ≤ N − 1

and

ûN(ξ, η) =
N−1∑
m=1

N−1∑
n=1

umn `m(ξ)`n(η).
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With GLL quadrature we obtain

∫
Ω̂
f̂ v̂J dξdη '

N∑
α=0

N∑
β=0

ραρβ fαβ δiα δjβ Jαβ

= ρiρj Jij fij

and

∫
Ω̂

(∇̂v̂)T G̃∇̂ûN dξdη '
N∑
α=0

N∑
β=0

ραρβ
(
Dαiδβj δαiDβj

)(g̃11 g̃12
g̃21 g̃22

)
αβ

(
U,ξ
U,η

)
αβ

.

Recall that (U,ξ)αβ = ∂uN
∂ξ

∣∣∣
(ξα,ξβ)

and (U,η)αβ = ∂uN
∂η

∣∣∣
(ξα,ξβ)

. We have now found

an expression for the discrete problem. In the rectangular domain we used a fast
tensor-product solver to solve the system of equations. We could do this because
the Jacobian was constant. Now however, the Jacobian changes in every point in
space. The system above can be written in the form

A2Dux = f2D. (4.17)

Iterative methods are typical approaches for solving this system. The stiffness
matrix is symmetric, allowing for the conjugate gradient method (CGM) [13] to
be used for solving (4.17). The most costly operation in the CGM is the oper-
ation A2Dux. The key here is to take advantage of the local data structure. If
we constructed A2D, O(N4) storage space and O(N4) floating point operations
are required to evaluate the expression. If we instead exploit local data structure,
this can be evaluated in O(N3) operations and the storage space required is only
O(N2). The algorithm for evaluating A2Dux with local data structure is:
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1. Preprocessing: Compute G̃αβ and D (Only needs to be evaluated once)

2. (U,ξ)αβ = ∑N
m=0Dαmumβ, one matrix-matrix product U,ξ = DU

(U,η)αβ = ∑N
n=0 uαnDβn, one matrix-matrix product U,η = UDT

3. (s1)αβ = (g̃11)αβ (U,ξ)αβ + (g̃12)αβ (U,η)αβ
(s2)αβ = (g̃21)αβ (U,ξ)αβ + (g̃22)αβ (U,η)αβ

4. (t1)αβ = (s1)αβ ραρβ

(t2)αβ = (s2)αβ ραρβ

5. wij = ∑N
α=0Dαi (t1)αj +∑N

β=0(t2)iβDβj, two matrix-matrix products︸ ︷︷ ︸
W = DT T1 + T2 D

Step 2 and 5 require O(N3) floating point operations, while steps 3 and 4 are
evaluated with O(N2) floating point operations. The total work for the algorithm
is O(N3) if we exclude step 1. Step 1 only needs to be evaluated once.

If the geometry is not too complex a preconditioned conjugate gradient method
can be a good choice for solving the system. The preconditioner would then be
the solution of the problem solved in a rectangular domain that is similar to the
deformed domain. A fast tensor-product solver can then be used to find the pre-
conditioned solution in O(N3) operations and the CGM will converge faster.

4.5 Gordon-Hall algorithm

In the previous discussions we assumed xij and yij to be known in the isoparametric
mappings

xN =
N∑
i=0

xij `i(ξ)`j(η),

yN =
N∑
i=0

yij `i(ξ)`j(η).
(4.18)

Thus, we need a mapping from the reference domain Ω̂ to the physical domain Ω.
We use the Gordon Hall-algorithm to find this mapping [14]. First, we define the
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r

φ0 φ1

-1 1

Figure 4.2: The linear Lagrange interpolation functions through r0 = −1 and
r1 = 1

linear shape functions

φ0(r) = 1− r
2 ,

φ1(r) = 1 + r

2 .

Let r0 = −1 and r1 = 1. The shape functions then have the following properties:
φi(rj) = δij for i, j = 0, 1. This is in fact the linear Lagrange interpolation functions
through r0 and r1, see Figure 4.2. Let the edges of the physical domain be denoted
by

Γ1 : x(ξ,−1),
Γ2 : x(1, η),
Γ3 : x(ξ, 1),
Γ4 : x(−1, η),

(4.19)

where x(ξ, η) =
[
x(ξ, η) y(ξ, η)

]
. Consider the following four mappings:

1. Fξ(ξ, η) = φ0(ξ)x(−1, η) + φ1(ξ)x(1, η).

2. Fη(ξ, η) = φ0(ξ)x(ξ,−1) + φ1(ξ)x(ξ, 1).

3. Fξη(ξ, η) = ∑1
i=0

∑1
j=0 φi(ξ)φj(η)x(ri, rj).

4. FGH = Fξ + Fη −Fξη.
The three first mappings are illustrated in Figure 4.3. The mapping Fξ conserves
the two edges Γ1 and Γ3, while the mapping Fη conserves Γ2 and Γ4. Fη and Fξ
are linear interpolations between two edges. Further, Fξη conserves the four corner
points.

The final step FGH preserves all four edges and maps the interior of the reference
domain Ω̂ to the interior of the physical domain Ω. This is known as the Gordon-



4.5. Gordon-Hall algorithm 37

Fξ Fη Fξη

Figure 4.3: Illustration of the three mappings Fξ, Fη and Fξη that are used in the
Gordon-Hall algorithm FGH = Fξ + Fη −Fξη.

Hall algorithm.

We now return to our original problem, namely finding xij = [xij yij] in (4.18).
We distribute N + 1 points along each edge of the domain, similar to the GLL
points in the rectangular domain. There are several ways to do this. One option
is to draw a straight line between the four corners and distribute the GLL points
along each edge. The GLL points on the deformed edge are obtained by drawing
a cord from the GLL points on the straight line, as illustrated in Figure 4.4. We

xi0

xNj

xiN

x0j

xN0

xNNx0N

x00

Figure 4.4: The figure to the left illustrates how the GLL points are obtained on
one of the deformed edges. The GLL points are distributed along the straight line
and we obtain the GLL points on the deformed edge by drawing a cord to the
edge. The figure to the right illustrates the numbering of the GLL grid points.

then have sufficient information to compute xij for i, j = 0, ...N using the following
algorithm:



38 Chapter 4. Exploring tensor-product solvers in deformed domains

1. xAij = φ0(ξi)x0j + φ1(ξi)xNj.

2. xBij = φ0(ξj)xi0 + φ1 (ξj)iN .

3. xCij = φ0(ξi)φ0(ξj)x00 + φ0(ξi)φ1(ξj)x0N + φ1(ξi)φ0(ξj)xN0 + φ1(ξi)φ1(ξj)xNN .

4. xij = xAij + xBij − xCij.
Making use of this information, the isoparametric mapping

xN(ξ, η) =
N∑
i=0

N∑
j=0

xij `i(ξ)`j(η)

approximates the edges of the domain with high order polynomials of the same
degree as the approximated solution

ûN(ξ, η) =
N∑
i=0

N∑
j=0

uij `i(ξ)`j(η).

4.6 An idea for a tensor-product solver

So far we have only discussed the conjugate gradient method as a way of solving
the algebraic system of equations. We will now explore the possibility of deriving
a fast tensor-product solver similar to the ones we discussed for the rectangular
domain. The motivation of deriving such a method is obvious: it would reduce the
computational costs.

Recall the weak form of the Poisson problem with homogeneous Dirichlet boundary
conditions in a deformed domain: find u ∈ X such that∫

Ω̂
(∇̂v̂)T G̃∇̂û dξ dη =

∫
Ω̂
f̂ v̂J dξ dη ∀ v ∈ X, (4.20)

where X is defined in (3.4) and G̃ = JGT
∇G∇. First define the matrix

G∗∇ =
√
JG∇, (4.21)

and the two transformations

∇̂û∗ = G∗∇∇̂û (4.22)

and

∇̂v̂∗ = G∗∇∇̂v̂. (4.23)
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Then consider the following equation∫
Ω̂

(∇̂v̂∗)T ∇̂û∗ dξ dη =
∫

Ω̂
(G∗∇∇̂v̂)T (G∗∇∇̂û) dξ dη

=
∫

Ω̂
(∇̂v̂)T G∗∇

TG∗∇︸ ︷︷ ︸
JGT
∇G∇=G̃

∇̂û dξ dη

=
∫

Ω̂
(∇̂v̂)T G̃∇̂û dξ dη.

The last expression is equivalent to the left side of (4.20). We can thus consider
the generalized weak formulation: find u∗ ∈ X such that∫

Ω̂
(∇̂v̂∗)T ∇̂û∗ dξ dη =

∫
Ω̂
f̂ v̂J dξ dη ∀v∗ ∈ X. (4.24)

The bilinear form is equivalent to the bilinear form in the rectangular domain,
except that û∗ is considered instead of û. The idea is to discretize this weak
formulation similarly to how it was done in the rectangular domain, and apply a
fast tensor-product solver to find û∗N . If possible, we then find the solution ûN
from the transformation (4.22).

We choose v̂∗ = `i(ξ)`j(η) for i, j = 1, ..., N − 1 and approximate û∗ as before,

û∗N(ξ, η) =
N−1∑
m=1

N−1∑
n=1

u∗mn `m(ξ)`n(η)

The system of equations can in global form be written as

(Â⊗ B̂ + B̂⊗ Â)u∗ = b∗. (4.25)

This system can be solved with a fast tensor-product solver if b∗ is known. Assume
b∗ is known. The possible fast solver can then be broken down to four steps, as
described in Algorithm 5.

Algorithm 5 An idea for a fast Poisson solver in deformed domains

1. Find U∗ in (4.25) with the fast Poisson solver for Dirichlet conditions.

2. Find the partial derivatives U∗,ξ and U∗,η, using the information from U∗.
3. Find one of the partial derivatives U,ξ and U,η, using the relation (4.22)

combined with U∗,ξ and U∗,η.
4. Find U, using the information from U,ξ or U,η.

We will go through all the four steps and see if we can realize a fast solver for the
Poisson problem in a deformed domain.
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4.6.1 Step 4 of Algorithm 5

To succeed at finding a fast algorithm in a deformed domain all steps are equally
important. We start by consider the fourth step, since this step can be tested
numerically without any information from the previous steps. We know the value
of the derivative at the (N + 1) GLL points and want to find the function value
at the same points. For simplicity let us consider a simple example in R:

v(x) = 1− x2 in Ω = (−1, 1),
v(−1) = 0,
v(1) = 0.

(4.26)

The derivative of this function is vx = 2x. The function is approximated (or
exactly represented) as a polynomial of degree N in the one dimensional reference
domain Ω̂ = Ω = (−1, 1)

vN(x(ξ)) = v̂N(ξ) =
N∑
m=0

vm `m(ξ), (4.27)

where vm are the nodal values and `m(ξ) the basis functions for m = 0, ..., N . The
nodal values are unknown, except at the boundary, while the derivatives at all the
N + 1 points are known. The derivative of vN at the N + 1 GLL points is

∂v̂N
∂ξ

∣∣∣∣∣
ξi

=
N∑
m=0

vm `
′
m(ξi)︸ ︷︷ ︸
Dim

=
N∑
m=0

vmDim

(4.28)

for i = 0, ..., N . In matrix form we write

v,ξ = Dv.

The matrix D is singular and has dimension (N + 1) × (N + 1). The unknown
vector v can thus not be found by taking the inverse of D. We want to find an
algorithm that returns a unique vector v. First we consider a simple example that
illustrates the importance of using the right information from the derivatives and
boundary conditions to obtain a unique solution. Let us approximate the function
v in (4.26) with a polynomial of degree two, N = 2. The three GLL points will
then be ξ0 = −1, ξ1 = 0 and ξ2 = 1. The derivatives at these points are:

v̂ξ(−1) = 2,
v̂ξ(0) = 0,
v̂ξ(1) = −2.
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If we only use the derivatives, the solution will not be unique. The choice v(x) =
c − x2, where c is a constant, will satisfy all the derivative requirements and the
matrix D ∈ R(N+1)×(N+1) will be singular.

In a second attempt of finding a unique solution we use the boundary conditions
and the derivative at ξ1:

v̂(−1) = 0,
v̂ξ(0) = 0,
v̂(1) = 0.

There is no unique solution to this problem either. For example v(x) = 1 − x2,
v(x) = −1 + x2 and v(x) = 1−x4 all satisfy the above conditions. If we instead use
the boundary condition at one point and the derivatives at the reminding points
we get a third set of equations we get a third set of equations:

v̂(−1) = 0,
v̂ξ(0) = 0,
v̂ξ(1) = −2.

The solution to this problem is unique. Hence, to find the unique nodal values
we use the boundary condition at one of the boundaries and the derivative at the
remaining points. We can now write equation (4.28) as

v̂ξ(ξi) = v0Di0 +
N∑
m=1

vmDim

v̂ξ(ξi)− v0Di0 =
N∑
m=1

Dimvm,

for i = 1, .., N . In matrix form we write

v,ξ − v0d0 = D1v,

where d0 =
[
D10, . . . , DN0

]T
and D1 has dimension N ×N . Again, the subscript

1 denotes the dimension in the x-direction. We loose one degree of freedom to one
of the boundary conditions. Notice that v,ξ and v have changed; v,ξ,v ∈ RN . The
matrix and the vectors on the left hand side are known and we find v by computing

v = D1
−1(v,ξ − u0d0), (4.29)

When we have found the nodal values we can find the function values at any point
in the domain using (4.27).
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This result can be extended to two dimensions, where the discrete function is

ûN(ξ, η) =
N∑
m=0

N∑
n=0

umn `m(ξ)`n(η) (4.30)

and the derivatives at the GLL grid points are

∂ûN
∂ξ

∣∣∣∣∣
(ξi,ξj)

=
N∑
m=0

N∑
n=0

umn `
′
m(ξi)︸ ︷︷ ︸
Dim

`n(ξj)︸ ︷︷ ︸
δnj

= Di0u0j +
N∑
m=1

Dimumj.

(4.31)

If we define the vector u0 =
[
u01, . . . , u0N

]
and exploit local data representation,

the above equation can be written as

U,ξ − d0u0 = D1U. (4.32)

Note that U,ξ,U,D1 ∈ RN×N , d0 ∈ RN×1 and u0 ∈ R1×N . The notation u0 and
d0 denote the first row and column vector of U and D respectively. Finally, step
four can be written as:

U = D−1
1 (U,ξ − d0u0) . (4.33)

Using a similar procedure for finding U when the partial derivative with respect
to η is known, gives the following result

U,η − u0d0 = UDT
1 ,

where u0 =
[
u10, . . . , uN0

]T
and d0 =

[
D01, . . . , D0N

]
. We then get that

U = (U,η − u0d0) D−T1 . (4.34)

If the matrix D−1
1 is known, we can compute U in O(N3) operations. If the

function we approximate is infinitely smooth, we expect exponential convergence
as N increases using either (4.33) or (4.34) (‖u(x) − uN(x)‖ ∼ O(e−µN)). If the
function is a polynomial of degree P we expect an exact solution to the problem
when N ≥ P .
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Numerical results in R

The first problem we consider in R is

du
dx =15x4 + 8x3 in Ω = (−1, 1),

u(−1) =2,
u(1) =8.

(4.35)

The exact solution is a polynomial of degree 5, u ∈ P5(Ω). We know the bound-
ary conditions at both sides. However, we only impose the boundary condition at
one side to obtain a unique solution. On the contrary, when solving a hyperbolic
problem, such as −uxx = f , two boundary conditions must be imposed to obtain
a unique solution. Figure 4.5 shows the exact solution to (4.35) and the numerical
solutions when N = 3 and N = 4. In the figure to the left, the boundary condition
at x = −1 is imposed, while the boundary condition at x = 1 is imposed in the
figure to the right. Both methods gives the exact solution (to machine precision)
when N ≥ 5. Figure 4.6 shows the error with respect to the discrete L2 and energy
norm.
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Figure 4.5: The discrete solution uN(x) ∈ PN(Ω) and the exact solution of the
problem du

dx = 15x4 + 8x3 in the domain Ω = (−1, 1). In the figure to the left
we have only used the boundary condition at x = −1 and the derivatives at
the remaining GLL points to compute uN(x). In the figure to the right we have
imposed the boundary condition at x = 1. The numerical function values at the
GLL points are marked with circles and triangles.
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Figure 4.6: The discretization error u(x)−uN(x) measured in the discrete L2 norm
‖ · ‖L2

N (Ω), and the discrete energy norm ||| · |||N , as a function of the polynomial

degree N . uN ∈ PN(Ω) is the discrete solution to the problem du
dx = 15x4 + 8x3 in

the domain Ω = (−1, 1) with nonhomogeneous Dirichlet boundary conditions.

Next, we consider a problem where the solution is infinitely smooth, but the solu-
tion is not a polynomial,

du
dx =2π cos(2πx) in Ω = (−1, 1),

u(−1) =0,
u(1) =0.

We expect exponential convergence as N increases

‖u− uN‖ ∝ e−µN

or
log(‖u− uN‖) ∝ −µN.

If we plot the error on a logarithmic scale, we expect to see a linear function with
a slope µ. Accordingly, Figure 4.8 shows exponential convergence of the discrete
error. Both the discrete energy norm and L2 norm of the error are plotted on a
logarithmic scale as a function of N . We also notice that the error reduces quicker
when N is chosen to be odd. In fact, the error grows when N increases from odd
to even. The exact solution and the discrete solutions uN(x) for N = 7, 8, 9 are
plotted in Figure 4.7. We clearly see that u7(x) is a better approximation than
u8(x).
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Figure 4.7: The discrete solutions uN(x) ∈ PN(Ω) for N = 7, 8, 9 and the exact
solution of the problem du

dx = 2π cos(2πx). The domain is Ω = (−1, 1) and u
is subject to homogeneous Dirichlet boundary conditions. We only impose the
boundary condition at x = 1. The numerical function values at the GLL points
are marked.
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Figure 4.8: The discretization error u(x)−uN(x) measured in the discrete L2 norm
‖ · ‖L2

N (Ω), and the discrete energy norm ||| · |||N , as a function of the polynomial

degree N . uN ∈ PN(Ω) is the discrete solution to the problem du
dx = 2π cos(2πx)

in the domain Ω = (−1, 1) with homogeneous Dirichlet boundary conditions.
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Numerical results in R2

Let us now consider the following problems in R2:

∂u

∂x
= −2x2(3y5 + 2y4 + 3) in Ω = (−1, 1)× (−1, 1),

u(−1, y) = 3y5 + 2y4 + 3,
u(x,−1) = 2(2− x2)

(4.36)

and

∂u

∂y
= (2− x2)(15y4 + 8y3) in Ω = (−1, 1)× (−1, 1),

u(−1, y) = 3y5 + 2y4 + 3,
u(x,−1) = 2(2− x2).

(4.37)

Both of these problems have the exact same solution, which is a polynomial of
degree 5, u(x, y) ∈ P5(Ω). In (4.36) we are given the partial derivative with
respect to x, and we use (4.33) to solve the problem numerically. In (4.37) we
know the partial derivative with respect to y, and we then use (4.34) to solve the
problem numerically.

In Figure 4.9 the exact solution and both numerical solutions uN(x, y) ∈ P4(Ω)
are plotted in the domain Ω. We clearly see that there is a difference in the two
numerical solutions. However, both methods give the exact solution (to machine
precision) when N = 5, witness Figure 4.10.
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(a) The exact solution u(x, y) = (2− x2)(3y5 + 2y4 + 3) ∈
P5(Ω) of problem (4.36) and (4.37).
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(b) The discrete solution uN (x, y) ∈ P4(Ω) of
problem (4.36), where the partial derivative
with respect to x is given.
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(c) The discrete solution uN (x, y) ∈ P4(Ω) of
problem (4.37), where the partial derivative
with respect to y is given.

Figure 4.9: The exact solution (a) and the numerical solutions (b) and (c) to
problems (4.36) and (4.37).
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(a) The discretization error of problem (4.36) where the par-
tial derivative with respect to x is given with nonhomoge-
neous boundary conditions.
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(b) The discretization error of problem (4.37) where the par-
tial derivative with respect to y is given with nonhomoge-
neous boundary conditions.

Figure 4.10: The discretization error u(x, y)−uN(x, y) measured in the discrete L2

norm ‖ · ‖L2
N (Ω), and the discrete energy norm ||| · |||N , as a function of the polynomial

degree N , uN ∈ PN(Ω) and Ω = (−1, 1)× (−1, 1).
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4.6.2 Steps 1 and 2 ofAlgorithm 5

We now consider the first two steps of Algorithm 5, where we find the solution
v∗ to the generalized discrete problem, and its derivatives U∗,ξ and U∗,η. Recall that
the derived system of equations are written in a global form as

(Â⊗ B̂ + B̂⊗ Â)u∗ = b∗.

This system is similar to the global form (3.21) in the rectangular case if Lx =
Ly = 2. Assume we know b∗. We can then use Algorithm 1 to compute U∗; the
fast algorithm for the Poisson problem with Dirichlet boundary conditions. The
operational cost is O(N3) for O(N2) unknowns. When we know U∗ we can use
the following relation to find U∗,ξ

∂u∗N
∂ξ

∣∣∣∣∣
(ξi,ξj)

=
N∑
m=0

N∑
n=0

u∗mn `
′
m(ξi)︸ ︷︷ ︸
Dim

`n(ξj)︸ ︷︷ ︸
δnj

=
N∑
m=0

Dimu
∗
mj.

We compute U∗,ξ with a simple matrix-matrix product

U∗,ξ = DU∗.

Similarly we find the partial derivatives with respect to η by

U∗,η = U∗DT .

Recall the notation

(U,ξ)ij = ∂uN
∂ξ

∣∣∣∣∣
(ξi,ξj)

and (U,η)ij = ∂uN
∂η

∣∣∣∣∣
(ξi,ξj)

.

4.6.3 Step 3 of Algorithm 5

Step 3 is the only step we have not yet discussed. Consider the following relation,
which we will use to find the partial derivatives of ûN at the GLL grid points:

∇̂û∗N = G∗∇∇̂ûN .
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Taking the inverse of the matrix G∗∇ we can find the partial derivates of uN as

∇̂ûN = G∗∇
−1∇̂û∗N . (4.38)

We know that G∗∇ =
√
JG∇, where the elements of G∇ are defined in (4.7) and

the Jacobian is defined in (4.1). We thus find an expression for this matrix

G∗∇ = 1√
J

(
yη −yξ
−xη xξ

)
, (4.39)

and the inverse becomes

G∗∇
−1 =
√
J

(
yη −yξ
−xη xξ

)−1

=
√
J

yηxξ − yξxη︸ ︷︷ ︸
J

(
xξ yξ
xη yη

)
= 1√

J

(
xξ yξ
xη yη

)
.

Finally (4.38) can be written as(
uNξ
uNη

)
= 1√

J

(
xξ yξ
xη yη

)(
u∗Nξ
u∗Nη

)
.

We can now compute the partial derivatives of uN(x, y) at the (N + 1)2 GLL grid
points from

(U,ξ)ij = 1√
Jij

(
(X,ξ)ij(U∗,ξ)ij + (Y,ξ)ij(U∗,η)ij

)

and

(U,η)ij = 1√
Jij

(
(X,η)ij(U∗,ξ)ij + (Y,η)ij(U∗,η)ij

)

for i, j = 1, ..., N − 1. We can compute X,ξ, X,η, Yξ and Yη from (4.10), (4.11),
(4.12) and (4.13) in O(N3) operations and we can find Jij from these matrices in
O(N2) operations. We already know U∗,ξ and U∗,η from step two. The total cost
for step 3 is O(N3) floating point operations.

We have now gone through all the four steps to compute uN(x, y), but after further
considerations it is clear that the gradient of u∗N in the mapping (4.7) is not always
a real gradient. A gradient to any scalar field φ, ∇φ, has to fulfill the property [15]

∇× (∇φ) = 0 (4.40)
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In words, the curl of the gradient of any scalar field is the zero vector. In the two
dimensional case this boils down to the equation

∂φy
∂x
− ∂φx

∂y
= 0.

We consider a simple example where the function mapped from the reference do-
main is

φ(ξ, η) = sin(πξ) sin(πη) in Ω̂ = (−1, 1)× (−1, 1),

while the physical domain is the rectangle Ω = (0, Lx)×(0, Ly). The gradient with
respect to the reference variables becomes

∇̂φ =
(
φξ
φη

)
= π

(
cos(πξ) sin(πη)
sin(πξ) cos(πη)

)
.

If we then use the information from (3.1), the matrix (4.39) becomes

G∗∇ = 1√
LxLy

4

(
Ly
2 0
0 Lx

2

)

and the gradient of φ∗ is given by

∇̂φ∗ = G∗∇∇̂φ = π√
LxLy

(
Ly cos(πξ) sin(πη)
Lx sin(πξ) cos(πη)

)
.

The gradient to any scalar field φ has to satisfy (4.40), meaning we must have

∇̂ × (∇̂φ∗) = π√
LxLy

(πLx cos(πξ) cos(πη)− Ly cos(πξ) cos(πη))

= π2√
LxLy

cos(πξ) cos(πη) (Lx − Ly) = 0.

This is only true if Lx = Ly. The gradient to φ∗ will therefore not always satisfy
(4.40). Hence, the fast tensor-product algorithm for deformed domains given by
Algorithm 5 can not be realized.



Chapter 5

Tensor product solvers for time
dependent problems

5.1 The unsteady convection-diffusion equation

The one-dimensional unsteady convection-diffusion equation with homogeneous
boundary conditions is defined as

∂u

∂t
+ ∂u

∂x
= κ

∂2u

∂x2 + f(x, t) in ωx = (0, L), (5.1a)

u(x = 0, t) = 0, ∀ t ∈ ωt = [0, T ], (5.1b)

u(x = L, t) = 0, ∀ t ∈ ωt, (5.1c)

with initial condition
u(x, t = 0) = s(x). (5.1d)

u(x, t) is the temperature (the solution), κ is the thermal diffusivity and f(x, t) is
a thermal heat source. In this report we assume that κ is a constant.

5.2 The weak formulation

To find the numerical solution we first convert the strong formulation (5.1) into a
weak formulation [4]. We start by defining the spaces

X = H1(ωt, L2(ωx)) ∩ L2(ωt, H1
0 (ωx)) (5.2)

52
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Figure 5.1: Illustration of the mapping between the reference domain
Ω̂ = (−1, 1)× (−1, 1) and the rectangular physical domain Ω = (0, L)× (0, T ).

and

X0 = {w ∈ X,w(x, 0) = 0}. (5.3)

Let v ∈ X0, and multiply both sides of (5.1a) with v and integrate over the time
and space direction. If we then apply integration by parts on the diffusion term,
the weak formulation can be stated as: find u ∈ X such that∫ T

0

∫ L

0

∂u

∂t
vdxdt+

∫ T

0

∫ L

0

∂u

∂x
vdxdt = −κ

∫ T

0

∫ L

0

∂u

∂x

∂v

∂x
dxdt+

∫ T

0

∫ L

0
f vdxdt,

∀ v ∈ X0.

In the same way we considered the two dimensional domain in space Ω = (0, Lx)×
(0, Ly) as an affine mapping of the reference domain, we will consider the space
time domain

Ω = (0, L)× (0, T ) = ωx × ωt,

as an affine mapping of the reference domain,

Ω̂ = (−1, 1)× (−1, 1).

We get the mapping

Φ : Ω̂→ Ω,

which is illustrated in Figure 5.1. A function can then be expressed in terms of
the reference variables,

û = u ◦ Φ.

Recall the notation û, which means that u is a function of ξ and η; the ”hat”
corresponds to the reference variables and the reference domain.
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The weak formulation can be expressed in terms of the reference variables: Find
û ∈ X̂ such that∫

Ω̂

∂û

∂η
v̂dξdη + γ1

∫
Ω̂

∂û

∂ξ
v̂dξdη + γ2

∫
Ω̂

∂û

∂ξ

∂v̂

∂ξ
dξdη = γ3

∫
Ω̂
f̂ v̂dξdη, ∀ v̂ ∈ X̂0,

where

X̂ =
{
ŵ, ŵ ◦ Φ−1 ∈ X

}
, X̂0 =

{
ŵ, ŵ ◦ Φ−1 ∈ X0

}
,

and

γ1 = T

L
, γ2 = 2κ T

L2 , γ3 = T

2 .

The next step is to discretize the weak formulation. When spectral methods are
applied on time-dependent PDE’s, the numerical solution is usually approximated
by high order polynomials in space. However, the time direction is usually dis-
cretized using a multi-stage or a multi-step method. If the solution is smooth, the
error in the time direction will then be the dominant contribution to the discrete
error, and exponential convergence will not be obtained when we let the time step
go to zero.

To find the discrete solution we will now consider spectral discretization in time
as well. With this new approach we are hoping to obtain exponential convergence
for smooth functions.

5.3 Spectral discretization in space and time

To consider a spectral discretization based on high order polynomials in both space
and time we introduce the discrete spaces

X̂N = X̂ ∩ PN(Ω̂), X̂0
N = X̂0 ∩ PN(Ω̂).

The discrete problem is then stated as: Find ûN ∈ X̂N such that∫
Ω̂

∂ûN
∂η

v̂dξdη+γ1

∫
Ω̂

∂ûN
∂ξ

v̂dξdη+γ2

∫
Ω̂

∂ûN
∂ξ

∂v̂

∂ξ
dξdη = γ3

∫
Ω̂
f̂ v̂dξdη, ∀ v̂ ∈ X̂0

N .

(5.4)
The numerical solution we are seeking is a polynomial of degree N , ûN ∈ X̂N ⊂
PN(Ω̂). Let the tensor-product basis of the one dimensional Lagrange polynomials
through the GLL points be the basis for the discrete spaces. ûN ∈ X̂N can then
be expressed as

ûN(ξ, η) =
N∑
i=0

N∑
j=0

uij `i(ξ)`j(η), (5.5)
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where uij are the nodal values at the (N + 1)2 GLL grid points, uij = û(ξi, ξj).
The nodal values u0j and uNj for j = 0, .., N are given by the boundary conditions
(5.1b) and (5.1c); u0j = uNj = 0. The nodal values ui0 for i = 0, ..., N are given
by the initial condition (5.1d); ui0 = sm = ŝ(ξi). Hence, the initial condition is
approximated by a high order polynomial.

Any function v̂ ∈ X̂0
N can be expressed as

v̂(ξ, η) =
N∑
i=0

N∑
j=0

vij `i(ξ)`j(η), (5.6)

where we know that u0k = uNk = uk0 = 0 for k = 0, ..., N . If we also approximate
f(ξ, η) as a high order polynomial and combine (5.4), (5.5) and (5.6), we end up
with the following system of equations

∫ 1

−1

∫ 1

−1

(
N∑
m=0

N∑
n=0

umn `i(ξ)`′j(η)
)
`i(ξ)`j(η)dξdη+

γ1

∫ 1

−1

∫ 1

−1

(
N∑
m=0

N∑
n=0

umn `
′
m(ξ)`n(η)

)
`i(ξ)`j(η)dξdη+

γ2

∫ 1

−1

∫ 1

−1

(
N∑
m=0

N∑
n=0

umn `
′
m(ξ)`n(η)

)
`′i(ξ)`j(η)dξdη =

γ3

∫ 1

−1

∫ 1

−1

(
N∑
m=0

N∑
n=0

fmn `m(ξ)`n(η)
)
`i(ξ)`j(η),

for i = 1, ..., N−1, j = 1, ..., N . With the same notation as we used in previous
chapters, (v, w) =

∫ 1
−1 v(ξ)w(ξ)dξ, we can rewrite the above equation as

N∑
m=0

N∑
n=0

(`i, `m)(`j, `′n)umn + γ1

N∑
m=0

N∑
n=0

(`i, `′m)(`j, `n)umn+

γ2

N∑
m=0

N∑
n=0

(`′i, `′m)(`j, `n)umn = γ3

N∑
m=0

N∑
n=0

(`i, `m)(`j, `n)fmn

for i = 1, ..., N −1, j = 1, ..., N . The integrals can now be evaluated numerically
by GLL quadrature. Two of these integrals are already evaluated in chapter 3:

Âij =(`′i, `′j)N =
N∑
i=0

ρiDαiDαj,

B̂ij =(`i, `j)N = ρiδij,
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where Dij ≡ `j(ξi). Âij are the matrix elements of the one-dimensional stiffness

matrix Â and B̂ij are the matrix elements of the one-dimensional mass matrix B̂.
The last integral we want to evaluate is

Ĉij = (`i, `′j)N = ρiDij, (5.7)

where Ĉij are the matrix elements of the one-dimensional convection matrix Ĉ .

Both Ĉ and Â are exactly evaluated by the GLL-quadrature. With these three
matrices we end up with the system of equations

N−1∑
m=1

N∑
n=1

(
B̂imĈjn + γ1ĈimB̂jn + γ2ÂimB̂jn

)
umn =

γ3

N−1∑
m=1

N∑
n=1

B̂imB̂jnfmn −
N−1∑
m=1

δimĈj0sm, i = 1, ..., N − 1, j = 1, ..., N,
(5.8)

where sm = ŝ(ξm) and fmn = f̂(ξm, ξn). In the next section we exploit tensor-
product properties in a clever way to find a fast solver for (5.8) .

5.4 Tensor product solver

To find a fast tensor-product solver for (5.8), we start by introducing the variables

gij = γ3

N−1∑
m=1

N∑
n=1

B̂imB̂jnfmn −
N−1∑
m=1

δimĈj0sm. (5.9)

We can then rewrite (5.8) as

N−1∑
m=1

N−1∑
n=1

(
B̂imĈjn + γ1ĈimB̂jn + γ2ÂimB̂jn

)
umn = gij. (5.10)

Exploiting the tensor-product properties, we write the above equation in global
form, (

Ĉ2 ⊗ B̂1 + γ1B̂2 ⊗ Ĉ1 + γ2B̂2 ⊗ Â1
)

ux = gx. (5.11)

The subscript 1 indicates that the matrix corresponds to the space direction ξ,
while the subscript 2 indicate that the matrix corresponds to the time direction η.
The dimension of Ĉ1 is (N − 1)× (N − 1), while the dimension of Ĉ2 is N ×N .

The first step towards finding a fast tensor-product solver is to diagonalize the
convection matrix Ĉ2 with respect to the mass matrix B̂2. Let us consider the
eigenvalue problem

Ĉ2S2 = B̂2S2Λ2,
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where Λ is the diagonal eigenvalue matrix with elements Λii = λi and S2 is the
eigenvector matrix with the eigenvectors in each column. As opposed to Ĉ1, Ĉ2 is
not skew-symmetric because of the boundary condition imposed at η = −1. Ĉ2 is
therefore not normal and we are not able to diagonalize Ĉ2 for every N . However,
if N ≤ 32 we expect that we can diagonalize Ĉ without any significant roundoff
errors [1]. We are not going to consider higher values of N in the time direction.
The eigenvalues of Ĉ will be complex, which is important to take into account
when we implement the method. Ĉ2 and B̂2 in (5.11) can now be written as

Ĉ2 = B̂2 S2 Λ2 S−1
2 ,

B̂2 = B̂2 S2 S−1
2 .

(5.12)

We will discuss the generalized eigenvalue problem further in the next section. We
now substitute these two expressions into (5.11) and end up with the following
tensor-product form(

B̂2S2 ⊗ I2
) (

Λ2 ⊗ B̂1 + I2
(
γ1Ĉ1 + γ2Â1

)) (
S−1

2 ⊗ I1
)

ux = gx. (5.13)

Let us define the variables

ũx =
(
S−1

2 ⊗ I1
)

ux, (5.14)

g̃x =
(
S−1

2 B̂−1
2 ⊗ I1

)
gx. (5.15)

With these two variables, we can write (5.13) as

(
Λ2 ⊗ B̂1 + I2

(
γ1Ĉ1 + γ2Â1

))
ũx = g̃x, (5.16)

or

N−1∑
m=1

((
γ1Ĉ1 + γ2Â1

)
im

+ λj(B̂1)im
)
ũmj = g̃ij (5.17)

for i = 1, ..., N−1, j = 1, ..., N . For each value of j = 1, ..., N we define the vectors

g̃j =


g̃1j
g̃2j
...

g̃N−1j

 , ũj =


ũ1j
ũ2j
...

ũN−1j

 .

Exploiting local data structure, (5.17) can be expressed as N independent systems
of equations (

γ1Ĉ1 + γ2Â1 + λjB̂1
)

ũj = g̃j, ∀ j. (5.18)
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Each system of equations has dimensions (N − 1) × (N − 1) and requires O(N3)
floating pint operations to be solved. Thus, using N processors, we can find
ũx, via Gaussian elimination, in O(N3) operations for O(N2) unknowns. Using
(5.14) we can find the solution ux. Again, we exploit local data representation for
efficiency, the fast algorithm taking advantage of the local data structure is stated

Algorithm 6 Fast convection-diffusion solver: spectral method

1. G̃ = GB−T1 S−T1

2. ũj =
(
γ1Ĉ1 + γ2Â1 + λjB̂1

)−1
g̃j for all j = 1, ..., N − 1

3. U = ŨST2

in Algorithm 6. The total computational cost is O(N3) floating point operations
for O(N2) unknowns, if we have N different processors to compute step two. The
method is fully implicit.

In steps one and two of Algorithm 6 we compute two complex matrices G̃ and
Ũ while the matrix-matrix multiplication between the two complex matrices will
give a real matrix in the last step. Because of computational roundoff errors, Ũ
will have a small imaginary part. We overlook this, and merely consider the real
part of Ũ.

In section 5.6 we solve an unsteady convection-diffusion problem using Algo-
rithm 6 and verify the convergence rate of the method. First however, we study
the generalized eigenvalue problem for the convection operator Ĉ2 by considering
the convection problem.

5.5 The generalized eigenvalue problem for the

convection operator

We now consider the linear convection problem

∂u

∂t
+ ∂u

∂x
= 0 in ωx = (−1, 1) (5.19a)

u(−1, t) = 0 ∀ t ∈ ωt = [0, T ]. (5.19b)
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To obtain the weak formulation we define the spaces

X =
{
v ∈ H1(ωx) |v(−1) = 0

}
,

Y (X) =
{
v

∣∣∣∣∣ ∀ t∗ ∈ ωt, v(x; t∗) ∈ X,
∫ T

0
‖v(x; t∗)‖2

H1(ωx) dt <∞
}
,

where t∗ denotes a fixed value of t [10]. The weak formulation is stated as: Find
u ∈ Y (X) such that∫ 1

−1

∂u

∂t
v dx+

∫ 1

−1

∂u

∂x
v dx = 0, ∀v ∈ X.

We now consider spectral discretization only in the space direction while the solu-
tion is continuous in time; so called semi-discretization. The discrete space is

XN = X ∩ PN(ωx).

We can now approximate the function u as

ûN(ξ, t) =
N∑
i=1

ui(t)`i(ξ),

where ui(t) = û(ξi, t) for i = 1, ..., N and ûN(ξ, t) = uN(x(ξ), t), where x = ξ.
If we choose v̂ = `i(ξ) for i = 1, ..., N , the semi-discrete problem reads: Find
ûN ∈ Y (XN) such that∫ 1

−1

∂ûN
∂t

v̂ dξ +
∫ 1

−1

∂ûN
∂ξ

v̂ dξ = 0, ∀ v̂ ∈ XN .

As before, we apply GLL quadrature and the system of equations can be expressed
as

B̂2
du
dt + Ĉ2 u = 0

or

du
dt = −B̂−1

2 Ĉ2 u,

where

(
B̂2
)
ij

=
N∑
α=0

ρα`i(ξα)`j(ξα) = ρiδij,

(
Ĉ2
)
ij

=
N∑
α=0

ρα`i(ξα)`′j(ξα) = ρiDij,
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and

u =
[
u0 u1 · · · uN

]T
.

Next, we want to study the stability of the above equation. Diagonalizing−B̂−1
2 Ĉ2

will give us the model problem to study for stability

ds
dt = λs,

where λ represents an eigenvalue of −B̂−1
2 Ĉ2. The eigenvalue problem is exactly

the same as we discussed for the fast solver in section 5.3. It can be shown that [1]

|λ| ≤ O(N2). (5.20)

Subject to the boundary condition (5.19b) the system has dimension N × N .
The real parts of the eigenvalues become strictly negative as N increases and the
imaginary parts dominate the maximum absolute value of λ, see Figure 5.2. As
expected, we can observe that the absolute value of λ satisfies (5.20) and that the
maximum absolute value scales like O(N2).

Roundoff errors can cause difficulties in solving the eigenvalue problem as N in-
creases. One problem is that Ĉ2 will not be normal. We recall that a matrix A is
normal if

ATA = AAT .

Examples of normal matrices are symmetric matrices A = AT and skew-symmetric
matrices AT = −A. Thus, Ĉ1 is normal. A normal matrix has a set of orthogonal
eigenvectors and it is the absence of orthogonality that results in numerical diffi-
culties. But the problems do not occur unless N > 32. In Figure 5.2 it is probably
the roundoff errors that we observe when N goes from N = 32 to N = 64. How-
ever, in practice we will not consider a polynomial of that high a degree (N > 32).
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Figure 5.2: The eigenvalues of the generalized eigenvalue problem Ĉ2 S = B̂2 SΛ
for N = 8, 16, 32, 64. Roundoff errors occur when N = 64. Note the different
scaling of the real and imaginary axes.
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5.6 Numerical results

Let us now consider the unsteady one-dimensional convection-diffusion problem
(5.1) with exact solution

u(x, t) = sin(πx) sin(πt) in Ω = ωx × ωt = (0, 1)× (0, 40), (5.21)

subject to our model problem L = 1 and T = 40. To solve the problem we
divide the domain into K = 20 spectral elements in time, such that T = K∆T ,
∆T = 2, and use a pure spectral method in space. The numerical solution can
then be computed using the fast tensor-product solver given by Algorithm 6 in
each element. The initial condition in each element, except the first, is taken from
the numerical solution in the previous element.

Figure 5.3 shows the numerical solution from the last spectral element, where
uN(x, t) ∈ P10(ΩK) and ΩK = ((0, 1)× (38, 40)).

The exact solution is infinitely smooth. We therefore expect exponential conver-
gence. Figure 5.4 illuminates this. The error is measured in the discrete L2 norm
and energy norm, over the last spectral element ΩK = (ωx × (T −∆T, T )).
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1

xt

u N
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Figure 5.3: The discrete solution uN(x, t) ∈ P10(ΩK) computed at the last time
step t ∈ [38, 40].
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Figure 5.4: The discretization error u − uN of the one-dimensional unsteady
convection-diffusion problem with exact solution u(x, t) = sin(πt) sin(πx), where
uN ∈ PN(ΩK). The error is measured in the discrete L2 and energy norm in the
domain of the last spectral element, ΩK = (ωx × (T − ∆T, T )), as a function of
the polynomial degree N .

5.7 Nonlinear time-dependent PDE

We now consider a nonlinear time-dependent PDE, namely the unsteady convection-
diffusion equation with a nonlinear term, subject to homogeneous Dirichlet bound-
ary conditions:

∂u

∂t
+ ∂u

∂x
= κ

∂2u

∂x2 + αu3 + f(x, t) in ωx = (0, L), (5.22a)

u(x = 0, t) = 0, ∀ t ∈ ωt = [0, T ], (5.22b)

u(x = L, t) = 0, ∀ t ∈ ωt, (5.22c)

with initial condition
u(x, t = 0) = s(x). (5.22d)

u(x, t) is the temperature (the solution), κ is the thermal diffusivity, α is a constant
and f(x, t) is a thermal heat source. We still assume κ is a constant.

Using a similar approach as we did for the unsteady convection-diffusion equation
we end up with the weak formulation of the problem: Find û ∈ X̂ such that∫

Ω̂

∂û

∂η
v̂dξdη + γ1

∫
Ω̂

∂û

∂ξ
v̂dξdη + γ2

∫
Ω̂

∂û

∂ξ

∂v̂

∂ξ
dξdη = β

∫
Ω̂
u3vdξdη + γ3

∫
Ω̂
f̂ v̂dξdη,
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for all v̂ ∈ X̂0, where

X̂ =
{
ŵ, ŵ ◦ Φ−1 ∈ X

}
, X̂0 =

{
ŵ, ŵ ◦ Φ−1 ∈ X0

}
,

and

γ1 = T

L
, γ2 = 2κ T

L2 , γ3 = T

2 , β = αT

2 .

The only term that is different from the unsteady convection-diffusion problem is
the nonlinear term. We therefore focus on this term. For the unsteady convection-
diffusion problem we approximated û(ξ, η) as

ûN(ξ, η) =
N∑
i=0

N∑
j=0

uij `i(ξ)`j(η).

If we discretize the nonlinear term in the same way, we get

β
∫

Ω̂
v̂ û3

N dξdη = β
∫

Ω̂
`i(ξ)`j(η)

(
N∑
m=0

N∑
n=0

umn `m(ξ)`n(η)
)3

dξdη.

The right hand side of this equation will cause difficulties computationally. Let us
instead define the nonlinear function

ŵ(ξ, η) ≡ û3(ξ, η).

We approximate this function as a polynomial of degree N , such that

ŵN(ξ, η) =
N−1∑
m=1

N∑
n=1

wmn `m(ξ)`n(η),

where wmn = u3
mn. The nonlinear term in the weak formulation then becomes

β
∫

Ω̂
v̂ ŵN dξdη = β

∫
Ω̂
`i(ξ)`j(η)

N−1∑
m=1

N∑
n=1

wmn `m(ξ)`n(η)

≈
N−1∑
m=1

N∑
n=1

B̂im B̂jnwmn,

where B̂ij = ρiδij. The integrals are evaluated with GLL-quadrature. If the exact
solution û(ξ, η) is a polynomial of degree N , then ŵ(ξ, η) will be a polynomial
of degree 3N . The approximation of ŵ will therefore not be exact unless we
approximate the solution with a polynomial of degree 3N . However, when we
apply GLL-quadrature using N points we can never evaluate the integral exactly.
GLL-quadrature only evaluates the integral exactly if the integrand is a polynomial
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of degree K ≤ 2N − 1. If N > 1, this will never be the case for the nonlinear term
where the integrand is a polynomial of degree K = 4N . On the other hand, the
error will depend on the regularity of u. If u is very regular, say perhaps analytic,
we expect the quadrature error of the nonlinear term to be small.

The nonlinear term can in global form be written as
(
B̂2 ⊗ B̂1

)
wx. Adding this

term to the global form of the discrete unsteady convection-diffusion problem (5.11)
we end up with the following tensor-product form of the discrete problem(

Ĉ2 ⊗ B̂1 + γ1B̂2 ⊗ Ĉ1 + γ2B̂2 ⊗ Â1
)

ux −
(
βB̂2 ⊗ B̂1

)
wx = gx. (5.23)

As we did for the unsteady convection-diffusion equation, we diagonalize Ĉ2 and
substitute (5.12) into the above equation,(

B̂2S2 ⊗ I2
) (

Λ2 ⊗ B̂1 + I2
(
γ1Ĉ1 + γ2Â1

)) (
S−1

2 ⊗ I1
)

ux

−
(
B̂2 S2 ⊗ I1

) (
β I2 ⊗ B̂1

) (
S−1

2 ⊗ I1
)

wx = gx.

If we now define w̃ in the same way as ũ in (5.14), we end up with the following
expression (

Λ2 ⊗ B̂1 + I2
(
γ1Ĉ1 + γ2Â1

))
ũx −

(
βI2 ⊗ B̂1

)
w̃x = g̃x,

where g̃x is defined in (5.15). Let us now assume that we know w̃x. With the
same notation as before we can write the system as(

γ1Ĉ1 + γ2Â1 + λjB̂1
)

ũj = g̃j + β B̂1w̃j for j = 1, ..., N.

An iterative method is now introduced to solve the problem. In the first step
we find Ũ from the above system of equations. Next, we compute U from (5.14).
Then W can be computed as wij = u3

ij for i = 1, ..., N−1 and j = 1, ..., N . Finally

we compute a new W̃ and start at step one again. The iteration continues until
the relative error measured in the discrete L2 norm is less than a given tolerance,

REk ≡
‖ukN − uk−1

N ‖L2
N (Ω)

‖ukN ‖L2
N (Ω)

< TOL,

where TOL is the tolerance and ukN is the numerical solution at the k’th iteration.
The algorithm is stated in Algorithm 7.

In the numerical results we choose W̃0 to be the zero matrix. We will study the
convergence rate of the algorithm and explore how it is influenced by the constant
α.
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Algorithm 7 Fast iterative solver for the nonlinear PDE

k = 1
while REk > TOL do

ũj =
(
γ1Ĉ1 + γ2Â1 + λjB̂1

)−1 (
g̃j + βB̂1w̃k−1

j

)
for j = 1, ..., N − 1

Uk = ŨST2
wij = (ukij)3 for i = 1, ..., N − 1, j = 1, ..., N
W̃k = WS−T2
k = k + 1

end while
return Uk

5.8 Numerical results

We consider the nonlinear time-dependent PDE (5.22) with the analytical solution

u(x, t) = sin(πx) sin(πt) in Ω = ωx × ωt = (0, 1)× (0, 2).

The iterative method in Algorithm 7 solves the problem. The exact solution is
infinitely smooth. We therefore expect exponential convergence of the problem
as N increases. Figure 5.5 illuminates this when α = 1. From numerical exper-
iments we know that the iterative method does not converge when α ≥ 5. The
numerical solution blows up to infinity. This is reasonable, as the solver is a sta-
tionary iterative method, and we know that other such methods have a limited
convergence.

Next, we explore the convergence rate of the iterative method. One way of finding
the convergence rate is to measure the relative error for each iteration k

‖ukN − uk−1
N ‖L2

N (Ω)

‖ukN ‖L2
N (Ω)

,

and let k go to infinity. In Figure 5.6 the relative error is plotted as a function
of k. The relative error is plotted on a logarithmic scale for different α′s. We see
that the method obtains exponential convergence

‖ukN − uk−1
N ‖L2

N (Ω)

‖ukN ‖L2
N (Ω)

∼ e−µk.

The convergence rate µ decreases when α increases. In Table 5.8, µ is calculated
for different α’s.
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α µ
0.01 4.6
0.1 4.2
1 2.2
2 1.6
3 1.0
4 0.8

Table 5.1: The convergence rate µ of the iterative method solving the nonlinear
time-dependent PDE (5.22) with exact solution u(x, t) = sin(πx) sin(πt). The
convergence rate depends on α and is calculated from ‖ukN −uk−1

N ‖/‖ukN ‖ ∼ e−µk,
where the norm used is the discrete L2 norm.
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Figure 5.5: The discretization error u(x) − uN(x) measured in the discrete L2

norm ‖ · ‖L2
N (Ω), and energy norm ||| · |||N , as a function of the polynomial degree N .

uN(x) is the numerical solution to the nonlinear time-dependent PDE (5.22) in the
domain Ω = (0, 1) × (0, 2), where the exact solution is u(x, t) = sin(πx) sin(πt).
The error is plotted on a logarithmic scale.
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Figure 5.6: The relative error ‖ukN − uk−1
N ‖/‖ukN ‖ for different α’s is measured in

the discrete L2 norm as a function of the iteration k. The relative error is plotted
on a logarithmic scale and the tolerance is TOL= 10−15.
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Conclusion

Spectral methods based on high order polynomials are powerful tools for finding
numerical solutions to PDE’s. What makes spectral methods unique compared to
other methods is that the convergence rate depends on the regularity of the exact
solution and the given data.

The spectral discretization leads to an algebraic system of equations. The com-
putational complexity of solving this system depends on the solution method, and
the difference in the computational cost can be significant. Two key ingredients for
finding a fast solver is to exploit the tensor-product properties and take advantage
of the local data structure.

The Poisson problem in a rectangular domain is studied using spectral discretiza-
tion based on the Galerkin method. The fast tensor-product solver for this problem
has a computational complexity of O(Nd+1) floating point operations and O(Nd)
floating point numbers for O(Nd) unknowns. If the exact solution is infinitely
smooth, the spectral method has an exponential convergence rate. Tensor prod-
uct solvers can also be derived for other discretization methods. Applying central
differences for solving the Poisson problem results in a fast tensor-product method
with equivalent computational complexity, but the convergence rate for smooth
functions is only algebraic.

The Poisson problem is also studied in deformed domains using a spectral Galerkin
method. We try to derive a fast tensor-product solver, but so far we have not
succeeded. Iterative methods, such as the conjugate gradient method, can instead
be applied to solve the algebraic system of equations. In this case it is crucial
that we exploit the local data structure in order to derive a fast solver. In the
conjugate gradient method one iteration has a complexity of O(Nd+1) for O(Nd)
unknowns. In deformed domains the approximated solution does not only depend

69
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on the regularity of the function, but also on the regularity of its geometry, due to
the isoparametric mapping.

Fast tensor-product solvers can also be derived for linear time-dependent PDE’s.
The unsteady convection-diffusion equation in R is approximated using spectral
discretization in both space and time. The solution algorithm is fully implicit and
we end up at solving O(N) independent systems of equations. Each system is
solved directly via Gaussian elimination at a cost of O(N3). Spectral elements in
time are used to illustrate the exponential convergence rate for smooth functions.

At last, fast tensor-product solvers are studied for nonlinear time-dependent PDE’s.
Discretizing the nonlinear term resulted in some difficulties. An iterative tensor-
product solver is introduced to solve the derived algebraic system of equations.
The method obtains exponential convergence rate for smooth functions when the
nonlinear term is not too dominant.

Tensor product solvers are fast and accurate methods that can be applied on a
number of PDE’s. In this report we have focused on model problems with homoge-
neous Dirichlet boundary conditions, but it can also be applied to nonhomogeneous
Dirichlet, homogeneous Neumann, nonhomogeneous Neumann and mixed bound-
ary conditions. The methods are mainly discussed for the rectangular domain in
R2, but they are easily extended to Rd, d > 2.
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