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Abstract

In this thesis we present an approximate recursive algorithm for calculations of
discrete Markov random fields defined on graphs. We write the probability dis-
tribution of a Markov random field as a function of interaction parameters, a
representation well suited for approximations. The algorithm we establish is a
forward-backward algorithm, where the forward part recursively decomposes the
probability distribution into a product of conditional distributions. Next we es-
tablish two different backward parts to our algorithm. In the first one we are able
to simulate from the probability distribution, using the decomposed system. The
second one enables us to calculate the marginal distributions for all the nodes in
the Markov random field. All the approximations in our algorithm are controlled
by a positive parameter, and when this parameter is equal to 0, our algorithm is
by definition an exact algorithm. We investigate the performance of our algorithm
by the CPU time, and by evaluating the quality of the approximations in various
ways. As an example of the usage of our algorithm, we estimate an unknown
picture from a degenerated version, using the marginal posterior mode estimate.
This is a classical Bayesian problem.



viii



CONTENTS ix

Contents
1 Introduction 1

2 Markov random fields 2
2.1 Graphs and neighbourhoods . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Markov random fields defined on graphs . . . . . . . . . . . . . . . 4

2.2.1 The Potts model . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 The generalized Potts model . . . . . . . . . . . . . . . . . . 5

2.3 The Hammersley-Clifford theorem . . . . . . . . . . . . . . . . . . . 6

3 The DAG representation 6
3.1 The probability distribution . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The probability distribution as a DAG . . . . . . . . . . . . . . . . 8
3.3 Calculation of the interaction parameters . . . . . . . . . . . . . . . 8

3.3.1 The interaction parameters given the energy function . . . . 9
3.3.2 The recursive formula . . . . . . . . . . . . . . . . . . . . . 10

4 Exact recursive algorithm 11
4.1 Reduced DAG representation . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 The interaction parameters of a generalized Potts model . . 13
4.2 The forward part, decomposition . . . . . . . . . . . . . . . . . . . 14

4.2.1 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Calculating U∗(z−r) . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3 Computation of G∗ . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 The backward part . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Calculating the marginals . . . . . . . . . . . . . . . . . . . 19

4.4 Using the algorithm for Bayesian calculations . . . . . . . . . . . . 21
4.4.1 Example on a Bayesian model . . . . . . . . . . . . . . . . . 22

5 Approximations 22
5.1 Why approximations? . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 The approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Evaluation of the approximations . . . . . . . . . . . . . . . . . . . 25

6 Implementation 27
6.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Making a DAG from an adjacent lower neighbourhood . . . . . . . 29
6.4 Union of two DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



x CONTENTS

6.6 Calculating the marginals . . . . . . . . . . . . . . . . . . . . . . . 30

7 Results 31
7.1 Some realisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 CPU times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Quality of the approximations . . . . . . . . . . . . . . . . . . . . . 35

7.3.1 Comparing realisations visually . . . . . . . . . . . . . . . . 36
7.4 Conditional probabilities . . . . . . . . . . . . . . . . . . . . . . . . 36

7.4.1 Error because of the approximations . . . . . . . . . . . . . 38
7.4.2 Error development . . . . . . . . . . . . . . . . . . . . . . . 38

7.5 The adjacent lower neighbourhoods . . . . . . . . . . . . . . . . . . 41
7.6 Bayesian calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Closing remarks 44



1

1 Introduction
In this thesis we present an approximate algorithm for calculations of discrete
Markov random fields defined on graphs. Markov random fields is a well inves-
tigated topic in the literature, see for instance Besag (1974) or Kindermann &
Snell (1980). However, exact calculations of such fields are very limited by an
intractable normalizing constant. Reeves & Pettitt (2004) and Friel & Rue (2007)
manages to do exact calculations of this normalizing constant for binary Markov
random fields defined on smaller lattices. Their algorithm is a forward-backward
algorithm (Scott 2002). To do calculations of larger binary Markov random fields
defined on graphs, Tjelmeland & Austad (2010) introduce an approximate recur-
sive forward-backward algorithm. They express the probability distribution of the
field in terms of interaction parameters between subsets of the nodes in the graph,
which is a convenient representation for approximations. This thesis can be viewed
as a generalization of their work, as we let our Markov random fields be discrete,
and it is a continuing of the work done in Arnesen (2009).

As in Tjelmeland & Austad (2010), we present a recursive forward-backward al-
gorithm. This algorithm enables us to do exact calculations of Markov random
fields defined on small graphs and with a small discrete sample space. For more
complex problems we introduce approximations to our algorithm. The approxi-
mations are defined by approximating sufficiently small interaction parameters to
0. The level of approximation is controlled by a parameter, and by setting this
parameter equal to 0 we get the exact version of our algorithm. In the forward
part of our algorithm we sequentially decompose the probability distribution into
a product of conditional distributions, one for each node in the graph. For each
conditional distribution we obtain, one distribution for the remaining nodes must
also be determined. Note that this representation is in fact a partially ordered
Markov model (Cressie & Davidson 1998). We present two alternative backward
parts to the algorithm. The first one enables us to simulate from the decomposed
system, giving us realisations from the approximate probability distribution. This
can be done without further approximations. As an alternative, we are able to
calculate the marginal distributions for all the nodes in the graph, but for com-
plex problems we need to introduce approximations also in these calculations. We
also present two examples of Markov random fields, namely the Potts model and
a generalized version of the Potts model, see Wu (1982). As an example of the
usage of our algorithm we estimate an unknown underlying picture in a Bayesian
setting, adopting a discrete Markov random field as our prior model. This is a
classical problem in the literature and many solutions have been proposed. See
for instance the simulated annealing procedure in Geman & Geman (1984) or the
ICM estimate in Besag (1986). As it is easily accessible to us, we use the marginal
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Figure 1: A 4× 5 lattice with a first order neighbourhood system.

posterior mode estimate in our examples.

We start out by giving a short introduction to Markov random fields defined on
graphs, see Section 2. Here we present important concepts as neighbourhood
systems and cliques, formulate the famous Hammersley-Clifford theorem, and give
two examples of discrete Markov random fields. In Section 3 we explain how
to represent the probability distribution of a discrete Markov random field as a
DAG (directed acyclic graph). We use this DAG representation when we present
the exact version of our forward-backward algorithm in Section 4. In Section 5 we
introduce our approximations and discuss how the quality of these approximations
can be evaluated. In Section 6 we carefully explain how we chose to implement
our approximate forward-backward algorithm, before we, in Section 7, present
some results from running our algorithm. Finally, in Section 8, we give a closing
discussion on the work done in this thesis and make suggestions for further work.

2 Markov random fields

In this section we give a brief introduction to Markov random fields. Markov ran-
dom fields are well investigated in the literature, and for a more complete introduc-
tion the reader is referred to Besag (1974) and Kindermann & Snell (1980). All our
Markov random fields will be defined on graphs, so in the first section of this intro-
duction we define a graph and the important concept of neighbourhoods. In the
second section we move on to define Markov random fields. Finally we present the
most important theorem concerning this theory, namely the Hammersley-Clifford
theorem.
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2.1 Graphs and neighbourhoods

To define a graph we start out with a set of nodes S, and we label these nodes
such that S = {1, 2, ..., n}. Next we define a neighbourhood system for the nodes
in S.

Definition 1: A collection N = {N1, ..., Nn} is a neighbourhood system for the set
S if, and only if, Nk ⊂ S, k /∈ Nk ∀ k ∈ S and k ∈ Nl ⇔ l ∈ Nk for all distinct
pairs of nodes k, l ∈ S.

This definition tells us that for all nodes k ∈ S we define a neighbourhood of other
nodes Nk. These neighbourhoods are constructed such that if a node k ∈ S is in
the neighbourhood of a different node l ∈ S, then l must be in the neighbourhood
of k as well. If so, we say that k and l are neighbours. This neighbourhood system
creates connections between the nodes, and these connections form the set of edges
E in the graph. We write E = {(k, l)|k ∈ Nl, k, l ∈ S}, and denote the graph by
G = (S,E). This completes our graph definition, and Figure 1 shows an exam-
ple of such a graph. In this graph we have S = {1, 2, ..., 20}, and the edges are
shown as lines between the nodes. This graph is nothing but a 4×5 lattice, and we
will continue to use this figure to illustrate the rest of the definitions in this section.

For the lattice in Figure 1 we can easily find the neighbourhood of each node. The
neighbourhood of for instance node 8 is N8 = {3, 7, 9, 13}. We observe that all
the interior nodes in this lattice have four neighbours each, namely the four nodes
closest to them. This is called a first order neighbourhood system (Besag 1986).
If we instead define the eight closest nodes as the neighbourhood of each interior
node, we get what is called a second order neighbourhood system. Both a first and
a second order neighbourhood of an interior node in a lattice are shown in Figure 2.
For nodes on the boundary we need to be more specific about the neighbourhoods.
One intuitive option is to define the neighbourhood of these nodes as in Figure
1. Here the four nodes on the corners of the lattice have two neighbours, for
instance N5 = {4, 10}, while the rest of the boundary nodes have three neighbours,
for instance N18 = {13, 17, 19}. This is called a free boundary condition. An
alternative to this is the torus boundary condition. In that case we define the
boundary nodes to have neighbours on the opposite boundary, such that all the
neighbourhoods are of the same size. For instance we get N18 = {3, 13, 17, 19} and
N5 = {1, 4, 10, 20} if we again assume a first order neighbourhood system to our
example.
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Figure 2: A first and a second order neighbourhood of an interior node k in a
lattice. The neighbours are indicated with lines and m is the horizontal dimension
of the lattice.

2.2 Markov random fields defined on graphs
In this section we define a Markov random field, and we start out by associating
a discrete stochastic variable zk to each k ∈ S. We assume that zk ∈ Ω =
{0, 1, ..., K − 1} ∀ k ∈ S, which means that Ω is the discrete sample space for all
zk. Next we let these variables form the stochastic vector z = (z1, z2, ..., zn), and
define a probability distribution π(z) ∀ z ∈ Ωn. For notational convenience we
introduce z−k = (zi|i ∈ S \ {k}) and zΛ = (zi|i ∈ Λ), where Λ ⊆ S. We define a
Markov random field as follows.

Definition 2: A random field z is a Markov random field with respect to a neigh-
bourhood system N if, and only if, its distribution π(z) > 0 ∀ z ∈ Ωn and the full
conditional π(zk|z−k) fulfils the Markov property

π(zk|z−k) = π(zk|zNk) ∀ k ∈ S, (1)

where Nk is the neighbourhood of node k.

That is, a stochastic vector z is a Markov random field if the full conditional
distribution for zk ∀ k ∈ S only depends on the nodes in its neighbourhood. To
complete this section we define a clique in the following way.

Definition 3: A set Λ ⊆ S is a clique if k ∈ Nl for all distinct pairs k, l ∈ Λ. Let C
denote the set of all cliques.

This means that a subset of S is a clique if, and only if, every node in this subset is
in the neighbourhood of all the other nodes in the subset. We notice that the empty
set, ∅, and all subsets containing just one element, |Λ| = 1, are cliques according to
this definition. If we again take look at Figure 1, we see that the set of all cliques in
this situation is C = {∅, {1}, {2}, ..., {20}, {1, 2}, {1, 6}, {2, 3}, {2, 7}, ..., {19, 20}}.
The cliques will be important when we present the Hammerley-Clifford theorem in
Section 2.3, but first let us take a look at two examples of Markov random fields.
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2.2.1 The Potts model

As an example of a discrete Markov random field we look at the Potts model
(Wu 1982). The Potts model is a generalization of the Ising model used in the
binary case. We assume our random field to be defined on a 2-dimensional lattice,
and write the Potts model as

π(z) = c · exp

−α2
n∑
k=1

∑
l∈Nk

I(zk 6= zl)

 , (2)

where c is a normalizing constant, I(·) is an indicator function, and α is a param-
eter. The model is called ferromagnetic if α>0 and antiferromagnetic if α<0. We
will focus on the ferromagnetic model. This model favours equal values on sites
close to each other, or clustering of the values in Ω. If we assume a Potts model
to the lattice in Figure 1, we see that two neighbours k, l ∈ S contribute with a
value α to the sums in (2) if zk 6= zl.

An important feature of the Potts model is the critical temperature αc. It is
shown that for values of α below this critical temperature, α < αc, the effect of
the boundary nodes on the nodes in the centre of the lattice vanishes as the lattice
grows. However, for values above this critical temperature, α > αc, this effect does
not vanish no matter how large the lattice is. See Kindermann & Snell (1980) or
Hurn, Husby & Rue (2003) for a more detailed discussion concerning the critical
temperature. The clustering of the values in Ω increases as the value of α gets close
to and above this critical temperature. Wu (1982) gives a formula for calculation
of the critical temperature for Potts models defined on lattices

αc = ln(1 +
√
K), (3)

where K again is the size of Ω. As a second example of a Markov random field we
introduce our generalized Potts model.

2.2.2 The generalized Potts model

We would like to generalize the Potts model so that we can discriminate between
the different values in Ω. This can be done by writing

π(z) = c · exp

−1
2

n∑
k=1

∑
l∈Nk

α(zk, zl)

 , (4)

where α(i, i) = 0 and α(i, j) = α(j, i) > 0 for all i, j ∈ Ω and i 6= j. We easily see
that this is a generalization of (2) by setting α(i, j) = α for i 6= j. With this model
we are able to discriminate between the different values in Ω. For instance we can
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make it unlikely that a value i ∈ Ω is in the neighbourhood of a different value
j ∈ Ω \ {i} by choosing a high value on α(i, j). If we assume a generalized Potts
model to the lattice in Figure 1, we see that two neighbours k, l ∈ S contribute
with a value α(zk, zl) to the sums in (4).

2.3 The Hammersley-Clifford theorem
The Hammersley-Clifford theorem from 1971 is an important theorem in the theory
concerning Markov random fields. Here it is formulated as in Hurn et al. (2003).

Theorem 1 (Hammersley-Clifford): The stochastic vector z ∈ Ωn is a Markov
random field if, and only if, its probability distribution can be written as

π(z) = 1
C

exp

−∑
Λ∈C

UΛ(zΛ)

 , (5)

where C is the normalizing constant

C =
∑
z

exp

−∑
Λ∈C

UΛ(zΛ)

 <∞.

This theorem gives a general form of the probability distribution π(z) of a Markov
random field z. It states that the probability distribution only depends on the set
of energy functions {UΛ(zΛ)|Λ ∈ C}. We will not prove this theorem, but the proof
can be found in for instance Besag (1974) or Clifford (1990). From this theorem
we also see that computation of the normalizing constant C becomes impossible
when the number of nodes in the graph increases. This is one of the main problems
concerning Markov random fields.

3 The DAG representation
Tjelmeland & Austad (2010) established a recursive forward-backward algorithm
for simulation of binary Markov random fields. Our task in the next two sec-
tions is to generalize this algorithm so that we can simulate from discrete Markov
random fields. In addition we explain how to use the algorithm to calculate all
the marginal distributions in such a field. As in the previous section, we assume
that Ω = {0, 1, ..., K − 1} and that the stochastic field is defined by the vector
z = (z1, z2, ..., zn) where zk ∈ Ω ∀ k ∈ S. We start out by defining a general
form of the probability distribution of a Markov random field. Next we define a
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1 2 3

Figure 3: Illustrative graph with Ω = {0, 1, 2}.

vertex-weighted DAG, from now on just termed DAG, to represent this distribu-
tion. In Section 4 we finally establish our exact forward-backward algorithm. In
these two sections we use the graph in Figure 3 for illustration of the concepts that
are presented, and we assume that Ω = {0, 1, 2} for this illustrative example.

3.1 The probability distribution
First we write the probability distribution of a Markov random field as

π(z) = c · exp{−U(z)}, (6)
where c is a normalizing constant and U(z) is an energy function. This energy
function will be defined in a moment, but first we define the set

P(S) = {(Λ, u)|Λ ⊆ S, u ∈ Z |Λ|}, where Z = Ω \ {0} = {1, ..., K − 1}.

This set contains all pairs (Λ, u), where Λ is a subset of the nodes in S and where
u holds the values of these nodes. Note that the value 0 is never present in u.
Using the definition of P(S) for the graph in Figure 3, we obtain the set P(S) =
{∅, ({1}, (1)), ({1}, (2)), ({2}, (1)), ..., ({1, 2, 3}, (2, 2, 1)), ({1, 2, 3}, (2, 2, 2))}.

Next we define a one-to-one relation χ between P(S) and the sample space Ωn by

z = χ(Λ, u)⇔
{

Λ = L(z)
u = U(z), (7)

where L(z) and U(z) are two functions that in the following will be explained.
The function L(z) returns a vector Λ that contains all the indices of z where
zk 6= 0 ∀ k ∈ S. The elements of Λ is sorted in increasing order, which means that
if Λ = {k1, k2, ..., km}, we know that k1 < k2 < ... < km where m ≤ n. The func-
tion U(z) returns a vector u that contains the values of z where zk 6= 0 ∀ k ∈ S. If
Λ = {k1, k2, ..., km}, we order u such that u = (zk1 , zk2 , ..., zkm). Note that when we
write zΛ, we use Λ as an operator that gives us the elements of z with indices from
Λ, whereas the function U(z) gives us the non-zero elements of z. The operator Λ
and the function U(z) do therefore not represent the same property.
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The energy function U(z) is finally defined as

U(z) =
∑

(Λ,u)∈P(S)
β(Λ, u)I(u = zΛ), (8)

where β(Λ, u) is an interaction parameter for the nodes Λ ⊆ S when these nodes
have values according to u ∈ Z |Λ|. The indicator function I(·) is equal to 1 if
(χ(Λ, u))k = zk ∀ k ∈ Λ. Whenever an energy function is expressed this way, we
say that it is on canonical form. Next we construct our DAG representation of the
probability distribution presented in this section.

3.2 The probability distribution as a DAG
First of all we define the elements of P(S) to be the nodes in our DAG rep-
resentation. Next we need to define an edge in this DAG. Let a = (Λ, u) and
b = (A, v) be two elements from P(S). There exist an edge from node a to node
b if A ⊂ Λ, |Λ \ A| = 1, and (χ(Λ, u))A = v. We say that a is a parent of b,
and that b is a child of a. The vertex-weights in the DAG is the set of all in-
teraction parameters β[P(S)] = {β(Λ, u)|(Λ, u) ∈ P(S)}, and where each weight
β(Λ, u) is stored in its corresponding node (Λ, u). Finally the DAG is denoted
by G(P(S), β[P(S)]). The DAG for our illustrative example is shown in Figure
4, but note that not all the nodes are displayed. However, the number of edges
going in and out from each of the nodes is correct. In this figure we see how
an element (Λ, u) ∈ P(S) has |Λ| number of children, and that these children
are (Λ \ {k}, (χ(u,Λ))Λ\{k}) ∀ k ∈ Λ. For instance, the children of the node
({1,2,3},(2,1,1)) are ({1, 2}, (2, 1)), ({1, 3}, (2, 1)), and ({2, 3}, (1, 1)).

In this section we have seen how to represent the probability distribution of a
Markov random field as a vertex-weighted DAG. We established a one-to-one rela-
tion between the sample space of the random field and the set P(S). The elements
of P(S) were defined to be the nodes in our DAG representation. Using the set
P(S), we defined an energy function containing a sum of interaction parameters,
and these parameters were defined to be the weights in our DAG representation.
In the next section we establish a recursive algorithm that enables us to efficiently
calculate these parameters, given an energy function.

3.3 Calculation of the interaction parameters
So far we have established the weighted DAG representation of a Markov random
field. However, given an energy function U(z), we still need to calculate all the
weights. In the binary case, Tjelmeland & Austad (2010) gave an efficient recursive
formula for calculation of the interaction parameters. In this section we generalize
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Figure 4: The DAG G(P(S), β[P(S)]) for our illustrative example.

this formula to the discrete case. Note that it is not obvious at this point that
(8) is a unique representation of a given U(z) ∀ z ∈ Ωn. It will, however, become
clear through this section that this is in fact true. First we look at the number of
interaction parameters that needs to be calculated. Next we present an intuitive,
but naive way of calculating these parameters. Finally we present our recursive
formula.

3.3.1 The interaction parameters given the energy function

For a discrete Markov random field we know that for every k ∈ S we have zk ∈ Ω,
where |Ω| = K. However, for a node (Λ, u) ∈ P(S) in our DAG representation,
every element in u takes its value from Z, where |Z| = K − 1. For every value of
|Λ| we count (

|S|
|Λ|

)
· (K − 1)|Λ|

nodes in the DAG. If we sum this expression for every possible value of |Λ|, the
total number of nodes in the DAG becomes

|S|∑
|Λ|=0

(
|S|
|Λ|

)
· (K − 1)|Λ| = |Ω|n. (9)
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This represents the number of interaction parameters that we need to calculate
from the energy function. Note that the number of unknown interaction param-
eters is equal to the sample space of z. Keeping this in mind, we move on to
calculate the interaction parameters.

Assume the energy function U(z) to be known. For a given element (Λ, u) ∈ P(S)
we write

U(χ(Λ, u)) = β(Λ, u) +
∑

(A,v)∈P(S)\{(Λ,v)}
β(A, v)I(v = zA),

where χ(Λ, u) = z ∈ Ωn. In this expression we have separated the term involving
the element (Λ, u) from the rest of the sum. In this way we obtain the following
expression for the interaction parameter in node (Λ, u)

β(Λ, u) = U(χ(Λ, u))−
∑

(A,v)∈P(S)\{(Λ,u)}
β(A, v)I(v = zA). (10)

As we can see from this expression, an interaction parameter for a node in the
DAG is a function of the given energy function and every interaction parameters
that can be found by a recursive search through the nodes children. This recursive
search leads us every possible way down to the node ∅. We observe that by (10) we
have actually obtained a formula for calculating all the interaction parameters in
the DAG. Starting with the node ∅, we can calculate all the interaction parameters
by first calculating all the parameters where |Λ| = 1, then calculate the parameters
where |Λ| = 2, and so on.

The method presented above is an easy and intuitive way of calculating the in-
teraction parameters. However, it is an inefficient way. When we calculate the
interaction parameters where |Λ| = g, we need to search through all the nodes
down to ∅, but the nodes from level |Λ| = g − 2 down to ∅ have already been
searched through when the interaction parameters on level |Λ| = g − 1 were cal-
culated. We want to take advantage of this, and that will be our focus in the next
section.

3.3.2 The recursive formula

To obtain our recursive formula we start out by defining the parameter γ0(∅) =
β(∅) in the node ∅. For the rest of the nodes in the DAG we define the parameters

γg(Λ, u) = 1
g

∑
t∈Λ

γg(Λ\{t}, (χ(Λ, u))Λ\{t}) for g = 1, ..., |Λ|, (Λ, u) ∈ P(S)\∅. (11)
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We see that such a parameter is calculated strictly from the nodes one level below
in the DAG. It was shown in Arnesen (2009) that these parameters where nothing
but

γg(Λ, u) =
∑

t(1),...,t(g)∈Λ
β(Λ \ {t(1), ..., t(g)}, (χ(Λ, u))Λ\{t(1),...,t(g)}), (12)

which means that for a node (Λ, u) the parameter γ1(Λ, u) is the sum of the
interaction parameters of the children of the node, γ2(Λ, u) is the sum of the
interaction parameters of the children’s children of the node, and so on. Whenever
these parameters are available the interaction parameters can be calculated by

β(Λ, u) = U(χ(Λ, u))−
|Λ|∑
g=1

γg(Λ, u). (13)

This is obtained by inserting (12) into (10). It is obvious that the recursive formula
presented here is much more efficient than the intuitive way of calculating the
interaction parameters. It is also clear from the construction of this formula that
(8) is in fact a unique representation of the energy function. In Section 4.1.1 we use
this recursive formula to calculate all the interaction parameters of a generalized
Potts model defined on a graph.

4 Exact recursive algorithm
In the previous section we presented our DAG representation for the probability
distribution of a Markov random field. In addition we derived a recursive formula
for calculation of the weights in this DAG. We observed that the number of weights,
and the number of nodes in the DAG, very quickly became large as a function of
|S| and |Ω|. However, in the following section we will explain why many of these
interaction parameters are equal to 0, and how we can use this to construct a much
smaller DAG. As an example of this property we calculate all the interaction
parameters for a Markov random field distributed according to the generalized
Potts model. In the rest of this section we finally present our recursive forward-
backward algorithm. By the forward part of this algorithm we will be able to
decompose the distribution π(z) according to

π(z) =
[
n−1∏
k=1

π(zt(k)|zt(l), l = k + 1, ..., n)
]
π(zt(n)), (14)

where t(1), ..., t(n) represents a chosen permutation of the elements in S. We will
show how each of the distributions in this expression can be represented by an
individual DAG. Next we use this representation to define two different backward
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parts to our algorithm. Through the first one we are able to simulate from π(z),
while the second one enables us to calculate the marginal distributions for all the
nodes in S. Finally we explain how the algorithm can be applied on a Bayesian
problem.

In this section we establish an exact algorithm. However, as |S|, |Ω|, and the size
of the neighbourhoods grows, we get computational problems with this algorithm.
This motivates the use of the approximations presented in Section 5.

4.1 Reduced DAG representation
In the general DAG representation of Section 3.2 we obtained a total of |Ω|n
nodes, where an equally large number of interaction parameters had to be com-
puted. However, as we have assumed a Markov random field, we can prove by the
Hammersley-Clifford theorem of Section 2.3 that all interaction parameters rep-
resenting non-cliques are equal to 0. We formulate this property in the following
theorem.

Theorem 2: Let z be a Markov random field with respect to a given neighbourhood
system N , and let C be the set of all cliques. Then β(Λ, u) = 0 ∀ Λ 6∈ C and
u ∈ Z |Λ|.

The proof of this theorem can be found in Arnesen (2009). Using this theorem,
we write the energy function of a Markov random field as

U(z) =
∑

(Λ,u)∈B
β(Λ, u)I(u = zΛ), (15)

where B is the set defined by

B =
⋃

(Λ,u)∈P(S)
β(Λ,u)6=0

{(A, v)|A ⊆ Λ, (χ(Λ, u))A = v} . (16)

We see that a node (Λ, u) ∈ P(S) does not belong to this set if, and only if,
β(Λ, u) = 0 and all other nodes of higher order that can reach this node by the
edges in the DAG also has interaction parameters equal to 0. Using Theorem 2, we
are able to reduce the number of nodes in our DAG representation. We denote this
reduced DAG by G = G(B, β[B]), where β[B] represents the weights as before. To
illustrate the set B, we take another look at the example in Figure 3. As discussed
in Section 2.2, the cliques in such a Markov random field is the empty set, sets
containing just one element, and sets containing two nodes where these two nodes
are neighbours. The DAG for this situation is shown in Figure 5, but note that we



4.1 Reduced DAG representation 13

{1,2}
(1,1)

��@@@@@@@@@

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
{1,2}
(2,1)

��@@@@@@@@@

''OOOOOOOOOOOOOOOOOOOO
{1,2}
(1,2)

��~~~~~~~~~

))SSSSSSSSSSSSSSSSSSSSSSSSSS
{1,2}
(2,2)

��~~~~~~~~~

%%LLLLLLLLLLLLLLLL

{2,3}
(1,1)

yyrrrrrrrrrrrrrrrr

��@@@@@@@@@

{2,3}
(2,1)

��~~~~~~~~~

��

{2,3}
(1,2)

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

��

{2,3}
(2,2)

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

��~~~~~~~~~

{1}
(1)

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
{1}
(2)

((PPPPPPPPPPPPPPPPPPP
{2}
(1)

��>>>>>>>>>

{2}
(2)

�����������

{3}
(1)

vvnnnnnnnnnnnnnnnnnnn
{3}
(2)

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

∅

Figure 5: The DAG G(B, β[B]) for our illustrative example.

have assumed that β(Λ, u) 6= 0 for Λ = {1, 2}, {2, 3} and u ∈ Z2. In this figure we
see that all third order interactions are gone compare to Figure 4. Because of this
and because {1, 3} 6∈ C, the nodes ({1, 3}, (z1, z3)) for all z1, z3 ∈ Z are gone as well.

The point of this section was to reduce the number of nodes in our DAG repre-
sentation. By this, much more complex problems can be evaluated. Later we will
also see that this reduction makes our algorithm much more efficient. But first,
let us look at an example where we calculate all the interaction parameters of a
generalized Potts model, using the reduced DAG representation and the recursive
formula of Section 3.3.2.

4.1.1 The interaction parameters of a generalized Potts model

Assume that our Markov random field is defined on a lattice with a first order
neighbourhood system, and that it is distributed is according to (4). We label the
nodes in lexicographical order, and to write the distribution on the form of (6) and
(15), we need to determine the interaction parameters. We start out by setting
(6) equal to (4), and obtain

U(z) =
∑

(Λ,u)∈B
β(Λ, u)I(u = zΛ) = 1

2

n∑
k=1

∑
l∈Nk

α(zk, zl). (17)

We will solve this system of equations with respect to the β-parameters, using the
recursion formula of Section 3.3.2. Because of the one-to-one relation (7), we can
obtain the interaction parameter β(∅) from the vector z = (0, 0, ..., 0). We find
that

β(∅) = 1
2

n∑
k=1

∑
l∈Nk

α(0, 0) = 0,
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and that γ0(∅) = β(∅) = 0. Moving on, we calculate γ1({k}, (zk)) = γ0(∅) = 0 for
all k ∈ S and zk ∈ Z. From the vector z = (0, ..., zk, 0, ..., 0) and (17) we find that
U(z) = |Nk|α(0, zk). Using (13), we obtain the first order interaction parameters

β({k}, (zk)) = |Nk|α(0, zk) ∀ k ∈ S and zk ∈ Z,
where Nk as usual is the neighbourhood of node k. Finally we need to determine
the second order interactions β({k, l}, (zk, zl)) for all k ∈ S, l ∈ Nk, and zk, zl ∈ Z.
From (11) we find

γ1({k, l}, (zk, zl)) = γ0({k}, (zk)) + γ0({l}, (zl))
= β({k}, (zk)) + β({l}, (zl))
= |Nk|α(0, zk) + |Nl|α(0, zl) and,

γ2({k, l}, (zk, zl)) = 1
2(γ1({k}, (zk)) + γ1({l}, (zl)))

= 1
2(0 + 0) = 0,

and from the vector z = (0, .., zk, 0, .., zl, 0, ..., 0) and (17) we find that

U(χ({k, l}, (zk, zl))) = (|Nk| − 1)α(0, zk) + (|Nl| − 1)α(0, zl) + α(zk, zl).

Using (13) one last time, we get the second order interaction parameters

β({k, l}, (zk, zl)) = α(zk, zl)− α(0, zk)− α(0, zl) ∀ k ∈ S, l ∈ Nk, and zk, zl ∈ Z.

Because this is a generalized Potts model with a first order neighbourhood system,
all the interaction parameters for all the nodes in B are obtained by these formulas.
From these formulas we are able to represent the energy function of any generalized
Potts model on the form of (15). This representation enables us to use our recursive
forward-backward algorithm presented in the following sections.

4.2 The forward part, decomposition
In first step of the forward part of our algorithm we decompose the probability
distribution π(z) according to

π(z) = π(zr|z−r)π(z−r), (18)
where r is a chosen element from S, the first variable to be decomposed from the
system. By iterating this procedure, decomposing π(z−r) in the next iteration,
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Figure 6: The DAG G1 = G(B1, β[B1]) for our illustrative example.

we obtain (14). In the next three sections we will therefore focus on establishing
the distributions π(zr|z−r) and π(z−r) from π(z). These two distributions will be
represented by DAGs, in the same way as π(z) is represented.

4.2.1 Splitting

First of all we define the set Br = {(Λ, u) ∈ B|r ∈ Λ}. In words, this is a subset
of B containing all elements where node r is present in Λ. We can use this set to
determine the distribution π(zr|z−r) in the following way

π(zr|z−r) ∝ exp

− ∑
(Λ,u)∈Br

β(Λ, u)I(u = zΛ)

 , (19)

where z = (z1, ..., zr−1, zr, zr+1, ..., zn). The set Br, and therefore the distribu-
tion π(zr|z−r), can also be represented as a DAG. We denote this DAG by Gr =
G(Br, β[Br]), where β[Br] = {β(Λ, u)|(Λ, u) ∈ Br} denotes the weights. This way
we obtain a one-to-one relation between the interaction parameters in π(zr|z−r)
and the nodes inGr. Let us again look at our example for illustration. By assuming
r = 1, we establish the DAG G1 shown in Figure 6. This DAG is easily obtained
by finding all the nodes in the DAG representing B where 1 ∈ Λ, and separate
these nodes from the rest of the DAG. The DAG G1 represents the distribution
π(z1|z2, z3) = π(z1|z2), where the last equality is valid because z1 is independent
of z3 given z2, according to the Markov property (1). Note that G1 consists of two
separate parts. Generally we get one separate part for each element in Z.

So far we have obtained the DAG representing π(zr|z−r), and in the following
we move on to determine the distribution π(z−r). This is a distribution for the
stochastic field z−r, with an energy function U∗(z−r) that needs to be determined.
To do this we first define the set B−r = B \Br, such that Br and B−r is a partition
of B. The set B−r can also be represented as a DAG, and this DAG is denoted
by G−r = G(B−r, β[B−r]). The DAG G−1 for our illustrative example is shown in
Figure 7, and note how this DAG contains all the nodes in Figure 4 that are not
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Figure 7: The DAG G−1 = G(B−1, β[B−1]) for our illustrative example.

in Figure 6.

Next we show how to use both these DAGs to determine the energy function
U∗(z−r), and thereby the probability distribution π(z−r).

4.2.2 Calculating U∗(z−r)

To determine the energy function U∗(z−r) for the distribution π(z−r), we start by
summing out the variable zr from π(z),

π(z−r) =
∑
zr

π(z) =
∑
zr

c · exp

− ∑
(Λ,u)∈B

β(Λ, u)I(u = zΛ)


= c · exp {−U∗(z−r)}
⇓

U∗(z−r) = − ln
∑

zr

exp

− ∑
(Λ,u)∈B

β(Λ, u)I(u = zΛ)


 .

Next we use that Br and B−r is a partition of B to write the energy function as

U∗(z−r) = U1
∗ (zNr) + U2

∗ (z−r),
where we obtain

U1
∗ (zNr) = − ln

1 +
∑
zr∈Z

exp

− ∑
(Λ,u)∈Br

β(Λ, u)I(u = zΛ)


 , and

U2
∗ (z−r) =

∑
(Λ,u)∈B−r

β(Λ, u)I(u = zΛ),
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Figure 8: The DAG G(P(N1),∆β[P(N1)]) for our illustrative example.

where again z = (z1, ..., zr−1, zr, zr+1, ..., zn). The right hand side of the expression
for U2

∗ (z−r) may look like it is dependent on the value of zr since it is present
in the vector z. However, the value of zr is unimportant since r 6∈ Λ for any
(Λ, zΛ) ∈ B−r. This is just a convenient notation.

So far we have seen that the energy function U∗(z−r) can be expressed as a sum
of two separate energy functions, one concerning interaction parameters of the
elements in Br, and one of the elements in B−r. We also observe that U2

∗ (z−r) is on
canonical form, and that U1

∗ (zNr) is not. We wish to express U1
∗ (zNr) on canonical

form as well, and this can be done by observing that for all (Λ, u) ∈ Br, we know
that Λ \ {r} ⊆ Nr. Because the inner sum in the expression for U1

∗ (zNr) is over
the elements of Br, we introduce P(Nr) = {(Λ, u)|Λ ⊆ Nr, u ∈ Z |Λ|} and write

U1
∗ (zNr) =

∑
(Λ,u)∈P(Nr)

∆β(Λ, u)I(u = zΛ), (20)

where the interaction parameters ∆β(Λ, u) can be determined by the recursive
formula presented in Section 3.3.2. The set P(Nr) is represented by the DAG
G(P(Nr),∆β[P(Nr)]), where ∆β[P(Nr)] represents the weights as usual. Let
us continue our illustrative example by finding the DAG representing P(N1).
The neighbourhood N1 is easily obtained by traversing the nodes in the DAG
representing B1. In this case we have N1 = {2}, and we construct the DAG
G(P(N1),∆β[P(N1)]) as shown in Figure 8.

Now only one step separates us from determine the DAG representing the distri-
bution π(z−r), and it will be explained in the next section. We denote this DAG
by G∗ = G(B∗, β[B∗]), where β[B∗] as usual represents the weights.

4.2.3 Computation of G∗

We start out by defining the set B̃∗ = B−r
⋃P(Nr). Next we establish the DAG

G̃∗ = G(B̃∗, β[B̃∗]), where the weights can be determined from
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β∗(Λ, u) =


β(Λ, u) + ∆β(Λ, u) if (Λ, u) ∈ B−r

⋂P(Nr)
β(Λ, u) if (Λ, u) ∈ B−r \ P(Nr)
∆β(Λ, u) if (Λ, u) ∈ P(Nr) \ B−r
0 otherwise.

(21)

The weighted DAG G̃∗ is a valid representation of the distribution π(z−r). How-
ever, this DAG may be containing nodes that according to (16) should not be
there. So, to complete our decomposition we need to remove these nodes. The
results is the DAG G∗, where B∗ ⊆ B̃∗.

So far in this section we have decomposed π(z) according to (18). The algorithm
for doing this is shown in Figure 9. This procedure can, as already explained, be
iterated for π(z−r). That is, in the next iteration we need to determine π(zs|z−{r,s})
and π(z−{r,s}), where s is the next variable we choose to decompose from the sys-
tem, t(2) = s in (14). When all the variables are decomposed according to (14),
we are finished with the forward part of our algorithm.

In Section 1 we mentioned that (14) is a partially ordered Markov model, and
in this section we have seen how the conditional distribution π(zt(k)|zt(l), l = k +
1, ..., n) for k = 1, ..., n − 1 is obtained from the forward part of our algorithm.
However, because of the Markov property (1) of the original distribution π(z), the
conditional distribution is only dependent of a subset of zt(l) for l = k + 1, ..., n.
This subset will, in terms of Cressie & Davidson (1998), be called an adjacent
lower neighbourhood, and it will be denoted by Lt(k) ∀ k ∈ S, where Lt(1) = Nt(1)
and Lt(n) = ∅ by definition. When all these sets are determined, we write (14) as

π(z) =
[
n−1∏
k=1

π(zt(k)|zLt(k))
]
π(zt(n)), (22)

where π(zt(n)|zLt(n)) = π(zt(n)|∅) = π(zt(n)). Note that in the decomposition of
node t(k), for k = 2, ..., n, we need to determine the set P(Lt(k)) when performing
step 2 in Figure 9 to obtain π(z−{t(1),...,t(k)}). This is because we generally only
have Nt(k) = Lt(k) for k = 1.

4.3 The backward part
In this section we present two alternative backward parts to our forward-backward
algorithm. First of all we are able to simulate from the decomposed system. This
is done by first simulating zt(n), then zt(n−1), and so on. Second of all we present a
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1. Split the DAG G = G(B, β[B]) into the two DAGs Gr = G(Br, β[Br])
and G−r = G(B−r, β[B−r]). The DAG Gr is a representation of
π(zr|z−r).

2. Find the set of neighbours Nr from Gr by Nr = {k ∈ S−r|{k, r} ∈
Br}, and establish the set P(Nr).

3. Calculate the interaction parameters ∆β(Λ, u) ∀ (Λ, u) ∈ P(Nr),
and establish the DAG G(P(Nr),∆β[P(Nr)]).

4. Add G(P(Nr),∆β[P(Nr)]) to G−r to find the DAG G̃∗ =
G(B̃∗, β∗[B̃∗]), where B̃∗ = B−r

⋃P(Nr).

5. Delete all nodes (Λ, u) ∈ B̃∗ in the DAG G̃∗ where the parameters
β∗(A, v) = 0 ∀ (A, v) ∈ {(A, v) ∈ B̃∗|Λ ⊆ A, (χ(A, v))Λ = u}. This
gives the DAG G∗, which is a valid representation of π(z−r).

Figure 9: Algorithm for decomposing π(z) into π(zr|z−r) and π(z−r).

recursive formula for calculating the marginal distribution for all k ∈ S. That is,
we show how to establish the distributions π(zk) ∀ k ∈ S.

4.3.1 Simulation

After performing the full decomposition of the distribution π(z), we are able to
simulate from π(z) in the following way. First we simulate zt(n) ∼ π(zt(n)), where
the normalizing constant for this distribution can be obtained by

c =
[
K−1∑
i=0

π(zt(n) = i)
]−1

. (23)

Note that this is actually the same normalizing constant as in (6). Next we simulate
zt(n−1) ∼ π(zt(n−1)|zt(n)) = π(zt(n−1)|zLt(n−1)), and so on until we finally simulate
zt(1) ∼ π(zt(1)|zt(2), ..., zt(n)) = π(zt(1)|zLt(1)). The result of this backward part of
our algorithm is a vector z = (z1, z2, ..., zn), which is the wanted realisation from
π(z). Remember that t(1), t(2), ..., t(n) is a permutation of the elements in S.
This completes our exact recursive forward-backward algorithm for simulation of
discrete Markov random fields.

4.3.2 Calculating the marginals

In this section we focus on calculating the marginal distributions for all k ∈ S.
That is, as an alternative to the backward part of our algorithm that simulates
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from π(z), we show how to find the distributions π(zk) ∀ k ∈ S. In this section we
assume the decomposition to be done according to t(k) = k in (14). Calculation
of the marginals is interesting in many ways. For instance, we know that the
marginals for a Potts model defined on a lattice with Ω = {0, 1, ..., K − 1} are

π(zk) = 1
K
∀ k ∈ S,

and we can use this to check the correctness of our implemented algorithm. For
a generalized Potts model the marginals are not analytically known, but we will
be able to calculate them by the formulas presented in this section. Calculating
the marginals can also be used to find the marginal posterior mode estimate of an
underlying picture in a Bayesian setting. We will take a look at this in Section
4.4.

The marginal distribution π(zn) is given from the forward part of our algorithm.
We are also given the conditional distributions π(zk|zLk) ∀ k = n − 1, ..., 1, and
we will in the following use these distributions to calculate the rest of the desired
marginals. The recursive formulas that we give look complicated, but we will
carefully explain them, and see that they are in fact quite intuitive. We start out
by defining An = {n}, and write π(zn) = π(zAn). With help from the union of all
the adjacent lower neighbourhoods up to a node k, that is Uk = L1

⋃
L2
⋃
...
⋃
Lk,

we can recursively calculate all the marginal distributions by

π(zAk) =
∑

zAk+1\Uk

π(zk|zLk)π(zAk+1), where Ak = {k}
⋃

(Ak+1
⋂
Uk), (24)

π(zk) =
∑

zAk\{k}

π(zAk), for k = n− 1, ..., 1. (25)

To explain these formulas we start out by looking at the sets Ak for k = 1, ..., n.
First of all we note that k ∈ Ak by definition. The rest of the set contains all nodes
where we have already calculated a marginal distribution, and where these nodes
still are in at least one of the adjacent lower neighbourhoods too come. This means
that a variable zl for l ∈ Ak+1 is to be summed out in (24) if, and only if, node l
is not present in any of the sets L1, ..., Lk. By this we also know that Lk ⊆ Ak+1,
which allows us to write π(zk|zAk+1) = π(zk|zLk) in (24), by the Markov property
(1). When the probability distribution π(zAk) for k ∈ S is obtained, we are able to
calculate the marginal distribution π(zk) by the forward decomposition explained
in Section 4.2. We note that Ak not is the only useful set when using these formu-
las for all k ∈ S. In fact we can use any set Ãk ⊆ {k, ..., n} as long as Ak ⊆ Ãk.
However, the sets Ak for all k ∈ S are optimal when using these recursive formulas.
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Let us illustrate this recursion by an example. Assume we have completed the de-
composition for the nodes in Figure 1, and that we have calculated the marginals
π(zk) for k = 20, ..., 9. It can be shown that we have A9 = {9, 10, 11, 12, 13, 14}
and U8 = {1, 2, ..., 13} at this point. Using (24), we easily obtain the set A8 =
{8, 9, 10, 11, 12, 13}, and find that the sum in this equation needs to be over the
variables in A9 \U8 = {14} to obtain π(zA8). Next we use this distribution to find
the marginal distribution π(z8) by (25), which completes the iteration. In fact, this
example illustrates a case where the optimal Ak is easy to find for all k ∈ S. Let us
generalize the example by assuming a m′×m lattice with a first order neighbour-
hood system, for instance a Potts model. We label the nodes S = {1, 2, ...,m′m}
in lexicographical order. When calculating the marginals in this system, we find
that the optimal Ak ∀ k ∈ S is Ak = {k, ...,m′m} for k = m′m, ...,m′m −m and
Ak = {k, ..., k +m} for k = m′m−m− 1, ..., 1. Because of this dependency, Friel
& Rue (2007) term this is a lag m model.

4.4 Using the algorithm for Bayesian calculations
In this section we explain how our algorithm can be used to estimate an underlying
picture in a Bayesian setting. To read more about this problem, see for instance
Besag (1986) or Geman & Geman (1984). Assume that an unobserved picture
z is a realisation from a Markov random field with probability distribution p(z).
This distribution is called the prior distribution in this Bayesian setting. Next we
assume that we have observed a stochastic degenerated version y of z. That is, we
assume a likelihood model such that y ∼ l(y|z). Using Bayes theorem we find the
posterior distribution by

π(z|y) ∝ l(y|z)p(z). (26)

The goal is now to estimate the underlying picture z. By writing the posterior
distribution with an energy function as in (15), running our recursive algorithm,
and calculating the marginal distributions, π(zk|y), we can estimate z by

ẑk = arg max
i∈Ω

π(zk = i|y) ∀ k ∈ S, (27)

such that ẑ = (ẑ1, ẑ2, ..., ẑn) becomes our final marginal posterior mode estimate.
Instead of calculating the marginal distributions, as shown in the previous section,
we can also estimate them by

π̂(zk = i|y) = 1
M

M∑
j=1

I(z(j)
k = i) ∀ k ∈ S, i ∈ Ω, (28)
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where z(j) for j = 1, ...,M are M simulated realisations. Estimating the marginals
according to this formula is, for complex problems, computationally cheaper than
calculating them. Let us give an example of such a Bayesian problem, and show
how to write the posterior distribution with an energy function as in (15).

4.4.1 Example on a Bayesian model

As an example of the concept presented in the previous section, we assume that
our prior distribution p(z) is a generalized Potts model. The underlying picture
z is therefore assumed to be from this distribution. Secondly, let us assume that
our observed picture y is obtained from a likelihood model l(y|z) that provides
independent Gaussian noise to each element in z. That is,

l(y|z) =
n∏
k=1

f(yk|zk) ∝ exp
{
− 1

2σ2

n∑
k=1

(yk − zk)2
}
, (29)

where σ2 is the variance. As explained in Section 4.4, we need to determine the
posterior distribution π(z|y) and write it on canonical form. From Bayes theorem
it is easy to see that the posterior distribution becomes

π(z|y) = l(y|z)p(z) ∝ exp

− 1
2σ2

n∑
k=1

(yk − zk)2 − 1
2

n∑
k=1

∑
l∈Nk

α(zk, zl)

 ,
and by following the procedure of Section 4.1.1, we calculate that

β(∅) = 1
2σ2

n∑
i=1

y2
i ,

β({k}, (zk)) = |Nk|α(zk, 0) + 1
2σ2 (z2

k − 2zkyk) ∀ k ∈ S, zk ∈ Z, and

β({k, l}), (zk, zl)) = α(zk, zl)− α(0, zl)− α(zk, 0) ∀ k ∈ S, l ∈ Nk, zk, zl ∈ Z.

By these expressions we have obtained all the interaction parameters for the pos-
terior distribution in this Bayesian setting. Examples of using our algorithm in
this setting are given in Section 7.6.

5 Approximations
Exact calculations of Markov random fields are very limited by the size of S, Ω,
and the neighbourhoods. Friel & Rue (2007), for instance, manage to do exact
calculations on a binary lattice of size m ×m′, where m ≤ m′ and m ≤ 19, and
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with a first order neighbourhood system. Tjelmeland & Austad (2010) do exact
calculations on 15× 15 lattices for the same situation in their examples. Because
they both assume binary lattices, we expect our exact algorithm to be even more
limited as a function of |Ω|. We attack this problem by first observing why the
exact algorithm so fast becomes inefficient, and even impossible to run. Next we
introduce our approximations to the exact algorithm, and they will closely follow
the ones suggested in Tjelmeland & Austad (2010).

5.1 Why approximations?
Assume a lattice as shown in Figure 1, and that Ω = {0, 1, 2} for this example.
As already discussed, this is a first order neighbourhood system where the cliques
are the empty set, sets containing one node, and set containing two nodes where
these two nodes are neighbours. Let us assume that the variables are decomposed
from the distribution π(z) in the order t(k) = k for k = 1, ..., 20. According to
the algorithm in Figure 9, we need to determine P(N1), and because N1 = {2, 6}
we get P(N1) = P(L1) = {∅, ({2}, (1)), ..., ({2, 6}, (2, 2)})}. From this set we see
that the nodes ({2, 6}, (z2, z6)) ∀ z2, z6 ∈ Z could be present in the DAG G∗. This
means that in the next iteration we may have interactions between node 2 and 6.
In the next iteration we get P(L2) = {∅, ({3}, (1)), ..., ({3, 6, 7}, (2, 2, 2))}, which
means that as a result of the decomposition so far, we could get a clique of size 3
and node 2 may interact with one node more that it initially did. As we go on with
our algorithm it is easy to understand that for large lattices this effect leads to
computational problems. In fact, when decomposing the nodes lexicographically
in an m′ ×m lattice with a first order neighbourhood system, we obtain cliques
and adjacent lower neighbourhoods of size m. This is of course computationally
impossible when m is large. First of all the CPU time becomes too large, but
we also get difficulties with saving all the different interaction parameters in the
memory. This motivates the use of the approximations that will be presented and
discussed in the rest of this section.

5.2 The approximations
As in Tjelmeland & Austad (2010), we define two types of approximations. First
of all we approximate an interaction parameter ∆β(Λ, u) to 0 if |∆β(Λ, u)| < ε. In
words, we choose a parameter ε > 0 that is a minimum allowed value for the abso-
lute value of the interaction parameters. If we choose ε large enough, this solves the
problem of saving all the interaction parameters in the memory. However, we still
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need to calculate all the interaction parameters to know which of them to approx-
imate to 0. This problem is dealt with by assuming that higher order interactions
are smaller than lower order interactions. The interaction parameter ∆β(Λ, u) for
the node (Λ, u) ∈ P(Lk), for k = 1, ..., n−1, is approximated to 0 if the interaction
parameters of all the children of the node are approximated to 0. More precisely, a
parameter ∆β(Λ, u) is approximated to 0 if ∆β(A, v) is approximated to 0 for all
A ⊂ Λ, |Λ\A| = 1, and (χ(Λ, u))A = v. We observe that setting ε = 0 gives us our
exact algorithm, and as we increase ε, the quality of our approximations decreases.

The approximations presented in this section are performed in each of the iterations
of the algorithm. First the distribution π(z) is decomposed into π(zr|z−r), and after
the first approximations we get the approximate distribution π̃(z−r). Secondly,
π̃(z−r) is decomposed into π̃(zs|z−{r,s}), and after new approximations we obtain
π̃(z−{r,s}). Continuing this procedure until all the variables are decomposed into
conditional distribution, we get the approximate distribution

π̃(z) = π(zt(1)|z−t(1))
[
n−1∏
k=2

π̃(zt(k)|zt(l), l = k + 1, ..., n)
]
π̃(zt(n)) ≈ π(z), (30)

where t(1), ..., t(n) again is a chosen permutation of the nodes in S. These ap-
proximations make it computationally possible to decompose π(z) into π(zr|z−r)
and π̃(z−r). In addition, the approximations may introduce conditional indepen-
dencies to the resulting Markov random field z−r that are not present in π(z−r).
This is again an advantage when the rest of decomposition is performed. As a
consequence of the conditional independencies that the approximations introduce,
the sets Lk for k = 2, ..., n− 1 may become smaller than in the exact case.

The simulation part of our algorithm is carried out by simulating from the approxi-
mate distribution. That is, we first simulate zt(n) ∼ π̃(zt(n)), then simulate zt(n−1) ∼
π̃(zt(n−1)|zt(n)) = π̃(zt(n−1)|zLt(n−1)), and so on until zt(1) ∼ π(zt(1)|zt(2), ..., zt(n)) =
π(zt(1)|zLt(1)) is simulated. The vector z = (z1, z2, ..., zn) is an approximate reali-
sation from the distribution π(z).

When calculating the marginal distributions, we may need to make more approx-
imations. Namely, when summing out the variables in (24) and (25). These sums
are evaluated by performing forward steps of our algorithm. For instance in (25),
the nodes Ak \ {k} needs to be decomposed from π(zAk) to find the marginal dis-
tribution π(zk). In these decompositions we introduce the same approximations
as presented above, with or without the same value of ε.
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This section completes the presentation of our approximate recursive forward-
backward algorithm for calculations of discrete Markov random fields defined on
graphs. In the next section we explain how to evaluate the performance of this
approximate algorithm.

5.3 Evaluation of the approximations
To evaluate our algorithm we look at several aspects. First of all we need to
investigate the quality of the simulated realisations. In other words, we want to
find out how good the distribution π(z) is approximated by π̃(z). We evaluate
this quantity by estimating the acceptance rate when using π̃(z) as the proposal
distribution in a Metropolis-Hastings algorithm with π(z) as the target distribution
(Gamerman & Lopes 2006). We use importance sampling (Casella & Robert 1999)
to find our estimate. From the general theory of importance sampling we know
that to estimate

µ = Ef (h(x)),

where f is the distribution of x and h(x) is a function of x, we can simulate
xi ∼ g(x) for i = 1, ...,M , and estimate µ by

µ̂ =
M∑
i=1

h(xi)Wi, (31)

where Wi is a weight calculated by

Wi = f(xi)
g(xi)

/
M∑
j=1

f(xj)
g(xj)

.

In our case we want to find an estimate for the acceptance rate acc when going
from a state z(i) ∼ π(z(i)) and proposing a new state z(j) ∼ π̃(z(j)). This means
that x = (z(i), z(j)) and f(z(i), z(j)) = π(z(i))π̃(z(j)) when using the notation from
above. Because z(i) and z(j) are independent, we write (z(i), z(j)) ∼ g(z(i), z(j)) =
π̃(z(i))π̃(z(j)). Calculation of the weights in this case gives us

Wi,j = π(z(i))π̃(z(j))
π̃(z(i))π̃(z(j))

/
M∑
k=1

M∑
l=1
l 6=k

π(z(k))π̃(z(l))
π̃(z(k))π̃(z(l)) = π(z(i))

π̃(z(i))

/
M∑
k=1

(M − 1)π(z(k))
π̃(z(k)) ,

for M realisations from π̃(z), and where the double sum gives us all possible pairs
(z(i), z(j)) for i, j = 1, ...,M and i 6= j. Inserting these weights into (31), gives us
our final estimate
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âcc =
M∑
i=1

 ωi
M − 1

M∑
j=1
i 6=j

min
{

1, π(z(j))π̃(z(i))
π(z(i))π̃(z(j))

} , where (32)

ωi = π(z(i))
π̃(z(i))

/
M∑
j=1

π(z(j))
π̃(z(j)) .

If the approximations are good, we expect âcc to be close to 1, but if the ap-
proximations are poor, we expect an estimate close to 0. Some results using this
estimate are given in Section 7.3.

Let us assume the decomposition to be done according to t(k) = k ∀ k ∈ S.
Because of the construction of the forward part of our algorithm, the conditional
probabilities π(zk = i|zLk) ∀ k ∈ S and i ∈ Ω are easily accessible. It is inter-
esting to evaluate the error done in these probabilities because of the approxi-
mations. If we assume a Potts model, many of the conditional probabilities are
equal to each other for a node k ∈ S. This is because there are no discrim-
ination of the values in Ω for this model. For instance, the two probabilities
p1 = π(zk = 1|zk+1 = 2, zLk\{k+1} = 0) and p2 = π(zk = 1|zk+1 = 0, zLk\{k+1} = 2)
are by definition equal to each other. Here a bold number means a vector contain-
ing only that number, for instance 2 = (2, 2, ..., 2). However, because the value
0 is treated differently by the algorithm than the other values in Ω, this value is
also treated differently by the approximations. It is therefore interesting to see
how two conditional probabilities that are supposed to be equal, becomes unequal
because of the approximations and the discrimination of the value 0. Some results
concerning this are given in Section 7.4.1.

Another way of evaluating the behaviour of the approximations is by tracking the
error done in one node l ∈ S, as a result of the approximations. This can be done
by evaluating the errors in the probabilities p2 = π(zk = 1|zk+1 = 0, zLk\{k+1} =
2) ∀ k ∈ S when performing approximations only for k = l. For the remaining
nodes we use the exact version of our algorithm. This requires, of course, that
we are looking at a problem where the exact algorithm can be applied. Some
numerical examples of such evaluations are shown in Section 7.4.2.

The approximations that are performed by the forward part of our algorithm effect
the size of the adjacent lower neighbourhoods. As mentioned in Section 5.1, exact
lexicographically decomposition of an m′×m lattice, with a first order neighbour-
hood system, gives cliques and adjacent lower neighbourhoods of size m. The ap-
proximations introduce conditional independencies to the resulting distributions,
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potentially making the sets Lk for k = 2, ..., n− 1 smaller. An investigation of the
size of these sets, as a function of α and ε, is given in Section 7.5.

6 Implementation
To implement the algorithm we use the computer language C. The input to our
program is a text file containing the interaction parameters for the distribution
we wish do calculations on. This text file is read, and the initial DAG is built. In
this section we discuss how this DAG is constructed, and how the rest of the al-
gorithm is implemented. The implementation consists of mainly five parts. These
are, splitting a DAG with respect to a node r, growing a DAG from the adjacent
lower neighbourhood of r, finding the union of two DAGs, simulating from the
decomposed system, and calculating the marginals. We will go through the im-
plementation of these five parts, but first we introduced the data structure used
to represent a DAG. The algorithm is implemented such that it decomposes the
nodes in order t(k) = k, k = 1, 2, ..., n. This means that if we want to decompose
the problem in a different order, we have to relabel the nodes before running the
algorithm. In our implementation we always include all first order interactions
regardless of their β- or ∆β-values. This is done to ease implementation. In the
following we explain an implementation of the approximate version of the algo-
rithm. But, as we have already seen, setting ε = 0 gives us our exact algorithm.

6.1 Data structure
To represent a node in the DAG we define a struct. To this struct we declare sev-
eral fields. First of all we declare an int to represent |Λ|, and a double to represent
the β-value of the node. Next we define a pointer to a list of pointers. Each of
the pointers in this list points to a child of the node. In the same way we define a
pointer to a list of pointers which points to all the parents of the node. This way
we can easily reach all the children and all the parents of a node. By these lists
of pointers, the edges in the DAG are represented. We are able to reach all the
nodes in the DAG by a pointer to the root node ∅. In addition to these lists we
declare the length of them as two ints. These two fields represent the number of
parents and children of a node in the DAG.

We also need to declare fields that somehow represent (Λ, u) in each node. The
intuitive way of doing this is by making two lists of length |Λ| to hold the values
in Λ and u. However, this is not a good idea since it will cost a lot of memory.
Fortunately, we can avoid this problem by carefully order the lists of children in
a way that in the following will be explained. Assume we are looking at the node
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(Λ, u) = ({1, 2, 3}, (1, 2, 1)) in Figure 4. Remembering that the elements in Λ al-
ways are sorted in increasing order, we choose to save only the last element in Λ,
which is {3}. Likewise, we only save the last element in u, which is (1), since the
elements in u are ordered according to Λ, see (7). Next we see that the node has
three children, namely ({1, 2}, (1, 2)), ({1, 3}, (1, 1)) and ({2, 3}, (2, 1)). We now
define the first child in the nodes’ list of children to be ({1, 2}, (1, 2)). In the node
({1, 2}, (1, 2)) we only save the values {2} and (2), and define its first child to be
({1}, (1)). Here we save the values {1} and (1). Using this system for all the nodes
in a DAG, we can always find the values in a (Λ, u)-pair by a recursive search to
the first child of the node. So, instead of declaring two lists of ints, we only need to
declare two single ints to uniquely represents each (Λ, u)-pair in a DAG. This way
a lot of memory is saved, and Tjelmeland & Austad (2010) used this technique in
their implementation of the binary case as well.

The last field in our struct is a pointer to a list of doubles. This list is holding the
γg-values of a node when the recursion from Section 3.3.2 is performed. This could,
in the same way as discussed above, cause memory problems. However, this field
is only in use when a DAG is constructed from an adjacent lower neighbourhood,
and we will later in this section see that these DAGs are deleted from the memory
after each iteration of the algorithm.

6.2 Splitting
After the initial DAG is constructed, the algorithm starts to decompose node 1.
This is just a question of deleting edges in the DAG so that G1 is isolated from
G−1. Remember that G1 is the DAG representing the set B1, and that G−1 is
the DAG representing the set B−1. It exists an easy and efficient way to do this,
and it starts by deleting all pointers between ∅ and the nodes ({1}, u) ∀ u ∈ Z.
We declare pointers to these nodes so that they can be reached later. Next we
recursively move upwards from these nodes and observe that all nodes we visit
from now on must have 1 ∈ Λ. For each new node (Λ, u) we visit, one edge must
be deleted, namely the edge to the child (Λ \ {1}, (χ(Λ, u))Λ\{1}). For instance,
the node ({1, 2}, (1, 1)) in Figure 5 have an edge to node ({2}, (1)) that needs
to be deleted when node 1 is decomposed from the system. After a full split is
performed, no pointers between the DAG G1 and the DAG G−1 exist. Note that
the DAG G1 consists of |Z| isolated parts, see Figure 6.

The spitting procedure can of course be done for any r ∈ S to establish the DAGs
Gr and G−r. After a split is performed, we write Gr to a binary file and clear it
from the memory. This way we can reach all the DAGs later, and because the
DAGs are written to the hard disk, we also save a lot of memory.
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6.3 Making a DAG from an adjacent lower neighbourhood
After the split in the previous section is performed, the adjacent lower neighbour-
hood of the decomposed node needs to be determined. Assume that the split is
performed with respect to node r ∈ S, such that the DAG Gr can be reached.
All the adjacent lower neighbours of node r can be found in this DAG, and we
observe that we only need to search through the nodes (Λ, u) ∈ Br where |Λ| = 2
to establish Lr. This is because the definition of B, see (16), and therefore also
the definition of Br, requires all elements of Lr to be present at this level.

When Lr is established we need to make the DAG representing the set P(Lr).
This is done by first making a new root node ∅, followed by the creation of all
the (Λ, u) ∈ P(Lr) where |Λ| = 1. Next we make all nodes where |Λ| = 2, and
so on until |Λ| = |Lr| or the process is stopped by the approximations discussed
in Section 5.2. However, the implemented approximation process differs from the
one in Section 5.2 on one point. If a ∆β-value is calculated, then the node is
always made and added to DAG regardless of its value. This could result in a
DAG with more nodes than suggested in (16). The DAG is implemented this way
to ease implementation, and because it in worst case scenario leads to an equally
accurate algorithm. However, if all the children of a potential node (Λ, u) have
interaction parameters close to 0, that is |∆β(A, v)| < ε ∀ A ⊂ Λ, |Λ \ A| = 1
and (χ(Λ, u))A = v, then ∆β(Λ, u) is not calculated and the node is not made, as
discussed in Section 5.2.

When adding a node to a DAG, we need to locate all its children and make pointers
to them. This is an easy task if all the children already exist, as they did when
we made the initial DAG for π(z). However, when growing the DAG representing
P(Lr), there is a possibility that a desired child does not exist in the DAG. In that
case we calculate the correct ∆β-value for this child and add it to the DAG.

6.4 Union of two DAGs
Our next task is to find the union of the DAG G−r and the DAG representing
P(Lr). We have chosen to do this by traversing all the nodes in the DAG repre-
senting P(Lr), starting with the nodes that have no parents. Several outcomes are
now possible for such a node (Λ, u). If the node also exist in G−r, we only need to
sum the two interaction parameters and store the result in G−r. If the node does
not exist in this DAG, there are two possible cases to consider. If the ∆β-value is
too small, that is if |∆β(Λ, u)| < ε, we do nothing. However, if |∆β(Λ, u)| ≥ ε we
make a new node with β(Λ, u) = ∆β(Λ, u) and add it to G−r. In that case we have
to locate all the children of this node, and again there is a possibility that one or
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more of these children do not exist. Such nodes must be created, and in this case
their interaction parameters are set to 0. Alternatively we could have calculated
the interaction parameters of such nodes in order of higher accuracy. Setting the
interaction parameters to 0 in this case ease implementation a lot, but it is also in
the interest of saving CPU-time.

After finding the union of these two DAGs, we have to prune the DAG representing
B̃∗ according to (16). This is done by a recursive search through the nodes without
any parents, and such a node (Λ, u) is deleted if |β(Λ, u)| < ε as usual. Here we
carefully correct the list of the parents of the deleted nodes’ children. Finally
this gives us the DAG G∗. Note that by not performing this pruning process,
we instantly save CPU time. However, when not performing this process, we
get a larger DAG which again results in an increase in the CPU time later in
the algorithm. We have learned through our implementation that the difference
between pruning and not pruning is very small. We choose to perform the pruning,
while Tjelmeland & Austad (2010) chose not to in their implementation of the
binary case.

6.5 Simulation
Implementing the functions needed to simulate from the decomposed system is
rather straight forward. All the conditional DAGs, including the DAG represent-
ing π(zt(n)) are, as described earlier, saved in a binary file. From this file we have to
find and read the needed DAGs to simulate from π(z). First we read the DAG rep-
resenting π(zt(n)) and simulate from it. When this is done, the DAG is deleted from
the memory. We go on by reading the binary file to simulate from the distributions
π(zt(k)|zt(l), l = k+1, ...n) for k = 1, ..., n−1. Each of the DAGs representing these
distributions is of course also deleted from the memory after they are used. To do
this simulation we first have to compute the normalizing constant c. Generally this
constant becomes very small, so instead we compute ln(c). Likewise, we always
compute ln(π(zt(n))) ∀ zt(n) ∈ Z and ln(π(zt(k)|zt(l), l = k + 1, ...n)) ∀ zt(k) ∈ Z
when we simulate. We do this to avoid numerical problems in the computer.

6.6 Calculating the marginals
Finally we need to implement the recursive formulas for calculation of the marginal
distributions, see Section 4.3.2. This is done by reading the binary file in the same
way as in the previous section. However, using the forward decomposition, the
sums in (24) and (25) can not be directly evaluated for DAGs read from the bi-
nary file. This is because the property that allows us to represent a (Λ, u)-pair by
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just two ints and a sorted list of children, see Section 6.1, does not allow a node
k2 to be decomposed before a node k1 if k1 < k2. When calculating the product
of the two DAGs in (24), we therefore need to relabel the nodes such that node n
becomes node 1, node n − 1 becomes node 2, and so on. This way the sums can
be evaluated by a forward decomposition.

When implementing the recursive formulas from Section 4.3.2, we make no attempt
to calculate Uk ∀ k ∈ S, see (24). Instead we calculate

r = max
k∈S

[
max
l∈Lk

(l)− k
]
,

from the forward part of our algorithm. Using this r, we can choose Ak = {k, ..., n}
for k = n, ..., n − r and Ak = {k, ..., k + r} for k = n − r − 1, ..., 1 to carry
out the calculation of the marginal distributions. The calculation of r is easily
implemented, and we note that for a lattice where the nodes are decomposed
from the system in lexicographical order, this procedure gives us the optimal set
Ak ∀ k ∈ S as discussed in Section 4.3.2. Note, however, that for a Markov random
field defined on a general graph this procedure may not give us the optimal sets.
Also note that different labelling of the nodes in a graph may lead to different
values of r, and calculations of the marginals are more efficient for lower values of
r than for higher values of r.

7 Results
In this section we present some results concerning our implemented algorithm. In
our investigations we always assume a Potts model or a generalized Potts model
defined on a lattice with a first order neighbourhood system. Also, we always de-
compose the nodes from the lattice in lexicographical order. First of all we look at
some realisations from our forward-backward algorithm for different values on the
parameters in the two models. Secondly we assume a Potts model, and investigate
the CPU time used by our algorithm for different values of α and for different
values of the approximation parameter ε. Next we evaluate the approximations
by the procedures presented in Section 5.3, and observe how the approximations
effect the adjacent lower neighbourhoods. In Section 7.6 we show some results of
using our algorithm to estimate an underlying picture in a Bayesian setting.

7.1 Some realisations
In this section we look at some realisations provided by our forward-backward
algorithm. We do this to get an impression of the effect of different choices on
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the parameters in the Potts model and in the generalized Potts model. In the
examples of this section we assume our Markov random field to be defined on a
100× 100 lattice. First we assume a Potts model with Ω = {0, 1, 2, 3}. Figure 10
shows realisations for four different values of α and with ε = 0.001. We clearly see
how increasing α gives an increasing level of clustering of the values in Ω. Note,
however, that the qualities of these realisations are unknown at this point. We
will come back to the evaluation of this in Section 7.3.

Let us assume a generalized Potts model with Ω = {0, 1, 2}, α(0, 1) = α(1, 2) = 0.8,
and α(0, 2) = 0.2, defined on a 100 × 100 lattice. By choosing a high value on
α(0, 1) and α(1, 2), compared to α(0, 2), we make it unlikely to find value 1 as a
neighbour to the values 0 and 2. This is because such combinations result in a high
contribution to the sums in (4). Since these three values are the only values in Ω,
we expect value 1 to be rare in realisations from this distribution. In Figure 11a we
see a realisation from this situation when running our algorithm with ε = 0.0001.
We clearly see the effect discussed above, and if we approximate the marginals by
(24) and (25), we find that the maximum value of π(zk = 1) for all k ∈ S is 0.173.
However, we still have some clustering of the value 1 in this figure. This is because
it is equally unlikely to find the values 0 and 2 in the neighbourhood of the value
1, as it is finding value 1 in the neighbourhood of the values 0 and 2.

In our last example we assume that Ω = {0, 1, 2}, α(0, 1) = α(1, 2) = 0.8, and
α(0, 2) = 2 for a generalized Potts model in the same situation as above. By this
choice of parameters we get a high contribution to the sums in (4) when the values
0 and 2 are neighbours. This should result in realisations where the values 0 and 2
are unlikely to be close to each other. A realisation from this distribution is shown
in Figure 11b. If we closely investigate this realisation, we see that it is dominated
by transitions between the values 1 and 2 and the values 0 and 1, while transitions
between the values 0 and 2 are rare. However, the clustering effect is still present.

7.2 CPU times
In this section we investigate the CPU time used by our approximate algorithm.
We assume a Potts model with Ω = {0, 1, 2, 3} defined on a 100×100 lattice. From
(3) we calculate that the critical temperature for this situation is αc = 1.0986. As
discussed in Section 2.2.1, and observed in the previous section, the clustering of
the values in Ω increases as α approaches and exceeds this critical temperature.
In Table 1 we see the CPU time used by the forward part of our algorithm for
five different values of α and five different value of ε. After the forward part is
completed we make 1000 realisations by the backward part of our algorithm. The
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(a) Potts model with α = 0.4 (b) Potts model with α = 0.6

(c) Potts model with α = 0.8 (d) Potts model with α = 1.0

Figure 10: Realisations from four different Potts models with ε = 0.001 and Ω =
{0, 1, 2, 3}. White=0 and black=3.
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(a) Generalized Potts model with low
probability to draw the value 1.

(b) Generalized Potts model with low
probability to draw the values 0 and 2 close to

each other.

Figure 11: Realisations from two generalized Potts models with ε = 0.0001 and
Ω = {0, 1, 2}. White=0 and black=2
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Table 1: Time to complete decomposition for a Potts model defined on a 100×100
lattice with Ω = {0, 1, 2, 3}.

ε \ α 0.4 0.6 0.8 0.9 1.0
10−1 180 187 193 195 197
10−2 192 196 245 498 825
10−3 234 466 2294 12518 333157
10−4 476 1611 69636 926342 NA
10−5 1674 21809 1223719 NA NA

Table 2: Average time to make one realisation from a Potts model defined on a
100× 100 lattice with Ω = {0, 1, 2, 3}.

ε \ α 0.4 0.6 0.8 0.9 1.0
10−1 0.0129 0.0159 0.0170 0.0185 0.0174
10−2 0.0176 0.0194 0.0328 0.0682 0.1019
10−3 0.0284 0.0610 0.1976 0.7202 8.36018
10−4 0.0597 0.1423 1.8891 13.084 NA
10−5 0.1345 0.7539 16.510 NA NA

average CPU time for making one realisation is shown in Table 2.

We clearly see from these two tables that the CPU time increase as a function
of decreasing ε and increasing α. This is expected because as ε decreases we
get closer to our exact algorithm, which means that the number of nodes in the
different DAGs, and thereby also the number of calculations needed, increases. As
discussed above, an increasing α means more clustering of the different values in
Ω. In other words, we make the interactions between the nodes stronger, and less
interaction parameters will be approximated to 0 for a given value of ε. For the
three most extreme cases in Table 1 the decomposition was impossible to complete
within reasonable time, and no realisations could be simulated because of this. In
the next section we investigate the quality of the approximations done by our
approximate algorithm.

7.3 Quality of the approximations
Let us again assume a Potts model defined on a 100 × 100 lattice with Ω =
{0, 1, 2, 3}. In the previous section we saw how the CPU time needed to run
our approximate algorithm increased as a function of decreasing ε and increasing
α. However, we are also interested in knowing the quality of the approximations
done by the algorithm. This can be done as discussed in Section 5.3. We choose
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M = 1000 in (32), and plot the estimated acceptance rate as a function of ε. If
we do this for five different values of α, we get the result shown in Figure 12.
This figure shows us how the estimated acceptance rates are increasing as ε is
decreasing, that is, as we are approaching the exact algorithm. We also see that
as α increases, the quality of the realisations are decreasing for a given value of
ε. As already discussed, as α approaches the critical temperature, we need the
value of ε to be closer and closer to 0 in order to maintain the same quality on the
approximations. Combining this with the information in Table 1 and 2, we see that
as α increases, it gets harder and harder to get good approximations. For instance
we obtain âcc = 0.999 in about thirty minutes when running our algorithm for
α = 0.4 with ε = 0.00001, but for the case where α = 1.0 we only manage to run
our algorithm with ε = 0.001 to get âcc = 0.022, and this calculation took almost
4 days to complete.

7.3.1 Comparing realisations visually

If the estimated acceptance rate âcc is low, it means that the approximate distri-
bution π̃(z) is in fact very different from the desired distribution π(z). Exactly
how these two distributions are different from each other is an interesting ques-
tion. This motivates us to visually compare realisations from a distribution π̃(z),
with low âcc, and realisations from π(z). We obtain the desired realisations from
π(z) using a single-site Gibbs algorithm (Gamerman & Lopes 2006). Investigating
Potts models this way, we spotted a difference between the estimated ratio of the
value 0 and the estimated ratios of the values in Z. Remember that Z = Ω \ {0},
and that we expect all these estimated ratios to become equal to each other as M
increases in the exact case, see Section 4.3.2. Table 3 shows the estimated ratios
of the values in Ω for Potts models with Ω = {0, 1, 2, 3}. In this table we clearly
see that the ratio of the value 0 becomes different from the ratios of the values
in Z when âcc is low. This is a result of treating the value 0 differently than the
other values in Ω in the approximate algorithm. Because we are not discriminating
between the values in Z, we expect the estimated ratios of these values to become
equal to each other, for any value of ε, as M increases. No other differences be-
tween realisations from π̃(z), with low âcc, and realisations from π(z) could be
spotted by us.

7.4 Conditional probabilities
As discussed in Section 5.3, the conditional probabilities π(zk = i|zLk) ∀ k ∈
S, i ∈ Ω are easily accessible. In this section we investigate the error that arises
in these probabilities because of the approximations that are done in the forward
part of our algorithm. First we look at how two probabilities that are supposed
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Figure 12: Estimated acceptance rates for Potts models defined on a 100 × 100
lattice with the following values of α: 1.0 (pink), 0.9 (blue), 0.8 (black), 0.6 (red),
0.4 (green)

Table 3: Estimated ratios of the different values in Ω = {0, 1, 2, 3} from M = 1000
realisations. All calculations are done for Potts models defined on a 100 × 100
lattice.

α(âcc) 0 1 2 3
1(2.2%) 0.2186 0.2604 0.2612 0.2597

0.9(3.6%) 0.2736 0.2420 0.2423 0.2421
0.9(75.8%) 0.2527 0.2495 0.2490 0.2490
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to be equal becomes unequal because of the discrimination of the value 0 in the
approximate algorithm. Secondly we use the conditional probabilities to observe
how an error done in one node develops through the rest of the decomposition.
These two investigations will provide us with a better understanding of the error
that arises because of the approximations.

7.4.1 Error because of the approximations

In the following we assume a Potts model, and investigate the equal probabilities
p1 = π(zk = 1|zk+1 = 2, zLk\{k+1} = 0) and p2 = π(zk = 1|zk+1 = 0, zLk\{k+1} = 2)
as discussed in Section 5.3. We look at a 100× 100 lattice with Ω = {0, 1, 2} and
assume that α = 0.6 for this situation. If we run our algorithm for 5 different values
of ε and calculate the desired probabilities for k = 50, 260, 4800, 4950, 7575, 9950,
we get the result shown in Figure 13. This figure shows that the two probabilities
become unequal as a result of the approximations. Note that the calculations for
the three interior nodes, k = 260, 4950, 7575, give essentially the same result. This
stability in the error is a very important property because it shows us that the
error does not increase as a function of k. We can conclude that the total error
late in the decomposition not necessarily is larger than the total error earlier in
the decomposition. Because of boundary effects, the error is different for the three
boundary nodes.

The calculation of p2 involves the highest number of interaction parameters, com-
pared to p1. That is, more of the indicator functions are equal to 1 in the energy
function for this probability. Because of this, p2 is the probability that often seems
to differ more from the true value. This is again a product of treating the value
0 differently than the rest of the values in Ω. Note that, for instance, the proba-
bility p3 = π(zk = 2|zk+1 = 0, zLk\{k+1} = 1) will follow the curves of p2 in Figure
13 exactly because there is no discrimination between the values 1 and 2 in the
approximations.

7.4.2 Error development

The stability in the error discovered in the previous section motivates an inves-
tigation of how an error done in one node develops through the rest of the de-
composition, see Section 5.3. The focus in this section will be on the conditional
probability p2 = π(zk = 1|zk+1 = 0, zNk\{k+1} = 2) ∀ k ∈ S. To investigate the
development of an error done in node l ∈ S we only do approximations when l
is decomposed from the system. In the rest of the nodes we use our exact algo-
rithm. We look at two different Potts models in this section. In the first case
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(a) Node k = 50. (b) Node k = 260. (c) Node k = 4800.

(d) Node k = 4950. (e) Node k = 7575. (f) Node k = 9950.

Figure 13: The approximate conditional probabilities p1 (blue) and p2 (red) for
different values of k ∈ S for a Potts model with α = 0.6 and Ω = {0, 1, 2}.
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(a) A 6× 6 lattice with approximations done in
node l = 10 when α = 0.6 and Ω = {0, 1, 2}.

(b) 7× 7 lattice with approximations done in
node l = 11 when α = 1 and Ω = {0, 1, 2, 3}.

Figure 14: Error in the conditional probability p2 with ε = 0.001 (red) and ε = 0.01
(black) for two different Potts models.

we have a 6 × 6 lattice where α = 0.6 and Ω = {0, 1, 2}, and in the second case
we have a 7 × 7 lattice where α = 1.0 and Ω = {0, 1, 2, 3}. The approximations
will be done in node 10 and 11, respectively. If we plot the error done in p2 as a
function of k, we get the result shown in Figure 14. These two plots clearly show
how the approximations done in node l result in smaller and smaller error as the
decomposition goes on. This reduction somewhat explains the stability discussed
in the previous section. However, the reduction is not enough to imply stability
alone, but if we, for instance, assume the errors to be additive, we can say that
if the reduction of the errors is strong enough, then we obtain the stability. As
discussed in the previous section this is a very important property. For instance,
when estimating an underlying picture in a Bayesian setting, see Section 4.4, we
want the estimate for a node late in the decomposition to be as accurate as the
estimate for a node early in the decomposition.

The calculations in this section were done for two different values of ε, see Figure
14. In this figure we see how the most accurate decomposition, ε = 0.001, results
in a smaller error than in the case with ε = 0.01.
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α = 0.4 α = 0.6 α = 0.8

ε = 10−3

ε = 10−4

Figure 15: The adjacent lower neighbourhood of a node k that is not close to
the boundary of the lattice for a Potts model. The node k is orange while its
neighbours are red.

7.5 The adjacent lower neighbourhoods

Let us assume a Potts model defined on a 100 × 100 lattice with Ω = {0, 1, 2, 3}.
Before the decomposition of the nodes we have a first order neighbourhood sys-
tem, but as the decomposition is carried forward we obtain the adjacent lower
neighbourhoods Lk ∀ k ∈ S. See Section 5.1 for the discussion concerning this. In
this section we investigate the size of Lk as a function α and ε. If we plot Lk for
a node k ∈ S that are not close to the boundary of the lattice, we get the result
shown in Figure 15. In this figure we see how Lk becomes larger with increasing
α, and smaller with increasing ε. This is also as expected because with increasing
α, and decreasing ε, fewer interaction parameters are approximated to 0. As dis-
cussed in Section 5.1, an exact decomposition of the nodes in this situation would
give cliques and adjacent lower neighbourhoods of size 100. However, when for
instance running our approximate algorithm with ε = 0.0001 for a Potts model
with α = 0.8, we are able to reduce these extreme sets with 84 nodes, still getting
an estimated acceptance rate âcc ≈ 0.94, see Figure 12.
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7.6 Bayesian calculations

As discussed in Section 4.4, our algorithm can be used to estimate an underlying
picture z from an observed degenerated version y of z. In this section we present
some results of this procedure when using the Bayesian model given in Section
4.4.1. That is, with a Potts model or a generalized Potts model as a prior distri-
bution, and with a likelihood model that provides independent Gaussian noise to
the nodes in the lattice. All our examples will be on a 100 × 100 lattice with a
first order neighbourhood system.

Assume Figure 16a to be an unobserved underlying picture z. This picture is
generated from a Potts model with α = 1.1 and Ω = {0, 1, 2, 3}, using a single
site Gibbs algorithm. Adding Gaussian noise with σ = 1.0 according to (29), we
get the result shown in Figure 16b. This will be our observed picture y, and the
goal is now to estimate z using this picture and the posterior distribution. For
this example we choose a Potts model with α = 1.0 and Ω = {0, 1, 2, 3} as our
prior distribution, and we run the forward part of our algorithm with ε = 0.001.
The marginals were first estimated using 1000 realisations from the approximate
posterior distribution π̃(z|y). Secondly the marginals were approximated using the
same value on ε as in the forward part. The marginal posterior mode estimates
for these two approaches are shown in Figure 16c and 16d, respectively. As we can
see, the results are almost identical. When estimating the marginals, 75.5 % of the
nodes were assigned the right value, compared to 75.4 % when the marginals were
approximated. However, the CPU time used to approximate the marginals was a
lot higher than the CPU time used to estimate them. Estimation is therefore the
preferred technique in this situation.

As a second example, we use the hand drawn picture in Figure 17a as our under-
lying picture z. This picture is degenerate with σ = 1.0, see Figure 17b, and with
σ = 1.5, see Figure 17c. If we closely inspect Figure 17a, we see that there are
few transitions between the values 1 and 3 in this picture. Therefore we choose
a generalized Potts model with Ω = {0, 1, 2, 3}, and with α(0, 1) = α(0, 2) =
α(0, 3) = α(1, 2) = α(2, 3) = 1.0 and α(1, 3) = 1.3 as our prior model in these two
situations. With this choice of parameters we make it harder for the algorithm
to assign the values 1 and 3 to sites close to each other, compared to the other
possible transitions, see Section 7.1. We run our algorithm with ε = 0.001, and
estimate the marginals from M = 1000 realisations. The results from finding the
marginal posterior mode estimates for these two situations are shown in Figure
17d and 17e. For the case with σ = 1.0 the algorithm assigns correct value to
90.3 % of the nodes, while in the case with σ = 1.5 we get 81.5 % correct assigned
values. As expected the result is better for the less degenerated example, and we
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(a) Underlying picture: A realisation
from a Potts model with α = 1.1.

(b) Observed picture: Independent
Gaussian noise with σ = 1.0 added to
each of the nodes in the underlying

picture.

(c) Restored picture when the
marginals where estimated from 1000
realisations. Correct classified nodes:

75.5 %.

(d) Restored picture when the
marginals where approximated with
ε = 0.001. Correct classified nodes:

75.4 %.

Figure 16: Restoration of a picture simulated from a Potts model with α = 1.1
and Ω = {0, 1, 2, 3}. A Potts model with α = 1.0 was used a prior model, and the
decomposition was done with ε = 0.001. White=0 and black=3.
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can clearly see this difference when comparing the two restored pictures visually.
For instance, in the top left corner of Figure 17a we have a light gray area on
a white background. In the case with σ = 1.0 this area is somewhat restored,
but in the case with σ = 1.5 this area is almost completely gone. In these two
restored pictures we clearly see the effect of choosing α(1, 3) = 1.3 as very few such
transitions exist in the estimates. Even the few transitions that did exist between
these two values in the original picture are separated by the other values in Ω. As
discussed in Section 2.2.2 the generalized Potts model enables us to model such
information into the prior distribution.

8 Closing remarks
In this thesis we presented an approximate recursive forward-backward algorithm
for calculations of discrete Markov random fields defined on graphs. This work is
a generalization of Tjelmeland & Austad (2010), and it is a continuing of the work
done in Arnesen (2009). Through the backward part of our algorithm we were able
to simulate from the probability distribution of a discrete Markov random field.
We also presented an alternative backward part that enabled us to approximate
the marginal distributions for all the nodes in the graph.

We started out by expressing the probability distribution of a Markov random
field in terms of an energy function. This energy function was a sum of inter-
action parameters between different subsets of the nodes in the graph. Next we
showed how to represent the probability distribution as a vertex-weighted DAG.
The weights in this DAG representation were defined to be the interaction pa-
rameters. In the forward part of our forward-backward algorithm we managed
to represent the probability distribution as a product of conditional distributions.
We recursively calculated one DAG for each of these distributions. In this forward
part we introduced approximations to the calculations. These approximations en-
abled us to run our algorithm for more complex problems than we could have
evaluated with our exact version of the algorithm. The level of approximations
was controlled by a parameter ε > 0, and setting ε = 0 gave us our exact algorithm.

We implemented our algorithm using the programming language C. The perfor-
mance and accuracy of our implemented algorithm were evaluated by the CPU
time, by estimating the acceptance rate in a Metropolis-Hasting algorithm, and
by investigation of conditional probabilities. We learned that the CPU time in-
creased, and that the quality of the approximations decreased, as a function of
decreasing ε and stronger interactions between the nodes in the graph. Because
of this, it became harder and harder to establish good approximations when the
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(a) Underlying picture: A hand
drawn picture.

(b) Observed picture:
Independent Gaussian noise
with σ = 1.0 added to each of
the nodes in the underlying

picture.

(c) Observed picture:
Independent Gaussian noise
with σ = 1.5 added to each of
the nodes in the underlying

picture.

(d) Restored picture in the situation with
σ = 1.0. Correct classified nodes: 90.3 %.

(e) Restored picture in the situation with
σ = 1.5. Correct classified nodes: 81.5 %.

Figure 17: Restoration of a hand drawn picture. A generalized Potts model with
α(0, 1) = α(0, 2) = α(0, 3) = α(1, 2) = α(2, 3) = 1 and α(1, 3) = 1.3 was used
as a prior model, and the decomposition was done with ε = 0.001. White=0 and
black=3.
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interactions between the nodes increased. In the algorithm we treat the value 0
differently than the rest of the values in Ω, and therefore this value is also treated
differently by the approximations. This property was investigated by evaluating
the conditional probabilities for different values of ε. As a last evaluation of the
algorithm, we saw how an error done in one node, as a result of the approxima-
tions, was developed through the rest of the decomposition. We observed how this
error decreased as we continued to run our exact version of the algorithm. We
concluded that this is a very important property of our approximate algorithm,
because it means that the total error late in the decomposition not necessary is
larger than the total error early in the decomposition.

We only investigated our algorithm for lattices with a first order neighbourhood
system. As a continuing of this work, it is natural to look at other neighbourhood
systems as well, for instance a second order neighbourhood system. Also, we only
decomposed the nodes in our lattices in lexicographical order. An interesting ex-
ercise would be to find a better, or may be an optimal way, of decomposing the
nodes. All our examples were done on lattices and not on more general graphs,
even though the algorithm, and the implementation, was designed to handle them.
An investigation of the performance and accuracy of the algorithm on more gen-
eral graphs could also be interesting.

When we introduced our approximations to the exact algorithm we assumed that
higher order interactions were smaller than lower order interactions. Tjelmeland &
Austad (2010) checked this assumption for frequently used binary Markov random
fields, and they concluded that is was good. However, we have in the discrete case
done no such formal investigation, although it certainly could have been done by
running our exact algorithm and comparing the values of the interaction parame-
ters for different orders of interaction.

Because the marginal distributions are available through approximate calculations
and estimation, we chose to use our algorithm to estimate an unknown underlying
picture in a Bayesian setting, using the marginal posterior mode estimate. We
gave three examples, all with independent Gaussian noise as a degeneration pro-
cess. Here a lot more work can be done. For instance we can add blur to the
degeneration process, use other priors than the generalized Potts with a first order
neighbourhood system, and use other estimates for the underlying picture (Geman
& Geman 1984). Also running our algorithm on more realistic data would have
been interesting.

Another suggestion for further work is estimating the parameters, for instance the
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α-parameter in a Potts model, from a given graph, using our approximate algo-
rithm. That is, for a given graph z with probability distribution π(z|θ), where
θ is the set of parameters, we wish to find an estimate θ̂ for θ, for instance the
maximum likelihood estimator. If a degenerated picture y, from an assumed dis-
tribution π(y|z, θ), is observed instead of the underlying picture z, we can define
a Bayesian problem. By adopting a prior p(x|θ) for x and a prior p(θ) for θ, we
can try to estimate θ, and may be also x, from the posterior distribution using
our approximate algorithm. These types of parameter estimation problems for
Markov random fields are also widely discussed in the literature, see for instance
Besag (1974) or Friel & Rue (2007).

Exact calculations of Markov random fields are very limited by an intractable
normalizing constant. Our recursive forward-backward algorithm allows approxi-
mate calculations of discrete Markov random fields defined on graphs. By these
approximations much more complex problems can be evaluate than in the exact
case.
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