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Abstract

In this work, we have applied a multi-scale discretized Full-Waveform Inversion in frequency-

space domain considering both the 2-D and 3-D viscoacoustic wave equation for deriving P-

wave velocity (Vp) and quality factor (Q) models in two inlines extracted from two vintages

of the Sleipner Field (1994 and 2008).

The algorithm uses the waveform information from the pre-stack datasets of the Sleipner

field recorded in 1994 and 2008 (before and after the injection of had CO2 started). A pre-

processing workflow, aiming to enhance the signal to noise ratio (S/N) without harming the

amplitudes, is applied to the data before the application of the FWI method.

In a first stage, several tests were performed on synthetic data, aiming to measure the

sensitivity of the algorithm when it comes to handle noisy sources, a less reliable initial

model and different spacing grids. From these test, it was found that the algorithm is quite

sensitive to handle noise in the sources, having converged to a local minimum when a S/N

ratio below 5 is used. It was also found that a starting initial velocity model is critical to

avoid cycle skipping and thus convergence to a local minimum. On the other hand, a bigger

spacing grid can be used without losing critical information.

The impact of the initial model is also measured in the real dataset by performing a 2-D

FWI. Where an improvement in the resolution of the P-wave velocity models were achieved

by using a more accurate initial velocity for the Inline 1874 of the 2008 vintage.

A following test regarding the update of the density were performed, in which no sign of

improvement was achieved by using the Gardner’s equation to update the density, respect to

the velocity. On the contrary, it added artifacts and increased the computational time of the

inversion.
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Two approaches were applied in order to asses the time-lapse difference of the vintages.

A "cascade" approach is considered to give better indication of the lateral extension and

change in velocity values due to the injection of CO2 in the reservoir. However, the results

obtained for both approaches bear zones with strong difference in velocity which is not

expected to happen. This might be due to the limitation in iterations, different possible local

minima for each data set in the "parallel approach" and the assumption that the baseline is

fully inverted and its global minimum is achieved before it is used as initial model in the

"cascade approach"

Attenuation has been considered by the relationship between the quality factor (Q) and

the complex value of the velocity. Results from the attenuation inversion show a smooth

behavior of the distribution of the parameter and a decrease in the zone where the gas is

expected to be accumulated.

A last inversion consisted in a multiparameter FWI, inverting for both P-wave velocity

and quality factor, where a strong "trade-off" between the parameters is shown in the results.

.
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Chapter 1
Introduction

Since the late 1960s, seismology has been applied to prospect the natural resources in the

subsurface: a production-oriented branch of seismology that is often termed as exploration

seismology (Sheriff and Geldart, 1995). Such branch relies on the study of the propagation

of the seismic waves in the subsurface, a study in which the geoscientific community has

spent decades of effort in an attempt to fully understand.

As a result of this effort, several imaging methods have been developed in the past years.

These methods are commonly divided into two main categories. The first category consists of

migration methods, aiming to image the the high-frequency structures of the subsurface. The

second category, seismic inversion, consists of methods that estimate the physical properties

of the subsurface through an inversion process.

As the seismic imaging methods require a velocity model,the velocity building step is

critical and has a direct influence in the accuracy or success of the migration.

Regarding the building of the velocity models, among the most well-known techniques

are: reflection traveltime tomography (Stork, 1992) and migration velocity analysis (Sava,

2004). Both approaches make approximations for modeling wave propagation such as the
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high-frequency approximation or the one-way approximation of the wave equation. In the

80’s, however, Lailly (1983), Tarantola (1984) and Mora (1987) suggested a new inversion

strategy known as full-waveform inversion (FWI). By iteratively minimizing the misfit be-

tween observed and modeled seismograms, this technique uses the full information content

given by the waveforms, deriving velocity models of a higher resolution than those provided

by the conventional methods. These improved velocity models can help to derive migrated

images with higher resolution and better reflector positioning, as it is discussed in Vigh et al.

(2010).

1.1 FWI and the local gradient method

As stated above, the full-waveform inversion uses the full information content given in

the waveforms and can consequently offer a much better-resolved image of the 3D subsur-

face structures. It basically consist of minimizing the misfit between the observed and the

modelled data, aiming to determine the optimal model, which could explains the observed

data in a better way.

The straightforward way would be to apply a global search, like the Monte Carlo ap-

proach to find the global misfit minimum. However, this is computationally accomplishable

only for a very limited set of model parameters and thus not suited for the general multipa-

rameter model (Operto et al., 2013). To overcome this computational limitation, the most

widely used optimization methods are gradient-based algorithms. In general, these methods

search for a minimum of the misfit function in the vicinity of the starting model. How-

ever, the seismic inverse problem is generally highly nonlinear and the misfit function is not

smooth, but characterized by local minima (Figure 1.1). Consequently. the local inversion

method bears the danger to end up in one of the local minima, which is a major problem in

FWI. Requiring a sufficiently accurate starting model for a successful inversion.
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Figure 1.1: Distinction between local and global extreme values of a function.

Among the optimization methods the most sophisticated is the class of Newton meth-

ods which take the full Hessian, the second derivative of the misfit function, into account.

They lead to a better convergence and can result in improved subsurface images (Virieux and

Operto, 2009). Still, the high computational costs make them unattractive for large inverse

problems (Pratt, 1999). Alternatives are quasi-Newton algorithms. It estimates the Hessian

from changes in the misfit gradient and can, therefore, be implemented at lower computa-

tional costs. Another method successfully applied in FWI is the truncated Newton method,

which approximates the Hessian by the second-order adjoint formula (Metivier. et al., 2017).

The adjoint method was originally formulated in the time domain by Tarantola (1984) and

then developed by Pratt (1990b).

1.2 Frequency vs Time

Even though it remains unclear, which approach (time or frequency domain) is the most

efficient one for full-waveform inversion. The final decision might rely on the characteristics

of the study such as acquisition geometry or frequency content. In this study we have im-

plemented an FWI in the frequency domain, which presents some distinct advantages with

respect to the time-domain formulation, (Pratt (1990a); Pratt (1999) and Sirgue and Pratt

(2004)) such as:
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1. Contrary to time domain approach, the frequency domain FWI is generally carried

out by successive inversions of single frequencies or packs of a few discrete frequen-

cies . The simulations cover from the lowest to the highest frequencies, a frame-

work that is usually called "multi-scale inversion" (Bunks et al., 1995) and it might

mitigate the non-convergence of the inverse problem associated with high-frequency

cycle-skipping

2. The redundancy of aperture angle on the wavenumber illumination of the multifold

surveys can be decimated in order to apply more efficient numerical approaches than

those applied in the time domain FWI. Resulting in fewer inversions to perform in

order to build a reliable velocity model.

3. Attenuation can be implemented in the forward problem in a straightforward way, and

without extra computational cost, by using complex velocities (Song et al., 1995).

1.2.1 Multi-scale inversion in frequency domain

As mentioned above, the seismic inverse problem is highly nonlinear and requires an

iterative approach to fit the modelled and observed data (Tarantola, 1984). Moreover, as a

local inversion method, FWI is prone to end up in one of the numerous local minima of the

objective function (Figure 1.1.)

In an attempt to solve this problem, multi-scale decomposition of the seismic inversion

had been proposed. Accordingly to Bunks et al. (1995), at long scales, the number of local

minima is greatly reduced and those minima that remain are further apart from each other

(Figure 3.3).

In other words, the FWI can be implemented at a long scale of the problem, with higher

possibilities of finding the global minimum of the problem or at least a local minimum that

is in the near neighborhood of the global minimum. This solution of the inverse problem is
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then fined-up for successively shorter scales.

1.3 Visco-Acoustic wave equation

Depending on the problem, it is common to use certain approximations of the wave

equation. A main area of FWI application is the marine environment. In these scenar-

ios, the wave propagation is mainly approximated using the acoustic or visco-acoustic wave

equation. Which only considers compressional waves. For land seismic, the abundance of

prominent shear waves and surface waves favors an inversion, involving the according pa-

rameters, such as compressional-wave velocity, shear-wave velocity and density. Depending

on the subsurface, anisotropic parameters might need to be included. Still, these parameter

classes are very challenging to invert for (Virieux and Operto, 2009) and are often integrated

only as passive parameters in the forward simulation.

In this study, we have considered the visco-acoustic wave equation to be solved. This

simplification in the subsurface description results from three main reasons:

1. The first one is computational related. Solving the elastic wave equation is generally 2-

3 orders of magnitude more computationally intensive than the acoustic wave equation

due to the extra wavefield components needed to be computed.

2. The second one is ill-posedness problem nature related. The misfit function has several

local minima, mainly due to lack of low frequencies, acquisition problems or inaccu-

racy of the initial model. By considering elastic wave equation, several parameters

have to be added, implying more unknowns to the problem.

3. As stated above, due to the frequency domain approach considered in the inversion,

the implementation of the attenuation, can be achieved without great efforts, based
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on the use of complex velocities within the visco-acoustic equation. In the inver-

sion framework applied, the attenuation is considered following the Kolsky-Futerman

model (Kolsky (1956) and Futterman (1962).

By considering P-wave velocity and attenuation the FWI becomes a multi-parameter

inversion, aiming to describe or characterize the subsurface in a more accurate. However, it

is not that simple, since the parameters considered can have coupled effects, a phenomenon

termed as "trade-off" (Butzer, 2015).

1.4 2D and 2.5D

In this work, we have considered 2D and 2.5D Full-waveform inversion schemes. Due

to the associated computational cost for the applicability of full 3D FWI to our dataset,

we propose a 2.5D inversion scheme, in which the solution of the full 3D visco-acoustic

waveform is solved but only 5 planes in the Y space direction are considered. Two main

advantages can be drawn from considering a 2.5D inversion:

1. In a 2D FWI scheme the dataset must be scaled prior to the inversion (Pratt, 1999),

leading to possible artifacts into the parameters considered. In a 2.5D scheme, even

though only 5 planes are considered, the dataset is not scaled prior the inversion and

the solution of the full 3D visco-acoustic wave equation might improve the modelling

of the geometrical spreading factor in comparison to the 2D scheme.

2. Another advantage might be linked to a better resolution of the crossline plane by a

better treatment of the events in the inline plane.
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1.5 Time-lapse FWI

The multi-scale apporach, such as the one consider in this work, can be adapted to re-

solve low or high wavenumber features of the subsurface. Making FWI a suitable option for

inverting for time-lapse changes in the subsurface. Moreover, the technique can be apply to

monitor a reservoir while producing, or to monitor the distribution of the injected CO2 in a

sequestration project.

In the last decade, several time-lapse FWI applications have been studied (Watanabe et

al., 2004; Denli and Huang, 2009; Plessix et al., 2010; Zheng et al., 2011; Asnaashari et

al. 2012; Routh et al., 2012; Queisser and Singh, 2013; Raknes and Arntsen, 2014; among

others). However, application on real data is quite limited.

The main drawbacks of the time-lapse FWI method, are linked to the sensibility to re-

peatability problems, due to the difference in acquisition geometries, and numerical artifacts

that may impact in a negative way, the inverted difference of the vintages.

In the last decade, time-lapse FWI have been mainly carried out following three different

approaches:

1. Parallel approach: Separately inverting the baselin and monitoron a common initial

model and then substract the results for comparison.

2. Cascade approach: Inverting them in a sequential way, in which the final model from

the baseline inversion is used as starting model for the monitor inversion

3. Double-difference approach: with a baseline model inversion followed by a monitor

inversion that solves the following optimization problem Recently, a relatively similar

approach where, in addition, the observed dataset is slightly modified by adding the

observed data residuals to the synthetic data from the first inversion, was developed
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(Zheng et al., 2011) attempt to introduce into the inversion some degree of 4D coupling

between vintages

In this work, we have applied the first two approaches to our datasets

The 4D FWI results using real timelapse Grane PRM data acquired in the field with

a six-month acquisition interval between vintages show changes at the reservoir level that

correlate with both injecting and producing wells

1.6 FWI as CO2 monitoring tool for Sleipner Field

The injection of carbon dioxide (CO2) into deep saline aquifers is one of three main

options for the geological storage of CO2 in order to decrease anthropogenic greenhouse gas

emissions into the atmosphere. Previous studies have shown that compared to the other two

major options (storage in depleted hydrocarbon reservoirs and in deep, un-mineable coal

seams), deep saline aquifers have the highest potential capacity globally for CO2 storage

(Bachu, 2003). This attribute has been the driven force in the development of more than 10

saline aquifer injection projects over the last 10 years (Nordbotten et al., 2005).

The first project of this kind was launched in 1996 at the Sleipner gas field (Figure 2.1)

in the Norwegian North Sea. Due to the high content of CO2 associated to the gas (ap-

proximately 9%), Statoil decided to capture and store this CO2 into the highly porous saline

aquifer Utsira Fm, aiming to meet the sales gas requirements and avoid pollution to the at-

mosphere (Furre et al., 2017). The Utsira Fm is a high porosity and permeable sandstone at

a depth between 800 and 1100 meters found at the Sleipner field. The CO2 injection com-

menced through injection well 15/9-A-16 on September 15th 1996, since then, more than 16

Mt of CO2 have been stored in the Utsira Sand (Hansen et al., 2005)

However, as in any CCS project, leakage of CO2 out of the reservoir is a big concern.
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Such migration out of the injection formation can lead to contamination of other subsur-

face resources, including groundwater resources in shallower formations (Little and Jackson,

2010). In order to demonstrate that the storage site is performing as predicted, a monitor port-

folio has been established for Sleipner, with monitor techniques such as: Gravity surveys,

CSEM or 3-D Seismic acquisitions. For the latter, several time lapse seismic surveys have

been carried out in 1999, 2001, 2002, 2004, 2006, 2008, 2010, 2013 and 2016 (Furre et al.,

2017).

The high quality of this time-lapse dataset has been used for scientists to developing and

testing new inversion schemes, both inverting from seismic amplitudes to impedances, and

further to rock physics properties. The data has been used for full, partial, and pre-stack 2D

and 3D inversions, and in later years also Full Waveform Inversion (FWI).

Regarding CO2 monitoring the strength of the FWI is the ability to characterize veloc-

ity changes induced by the CO2 injection and accurately locate the plume due to the CO2

migration. When entering the reservoir, the CO2 is normally in supercritical state. This pro-

vides a strong sonic velocity contrast to the initially brine filled reservoir. A velocity contrast

that is exploted by the FWI.

In this work, we have used two data sets: 1) from a “baseline” survey from 1994 (acquired

before the injection of the CO2) and 2) from a “monitor” survey acquired in 2008 (12 years

after the injection had started). With the objective of visualizing the plume development in

terms of velocity changes.

1.7 Organization of the work

Chapter 2 will start with the description of the geological area and acquisition setting for

the considered surveys for the real case study. Chapter 3 gives an overview of the visco-
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acoustic wave equation propagation and the attenuation model considered. The concept

of FWI and local optimization methods are introduced. The implementation and the main

advantages of this frequency approach are discussed. Followed by the frequency selection

technique applied and the pre-processing sequence. Chapter 4 presents the methodology and

results of the implementation of the theoretical aspects discussed in chapter 3. In a first stage,

the FWI is applied in the frequency domain to a 2-D synthetic case representing the Sleipner

field. Afterwards, a multi-scale monoparameter full-waveform inversion is applied in 2-D

domain to the data sets, termed as “baseline” and “monitor”. For both data sets, P-wave

velocity (Vp) and attenuation (by quality factor Q) are inverted separately, with the update

of the density given by the Gardner’s relationship. Followed by a multi-scale multiparameter

inversion of both Vp and Q in a "simultaneous" and a "sequential" approach. A FWI is then

applied to a 2.5D model for both datasets for Vp and Q. Finally, chapter 5 gives a summary

and conclusion of the thesis
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Chapter 2
Geological Setting

Being the first CO2 sequestration project at big scale, there is plenty of information available

regarding the properties of the field and the storage site. As mentioned before, the Sleipner

Carbon Capture and Storage project started as a CO2 sequestration project with the source

of this greenhouse being its own hydrocarbon production from the Sleipner West gas field

(Zweigel et al., 2004) (Figure 2.1) .

Figure 2.1: Left: location map. Right: the Sleipner fields (base maps courtesy of NPD).

The project begun in 1996, with an injection rate of 1 Mt/year with more than 16 Mt of

CO2 injected so far. Before injection, CO2 is compressed to its dense supercritical state. At
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this supercritical stage, the relatively high density difference between the formation fluids

and the CO2 leads to strong buoyancy forces and provides a strong sonic velocity contrast to

the initially brine filled reservoir and favourable conditions for seismic monitoring.

2.1 Utsira formation

Several studies have confirmed that the injected CO2 is safely trapped within the Utsira

Fm with no leakage into the overburden to date (Chadwick et al. (2006); Arts and Eiken

(2004); Furre et al. (2015))

The Utsira formation of the Nordland Group is a late Cenozoic post-rift succession of

the North Sea, with an extension of more than 26000km2 (Holloway et al., 2000). The sands

of the Utsira Fm display a complex architecture and the elongated sand body extends some

450 km N-S and 90 km E-W (Figure 2.2). It is formed by basically two depocentres. The

southern depocentre is where the CO2 has been injected to, with a depth range from 800m

to 1100m and an average thickness of 250m.

Holloway et al. (2000); give a very detailed geological description of the Utsira sand

reservoir and caprocks, presenting results from a core data analysis concluding that the Utsira

Sand sediments are mostly uncemented, fine to medium-grained sand, with occasional coarse

grained beds. With a well leg response as a blocky pattern, low gamma ray and resistivity

values.

The storage capacity of the Utsira Sand has been predicted at over 30 Gt (Zweigel et al.,

2004), this high value is mainly due to its porosity and permeability properties, ranging

from 27% to 30% and from 1 to 3 Darcy respectively (Chadwick et al., 2006). Within the

storage reservoir, several thin shale layers, up to 1-2m thick, are also identified from wireline

log data with high gamma ray values, considered as horizontal permeability seals for the
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Figure 2.2: Left: Map view of the top of the Utsira Fm. Right: Thickness of the Utsira Fm. (Both

maps courtesy of NPD).

CO2 (Chadwick et al., 2006). Furthermore, no faults have been reported from within the

Utsira Sand, except for a few polygonal reverse faults penetrating the very lowermost part of

reservoir, initiating from the Hordaland shales beneath (Zweigel et al., 2004).

Its top varies in depth from 250 to 1500m (Figure 2.2), showing a general dip towards

the South. Near the Sleipner field, it is found mainly around a depth of 800 and 1100m

(Chadwick et al., 2006). In contrast, the base of the formation presents an abrupt change of

the gamma ray values decreasing upwards. This trend indicates the separation between the

sand body and the underlaying shales of the Hordaland Group (Chadwick et al., 2006).

The thickness of the Utsira formation varies along with the depression of its base. Its

range goes from 180 meters to 320 meters (Figure 2.2).
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2.1.1 Caprocks

The Hordaland group represents the underlying unit to the Utsira reservoir (Figure 2.3).

The group is mainly characterized by shales from the late Oligocene.

Meanwhile, the caprock to the Utsira Fm is formed by the Nordland Group (Figure 2.3).

This is a hundreds-meters thick cap-rock shale from the lower and upper Pliocene. The

caprock shale or the Nordland shale, comprises dominantly kaolinite, illite, quartz, and smec-

tite. Based on the cutting analysis, that the caprock is assumed to be a good quality seal with

a low probability of leakage (Chadwick et al., 2006)

Figure 2.3: Left: Seismic section illustrating the Utsira Sand reservoir, its caprock and the underlying

units. The 250 m thick Utsira Sand Formation is overlained by the Nordland shales, forming the

Lower, Middle and Upper seals. (Taken from Chadwick et al. (2004)).

Figure 2.3 shows the geological structure of the Utsira Sand, which is surrounded by the

Nordland shale on the top and the Hordaland shale on the bottom.

The main seal is subdivided in three sections according to (Arts and Eiken, 2004)

• The Lower seal (lower-upper Miocene): Is the shale overlaying the Utsira sandstone
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with a thickness of up to 100m thickness (Holloway et al., 2000).

• The Middle seal(middle-uppder Miocene): Overlying The Lower seal and composed

by sediments ranging from very fine to coarse, with a thickness between 100 and 170

meters.

• The Upper seal (upper Pliocene): The shallowest of the seals conformed mostly by

shales.

.
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Chapter 3
Full Wave Inversion Theory

In this chapter the theory behind the Full-Waveform Inversion (FWI) is introduced. Starting

with a short description of the forward and inverse modelling problem in a general sense,

followed by the introduction of the seismic inverse problem in FWI.

Figure 3.1: Sketch of the relationship between the Model and Data within the forward and inverse

approach.

Numerical modeling of geophysical data for a given model parameter is often referred

to as a forward problem (see Figure 3.1). The solution to the forward problem enables us to

predict geophysical data from specific geological structures. In order to solve this problem,
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a relationship between the model and the data has to be establish:

#»

d = G #»m (3.1)

Where:

#»

d : is the wavefield

#»m : is the model

G : is the known relationship between the wavefield and the model

On the other hand, many studies aim to determine geological structures from geophysical

data. Due to the complex internal structure of the earth, this kind of studies are ill-posed

problems. Usually we use a more or less simple model to approximate the true geology and

try to determine the model parameters from the data. We call this problem an inverse problem

(see figure 3.1). The success of geophysical interpretation depends on whether or not we can

approximate the true geological structure through a reasonable model and effectively solve

the corresponding inverse problems.

The inverse problem can be formulated as:

#»m = g−1
#»

d (3.2)

Where:

#»

d : is the wavefield

#»m : is the model

g−1 : is the inverse (when possible) of the relationship between the wavefield and the model

3.1 Frequency Domain Forward Modelling

So far, many strategies and computational schemes have been developed to make FWI

a more practical and suitable technique. From different approaches for solving the for-

ward problem (i.e. finite-difference methods, finite-element methods, finite-volume methods
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among others) to different domain parametrization (i.e. time, frequency or Laplace-Fourier

domains) (Virieux and Operto, 2009). In this work, a forward problem is applied to solve the

visco acoustic wave equation in the frequency-space domain which can be written in 3D as:

Or in a matrix formalism for each frequency in study:

(S)u = −f where :

S : denotes the complex impedance matrix

u : is the wavefield vector, pressure in our case

f : is the source term

(3.3)

The solution to eq. 3.3 is efficiently obtained by LU decomposition of the system

impedance matrix followed by forward and backward substitution. Once the modelled data

dmod is obtained with the forward modeling, the data residuals are computed by:

∆d = dmod − dobs; for i = (1, 2, 3, ...n) (3.4)

with n equals the number of observations.

3.2 Inversion Modelling

A frequency-space domain formulation of the back-propagation gradient method of Lailly

(1983) and Tarantola (1984) is reformulated in a matrix sense, following the work of Pratt

et al. (1998).
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Once the residuals are calculated as shown above (eq. 3.4), the objective function to

minimize (also termed as cost function or misfit function) is the data residuals in a least-

square sense, given by:

E(m) = 1
2
‖dmod − dobs‖2 (3.5)

The optimization problem is solved with a gradient method, with equation given by:

∂E(m)

∂m
= <e{Jtδd∗} where :

Jt : is the transpose of the jacobian matrix.

δd∗ : is the complex conjugate of the data residuals

<e : denotes the real part of a complex number
(3.6)

In its most basic form, the gradient method provides the following relationship between the

perturbation model at iteration n and the gradient of the misfit function:

mn+1 = mn + δmn; (3.7)

δmn = −α∂E(m)

∂m
; (3.8)

The gradient of the misfit function represents the direction in which it increases fastest.

Therefore, as we are trying to minimize the problem, the direction should be towards the

opposite of the gradient (negative) (eq 3.8). The step length α is a positive scalar with the

objective of converting the units of the gradient vector to model dimensions (Hicks and Pratt,

2001).

The J t term in eq. 3.6 is the transpose of the Fréchet derivative matrix, which elements

are given by:
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Jij =
∂ui
∂mj

for i = (1, 2, 3, ...n); j = (1, 2, 3, ...m) (3.9)

Where u and m, represent the seismic wavefield and the model parameters respectively.

The explicit computation of the Jacobian matrix (Fréchet derivative matrix) would require m

forward-propagation problems to be solved. This is extremely expensive in a computational

sense. An analogous method to the back-propagation method applied by Tarantola (1984)

and Pratt et al. (1998), and others is then applied to compute the gradient, using:

u = S−1f (3.10)

with S, the impedance matrix and F the virtual sources (see Pratt et al. (1998) for more

details). Substituting 3.10 in 3.6 and 3.8 gives:

δm = −α<e{f t[S−1]tδd∗} defining v = [S−1]tδd∗) (3.11)

Where v is the analogous to the "backpropagated" residuals in time and is computed

by solving a forward modeling problem with the source terms replaced by the conjugate

residuals (Pratt et al., 1998).

The gradient is then computed by multiplying the (back propagated) residuals field v

and the virtual sources f, (forward propagate field). This step is equivalent to the result

of Tarantola (1984) in which the data residuals is propagated in reverse time and the time

equivalents of f and v are zero-lag crosscorrelated. This result is closely related to most of

the pre-stack depth migration algorithms (Hicks and Pratt, 2001).

According to Pratt (1999), the gradient method can be improved and give a better esti-

mate by preconditioning or filtering by the inverse of the approximate Hessian. This pre-

condition can also yield improved convergence rates and sharpens the gradient vector. The

21



approximate Hessian represents the second derivative matrix of the cost function respect the

model parameters, the elements of which are given by:

diagHa = diag(<e{JtJ∗}) (3.12)

Moreover, the algorithm applies a damping term (λ) to the Hessian before invert it. This

term is known as the Levenberg-Marquardt damping parameter. Which is a dynamic value

defined by:

λ = λ0
E(i)
||dobs|| (3.13)

with λ0 the starting value of the damping parameter, E(i) is the value of the misfit func-

tion at iteration i, which is divided by the L2 norm of the observed value (Helgesen and

Landrø, 1993). This factor is applied as a regularization factor to improve stability (Romd-

hane et al. 2014 Romdhane et al. (2014)).

The final iterative gradient method is then given by:

δm = −α(diagHa + λI)−1∇mE (3.14)
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A summary of the whole iterative inversion process is given in Figure 3.2.

Figure 3.2: Workflow of the iterative Full waveform inversion algorithm developed by Romdhane

et al. (2014).
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3.3 Discrete frequency-domain inversion

Figure 3.2 illustrates the different steps to estimate the model update in one iteration. As

explained before, a multi-scale apporach have been perform in order to avoid cycle-skipping

problem and improve the computational cost (section 1.2.1). This approach is illustrated in

Figure 3.3 from Bunks et al. (1995).

Figure 3.3: Illustration of an objective function decomposed onto 5 scale lengths, decreasing from

(e) to (a). (Taken from: Bunks et al. (1995)).

The figure shows an objective function and its decomposition in four scales. The longest

scale component of the problem, shown in Figure 3.3e, contains a single minimum and a

smooth shape that could facilitate the finding of the global minimum. In this work, the multi-

scale approach is divided into different frequency stages. Being the long scale represented

by the lowest frequencies in our data.
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After a global minimum has been found for the long scale, this is considered as our initial

guess in a shorter scale (represented by higher frequencies in our case). This could increase

the probabilities of finding the global minimum at the shorter scale due to the fact that the

global minimum at the larger scale (Figure 3.3e) is in the vecinity of the global minimum

in the shorter scale (Figure 3.3d). The step is performed again, creating an iterative process,

with the objective of finding the global minimum of the original and finer scale problem

(Figure 3.3a).

This technique not only contributes to the mitigation of the cycle-skipping problem but

also improve the process, computationally speaking. After finding the global minimum at the

larger scale or at least a near local minimum, less iterations are needed to refine the solution

at the next scale since the solution obtained in the previous scale is in the vecinity of the new

global minimum (Figure 3.3)

Two factors are critical in the success of the technique:

1. Low frequencies are critical in order to obtain an scale sufficiently convex so that the

global minimum can be found easily

2. The initial model in which our FWI is based, have an implication on where our initial

guess in the objective function would be. The less accurate the initial model, the further

the initial guess from the global minimum.

Furthermore, Sirgue and Pratt (2004) showed that the choice of the frequencies needs

to provide a continuous coverage of the wavenumber spectra and this can be fulfilled by

estimating the frequencies by:

fn+1 = fn
αmin

(3.15)
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with

αmin = 1√
1+Rmax

2
(3.16)

where Rmax
2 = hmax/z is the half offset-to-depth ratio, resulting from considering

the maximum half offset hmax and a particular depth z. From this, we can notice that

αmin is smaller for larger maximum offsets. Therefore, the larger the maximum offsets

available, the fewer the frequencies are required to fulfill the continuous coverage of the

wavenumber spectra (Sirgue & Pratt, 2004).

We have decided to create groups of frequencies of only one frequency per group, what

Brossier et al. (2009) have defined as the Bunks approach. Consisting in successive inver-

sions of one-single frequency groups. The first group contains the starting frequency and one

higher frequency is added from one group to the next.

The main drawback of the discrete frequency domain inversion is the loss of redundancy

compared to time-domain FWI which can lead to problems in case of highly nonlinear prob-

lems such as surface waves (Virieux and Operto, 2009). Of course, this can be mitigated by

using a denser frequency sampling. However for high numbers of frequencies per iteration,

the storage space increases and the higher number of discrete Fourier transformations slows

the inversion down. Thus, the time-frequency method becomes less efficient.

3.4 Attenuation and multiparameter inversion

Seismic attenuation has an important impact in the absorption of the wave energy and the

dispersion distortion for the phase of the waves. Resulting in a consequent important impact

on the FWI inversion result (Hicks and Pratt, 2001).

Waveform inversion of attenuation parameters was first formulated by Tarantola (1988)

in the time domain, later, Song et al. (1995) developed a visco-acoustic waveform inversion
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in the frequency domain. In their work, they claim that the attenuation phenomenon can

be incorparated easier into forward modelling for frequency-domain than in time domain

inversions and that both velocity and attenuation gradients can be computed simultaneously

without extra cost. Recently, incorporating seismic attenuation in the framework of FWI

have play a crucial role in the FWI world (Kamei and Pratt (2013), Operto et al. (2015)).

Several models for considering attenuation have been proposed in the last decades. The

model parametrization in terms of attenuation do not affect the shape of the objective func-

tion but it will have an impact in the direction of the gradient and the Hessian approximation,

influencing on the algorithm convergence.

In the frequency domain, attenuation is considered by the estimation of the quality fac-

tor Q, which can be related to the imaginary part of the complex-valued velocity (Hicks

and Pratt, 2001). In this work, the Kolsky-Futterman model is considered (Kolsky (1956)

and Futterman (1962)). This model defines the relationship between the quality factor and

velocity as:

where v and Q represent the phase velocity and the quality factor at the reference fre-

quency w, respectively.

When solving the inverse problem, the velocity term is found in the diagonal of the

impedance matrix. Coefficients given by:

However, Song et al. 1995 also claimed that the waveform inversion for attenuation

represents a more challenging problem than velocity inversion and that the model gradients
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for velocity and attenuation parameters are coupled in frequency-domain waveform inver-

sion. This lack of independent parameter resolution is considered by Operto et al. (2013) as

"trade-off".

An alternative approach to improve this "trade-off" is to invert for attenuation, only after

retrieving a sufficiently accurate velocity model. An approach termed as "sequential" inver-

sion by Kamei and Pratt (2013). The initial velocity estimation is performed by fixing an

starting attenuation model and it seems to have success in Pratt et al. (2004)

In our work we have considered attenuation by a monoparameter attenuation factor (Q)

inversion and a multiparameter (P-wave velocity and attenuation factor Q) inversion and

explore both the "simultaneous" and "sequential" approaches to minimize the "trade-off"

and produce better velocity and attenuation models.

3.5 Time-lapse FWI

We have applied both a "parallel" and "cascade" approach to analyze the time-lapse

changes between the vintages for both Inline 1859 and Inline 1874.

Figure 3.4: Sketches of the parallel approach (a) and the cascade approach (b) applied in FWI.
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Figure 3.4, exemplifies the approaches considered in our work.
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Chapter 4
Implementation and results of the FWI

method

4.1 FWI on the synthetic case

In a first stage, the competence of the algorithm is measured by using a realistic synthetic

case of the Sleipner field (Romdhane et al., 2014) . An acquisition geometry with a maximum

offset of approximately 3.2 km is emulated, with 160 receivers recording every shot along

the profile with a separation of 20 meter between them. The source spacing is of 40 meters

for total of 80 sources modeled. The source used for the forward modeling is estimated as a

Ricker wavelet.

A total of fifteen (15) frequency components were inverted between 10 and 45 Hz with a

maximum of 10 iterations per frequency.

4.1.1 The reference model

Since we use a local optimization scheme, the starting model has to be in the vicinity of

the most likely model (Tarantola, 1984). Therefore, as a starting model for inversion of the
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pre-injection data from 1994 we use a "smoothed version" of the true synthetic one. (Figure

4.1.a) . This initial model is shown in Figure 4.1.b. The quality factor and the density were

set as constant values.

Figure 4.1.c shows the velocity model for the final iteration at 45Hz. The method clearly

converged to a possible solution, with an obvious increment in detail of the updated model.

The FWI algorithm has the capability to resolve thin layers of around 25 meters-thick with

an increment in the maximum P-wave velocity estimate.

Several tests were performed with varying the parameters for: smoothing, S/N of the

source and griding of the model, in order to verify how robust is the algorithm in handling

variations of these parameters.
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Figure 4.1: (a) "True" synthetic model. (b) Initial reference velocity model c) Final updated model

at 45Hz
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4.1.2 Smoothing parameters

A smoothing in a damped least squared sense is applied to the initial velocity model of

the synthetic case. The aim of this smoothing is to analyze how big the variations of the

starting point can handle the FWI algorithm. Two smoothed versions of the initial model

were used as the new starting points for two different inversions. Figure 4.2 summarizes the

initial models and the final updated velocity models after the method is applied.

Figure 4.2: a) Initial velocity model for the first case, with a damping parameter of r=10 and the

obtained updated velocity model at 45 Hz (b). c) Initial velocity model for the second case, with a

damping parameter of r=30 and the obtained updated velocity at 45 Hz (d).

Based on the first version of the initial model (Figure 4.2.a), the method handled well

the variations on the initial model imposed by the smoothing process, clearly converging to

a solution which is not so far from the reference model shown in Figure4.1. On the other
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hand, Figure 4.2.c shows an initial model smoothed with a of r=30 in both directions. The

FWI algorithm might have converged to a local minima, yielding a velocity model very far

from the one shown in Figure4.1, with no clear spatial distribution of the P-wave velocities

(Figure4.2).

As mentioned above, the inversion is solved using a local search method, these kinds of

methods rely on a starting point (initial model) that is in the vicinity of the global minimum.

The smoothing can be seen as a filter applied to the initial model, implying a less reliable

initial point. The starting point considered in Figure 4.2.c, might be too far from the global

minimum of the problem.

4.1.3 S/N ratio of the source

According to Virieux and Operto (2009), the exact source excitation is generally un-

known and must be considered as an unknown of the problem. In order to verify how robust

is the code with handling noisy sources, two tests with different signal to noise ratio were

implemented. Figure 4.3 summarizes the two cases analyzed.

As seen in Figure 4.3, the FWI algorithm is robust enough to handle noise in the signal

with a S/N ratio of 50, yielding a model with a well-defined spatial distribution of the P-wave

velocities and able to resolve the thin layers emulated as the sand layers within the Utsira Fm

and where the CO2 is expected to be accumulated (Figure 4.3.a). However, we can find areas

in the final updated model with presence of noise (highlighted in black circles) that were not

visible in the reference model (Figure 4.1).

For the second case, with a signal to noise ratio of 50, the noise induced by the source

dominates the result of the inversion (Figure 4.3.b). This is a way of measuring how sensitive

the algorithm is to handle noisy sources.
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Figure 4.3: Results of the FWI method using a source with S/N ratios of 50 (a) and 5 (b). Both cases

are based in a noisy ricker wavelet.

4.1.4 Decimation ratios

The griding used to discretize the space is a 3 by 3 meters in x and y direction. By chang-

ing the decimation ratios of the model, we are producing a change in the model gridding. A

coarser gridding should result in less discretization points and less computation time. Two

cases were studied, with equal decimation ratios in both directions (x and y). A first case

using a value of 3 and a second case using a value of 4, this can be translated as using new

grids of 6x6 meters and 12x12 meters, respectively. The results are shown in Figure 4.4
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Figure 4.4: Results of the FWI method applied using a different sampling grid of 6x6 meters (a) and

12x12 meters (b)

The FWI algorithm yields very good results using both 6x6 and 12x12 meters squared

grid (Figure 4.4). The reason why there are no gain or loss of information by considering a
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coarser grid could be linked to the spatial resolution of the method.

The maximum resolution of the FWI method can be related to half of the minimum

wavelength considered (Virieux and Operto, 2009) . This minimum wavelength can be found

by:

λmin =
Vmin
fmax

(4.1)

with a maximum resolution given by:

Max Resolution =
λmin

2
(4.2)

Where V min is the lowest velocity considered in the model, in our case of approximately

1300 meters per second and fmax denotes the highest frequency inverted of 45 Hz. This

gives a minimum wavelength of around 28.8 meters implying a resolution of the FWI method

of approximately 14.4 meters.

The highest grid considered in our test cases was of 12 meters, being this value below

the maximum resolution of the FWI method and hence, not affecting the inversion process.
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4.2 2-D FWI on real data from Sleipner field.

The FWI results from the synthetic studies are sufficiently satisfying to justify an ap-

plication of the method on real-data sets. Once, most of the parameters considered within

the FWI method were analyzed and certain values were selected, we proceeded to apply the

method using two vintages from the Sleipner data set. Two inlines were extracted from each

vintage:

1. "Baseline": Dataset obtained after a seismic survey performed in 1994 (2 years before

the injection of CO2).

• Inline 1859

• Inline 1874

2. "Monitor": Dataset acquired in 2008 (12 years after the start of the injection of CO2).

• Inline 1859

• Inline 1874
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Figure 4.5: Location of the Inlines 1859 and 1874, extracted from the Sleipner data sets.

As shown in Figure 4.5, these inlines were selected in order to compare the expected

CO2 plume distribution.

4.2.1 Pre-processing and initial velocity model

According to Hicks and Pratt (2001), since the FWI method, in theory, considers all

forms of waves recorded by the seismogram, one of the advantages is the low data processing

required before the application of the method. The pre-processing sequence aims basically
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to remove some noise in the data and keep the true amplitudes of the traces.

Pre-processing

The routine is very simple, consisting of basically 4 steps:

1. Removing the T 2 divergence compensation: As a common routine in a the process-

ing of the seismic data, a T 2 gain function is applied to compensate for geometrical

spreading and attenuation. Since the FWI relies on the true amplitudes, this effect is

removed by applying an inverse function T -2 to the data set.

2. Bandpass filter: Since we are inverting for frequencies from 8 Hz up to 30 Hz a band-

pass filter is applied with a low frequency cut-off of 6Hz and a high frequency cut-off

of 35Hz

3. Top mute: Muting the data before the first arrivals

4. Offset discrimination: A filter of the data to only consider offsets larger than 320m was

applied to the data set. This discrimination is mainly due to the lack of illumination at

the sides of the acquisition survey

4.2.2 P-wave inversion.

Multi-scale approach and frequency selection

As stated above, a multi-scale approach is applied within the FWI on frequency domain,

aiming to prevent the cycle-skipping effect of the data (Virieux and Operto, 2009). There-

fore, the FWI consist of successively inversions in which the frequency will be gradually

increased. A total of thirteen mono-frequency groups were selected for the FWI, ranging

from 8 Hz to up to 35 Hz with 10 iterations per frequency. Following the approach described

by Sirgue and Pratt (2004).
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Figure 4.6, shows three sequential inversions of the Inline 1859 extracted from the 2008

vintage. Where the frecuency is increased from (a) to (c). The inverted model in (a) is

used as initial model to obtain the final inverted model in the next run, being this applied

iteratively until the highest frequency considered. The final model (4.6c) is obtained after

130 iterations, with a maximum frequency considered of 35 Hz. It is easy to notice that

as long as the frequency content considered increase, the resolution of the model increase,

enabling to interpret several layers and a low-velocity zone (LVZ) (black rectangle in Figure

4.6 that might be linked to the injection of CO2 within the Utsira formation (Romdhane

et al., 2014).

In addition, several noisy zones are interpreted as well as oscillations in the sea bottom.

This type of noise is attributed to the geometry of the acquisition setup and the nature of the

waves, which prevent the recovery of the information on the sides of the models (represented

by orange ovals in Figure 4.6).
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Figure 4.6: Inverted P-wave velocity models with different content of frequency. Gradually increas-

ing from 8 Hz (a) up to 35 Hz (c).
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Impact of the initial models

Starting models for real data experiments require a higher degree of accuracy due to

the ill-posed nature of the problem (Ravaut et al., 2004). The initial models considered are

obtained after the conversion from stacking velocities to interval velocities in depth (Figure

4.7. As mentioned before, the starting model must be in the “neighbourhood” of the global

minimum of the objective function, so that the inversion can converge correctly towards the

true global minimum.

The initial models have dimensions of 1400 m deep and 7000 m in the horizontal direc-

tion. The grid sampling is 12 m on each direction, resulting in approximately 272.183 grid

points.

Figure 4.7: Initial velocity models obtained after transforming stacking velocities to interval veloci-

ties for both "baseline" (a) and "monitor" (b) datasets.

In order to proof the robustness of the method regarding the initial model, two multi-

scale monoparameter (P-wave velocity) inversions were applied to the 1874 Inline from the

"monitor" dataset. Where the only difference was the initial model: A first inversion consid-
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ers as initial model, the velocity model obtained for the 1994 dataset (Figure 4.7a) after the

transformation of the stacking velocities. And a second inversion considers as initial model,

the obtained velocity model after transforming stacking velocities for the 2008 dataset (Fig-

ure 4.7b). In other words, a FWI is applied to the "monitor" data set using both the velocity

model corresponding to the "baseline" and to the "monitor" dataset.

Figure 4.8: Results of the FWI method applied using: (a) Initial velocity model obtained after trans-

formin stacking to interval velocities for the 1994 dataset (b) Initial velocity model obtained after

transformin stacking to interval velocities for the 2008 dataset
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Figure 4.8 shows the results of the inversions for the Inline 1874 extracted from the 2008

vintage of the Sleipner dataset. The final inverted velocity models were obtained after 130

iterations (10 iterations per frequency).

The method converged to a reasonably accurate solution, showing an improvement in the

resolution of the velocity models, compared to the initial models considered (Figure 4.7).

Both results consist of several layers (mostly horizontally flat) throughout the model, which

can be distinguished by their velocity differences.

The clearest difference in the models obtained, is the low-velocity zone (black rectangle

in Figure 4.8) related to the effect of the injected CO2 (Romdhane et al. (2014)). Based on

the velocity model obtained after transforming stacking velocities into interval velocities for

the 2008 vintage (Figure 4.7b), the FWI were capable to resolve a better estimated lateral

extent of the CO2 plume and its internal geometry. On the other hand, Figure 4.8a shows

the result based on the initial model obtained for the 1994 vintage, where the FWI fails to

properly resolve the expected effect of the injected CO2 gas.

Moreover, the gas bearing layers within the low-velocity zones (LVZ) present a lowest

value of P-wave velocity of approximately 1890 m/s for the first case (Figure 4.8a) and 1780

m/s for the second case (Figure 4.8b), being both overestimated in comparison to the value

obtained by Carcione et al. (2006) of 1500 m/s.

Updating the density

In the previous results, the density (ρ) was kept constant by using a uniform density

model. Compared to P-wave velocity, the density is more difficult to invert by FWI (Butzer,

2015). However, we decided to perform a FWI where the density model is updated after

each iteration by using the well-known Gardner’s equation (Gardner et al. (1974)):
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ρ = aV
1
4 (4.3)

where ρ is in g/cm3 and a is 0.31 when the velocity V is in m/s or 0.23 when V is in ft/s.

All the results obtained after FWI were satisfactory, keeping a very good relationship

between the structures and expected values of P-wave velocity throughout the model.

In the models from the Inline 1859 (top of Figure 4.9) of the vintage 1994, the update

of the density improved the definition of the layers for the first 600 meters and the model

appear to be less noisy (Figure 4.9b) than that without updating the density (Figure 4.9a).

Meanwhile, on the 2008 vintage, the LVZ (black rectangle in Figure 4.9 (c) and (d)) is better

characterized, with a clear distinction of at least 3 gas bearing layers with a lowest velocity

of 1770 m/s.

However, the updating of the density added some artifacts, specially in the first 400

meters of the model (orange rectangle in Figure 4.9d)

When comparing the results obtained after the density update (Figure 4.9f) in the Inline

1874, no signs of improvement were identified from that shown in Figure 4.9e. On the

contrary, it adds artifacts in the shallowest part of the model (orange rectangles in Figure

4.9f). The same story can be related to the 2008 vintage results, the LVZ in the model

obtained after the density update (Figure 4.9h) lacks of resolution compared to the LVZ

found in Figure 4.9g. It also presents less continuity on the shallow part of the model (orange

rectangle in Figure 4.9h), compared to the model obtained by keeping a density value fixed

(Figure 4.9g).

An important result from these test was the extension of the low-velocity zones. Larger

(horizontal direction) velocity anomalies or low-velocity zones are found in the inline 1874

(Figure 4.9g and h), compared to those found in the inline 1859 (Figure 4.9c and d). In
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Figure 4.9: Inverted velocity models for Inline 1859 (top) and 1874 (bottom), extracted from both

the "baseline" ((a), (b), (e) and (f)) and "monitor" ((c), (d), (g) and (h)) vintage. (b), (d), (f) and (h)

were obtained after updating the density model by the Gardner’s equation. (a), (c), (e) and (g) were

obtained without updating the density model.

agreement to the distribution of the CO2 plume within the zone (Figure 4.5),

Computationally speaking, it took 1.21 times the time consumed to obtain the final result
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of the inversion while updating the density. Furthermore, the objective function decreased

with a slower rate compared to the inversion with a fixed value of the density (Figure 4.10).

Figure 4.10: Normalized objective function decay for the Inline 1859 extracted from the 1994 vin-

tage.

The fact that updating the density do not give any signficant result and increased the

computational demand, the density was fixed for the following inversions.

4.2.3 Time-lapse FWI in 2-D.

The initial model obtained after transforming the stacking velocities into interval veloc-

ities for the 1994 vintage (Figure 4.7a), was considered as the common initial model in the

parallel approach (Figure 3.4a) for both inlines.

On the other hand, as stated above, the "cascade" approach (Figure 3.4b) considered

the same initial velocity model when inverting for the baseline dataset but the result of this

inversion is then used as the initial velocity model for the monitor dataset.

Figures 4.11 and 4.12 show the time-lapse difference in P-wave velocity values of the

models obtained for Inline 1859 and Inline 1874 respectively.

As it can be seen in Figure 4.11a, the biggest change in velocity for the parallel approach

are found in the shallowest part of the model (represented by the yellow rectangle) and at

the very bottom of the model. Based on the literature (Chadwick et al. (2006), Furre et al.

49



(2017)), there are no reasons of why such low velocities might be found at these intervals.

Therefore, we consider them as artifacts of the method. However, the approach was capable

to distinguish a low-velocity zone (LVZ) between approximately 800ms and 1100ms (black

rectangle in Figure 4.11a).

The velocity change within the LVZ range between 200 and 300 m/s, which is in ac-

cordance to that found by Romdhane et al. (2014). This velocity model is attributed to the

changes in P-wave velocity due to the injection of the CO2 in the Sleipner field.

Similar structures are also found in the result obtained after the "cascade" method (Figure

4.11b). With the same high values on top and bottom of the model. Nevertheless, the model

consist of lower velocity difference in general, where most of the model shows differences

closer to zero than the previous case. Again, there is a remarkable LVZ in the center-bottom

of the model. The difference, however, is bigger than in the parallel approach (Figure 4.11a).

For the inline 1874 (Figure 4.12), the difference between the approaches are more re-

markable. In the parallel approach, there is found a much larger low-velocity zone (Figure

4.12a) which is not expected, based on previous work.

The cascade approach, on the contrary, is capable of determine a more constrained LVZ

but as it happened to the Inline 1859, a strong artifact is added to the model in the shallowest

part of the model (yellow rectangle in Figure 4.12b).

The artifacts or noise-related energy provided by the parallel approach might be due to

assumption of a similar level of convergence in both datasets, mainly due to the fixed number

of iterations (120 in our case) are carried out. The ill-posed nature of the seismic inversion

problem and the several local minima along the objective function makes almost impossible

for this condition to happen. When inverting each dataset individually, the quality of the final

result might be affected by data quality and non-repeatability of the surveys in question. In

other words, after applying the parallel approach, we might end up in different local minima
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and the substraction of the two models that are far from each other may result in inaccurate

property changes.

On the other hand, the cascade approach has also a remarkable assumption that might not

be always fulfilled. The approach assumes a complete convergence of the baseline. Where

no more model updates are needed since the differences between the vintages are exclusively

caused by reservoir changes. Due to time and computational constraints, a finite and limited

numbers of iterations are performed; leading to a convergence of the baseline that rather

than being in a global minimum, is found in a local one. Therefore, the residuals found in

the baseline might migrate to the monitor dataset when performing the FWI and deteriorating

the true time-lapse difference of the models.
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Figure 4.11: Normalized objective function decay for the Inline 1859 extracted from the 1994 vin-

tage.
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Figure 4.12: Normalized objective function decay for the Inline 1859 extracted from the 1994 vin-

tage.
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4.3 2.5-D FWI on real data from Sleipner field.

Several 3D studies have been performed in the last couple of years but the vast majority

of the FWI applications are still restricted to 2D approximations, being the dramatic increase

in computational costs the main barrier for the use of 3D FWI in real cases.

However, the 2D approximation is unable to explain the scattering phenomenon related

to 3D heterogeneous subsurface structures. 3D scattering arising from 3D heterogeneous

subsurface structures (Butzer, 2015).

In this work, we have considered a 2.5D Full-waveform inversion, in which the solution

of the full 3D visco-acoustic waveform is solved but only 5 planes in the Y space direction

are considered. In consequence, the following models have dimensions of 1400 m deep and

7000 m and 5 in the horizontal directions.

In order to save computational time, the grid sampling of the model have been changed

to 12m on each direction, resulting in approximately 335.000 grid points.

In addition, fewer frequencies were considered. Maintaining, however, a fully covered

wavenumber spectra as it is stated in Sirgue and Pratt (2004). A total of 7 frequencies were

inverted, covering a range from 8 Hz up to 20 Hz.

Figures 4.13 and 4.15, show the results of the P-wave velocity inversion, after considering

the 3D visco-acoustic wave equation. For all the results, the density and attenuation factor

were kept constant.

The results are satisfactory and converge to a clear solution. As expected, the models

have much lower resolution that those from the 2-D inversion tests, attributed to the fewer

number of frequencies considered by the inversion. Even though the wavenumber spectra is

fully covered by the frequencies selected, the redundancy of the data plays an important role
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Figure 4.13: Vertical slice at the middle of the 2.5-D model, for Inline 1859 extracted from the 1994

vintage (a) and 2008 vintage (b).

in the quality of the inversion results. However, the method was capable again to characterize

a low-velocity zone for both inline in the 2008 vintage (Figure 4.13b and 4.15b).

One difference from those models in 2-D is that the LVZs have a even lower P-wave

velocity (1720 m/s), considered a better estimation of the parameter, compared to the value

of 1770 and 1780 from the 2-D tests.

Again, the extension of the low-velocity zones differ between vintages, in accordance to
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Figure 4.14: Vertical slice at the middle of the 2.5-D model, for Inline 1874 extracted from the 1994

vintage (a) and 2008 vintage (b).

what is expected due to the distribution of the CO2 plume throughout time (Figure 4.5).

4.3.1 Time-lapse FWI in 2.5-D

Following the results from the time-lapse analysis performed in 2-D, a "cascade ap-

proach" was considered over the "parallel approach" for a 2.5-D time-lapse FWI.

Due to time constraints, the study was performed only for Inline 1874. The selection
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of this inline was based on a better characterization of the velocity anomaly (Figure 4.15b),

compared to that of the Inline 1859 (Figure 4.13b)

Suprisingly, the time-lapse difference for the 2.5D FWI yielded a better result, compared

to the 2-D time-lapse analysis (4.12). Although, less frequencies and bigger grid sampling is

considered, in addition to the lack of redundancy due to the reduction in iterations compared

to the 2-D analysis, the result bears less noise or artifacts induced by the assumptions of the

"cascade approach"

Figure 4.15: Vertical time-lapse difference slice at the middle of the 2.5-D model, for Inline 1874.

4.3.2 Quality factor (Q) inversion

Our last set of inversion runs were related to the study of the attenuation. As stated

before, one of the advantages of the FWI in frequency domain is the easy implementation of

attenuation in the forward modelling by being related to the complex velocity.

The results from the inversion of Q factor show a quite smooth relationship and horizon-

tally flat distribution of the Q factor. With an increment in the values as the depth increases.

The results from the monitor datasets show a decrease in the quality factor that might be
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Figure 4.16: Vertical slices of Q factor at the middle of the 2.5-D model, for Inline 1859 in both

vintages.

linked to the presence of gas in the zone.

In order to verify the reliability of the results from the quality factor inversion, we decided

to performe a multiparameter FWI, considering both P-wave velocity and attenuation factor

(Q). Shown in Figure 4.18

As it can be seen in Figure 4.18, there is a huge "trade-off" between the parameters

considered by the multiparameter FWI. Being the velocity, the dominant parameter between
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Figure 4.17: Vertical slices of Q factor at the middle of the 2.5-D model, for Inline 1874 in both

vintages.

them. Several anomalies have been identified (black rectangles in Figure 4.18) in the P-wave

velocity model, which are explicitly shown in the quality factor (Q) inversion.
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Figure 4.18: Vertical slices of Q factor (a) and P-wave velocity (b) at the middle of the 2.5-D model,

for Inline 1859 in 2008 vintage.
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Chapter 5
Conclusions

A multi-scale monoparameter and multiparameter Full-Waveform Inversion in frequency

domain has been applied considering both 2-D and 3-D visco-acoustic wave equation, for

deriving P-wave velocity (Vp) and attenuation factor (Q) models in two inlines extracted

from two vintages of the Sleipner Field (1994 and 2008).

The algorithm uses the waveform information from the pre-stack datasets of the Sleipner

field recorded in 1994 and 2008 (before and after the injection of had CO2 started). A pre-

processing workflow, aiming to enhance the signal to noise ratio (S/N) without harming the

amplitudes, is applied to the data before the application of the FWI method.

In a first stage, several tests were performed on synthetic data, aiming to measure the

sensitivity of the algorithm when it comes to handle noisy sources, a less reliable initial

model and different spacing grids. From these test, it was found that the algorithm is quite

sensitive to handle noise in the sources, having converged to a local minimum when a S/N

ratio below 5 is used. It was also found that a starting initial velocity model is critical to

avoid cycle skipping and thus convergence to a local minimum. On the other hand, a bigger

spacing grid can be used without losing critical information.
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The impact of the initial model is also measured in the real dataset by performing a 2-D

FWI. Where an improvement in the resolution of the P-wave velocity models were achieved

by using as initial model, the velocity model obtained after transforming stacking velocities

to interval velocities of the 2008 vintage.

A following test regarding the update of the density were performed, in which no sign of

improvement was achieved by using the Gardner’s equation to update the density, respect to

the velocity. On the contrary, it added artifacts and increased the computational time of the

inversion.

Two approaches were applied in order to asses the time-lapse difference of the vintages.

A "cascade" approach is considered to give better indication of the lateral extension and

change in velocity values due to the injection of CO2 in the reservoir. However, the results

obtained for both approaches bear zones with strong difference in velocity which is not

expected to happen. This might be due to the limitation in iterations, different possible local

minima for each data set in the "parallel approach" and the assumption that the baseline is

fully inverted and its global minimum is achieved before it is used as initial model in the

"cascade approach"

Attenuation has been considered by the relationship between the quality factor (Q) and

the complex value of the velocity. Results from the attenuation inversion show a smooth

behavior of the distribution of the parameter and a decrease in the zone where the gas is

expected to be accumulated.

A last inversion consisted in a multiparameter FWI, inverting for both P-wave velocity

and quality factor, where a strong "trade-off" between the parameters is shown in the results.

In all the results there is a difference in extension between the low-velocity zone related

to the CO2 plume between the Inline 1859 and 1874.
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