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Problem Description

First give a general introduction to cellular automata, then implement and discuss some
examples. Introduce higher order cellular automata, examine whether and how the ex-
amples can be extended by applying 2-dynamics and/or 2-morphology, and study the
e�ects.





Preface

This diploma thesis is the conclusion of my masters degree at the Norwegian University
of Science and Technology.

I would like to thank my supervisor, Professor Nils A. Baas for his help and input,
and my fellow master student Pål Davik, who has been writing a diploma on the same
subject this year, for inspiration and support.

Trondheim, June 2010
Lauritz Vesteraas Thaulow





Abstract

This thesis will give an introduction to the concepts of cellular automata and higher
order cellular automata, and go through several examples of both. Cellular automata
are discrete systems of cells in an n-dimensional grid. The cells interact with each other
through the use of a rule depending only on local characteristics, which lead to some
global behaviour. Higher order cellular automata are hierarchical structures of cellular
automata with added possibilities for dynamic local interaction.

We �rst give an introduction for non-mathematicians. A mathematical de�nition of
cellular automata follows, and we illustrate the many possibilities with a few examples.

Higher order cellular automata are introduced and de�ned, and we look at the conse-
quences higher order cellular automata has on optimization of computer implementations.
Finally we apply higher order structures to some of the examples, and study the e�ects.
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CONTENTS 1

Notation and Abbreviations

Throughout this paper, the notation listed below will be used.

S, N Upper-case letters denote sets
N , R Script upper-case letters are mostly used to denote sets of sets
a, n Bolded letters are maps
c, s Lower-case letters are single values or functions
~z ~z is a vector and zi is its ith axial component

(a, b) (a, b) is a vector or tuple with each axial component explicitly
speci�ed, and is equal to

[
a
b

]
{a, b, c} {a, b, c} is a set with the elements a, b and c

Z The set of all integers
Z+ The set of non-negative integers {0, 1, 2, . . . }
Zn The set {0, 1, 2, . . . , n− 1}
Sn The set S × S × . . .× S︸ ︷︷ ︸

n times

P(S) The set of all �nite subsets of S.
|S| The cardinality of the set S, Card(S)
bxe The nearest integer of x
bxc The integer part of x

~a+~b Vector addition, equals (a0 + b0, a1 + b, . . . , ad−1 + bd−1)
for d-dimensional vectors ~a and ~b.

‖~z‖1 The manhattan norm, ‖~z‖1 =
∑m

i=1 |zi|
for an m-dimensional vector ~z.

‖~z‖∞ The maximum norm, ‖~z‖∞ = max{|zi| | i ∈ {1, . . . ,m}}
for an m-dimensional vector ~z.

g ◦ h The function g composed with the function h, so that (g ◦ h)(x) = g(h(x)).

And these are the most commonly used abbreviations:

CA cellular automaton
HOCA higher order cellular automaton
LTF local transition function
d-CA d-dimensional cellular automaton
IBM individual-based model
CPU central processing unit
RAM random access memory
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Introduction

How does complexity arise from simple beginnings? The universe was born, according
to astrophysicists, from extremely uniform and well-ordered beginnings, yet the result is
staggeringly complex. Smoke rising from a blown out candle is orderly and simple, until
it suddenly becomes chaotic and unpredictable.

New Scientist wrote in its article Seven questions that keep physicists up at night [17]:

From the unpredictable behaviour of �nancial markets to the rise of life
from inert matter, Leo Kadanano�, physicist and applied mathematician at
the University of Chicago, �nds the most engaging questions deal with the
rise of complex systems. Kadano� worries that particle physicists and cos-
mologists are missing an important trick if they only focus on the very small
and the very large. "We still don't know how ordinary window glass works
and keeps it shape," says Kadano�. "The investigation of familiar things is
just as important in the search for understanding." Life itself, he says, will
only be truly understood by decoding how simple constituents with simple
interactions can lead to complex phenomena.

Cellular automata are prime examples of systems with simple constituents and simple
interactions which lead to complex phenomena, and they are exellently suited for detailed
study and analysis on exactly how it happens, because they can be simulated easily in a
computer.

In this thesis we will use the �rst chapter to introduce, de�ne and give examples
of cellular automata, and show how the very simple can quickly become very complex,
even though every step on the way is obvious and simple. We will also give examples of
cellular automata that simulate processes from real life, some with very accurate results.

In chapter 2 we will introduce the concept of higher order cellular automata. We will
consider what consequences adding higher order structures and 2-dynamics have on our
ability to optimize computer implementations of such cellular automata. Finally, we will
apply higher order structures or 2-dynamics to some of the examples from chapter 1, and
consider the e�ects.
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Chapter 1

Cellular Automata

1.1 Introduction

The concept of a cellular automaton is rather simple. However, the use of mathemat-
ical notation and lingo in this and other papers, makes it unnecessarily hard for non-
mathematicians to grasp. This section is therefore written in a more informal language, as
a gentle introduction on the subject, for those who have little or no higher mathematical
education.

1.1.1 A kind of machine

A cellular automaton is like a machine � you can put something into it, and it will use
that input to produce some output. In our case, this �machine� is going to take rows of
black and white squares as input, and produce an equally long row of black and white
squares as output.

Figure 1.1: A cellular automaton

5
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Figure 1.1 is an image produced by a cellular automaton called rule 30 . The topmost
row, with a single black square, is used as the input to rule 30, and it produces the second
row as output. We then use that row as a new input to the same rule, and get the third
row as output, and so on.

Rule 30 is just one example of a cellular automaton. They come in a huge variety of
shapes and sizes. This text will �rst tell you how to make such patterns of your own,
using only pen and paper. Then, for those who wish to read more on the subject, an
introduction to the lingo of cellular automata will be given, based on the concepts we've
used.

1.1.2 Rule 30 from the inside

Figure 1.2: The instructions

Imagine you were given a sheet of graph paper as in 1.2. The paper contains a row of
7 instructions, which we will use to create the same pattern as in �gure 1.1. This means,
of course, that the 7 instructions correspond to rule 30, but we need to understand how
to use them.

To that end, you've been given a loose piece of transparency (also shown in �gure
1.2), on which a �gure has been drawn in black ink. Inside the smallest box a hole has
been cut through the plastic. The piece of transparency can be moved around, so imagine
that you place it as in the left image of �gure 1.3. Now notice that the pattern in the
three squares outlined in black matches those in the instruction numbered 7 in �gure 1.2.
However, that drawing also has a cross in the square hanging underneath, so they do
not match completely... yet. The transparency has a convenient hole where the missing
cross should be, so we draw an there to make them equal.

Continuing, we move the transparency one square to the right, as shown to the right of
�gure 1.3, and observe that the upper three squares now has content matching instruction
6. This also has an in the square underneath, so we draw an where the hole is, to
make them similar. Finally we move the transparency to the right once more and use
instruction number 4 to place another on the graph paper, which is now looking like
in �gure 1.4 to the left.

For the next row, we'll need to use instructions 7, 5, 1, 2 and 4, and this will produce
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Figure 1.3: Using the piece of transparency.

Figure 1.4: The second and third row.

a drawing like the one to the right in �gure 1.4. Continuing like this for a while we'll get
a drawing like the one in �gure 1.5. Notice that the order in which we �calculated� the
rows of squares did not matter, we could have done them right-to-left, or in an arbitrary
order, instead of left-to-right.

Figure 1.5: After 18 rows.

We can now easily see the similartiy between our drawing and �gure 1.1. As indicated
by the number 30 in rule 30, it is but one of many such rules1.

1.1.3 Giving names to the concepts

We've now presented the basic parts of a cellular automaton, but we still have not
written down exactly what it is. A cellular automaton is made up of exactly four pieces
of information:

• An alphabet : the di�erent symbols we can use; for us it was only two, and .

• A lattice: the rows of squares that we draw on.

1The logic behind the numbering is explained in section 1.3.6
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• A neighbourhood : the three squares that were outlined by our transparency, and
how they're positioned relative to the hole we may draw an in.

• A function or rule: tells us what symbol to draw in every case, like our 7 instruc-
tions.

Each square is called a cell, and each symbol, like and , is called a state. We say
that the cell has a state. The cellular automaton we've drawn is called a 1-dimensional
cellular automaton, even though the drawing we've made �lls a two-dimensional grid.
This is because we regard the vertical axis as time, with time increasing downwards. So
just like we live in a three-dimensional world with time, this cellular automaton �lives�
in a 1-dimensional world with time. Each row is then the whole world at one particular
time, this world is what we call the lattice. At each time step, the lattice has a particular
pattern of states, and each such pattern is called a global state or con�guration.

The three cells in a row that was our neighbourhood can contain eight di�erent
patterns2 of 's and 's, and each of these patterns we will call a neighbourhood state.
It might be tempting to call it a neighbourhood con�guration instead, but this term will
be needed for something else later.

The neighbourhood concept is perhaps a little di�cult to grasp, since it may seem to
be just a part of what makes up a rule. It really isn't, though the two concepts depend
on each other to some degree. In our example, the neighbourhood was the three cells in
a row, centered on the one we were to �nd the new state of. However, we could have
changed the neighbourhood while keeping the rule by for example shifting the three cells
to the right or left, or even by spreading them out so that they are neither adjacent nor
symmetric3. The rule needs to be compatible with the neighbourhood though; using our
seven instructions with a neighbourhood consisting of �ve cells would make no sense,
since there'd be no matching instructions for the neighbourhood states we'd encounter.

Neighbourhoods come in many di�erent shapes and sizes, although some are more
commonly used than others. We say that ours had a radius of 1, since it included 1 cell
on each side of the cell we were �nding the next state for.

We have not talked about what happens when the pattern reaches the edges of the
paper, or lattice. Throughout this thesis we will mostly use lattices that wrap. This
means that what goes out on one side, comes in on the other. A way of visualizing this
is of taping the left and right edge of the grid paper together to form a cylinder. Then
there'd no longer be any edge, and the transparency would be usable all the way around,
as illustrated in �gure 1.6.

We've now covered the basic concepts that make up a cellular automaton. These
can be built upon and extended to make things more interesting. We may add another
dimension, for example, and get a 2-dimensional cellular automaton. To draw such a
thing with pen and paper, you would need a book of graph paper, one page for each time

2I purposefully left out one instruction from those in the beginning of this section, which is the

instruction for when there is no 's in any of the cells. This did not matter for that rule, since it
implicitly said to leave such cells alone.

3We'd need to imagine them as being adjacent to match them up with the instructions.
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Figure 1.6: What happens on the edges.

step. You would also need a set of instructions for a 2-dimensional cellular automaton,
and an initial pattern on the �rst page. After drawing some pages, you could look at
your animation by �ipping through the pages.

Animations and java applets depicting various cellular automata can be found on the
internet, and they are often fascinating to watch. As a starting point, here are some
google searches that gives nice results: �Game of Life�, �forest �re cellular automaton�,
�hodgepodge machine�, �cyclic space� and �tra�c cellular automaton�.
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1.2 History

1.2.1 A self-reproducing automaton

(a) John von Neumann (b) Stanisªaw Ulam (c) Arthur Walter Burks

Figure 1.7: Important �gures from the history of cellular automata. These pictures are in the

public domain.

One of the (many) interests of the Hungarian-born mathematician John von Neumann
was how to create self-replicating automatic factories. At �rst he considered how to
make such a thing in practice, using robotics or toy mechanic sets, but he soon found the
problem too complex. After conferring with Stanisªaw Ulam on the matter, he decided to
follow his friends advice and instead consider a simple abstract mathematical model [19,
p. 876]. He then devised what is now known as cellular automata (CA), and outlined
a particular kind of 2-dimensional CA that would be capable of self replication if set
up in a certain way. It was a rather complicated one; each cell could be in one of 29
di�erent states, with each state having a certain meaning. He went on to outline an
initial con�guration consisting of 200 000 cells that he claimed would be able to make
copies of itself.

His work remained unpublished until his death in 1957, but it was edited and pub-
lished in 1966 by Arthur Walter Burks [18]. The subject of self-reproducing con�gurations
of cellular automata caught the interest of others, and simpler examples were soon found;
Edgar Frank Codd worked out a variant of von Neumann's original example that needed
only eight states [11, p. 1]. Also, during the 1960s various theorems related to the formal
computational capabilities of cellular automata were proved.

1.2.2 The Game of Life

The �eld of Cellular Automata was given its poster child in 1970, when Martin Gardner4

presented some results of John Conway in his column Mathematical Games in Scienti�c
American. Gardner called the game �Life� , and it was therefore subsequently known
as Conway's Game of Life. Many readers of the column were inspired to do more or

4Martin Gardner died just 10 days prior to the deadline for this thesis, on May 22, 2010.
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(a) Martin Gardner (b) John Conway (c) Stephen Wolfram

Figure 1.8: More important �gures from the history of cellular automata. (a) Photograph

by Konrad Jacobs, (b) photograph by Thane Plambeck, (c) photograph by Stephen Faust.

less serious research on the Game of Life, and for three years there was even a quar-
terly newsletter dedicated to discoveries about the behaviour of this particular cellular
automaton.

Around the same time, microcomputers became available and a�ordable, and for
many aspiring programmers, the Game of Life was the inspiration for the �rst applications
they made. However, according to Stephen Wolfram, little of direct scienti�c value came
of the whole thing:

�An immense amount of e�ort was spent �nding special initial conditions
that give particular forms of repetitive or other behaviour, but virtually no
systematic scienti�c work was done (perhaps in part because even Conway
treated the system largely as recreation), and almost without exception only
the very speci�c rules of Life were ever investigated.� [19, p. 877]

1.2.3 Stephen Wolfram

Apart from his contributions to the �eld of cellular automata, Stephen Wolfram is to-
day best known as the father of the Mathematica computer algebra system and the
Wolfram|Alpha5 computational knowledge engine. Back in 1981 he started studying cel-
lular automata, and instead of concentrating on one particular cellular automaton, as von
Neumann and the Game of Life enthusiasts had done, he undertook a sweeping survey of
many kinds of cellular automata, and devised a way to classify any cellular automaton
into one of four classes.

Stephen Wolfram went on to write the controversial [15] 1200 pages long A New
Kind of Science [19] in 2002. There he claims that what he calls simple programs, of
which cellular automata is one example, will be the basis for a whole new approach and
methodology of science within a number of di�erent scienti�c �elds.

5http://www.wolframalpha.com/
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1.3 Formal de�nition

There is no agreed-upon standard formalisation or notation for cellular automata. The
notation used in this thesis is based on the formalisations of Delorme and Mazoyer [5],
but with modi�cations to allow for later adaption to higher order cellular automata, and
some other small changes that was deemed appropriate.

1.3.1 Cellular automata

We need to de�ne a few concepts to start with. A lattice is an ordered grid, typically Zd,
and we denote it L. A neighbourhood is a �nite ordered subset of L, and we denote it by
N . A cell is an object which has one state at a time. The set of all allowable states is a
�nite set called the alphabet, denoted by S. There's one cell at each node of the lattice.

De�nition. A d-dimensional cellular automaton A (a d-CA) is a 4-tuple (L, S,N, f),
where L is a lattice, S is an alphabet, N is a neighbourhood, and f is any function
f : S|N | −→ S.

The alphabet S is very often the set {0, 1, . . . , n−1} or some variation thereof, though
this is by no means mandatory. Among the states are, sometimes, distinguished states
s, called quiescent states, such that f(s, . . . , s) = s.

For the rest of section 1.3, we'll let (L, S,N, f) be a general d-CA unless otherwise
speci�ed.

1.3.2 The local transition function

The function f : S|N | 7→ S is called a local transition function, abbreviated LTF. The set
S|N | is the set of all possible neighbourhood states. Each element of S|N | is an ordered
set of states {s0, s1, . . . , s|N |−1}. For some cellular automata, the LTF can be de�ned
with a formula, for example f(s0, s1, s2) = s0 + s1 + s2 (mod 2). In this case, S is most
often a subset of the integers (though it can be any �nite set on which the necessary
mathematical operations are de�ned).

In other cellular automata, the LTF is so unwieldy that there is no practical way
to express it as a formula, and it may then be necessary to fall back to de�ning it by
explicitly tabulating all the values in the domain and their associated value in the range.
This is not always practicly possible, however. Even though the domain has to be �nite,
it can be so large that no computer currently in existence could store a function on it
in tabular form. Some of these types of cellular automata can fortunately be studied in
spite of this, namely those whose LTF can be de�ned as a computer algorithm. Such an
alogrithm can be almost arbitrarily complex, and have a large number of parameters.

1.3.3 The global function

A cellular automaton evolves with time. The states of all the cells in the lattice are
updated simultaneously, so that time is discrete. We de�ne a function at : L −→ S
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that gives the state of each cell of the lattice at time t. We call at the global state or
con�guration at time t, and denote the state of the cell at ~z by at(~z). The sequence
(a0,a1,a2, . . . ) is called the behaviour, action or evolution of the cellular automaton.

For a cellular automaton A = (L, S,N, f) with neighbourhood N = {~n0, . . . , ~nn−1},
we de�ne at+1 as the global state such that the following statement is true:

at+1(~z) = f(at(~z + ~n0),at(~z + ~n1), . . . ,at(~z + ~nn−1)) for all ~z ∈ L.

We say that at+1 follows at. We can construct a function G such that G(at) = at+1.
We call G the global function of A, as it maps each global state to the global state that
follows it. Each cellular automaton has its own associated global function.

The domain of G is the set of all possible global states that the cellular automaton
might have, which is equal to S|L|. We denote this set by C. The function G is obviously
an endofunction of C, that is, G : C −→ C.

In this thesis we'll adopt this convention: if we need to refer to multiple unrelated
elements of the set C, we will use subscripted numbers instead of superscripted numbers.
This is to distinguish global states that are part of the evolution of a cellular automaton
from global states that are unrelated, or might be. For example, a0,a1 ∈ C implies that
G(a0) = a1, while a0,a1 ∈ C does not put any restriction on the relationship between
a0 and a1.

1.3.4 Reversibility, support and the Garden of Eden

It is now natural to consider the properties of the global function. The con�gurations that
are not in the codomain of G are called the Garden-of-Eden con�gurations, because they
can only appear as initial conditions, and will never appear during the evolution of the
cellular automaton. If a global function G is bijective, and if G−1 is the global function of
some cellular automaton, we say that both are the global function of a reversible cellular
automaton. It is easy to show that a reversible cellular automaton has no Garden-of-Eden
con�gurations.

For a cellular automaton with a quiescent state s, we de�ne the support of a con�g-
uration a as follows:

supp(a) = {~z | a(~z) 6= s}

In words, the support of a is the subset of L that has cells with non-quiescent states. We
now de�ne a �nite con�guration as a con�guration with �nite support. This de�nition
is used in the following theorem, due to Edward F. Moore and John Myhill:

Theorem 1.3.1 (Garden-of-Eden Theorem). A cellular automaton with a quiescent
state is surjective if and only if it is injective when restricted to �nite con�gurations.

For �nite con�gurations, an injective global function is necesseraly also surjective,
because the global function must be de�ned for every element in the domain, and the
domain and the codomain is the same size, since the global function is an endofunction.
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Conversely, a surjective global function must be injective because the domain equals the
codomain.

Another way of stating this theorem is that a �nite cellular automaton with a quies-
cent state has a Garden-of-Eden con�guration if and only if there exists two con�gurations
aa and ab ∈ C such that G(aa) = G(ab).

1.3.5 Neighbourhoods

First we will address the question on whether the neighbourhood includes the cell whose
neighbourhood it is (~0) or not. Di�erent conventions exists [5, p. 7], but we choose in
this thesis to use neighbourhoods that explicitly includes the cell itself.

The most frequently used neighbourhood for one-dimensional cellular automata is
referred to as the �rst neighbours neighbourhood . It consists simply of the central cell of
the neighbourhood, plus its right and left neighbours: {−1, 0, 1}. Extending this concept,
we get the radius neighbourhood , which we will denote Nr:

{−r,−r + 1, . . . ,−1, 0, 1, . . . , r − 1, r}

For anm-dimensional cellular automaton wherem > 1, there are two neighbourhoods
that needs to be mentioned. Recall6 that for a vector ~z, we have the manhattan norm
‖~z‖1 and the maximum norm ‖~z‖∞. From these two we get the associated metrics d1

and d∞, which we can use to de�ne the von Neumann neighbourhood NvN and the Moore
neighbourhood NM , respectively:

NvN (~z) = {~x | ~x ∈ Zd, d1(~z, ~x) ≤ 1} with a given order

NM (~z) = {~x | ~x ∈ Zd, d∞(~z, ~x) ≤ 1} with a given order

In 1 dimension, the von Neumann and Moore neighbourhoods are identical to the
radius 1 neighbourhood. The 2-dimensional variants are depicted in �gure 1.9. We need
to give the elements of the neighbourhoods an order, as we've done for the �rst neighbours
and radius neighbourhoods. Since we will only use the 2-dimensional variants, we will
only specify the order for those. We'll let the �rst element be the origin (0, 0), and then
let the rest of the elements follow, starting with (1, 0) and going in a counterclockwise
direction.

1.3.6 Wolfram numbering

As mentioned in section 1.3.2, the domain of the local transition function S|N | is a set
of ordered sets of the form {s0, s1, . . . , s|N |−1}, where si ∈ S. If we give S a total order

relation, we may order the set S|N | lexicographically in descending order, making it an

6See page 1.
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Figure 1.9: The 2-dimensional von Neumann (left) and Moore (right) neighbourhoods.
The black cell is the central cell � the cell whose neighbourhood is depicted � and it is
also part of the neighbourhood.

ordered set of ordered sets. For example, if S = Z2 and |N | = 2, we would order S|N | as
follows: {{1, 1}, {1, 0}, {0, 1}, {0, 0}}.

Let ηi denote an arbitrary neighbourhood state, that is, ηi = {s1, s2, . . . , s|N |}, and
let n = |S||N | − 1. We may then write S|N | = {ηn, ηn−1, . . . , η1, η0}. For any ηi, the
number i uniquely identi�es a certain neighbourhood state, since S|N | is ordered. If
S = Zm we may easily recover the neighbourhood state of any given ηi by writing i as
a base m number with |N | digits. Conversely, given any neighbourhood state we can
calculate the index i by interpreting it as a base m number7.

We may use this to construct a canonical lookup table for an LTF. It will have the
ordered set S|N | in the upper row, and the state that the LTF maps each neighbourhood
con�guration to in the row below, as in table 1.1. The bottom row can now be concate-
nated into a word snsn−1 . . . s1s0, which uniquely8 identi�es the local transition function,
provided S is also known. We'll call this word the explicit form of the LTF.9

Neighbourhood state ηn ηn−1 . . . η0

New central state sn sn−1 . . . s0

Table 1.1: A canonical lookup table.

Stephen Wolfram formalized a compact way of labeling these rules which has become
very popular. He observed that if S = Zm, the word snsn−1 . . . s1s0 can be interpreted
as a single number in base m. Using this convention, the number uniquely identi�es the
rule, provided that N and m is also speci�ed.

7For S = Z2 and |N | = 3, S|N| would have η7 = {1, 1, 1}, η6 = {1, 1, 0}, η5 = {1, 0, 1}, η4 = {1, 0, 0},
η3 = {0, 1, 1}, η2 = {0, 1, 0}, η1 = {0, 0, 1}, and η0 = {0, 0, 0}. We may now easily verify that, for
instance, 6 base 10 is equal to 110 base 2.

8Please note that the word we've de�ned here is in the opposite order of the word as de�ned in
[5], where S|N| is sorted in ascending order. The way we've done it, the digits of the word are in the
traditional order for a number, that of the most signi�cant digit to the left, and can therefore immediately
be read o� as a base m number.

9The expressions �canonical lookup table� and �explicit form� are coined here by the author, as
replacements for the generic terms �table� and �word� used in [5] to describe these constructs. This is to
make it easier to refer back to these concepts later.
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Neighbourhood state 111 110 101 100 011 010 001 000
New central state 0 0 0 1 1 1 1 0

Table 1.2: Rule 30 as a canonical lookup table.

Let us clarify these concepts by looking at an example. Take the rule from the
introduction, rule 30, pictured in �gure 1.1. It has N = {−1, 0, 1} and S = {0, 1}, so
m = 2. Its LTF is given as a canonical lookup table in table 1.2. The set S|N | = (Z2)3 is
listed in the conventional order in the upper row, and the state that each neighbourhood
is mapped to is listed below each neighbourhood state. The explicit form is then the
word 00011110, and its base 10 equivalent is 30, which is why the rule is called �rule 30�.
Some properties of the rule can be immediately read from the explicit form of the rule:

• The last digit is 0 so the neighbourhood {0, 0, 0} will be mapped to 0. This means
0 is a quiescent state of this rule.

• The �rst digit is 0, so the neighbourhood {1, 1, 1} will be mapped to 0. This means
that the density of cells with state 1 in the lattice can not exceed a certain threshold
for more than a single time step.

The explicit form quickly becomes unpractical for larger neighbourhoods and bigger
alphabets, since the number would be too big to print10. In computers however, the
explicit form is the most compact way of storing a generic LTF, and it has the added
bonus that calculating the result of the rule given some neighbourhood state is only a
matter of calculating which digit to look up.

A 3-state 1-CA with a radius 1 neighbourhood would have 27 di�erent neighbourhood
states in its lookup table, and therefore the equivalent of a 27-digit base 3 number in
its second row. The largest 27-digit base 3 number is 222 · · · 222 = 7.6 · 1012, which is
therefore also the total number of di�erent rules that exist for this CA. We can create a
formula for calculating this number for di�erent S and N :

Θ = |S||S||N|

The integer Θ can very easily be an extraordinarily large number. It can be argued
that the rules and their properties are the primary object of study in the �eld of cellular
automata, and this then presents a problem: they are very numerous. For example, a
2-dimensional binary cellular automaton with the Moore neighbourhood has |N | = 9 and
|S| = 2, so Θ = 229

= 1.3 · 10154, which is a ridiculously large number11.

10 In section 1.4.2 we will encounter a rule that would have been about 4932 digits long, written in
explicit form.

11For the sake of argument, suppose 1 · 1024 of these rules exhibited some kind of revolutionary,
hitherto unseen new behaviour. The chance of �nding one of them if you picked a rule at random is
about 1 · 10−131. Let's say you used a computer that could search a million rules a second. The chance
of �nding one of them in 10 years of searching is still in the order of 1 · 10−116. For comparison, the
chance of winning the �guess which atom in the universe I'm thinking of� game is only 1 · 10−81.
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These overwhelming numbers motivates narrowing down the �eld of study somewhat,
and the normal way of doing so is to replace the local transition function f with a
composition of two functions, call them g and h, so that f = g ◦ h. We �rst decide on
a function h from S|N | to some smaller set, let's call it P , and then apply the second
function g from P to S. By �xing h and studying all possible functions g : P −→ S, we
can narrow down the desired �eld of study to an arbitrary degree, and also classify the
cellular automata according to the �xed function h.

One frequently used such class12 of cellular automata called totalistic cellular au-
tomata can be de�ned by �xing h as the sum of the states of the cells in the neighbour-
hood. Stephen Wolfram adapted his labeling system to this kind of cellular automata
by tabulating the possible sums in the top row and the new value for the central cell in
the bottom. In a similar manner as before, the numbers in the bottom row can now be
interpreted as a single number with the same base as the number of states.

Neighbourhood sum 6 5 4 3 2 1 0
New central state 2 0 1 2 0 2 0

Table 1.3: Code 1599 lookup table

For example, a radius 1 cellular automaton with S = Z3 has a maximal sum of 6,
so we can read o� a 7 digit base 3 number from the bottom row, as shown in table 1.3.
To distinguish between these totalistic numbers and the rule numbers, these numbers
are called codes. Together with the alphabet S and the neighbourhood N , the code will
completely determine the cellular automaton.

Outer totalistic cellular automata are totalistic outside of the central cell, so they
depend on both the sum of the states of the outer cells, and on the state of the central
cell. In other words, the function h is of this form:

h : S|N | −→ {0, 1, . . . , |S| · |N |} × S

Consider a d-cellular automaton (L, S,N, f) with a global function G. Recall that C
is the set of all possible global states (which we may also write S|L|). Set Ω0 = C, and let
Ωt = G(Ωt−1) = {G(a) | a ∈ Ωt−1}. The limit set ofA is the set Ω(A) = Ω0∩Ω1∩Ω2∩. . .,
which corresponds to the periodic parts of the phase space.

12This is of course a di�erent kind of classi�cation than the wolfram classi�cation, which we will cover
in section 1.4.1.
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1.4 Examples

1.4.1 1-dimensional binary cellular automata

Cellular Automaton 1 Radius 1 binary 1-CA

Lattice: L = Z or Zn
Alphabet: S = Z2 = {0, 1}

Neighbourhood: N = {−1, 0, 1} (�rst neighbours)
LTF: f : S3 −→ S

One of the simplest kinds of cellular automata is the 1-dimensional binary cellular
automata with a radius 1 neighbourhood. There are 256 distinct rules of this kind, but it
can be argued that there are only 88 di�erent rules. From each rule we might construct
up to 3 very similar rules: the mirror image rule, the inverted rule, and the rule that is
both mirrored and inverted. Any fact that is known of one of these variations can easily
be translated into a similar fact about the others, so they can be considered isomorphic.

Rule 30 Rule 86 Rule 135 Rule 149

Figure 1.10: Equivalent rules of rule 30.

Take rule 30 as an example. Its mirror image rule is rule 86, its inversion is rule 135,
and rule 149 is the mirror image of rule 135 and the invertion of rule 86. For some rules,
some or all of these variations coincide; for instance, it's obvious that a symmetric rule
is its own mirror image. The details of these relationships is listed in appendix B.

Invertion

Mirroring

Rule 30

Rule 135

Rule 86

Rule 135

Rule 30

Rule 86

Rule 149

Invertion

Invertion

Mirroring

Mirroring

Figure 1.11: Rule 30 and its similar rules
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More generally, for any rule with explicit form13 abcdefgh, the mirror image is aecg-
bfdh. Using capital letters to denote invertion (1 to 0 and 0 to 1), the invertion is
HGFEDCBA, and the mirror-inverse is HDFBGCEA14. The patterns produced by rules
that are mirror images and/or invertions of each other are easily recognizeable as such,
especially if the initial global state is similarly mirrored and/or inverted, as can be seen
in �gure 1.10.

The classi�cation system of Stephen Wolfram

Stephen Wolfram invented a classi�cation system for cellular automata, with which the
vast majority of cellular automata can be classi�ed into one of four classes. The classi-
�cation must however be done by manually inspecting the patterns, so the classi�cation
might to some degree depend on the person doing the classi�cation and the initial con-
ditions she studies. [19, p. 240]

Class I

Rule 8 Rule 32 Rule 40 Rule 160

Figure 1.12: Class I

This kind of system quickly evolves to a homogeneous global state, after which no
further state changes happen. The most obvious example of this kind is rule 0, which
instantly discards all information, though rule 8, 32, 40 and 160 are also of this kind. A
cellular automata is classi�ed as class I even if there exist certain special initial conditions
that leads to a nonhomogenous �nal state; it is enough that the homogenous state is
reached for almost all initial states [19, p. 231]. Any changes in the initial global state
of a cellular automaton of this kind will have no e�ect on the resulting global state.

Class II

Cellular automata of this kind are those that after a while starts to repeat themselves.
There's a slight problem in the fact that all cellular automata on a �nite lattice must at
some point reach a global state that it has been in before (there are only �nitely many
global states), after which it cannot help but repeat itself. This would be the case also
for rules that would otherwise be categorized as class III or IV, had they been on an
in�nite lattice. It's therefore customary to only consider cellular automata that would
be of class II on an in�nite lattice as belonging to class II.

13See section 1.3.6 page 15.
14This does not depend on the order in which the transformations are applied.
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Rule 4 Rule 36 Rule 108 Rule 164

Figure 1.13: Class II

The most trivial examples of class II cellular automata are those that reach some
unchanging global state, like rule 4 or rule 12. It bears mentioning at this point that
rules that produce left- or right-shifting patterns, like rule 24, present an appearant
problem when one attempts to categorize them, since on an in�nite lattice such a rule
seems not fall into any of the four classes15. The solution is to observe that it is equivalent
to a rule where the neighbourhood is shifted one step to the left or right, depending on
the rule, as in Figure 1.14. This will then produce a pattern that is clearly recognizable
as that of a class II cellular automaton, and which can easily be transformed back into
the original pattern produced by rule 24 by shifting each row the same number of steps
to the right as the number of rows above it.

Rule 24

Shifted rule 24

Rule 24

Rule 24 shifted

Figure 1.14: How to classify rule 24

Any small local change in the initial global state of a cellular automaton of this kind
will yield only a small local change in the resulting pattern. [19, p. 252]

Class III

Class III cellular automata are characterised by their chaotic nature. Almost all initial
conditions will lead to patterns that never repeats, with the same �nite lattice caveat as
for class II. A classical example of this kind of cellular automaton is rule 30, and other
examples are rule 90 and rule 150.

For this kind of system, a small change in the initial system will �typically spread at
a uniform rate, eventually a�ecting every part of the system�. [19, p.252]

15 It does not quickly evolve into a homogenous global state, so it's not class I. It does not ever repeat
itself unless the initial condition also does so, so it is not class II. It is highly predictable, so it is not
chaotic, and therefore not class III. Lastly, it does not have stationary patterns, so it is not of class IV.
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Rule 30 Rule 45 Rule 150

Figure 1.15: Class III

Class IV

Figure 1.16: Rule 110

This kind of system can be seen as being on the border between the order of class
II and the chaos of class III. These kinds of cellular automata are the kinds that could
be capable of universal computation, because they have both patterns that move about
and patterns that are stationary. Only one of the radius 1 binary 1-dimensional cellular
automata is known to be of this type, and that is rule 110 and its equivalent rules. It
was proved by Matthew Cook around 2000 that Rule 110 is turing complete, meaning
that it can in principle be used to calculate anything, just like a computer. [19, p. 1115]

A small change in such a system can have either no impact, local impact, or a non-
local impact on the evolution of the cellular automata. [19, p. 252]



22 CHAPTER 1. CELLULAR AUTOMATA

Apart from making pretty patterns, some of these rules also have practical applica-
tions. Rule 30 is used as a pseudo-random number generator [19, p. 975], and seems
to have properties making it well-suited for cryptographic purposes such as hashing and
encryption. If we take a binary string from any source � for example the rows of a black
and white image � we may set it as the initial con�guration of a CA such as this and
run it once or twice. In this way we may use these rules to �lter such data for various
features; for instance rule 4 can be used to mark each place where the bits formed the
pattern 010, while rule 72 marks the beginning and end of each stretch of more than one
cell with state 1, so 011010111110 would �lter to 011000100010.

Considering that CAs of this type are of the most simple CAs possible, they have
been a surprisingly rich store of di�erent and complex behaviour. In the next section we
will increase the radius of the neighbourhood and the number of states, and see what
happens.
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1.4.2 Other 1-dimensional cellular automata

Cellular Automaton 2 Radius r, m-state 1-CA

Lattice: L = Z or Zn
Alphabet: S = {0, 1, . . . ,m− 1}

Neighbourhood: N = Nr = {−r,−r + 1, . . . , r − 1, r}
LTF: f : S2r+1 −→ S (general) or

f = g ◦ h : S2r+1 −→ Z(2r+1)(m−1)+1 −→ S (totalistic)

The general cellular automata of this kind is represented by a map f whose explicit
form is k = m2r+1 digits long: sk−1sk−2 . . . s1s0, si ∈ S. It is then straightforward to
look up the new state corresponding to any neighbourhood state, as described in section
1.3.6. For the totalistic variant, the maximal sum of the cells in the neighbourhood is
σ = (2r + 1)(m− 1), so our function h : S2r+1 −→ Zσ+1 is de�ned as

h(s0, s1, . . . , s2r) =
2r∑
i=0

(si)

and we may now let g : Zσ+1 −→ S be any function.
Cellular automata with larger neighbourhoods than the nearest neighbours neigh-

bourhood are in principle a super�uous kind of cellular automata to be studying, due to
the following fact: �Every d-cellular automaton can be simulated by a d-cellular automa-
ton with the nearest neighbors neighborhood� [5, p.8]. For example, a cellular automaton
with radius 4 and 2 states can be simulated by a cellular automaton with radius 1 and
16 states, as in �gure 1.17.

1 0 10 0 1

f = g

10 00 0 1 1 1

0 1 0 0

1 15

4

f f f

Neighbourhoods

Neighbourhood

Figure 1.17: How the radius 4 rule with 2 states and code 273 can be converted to a
16-state radius 1 rule.

It should therefore in principle be enough to study all cellular automata with the
nearest neighbours neighbourhood. However, a concrete example reveals some problems
with this approach.

Figure 1.18 shows a radius 4 binary cellular automaton and its equivalent16 with a
radius 1 neighbourhood. It is evident that much more information can be read from the

16The equivalent radius 1 rule is not a totalistic rule for a number of reasons. For example, neigh-
bourhood states 888, 444, 222 and 111 should now all give the �sum� 3, but they clearly don't.
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Figure 1.18: Left: The totalistic radius 4 binary cellular automaton with code 273. Right:
its equivalent radius 1 cellular automaton with 16 states.

left representation than from the right, even though, theoretically, the two representa-
tions are equivalent and store exactly the same information. The left is simply a more
expressive and humanly readable way of displaying this automaton. For this reason, we
will not limit ourselves to radius 1 CAs.

Totalistic rules are necessarily symmetric, but that does not mean that all patterns
produced by them are symmetric. This is only the case if the initial con�guration is also
symmetric. Figure 1.19 shows a totalistic CA where the LTF causes a particular pattern
(11011101) to shift one cell to the left every nine time steps. The mirror image of the
pattern (10111011) would shift right instead of left.

Figure 1.19: Totalistic rules are symmetric, yet can display unsymmetric behaviour.
Displayed is N = Nr=2, S = Z2 for code 20 with a random initial con�guration.

We could equally well have introduced the wolfram classes presented in section 1.4.1
here, with examples taken from totalistic CAs, as they feature all the four classes. This
would also have removed the problem that rule 24 created for us. That rule discarded a
lot of informaion and then simply shifted what was left to the right. Any totalistic rule
with left- or right-shifting patterns will be of class III or IV, since such patterns means
information can be transmitted both left and right.

The explicit form of the equivalent rule, written as an hexadecimal number, is 4096 digits long:
01327644fecc8888fecc888800000001. . . 2310100010000000100000008888ccef. From the �rst digit we can
conclude that the neighbourhood �f (which in the radius 1 equivalent is twelve cells with state 1 in a
row: 111111111111) results in the new state 0 (which is equivalent to four cells with state zero: 0000).
Similarly, from the last digit we see that the neighbourhood 000, (≈000000000000), gives new state f
(≈1111). From this alone we can conclude that a CA with this rule and homogenous initial con�guration
would have alternating horizontal black and white stripes.
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As with most types of CA, the parameter space is vast, so for this example we will
just pick a couple of interesting cases and comment on those. Figure 1.20 shows the
3-state cellular automaton with code 1599 and radius 1, starting from a global state of
all cells in state 0 except a single cell in state 1. Its lookup table can be found in table 1.3
on page 17. It shows how delicately poised between expansion and stagnation a cellular
automaton can be. It evolves and expands for 8282 steps of highly complicated behaviour
before it �nally reaches a simple repetitive state. A small sample of various lattice sizes
and random initial states shows this to be typical behaviour.

Figure 1.20: The totalistic 3-state radius 1 CA with code 1599, starting with a single cell
in state 1. The picture has been squashed along the vertical axis: each pixel in the large
image is the average of a column of 7 pixels, as shown in the blowup to the right.

Randomly browsing totalistic CA with |S| > 2 and r > 1 can be frustrating, because
most patterns will simply look like a big mess, and only once in a while will a pattern
that is interesting in some way crop up. We will end this section with an example of the
latter; the pattern in �gure 1.21. It has unusually large structures of similarly textured
cells, which in and of itself is not that unusual, but these move about in a complex
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manner, instead of staying in one place in the lattice.

(a) Showing every cell (b) Zoomed out 4x

Figure 1.21: A totalistic CA with N = Nr=3, S = Z3 and code 12739548.
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1.4.3 Activation-inibition model

Cellular Automaton 3 Algorithmic 1-CA

Lattice: L = Z or Zn
Alphabet: S = Z2 × Z+

Neighbourhood: N = {−max(ra, ri), . . . ,max(ra, ri)} (radius neighbourhood)
LTF: f : S|N | −→ S (algorithmic)

The following cellular automaton was proposed by Ingo Kusch and Mario Markus
[10], and presented in [16]. It reproduces a number of patterns very similar to some
found in nature, for instance on seashells. Each cell is either active or inactive, and
there's a certain concentration of inhibitor in each cell. Active cells produce inhibitor,
which di�use to nearby cells. If there is too much inhibitor in an active cell, it becomes
inactive.

Each cell has a tuple (c, i) as its state, where c ∈ Z2 indicates if the cell is active
(1) or not (0), and i ∈ Z+ is the concentration of inhibitor17. We de�ne two projections
πc((c, i)) = c and πi((c, i)) = i, so that for example, πi(at(~z)) is the amount of inhibitor
in the cell at ~z in time step t.

For the sake of overview we will �rst summarize the algorithm and name the various
parameters.

1. Inhibitor decays, either decreasing by 1 or by a factor of d.

2. Each inactive cell activates with probability p.

3. All active cells produce w1 units inhibitor.

4. Cells with more than bm0 +m1ie active cells in their radius ra neighbourhood are
activated.

5. The inhibitor is di�used across the cells in their radius ri neighbourhood.

6. All active cells whose inhibitor levels are higher than w2 are deactivated.

Starting with a global state at, we will need two temporary global states a1 and a2

to calculate the next global state at+1, and we need to make 3 passes, one from at to a1,
one from a1 to a2, and one from a2 to at+1.

1. Pass 1. For every x ∈ L, let (c, i) = at(x), and:

a) Let i1 = max(0, i− 1).

b) If c = 0, then with probability p, let c1 = 1, otherwise let c1 = 0.

c) Set a1(x) = (c1, i1).
17Though the alphabet is given as Z2 × Z+, which is an in�nite set and therefore not allowed as an

alphabet, in practice the size of i is bounded by some of the parameters, so it's �nite



28 CHAPTER 1. CELLULAR AUTOMATA

2. Pass 2. For every x ∈ L, let (c1, i1) = a1(x), and:

a) If c1 = 1 then i2 = i1 + w1, otherwise i2 = i1.

b) If c1 = 0 and
∑ra

i=−ra(πc(a1(x + i))) > bm0 +m1i2e, then c2 = 1, otherwise
c2 = c1.

c) Set a2(x) = (c2, i2).

3. Pass 3. For every x ∈ L, let (c2, i2) = a2(x), and:

a) Let i =
⌊

1
2ri+1

∑ri
i=−ri(πi(a2(x+ i)))

⌉
.

b) If i ≥ w2, then c = 0, otherwise, c = c2.

c) Set at+1(x) = (c2, i2).

For 0 < d < 1, we replace step 1.a) above by

Let i1 = max(0, b(1− d)ie).

That was the algorithm, now we will look at what kind of output it produces. Figure
1.22 shows four di�erent patterns, with parameters given in the �gure text. There are
many more beautiful patterns to be discovered, and playing with the parameters of this
CA is a pastime recommended18.

Note that the �gures hide one part of the state, namely the concentration of inhibitor.
This information can be guessed at by observing where the cells spontaneously turn white,
because this is due to high concentrations of inhibitor. The inhibitor will then gradually
decay and di�use, and then the cells will either spontaneously activate again once the
inhibitor concentration is low enough, or they will be activated because many of their
neighbouring cells are activated.

With certain spesi�c parameters, the patterns found on many di�erent kinds of
seashells have been reproduced, and some impressive side by side comparisons are shown
in Schi� [16], p. 152. We may conclude that CAs can be used to model real-world phe-
nomena quite successfully, and help deepen our understanding of how things work by
enabeling us to study it in an easily controlled environment � a computer simulation.

18See appendix A.4.
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(a) ra = 2, ri = 7, w1 = 5, w2 = 30, m0 =
0.001, m1 = 0.06655, p = 0.000186, d = 0

(b) ra = 3, ri = 13, w1 = 2, w2 = 33, m0 =
0.001, m1 = 0.0732, p = 0.000185, d = 0

(c) ra = 2, ri = 0, w1 = 6, w2 = 36, m0 =
0.001, m1 = 0.06655, p = 0.00266, d = 0.121

(d) ra = 9, ri = 7, w1 = 3, w2 = 6, m0 = 8.56,
m1 = 0.629, p = 0.0069, d = 0

Figure 1.22: Kusch-Markus patterns
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1.4.4 The Game of Life

Cellular Automaton 4 Binary outer totalistic 2-CA

Lattice: L = Z× Z or Zn × Zm
Alphabet: S = Z2

Neighbourhood: NM (2-dimensional Moore neighbourhood)
LTF: f = g ◦ h : S9 −→ Z9 × Z2 −→ S (outer totalistic)

This is one of the most famous cellular automata, and its history has already been
mentioned in section 1.2.2. It was devised with a clear set of goals in mind: no commonly
occuring pattern should grow without bound19, and there should be many patterns that
do not quickly die out or become predictable. [11, p. 3]

This CA is outer totalistic, so we �x the function h : S9 −→ Z9 × Z2 as

h(s0, s1, . . . , s7, s8) =

(
8∑
i=1

(si), s0

)
(1.1)

The rules of the Game of Life are as follows. Each cell can have only two states; alive
(1) or dead (0). For h(s0, . . . , s8) = (σ, s), we de�ne

g((σ, s)) =


1 if σ = 2 and s = 1
1 if σ = 3
0 otherwise

"Still life"
These patterns remain 
unchanged if left alone.

"Glider"
The most common
moving pattern

"Spaceship"
The second most common
moving pattern

"Blinker"
A very common oscillating
pattern. It has a period of 2.

Figure 1.23: A sampling of rather common patterns seen in the Game of Life cellular
automaton.

This simple rule gives rise to a stunning menangerie of behaviours, a small sampling
of which will be mentioned here.20 Referring to �gure 1.23, at the top we have some

19It was soon proved by counterexample that there did exist patterns that grew without bound. More
recently it has been shown that you need at least 10 or more live cells in the initial global state to have
a hope of boundless growth. [19, p. 965]

20Any greater thirst for knowledge on the subject of the standard Game of Life may be quenched at
http://conwaylife.com/wiki/.

http://conwaylife.com/wiki/
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examples of still life, which are patterns that do not change at all from one time step
to the next. It's possible to combine or extend many of the shown patterns into larger
examples of still life, even creating tilings that may cover the entire lattice.

Then there are stationary oscillators, where we show only the most simple, the period
2 blinker. However, there exists such patterns for every period up to 18 [19].21 Thirdly,
there are the moving repeating structures, called spaceships. The two most common are
shown in the �gure, the glider and the eponymously named �spaceship� spaceship.

Spaceships may be categorized by the speed with which they move, expressed in
fractions of c, where c denotes the so-called speed of light � one cell per time unit. The
glider has a speed of c4 both horizontally and vertically, and the spaceship has a speed of
c
2 . The most spectacular example of a spaceship is the monstrous caterpillar, pictured
in �gure 1.24, which has a speed of 17c

45 and consists of roughly 12 million live cells in a
4195× 330721 bounding box.

Figure 1.24: The caterpillar. Starting at the bottom left and going in clockwise direction,
each frame contains a magni�ed part of the picture in the frame preceding it.

The standard Game of Life has been analyzed in extreme detail by many, many
others, so we will not cover it in any greater detail here. We will come back to it when

21A Life enthusiast called David J. Buckingham has written an online article [4] where he describes
how to create stationary oscillators of every period larger than 57. Along with other stationary oscillators
found by him and others, only periods 19, 23, 31, 38, 41, 43 and 53 now remain to be found. However,
this is according to [13], which is an open wiki, so it should be taken with a grain of salt.
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we give it 2-dynamics in section 2.4.2. We will now make the leap to 2 dimensions.
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1.4.5 The hodgepodge machine

Cellular Automaton 5 Cyclic n-state 2-CA

Lattice: L = Z× Z or Zk × Zl
Alphabet: S = Zn+1 = {0, 1, . . . , n}

Neighbourhood: N = NM (2-dimensional Moore neighbourhood (see 1.3.5))
LTF: f : S9 −→ S (algorithmic)

Figure 1.25: The Belousov-Zhabotinsky reaction. Image by Stephen Morris, http://www.flickr.

com/photos/nonlin/4013035510/in/photostream/. Used with permission.

This cellular automata was suggested by Martin Gerhardt and Heike Schuster [16,
p. 130], to simulate an oscillating chemical reaction on excitable media. The reaction
is called Palladium Oxidation; palladium crystals on a surface absorb CO and O2, and
produce CO2 at a rate that increases with the amount of CO available. This produces a
cyclic pattern of spiral waves. A very similar pattern (made of waves of a chemical used
for intercellular signal transduction) is produced by slime mold when feeding [6]. A third
example of a reaction producing such a pattern is the so-called Belousov-Zhabotinsky
reaction, which is depicted in �gure 1.25.

The CA is a 2-dimensional cellular automata (L, S,N, f) with n + 1 states: S =
{0, 1, · · · , n}. A cell in state 0 is �healthy�, a cell in state n is �ill�, and the states in
between are termed �infected� states.

In addition to three parameters k1, k2 and g, the local transition function depends
on the state of the central cell, denoted by s, the number of infected cells22 in the
neighbourhood Ninf, the number of ill cells in the neighbourhood Nill, and the sum of all
the states in the neighbourhood Σ. For the sake of readability we write the function f
as if it is a function of these derived variables instead of (s0, s1, . . . , s8), si ∈ Zn+1, since
all the mentioned variables can easily be calculated.

22An ill cell is also considered to be infected.

http://www.flickr.com/photos/nonlin/4013035510/in/photostream/
http://www.flickr.com/photos/nonlin/4013035510/in/photostream/
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f(s,Ninf, Nill,Σ) =


⌊
Ninf

k1
+ Nill

k2

⌋
if s = 0

min
(
g +

⌊
Σ
Ninf

⌋
, n
)

if 0 < s < n

0 if s = n

The parameters k1 and k2 in�uence how easily a cell is infected, and g controls
how fast the cells progress towards becoming ill once they've become infected. With
parameters set to appropriate values (for example n = 100, g = 20, k1 = 3, k2 =
2), a random initial con�guration will after a while become spiralling waves, as in the
simulation in �gure 1.26.

Figure 1.26: A typical evolution of the hodgepodge machine. The white cells are healthy,
the gray cells are infected, and the black cells are ill.

We'll now explore how the parameters in�uence the behaviour of this cellular au-
tomaton, with the exception of the parameter n, which we will not investigate at this
time.23. The results are displayed in �gure 1.27. As can be seen, whether spirals appear
or not is largely dependent on the parameters, though the initial con�guration may also
have some in�uence, particularly for the borderline cases. When spirals don't appear,
there are various other kinds of patterns that emerge, some of which are depicted in
�gure 1.28. Once a spiral appears though, it will eventually dominate the whole lattice,
ever spreading its spiralling waves outwards24.

The averaging of states that is done all the way from a state becomes infected until it
is ill is crucial to the richness in behaviour. If we just increased the state value by g each
time step, most of the interesting patterns shown here would disappear and be replaced
by chaotic patterns. We used the same principle in the activition-inhibition patterns of
section 1.4.3, and we will use it again later in this thesis, and it always seems to produce
results that are at pleasing to the eye, or natural, in some sense.

23I suspect it is the ratio g
n
that matters, not the magnitude of the numbers g or n.

24My initial attempts at visualizing the parameter space failed because I set no borders to separate
the parameters, allowing the spirals that invariably appeared to destroy any other weaker pattern that
might appear.
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(a) g=9, n=100 (b) g=11, n=100

(c) g=14, n=100 (d) g=16, n=100

(e) g=19, n=100 (f) g=20, n=100

(g) g=22, n=100 (h) g=25, n=100

(i) g=32, n=100 (j) g=48, n=100

Figure 1.27: The hodgepodge machine after 1200 steps for various parameter combina-
tions. The initial con�guration is identical for all simulations with the same parameter
g, so any di�erence between the patterns is only due to the di�erence in parameters.
The row and column headers may be hard to read, so to clarify; along the x axis the
parameter k1 has the values 0.5, 1, 1.5, 2, 3, 5, 8 and 12, and along the y axis k2 takes
on the values 0.5, 1, 2, 4 and 6. These values were selected by trial and error so as to
show as many di�erent behaviours as possible.
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Figure 1.28: Some of the other patterns that the hodgepodge machine may produce.
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1.4.6 WATOR-World

Cellular Automaton 6 A predator-prey simulation CA

Lattice: L = Z× Z or Zn × Zm
Alphabet: S = Z3 × Zmax(bf ,bs)+1 × Zs+1 × Z2

Neighbourhood: N = NvN (2-dimensional von Neumann)
LTF: fw : S5 −→ S5 (asynchronous, algorithmic)

The following CA was proposed by Alexander Keewatin Dewdney in an article in
Scienti�c American [16, p. 154]. It is called WATOR-World, and is a discretization
of the Lotka-Volterra di�erential equations, which model the relationship between the
populations of a predator and its prey. Since such relationships are discrete in nature, a
CA model will probably yield more realistic answers than di�erential equations, all other
things being equal. At the very least, it will solve the so-called atto-fox problem of [12,
p. 32].25

In this CA, each cell is either empty water, a small �sh, or a shark. The sharks and
the �sh swim randomly about, and if a shark comes across a �sh, the shark eats the �sh.
Both �sh and sharks may reproduce once they reach a certain age. They breed by simply
depositing an o�spring in the cell they leave � a mate is not needed. At the same time,
their �age� is reset, so as to avoid adult �sh leaving behind a continuous trail of o�spring.
Finally, sharks will die if they go too long without food.

Stretching the CA de�nitions

This CA necessitates stretching the de�nitions of a CA a bit. Schi� introduces this model
as a CA in [16], but later states that it is in fact an IBM, or individual-based model.
An IBM focuses on the individuals that make up the model, instead of the locations
that they occupy, as we do in cellular automata. Where we would iterate over the entire
lattice, an IBM typically iterates over its population.

In forcing this into the CA framework, we get a problem because the subjects (�sh
and sharks) often wander in a random direction. The obvious way of doing this in a
CA is by swapping the states of two cells, where one is a �sh and the other is its empty
destination. Though doable, such procedures must be considered carefully in a CA,
because both the cells involved in the swapping must be in �agreement� that it is taking
place. If they are not, the result is a cloned �sh, or a �sh that has disappeared.

The fact that the direction of the swapping is random makes it much worse, if not
impossible, to implement as a standard CA. Take for example a seemingly simple prob-
lem, will a �sh leave its cell or not, depicted in �gure 1.29. As can be seen, at the very
least we'll need a bigger neighbourhood, and even then it is not so simple. If the next
movements of the other four �sh are not known, the �sh in the middle may have a free
cell to move to, or it may not.

25An atto-fox is 1 · 10−18 of a fox, which is the number of foxes per square kilometer that allowed the
population to rebound in the in the cited article.
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Will the fish 
leave the cell?

It might not
be able to.

Figure 1.29: One of the problems faced when implementing WATOR-World as a proper
CA.

The solution is to enable the LTF to change the state of neighbouring cells as well
as its own, and do the update in-place, or asynchronously. This means that the LTF
will decide the new position of a swimming entity based on where the �sh around it are
�now�, as opposed to where they were one time step ago. We still keep the concept of a
time step by denoting an update of every cell in the lattice as one time step.

There is also the problem that a �sh might be moved several times in one time step
if it moves into an as of yet not updated cell. This we will mitigate by marking the �sh
as �moved�, and making sure not to move �sh that has been marked as moved already.

The algorithm

Let a : L −→ Z3 × Zmax(bf ,bs)+1 × Zs+1 × Z2 denote the global con�guration map. We
denote the state of an arbitrary cell by (w, a, l,m), where w is the presence of water (0),
�sh (1) or shark (2), a is the number of time steps since the �sh or shark was born, l
is the number of time steps since the last meal of a shark, and m is the �ag indicating
that the �sh or shark has been moved. Further, let πw, πa, πl and πm be the projections
from the alphabet S to each of the smaller sets. For example, πw((w, a, l,m)) = w, and
similarly for a, l and m. Finally, the parameters of the CA are these: the breeding age
of �sh and sharks we denote by bf and bs, respectively, and sharks starve after s time
steps without food.

Now lets specify the algorithm in detail. Because of the vagueness of the description
in [16], some details have been �lled in or clari�ed as the author saw �t.

Each time step consists of two passes over the cells. The �rst pass resets the value m
to 0 for all the cells in the lattice, indicating that no �sh has moved yet. The second pass
is done in random order while still making sure only to update each cell once. This is to
avoid the tendency of tight packs of �sh to move towards the starting point of the pass.
Using the von Neumann neighbourhood NvN = {~n0, ~n1, ~n2, ~n3, ~n4} we do the following
for each ~z ∈ L,

1. Denote the current state of the cell by (w, a, l,m).

2. If w = 0, do nothing more for this cell.

3. If w = 1 and m = 0, then:

a) If a ≤ bf , then increase a by one, aging the �sh.
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b) Let D = {~n ∈ NvN | πw(a(~z + ~n)) = 0}.
c) If D = ∅, the �sh has nowhere to move, so update the state of the cell with

the new age by setting a(~z) = (1, a, 0, 1), and do nothing more for this cell.

d) If D 6= ∅, then pick a ~nx ∈ D at random.

e) If a = bf then the �sh will breed, so we set a(~z + ~nx) = (1, 0, 0, 1) and
a(~z) = (1, 0, 0, 1).

f) If a < bf , the �sh simply moves, so we set a(~z + ~nx) = (1, a, 0, 1) and a(~z) =
(0, 0, 0, 1).

4. If w = 2 and m = 0, then:

a) If a ≤ bs, then increase a by one, aging the shark.

b) If l = s, then the shark dies from hunger, so set a(~z) = (0, 0, 0, 0), and do
nothing more for this cell.

c) If l < s, then increase l by one, making the shark hungrier.

d) Let D = {~n ∈ NvN | πw(a(~z + ~n)) = 1}.
e) If D 6= ∅, then pick a ~nx ∈ D at random, and set l = 0, since the shark will

eat the �sh at ~z + ~nx.

f) If D = ∅, then let D = {~n ∈ NvN | πw(a(~z + ~n)) = 0} instead.
g) If D = ∅ even now, the shark has nowhere to move (very unlikely), update

the state of the cell with the new age and hunger by setting a(~z) = (2, a, l, 1),
and do nothing more for this cell.

h) If l 6= 0, pick a ~nx ∈ D at random.

i) If a = bf then the shark will breed, so we set a(~z + ~nx) = (2, 0, l, 1) and
a(~z) = (2, 0, 0, 1). The baby shark is born with a full stomach.

j) If a < bf , the shark simply moves, so set a(~z + ~nx) = (2, a, l, 1) and a(~z) =
(0, 0, 0, 0).

Schi� introduces two more parameters, nf and ns, the starting number of �sh and
sharks, respectively. A typical evolution of the WATOR world is pictured in �gure 1.30.
The sharks eat almost all the �sh, and after a while great numbers starve to death since
most of them �nd no more food. A small remnant of �sh sustain an even smaller number
of sharks, and for a while the �sh breed faster than the sharks can eat. Soon the �sh
have multiplied to cover almost the whole lattice, while the sharks are becoming more
numerous again, feasting on the �sh. All of a sudden, the sharks have eaten almost all
the �sh, and the loop repeats, as shown in �gure 1.31.

In this example we will study just one set of arbitrarily chosen parameters, namely
bf = 8, bs = 20 and s = 20. We will consider the in�uence the lattice size has on the
way the CA behaves. The parameters nf and ns vary according to the size of the lattice,
and to a small extent between simulations, but the �sh

water and shark
�sh proportions will be

very similar for all the simulations.
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(a) t=1 (b) t=50 (c) t=80 (d) t=110 (e) t=150

(f) t=200 (g) t=260 (h) t=330 (i) t=410 (j) t=500

Figure 1.30: A WATOR-World evolution on an 120x90 lattice with bf = 8, bs = 20 and
s = 20. Black cells are sharks, gray cells are �sh and white cells are water. To construct
the initial con�guration, 20% of the lattice cell states were set to state (1,0,0,0), then
15% were set to state (2,0,0,0), possibly overwriting some of the previously set values.
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Figure 1.31: A graph showing the population of �sh and sharks. This graphs the data
from the simulation shown in �gure 1.30. The graph lines are saw-toothed because the
individuals all tend to breed simultaneously; �sh every 8th time step and sharks every
20th. The �sh curve gets smoother as time progresses because �sh trapped on all sides
will delay breeding until there's room enough, thereby also delaying the breeding schedule
for all descendants. Sharks almost always have room to breed.

The results are graphed in �gure 1.32, and as we can see, there is a gradual change
happening between the smallest lattice size and the largest. In the smallest, only one of
ten simulations had any shark alive after 100 steps. In the largest, only one of ten didn't,
and only one more didn't make it to the end of the simulation at 1000 steps.
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It might be tempting to conclude from this data that threatened species that have
a predator-prey relationship need large natural reserves for them to have any chance of
surviving. However, while there may be some truth to this thinking, the model is far too
coarse for us to apply the results obtained through it to the real world. Here are some
ways in witch we could have improved on it, and as the attentive reader will realize, some
of them would probably have helped the sharks in the small lattice survive in the long
run:

• Get actual data for breeding ages of both species.

• Also get data for how long a predator can live without prey.

• Take into account that time to �rst breeding and time to consequent breedings
might not be the same.

• Give the predators a �nite stomach size.

• Have the individuals die of old age at some point.

• Factor in how the prey might hide from or successfully escape the predator.

• Have the prey gather in groups, as they often do in nature, to protect themselves
from predators.

• Factor in the in�uence of seasons.

• Add additional types of prey that the predator might catch and eat if it is hungry
enough, or seasonal prey that sometimes ease the preassure o� of the primary prey.

• Add additional types of predators or omnivores that may target the same type of
prey as the main predator.

• Have some upper bound on the number of prey, as they will not grow totally
without bound in nature.

• Give the predators some sense of smell or sight so they may target prey and move
about more purposefully.

We will come back to the last point of this list in section 2.4.4.
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Figure 1.32: 10 runs of four di�erent lattice sizes. The parameters and initial con�gura-
tions are as described in the caption of �gure 1.30



Chapter 2

Higher Order Cellular Automata

2.1 Introduction

In section 1.4.2 we created a very complicated radius 1 generic CA from a simple radius
4 totalistic CA, and observed that the simple rule produced a pattern much better suited
for human eyes than the complicated equivalent. The logical connections of the advanced
rule were hidden from human eyes. It is natural then to consider how we can put a greater
number of the very many complicated CAs1 into equivalent simple CAs that are easier
to study and understand. To do that we need to extend the concept of a CA, but do so
in a way that is structured easily reduced into its component pieces, so that the whole
thing can be �picked apart� and studied.

According to [3], Torbjørn Helvik introduced the concept of higher order cellular
automata [9], abbreviated HOCA, in 2001. He based it on the concept of hyperstructures
introduced by Nils A. Baas in [1] in 1994. In brief, a HOCA is a CA with additional
dynamics and/or hierarchical structure. With this framework it is possible for instance to
combine several di�erent normal CAs into one, or to make groups of cells that in�uence
each other in some way, independent of the local transition function.

We will see that this enables us to design (randomly or with purpose) and understand
CAs whose explicit form LTF would have been close to undecipherable. It uncovers a
treasure trove of very interesting and unexpected behaviour, and gives us tools we may
use to study simple CAs. Finally, we may use HOCAs to meaningfully alter the behaviour
of existing CAs to suit our needs.

1What we mean here by �complicated CA� is a CA with a large number of states and/or a large
neighbourhood, and a LTF that seems only to be expressible as a lookup table; that is, there seems to
be no formula or algorithm that does the same job. These kinds of CA are naturally extremely plentiful,
and a small subset of them probably do some very neat things.

43
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2.2 De�nition

In this section we will use the de�nitions of [2] with some small changes in notation. We
start with giving some already de�ned symbols a little subscripted number: Let L1 be
a lattice, S1 be an alphabet and a1 : L1 −→ S1 be the state con�guration of L1. In
all these symbols, the subscript 1 refers to the �rst morphological level of the HOCA.
A morphological level is what we call each ��oor� of the hierarchical structure of the
HOCA. We may drop the subscript if there is only one such morphological level.

2.2.1 2-dynamics

In a normal cellular automaton, every cell of the lattice has the same neighbourhood and
the same local transition function. Higher order cellular automata with 2-dynamics may
assign di�erent neighbourhoods and LTFs to each cell. We now introduce the necessary
concepts to deal with this.

Let N1 = {N1, N2, . . . , Nk} denote the set of all the possible neighbourhoods that a
cell might have. Then we may de�ne a map that maps each cell to the neighbourhood it
uses, n1 : L1 −→ N1. The function n1 is called the �rst level neighbourhood con�guration,
and the set N1 is the �rst level 2-neighbourhood.

Now we must assign one local transition function to each cell. However, the LTF of
each cell must be �compatible� with the neighbourhood of that cell, meaning that if a
cell has the neighbourhood Nx, then the LTF of that cell must have S|Nx| as domain. To
facilitate this, we de�ne a set

M = {|N | | N ∈ N1}

In words, M is the set of the di�erent cardinalities that all the possible neighbourhoods
have. We now de�ne the �rst level 2-rule R1 = {f1, f2, . . . , fk} as a set of local transition
functions such that

1. Each function is of the form fi : Sm1 −→ S1 for some m ∈M .

2. For each m ∈M there is at least one function fj ∈ R with domain Sm1 .

This lets us divide the sets R1 and N1 into disjoint subsets according to the cardinality
of the neighbourhood:

Rm1 = {f ∈ R1 | f : Sm1 −→ S1}
Nm

1 = {N ∈ N1 | |N | = m}

Now we may �nally de�ne the function r1 : L1 −→ R1 that maps one local tranistion
function to each cell. It must be such that

r1(~z) ∈ Rm1 if and only if n1(~z) ∈ Nm
1 for all ~z ∈ L1
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To introduce the 2-dynamics, we need a function φ1 that updates the functions n1

and r1 each time step, in the same way that a1 is updated by the LTF each time step
in a regular cellular automaton. To put into mathematical notation the restriction that
the functions n1 and r1 must always be compatible, we �rst de�ne the target set Φ1 of
this function:

Φ1 = {(N, f) ∈ N1 ×R1 | (N, f) ∈ Nm
1 ×Rm1 for some m ∈M}

For each m ∈M we de�ne a function

φm1 : Sm1 ×Nm
1 ×Rm1 −→ Φ1

These functions may then be combined to form the 2-transition map φ1 = (φm1 )m∈M .

2.2.2 2-morphology

We now go on to group the cells of the lattice L1 into 2-cells or organs. To achieve this
we de�ne the second order lattice, L2, and a map M : L2 −→ P(L1). For an arbitrary
organ, let's say it is at ~z ∈ L2, the set M(~z) contains the coordinates of the cells in L1

that are contained in that organ. We also de�ne the reciprocal map M∗ : L1 −→ P(L2),
such that for an arbitrary cell ~z ∈ L1, M

∗(~z) is the set of organs2 that contain the cell
at ~z:

M∗(~z) = {~x ∈ L2 | ~z ∈M(~x)}

Each 2-cell has a single state, and the set of all possible states is the second level
alphabet S2. The state of each 2-cell is given by the second level state con�guration
a2 : L2 −→ S2. Now we might alter the domain of the 2-transition map so that the state
of the 2-cells may in�uence it:

φm1 : Sm1 × S2 ×Nm
1 ×Rm1 −→ Φ1

Similarly we might make the rules in the 2-rule of the �rst level also take S2 as an
input3. At this point we may choose to do one of three things:

• We may de�ne a function f2 : SC1 −→ S2, where S
C
1 is some kind of aggregate

value of the 1-cells in the organ4. This means that we're using the 2-cell only as a
storage mechanism for some aggregate information, which then in�uences the �rst
level rule and 2-transition map one time step later.

2This means, of course, that a cell may be in several organs at once.
3If the same 1-cell may be in several 2-cells, we need to alter the functions slightly to take that into

account. Exactly how this is done will vary from problem to problem, depending on what the HOCA
should model or what its desired behaviour is.

4The set SC
1 need not be equal to the set S1; it could be a subset of Z and be the result of a sum, or

a binary value inticating the presence or absence of some condition, or the product space of several such
indicators.
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• We may de�ne a single second level neighbourhood N2 and a local transition func-

tion f2 : S|N2|
2 × SC1 −→ S2, giving dynamics to the second level.

• Lastly, we may bestow 2-dynamics on the second level as well, by de�ning

� a second level 2-neighbourhood N2,

� a second level neighbourhood con�guration n2 : L2 −→ N2,

� a second level 2-rule R2,

� a second level rule con�guration r2 : L2 −→ R2, and

� second level 2-transition maps φm2 : Sm2 × SC1 ×Nm
2 ×Rm2 −→ Φ2.

How to build additional levels should now be evident. If we get as far as adding
3-cells to the model, we may of course modify the second level rules and 2-transition
map to depend on the state of the 3-cells that the 2-cells belong to, just like we did with
the rules and 2-transition map on the �rst level after adding the 2-cells.
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2.3 Problems of optimization

We will see that we gain a lot of possibilities and �exibility with the concepts of 2-
dynamics and 2-morphology, but sadly, there is also a price to be paid in terms of
performance. There are obvious costs, like the need to store and retrieve rules and
neighbourhoods from the 2-rule and 2-neighbourhood, and the added complexity of the
programming5.

Obviously, CPU caching increases performance when working with small lattices, but
even simulations with large lattices will take some advantage of the cache, since the
data is stored sequentially, and is often brought into the cache along with data fetched
from main memory in response to an earlier request for data. This advantage may be
diminished to some degree for cellular automata on lattices in more than one dimension,
and to a larger degree by HOCAs, where the program typically needs to jump around
quite a lot to compute the next state of each cell, for reasons we will discuss below.

For an impression of what the cost of fetching data from memory is, here are the
numbers for the Pentium M processor: it takes 3 CPU cycles to retrieve something from
the L1 cache6, 14 cycles for L2 cache, and 240 for RAM access[7, p. 16].

Preparation:
sum columns
and store
in array

Add

Now from the stored sum 
(4), subtract the first number
in the array (2) and add 
the last (1) to get the 
new sum (=3) of states

The first number in
the array is no longer
needed, so we overwrite
it and calculate the new
sum as 3-1+3=5

2 1 1

Add numbers
in array (=4)
and store for 
later use

2 1 1 1

Sum the states
in the next
column and
append to array

3 1 1 1

Figure 2.1: A simple way to optimize Game of Life computation performance. The
vertical black line indicates where the lattice wraps.

A standard and straightforward way of optimizing the Game of Life (or any totalistic
CA) is illustrated in �gure 2.1. As a preparation to calculating a row of cells, one considers
the neighbourhood of the cell located to the left of the �rst cell in the row. This is the
rightmost cell, since the lattice typically wraps around. The sum of the three cells of
each column of the neighbourhood is then calculated and stored in an array, and the sum
of this array is stored too. Then, once in the loop of the program, it's only necessary
to calculate the sum of the rightmost column of the new neighbourhood and store it in
the array, add that number to the sum, and subtract the sum stored for the column that
is now no longer part of the neighbourhood. Instead of accessing nine numbers from
memory, this method needs only to access four numbers, one of which (the number to
subtract) is almost certainly in cache7.

5Also, as this author has repeatedly struggled with, the dilemma of whether to write code that is
optimized, or code that is readable, maintainable and extendable.

6The cache is typically hierarchical, with a very fast but small amount of memory inside the CPU
itself, called the L1 cache, and a larger and maybe somewhat slower bank of memory called the L2 cache
very near the CPU.

7As noted above, memory access may be just a little slower, or much much slower than the calculating
speed of the CPU, depending on whether or not the required data is in cache.
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For HOCAs with more than one possible neighbourhood, this optimization technique
cannot easily be used. For totalistic HOCAs, the rule function8 would presumably
call a sum member function belonging to the neighbourhood object or the lattice

object, which would then calculate the sum from scratch and return it. Not only does
this remove the ability to implement the above optimization technique, it also incurs
the added overhead of a function call, which for some programming languages can be
considerable.

A more advanced optimization technique applicable to many types of cellular au-
tomata was introduced by William Gosper in a 1984 article [8]. This technique has
become known as hashlife when used to optimize the Game of Life. It stores the cell
states9 in a tree representation called a quadtree, rather than in a matrix, to allow the
lattice to expand as much as needed to �t the pattern of non-quiescent cells. This has
the added advantage that it can be combined with hashing to canonicalize the contents,
meaning every occuring state pattern needs only be stored once, and this pattern is then
just pointed to whenever it occurs in the lattice. Lastly memoization is used, which
means that the function computing the next time step of a part of the tree, stores the
results for later use10.

Hashlife, properly implemented and optimized, can speed up the simulation by sev-
eral orders of magnitude, and enable the simulation of huge lattices of Game of Life for
�trillions of generations as they grow to billions of cells� [14]. Of course, the design of
this algorithm hinges on a couple of assumptions: The underlying CA must be determin-
istic, or else memoization could not be used. The set of commonly occuring sub-patterns
must be small enough to �t in memory, so that canonicalization actually gives an ad-
vantage. CAs without these properties would probably fare worse if implemented with
Gospers algorithm rather than the naive one, since they would get the added overhead
for canonicalization and memoization without reaping the bene�ts.

If one wished to implement a HOCA using this algorithm, the �state� of a cell, when
viewed from the perspecive of the algorithm, would need to include not only the state of
the cell, but also its rule, its neighbourhood, and the states, rules and neighbourhoods
of all its organs. This would of course dramatically increase the number of possible sub-
patterns that the algorithm would need to cope with. For all but the most simple HOCAs
then, this would make both canonicalization and memoization impractical, rendering also
this optimization technique moot.

In summary, giving a cellular automaton 2-morphology or 2-dynamics may slow the
computation down to a much larger degree than the extra necessary computation should
warrant, making the study of large-scale HOCAs, be it in space or time, impractical,
time-consuming or expensive.

8Here we are using the word �function� to refer to the programming construct, rather than the
mathematical notion.

9More precisely: the states of the cells which are in the support of the con�guration.
10Garbage collection is also needed to prune infrequently needed results from the stored results, thereby

avoiding running out of memory.
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2.4 Examples

2.4.1 1-dimensional cellular automata

We start out by looking at a simple variation of the �rst example given in Baas and
Helvik[2], where instead of totalistic rules, we use the kind of rules presented in section
1.4.1. As an overview then, we have the following system:

Cellular Automaton 7 Radius 1 binary 1-HOCA with 2-dynamics

Lattice: L = Z or Zn
Alphabet: S = Z2

2-neighbourhood: N = {{−1, 0,−1}} (�rst neighbours)
2-rule: R = {fa, fb} (fa and fb as in section 1.4.1)

2-transition map: φ : S3 ×R −→ R (totalistic)

The 2-transition map has two parameters, ca and cb, and depends on the sum s ∈ Z4

of the states of the cells in the neighbourhood, and the current rule f ∈ R:

φ(s, f) =


fa if f = fb and s = cb
fb if f = fa and s = ca
f otherwise

This simple HOCA enables much more complex behaviour than its constituent parts
might suggest. As an example, let fa be rule 255 and fb rule 28. Rule 255 sets the cell
state to 1 no matter the input, so it is natural to assume that the combined HOCA would
behave somewhat similar to rule 28, since rule 255 seems not to add anything. But as
we can see in �gure 2.2, this is not the case.

Figure 2.2: A combination of rule 255 and rule 28 where ca = 3 and cb = 2. Examples
of how the two rules look by themselves are to the left, while the HOCA that is the
combination as described above is in the rightmost frame. Since there is now also a
pattern formed by which rule is applied in each cell, the type of pattern (State or Rule)
is now speci�ed under each pattern. Then the parameters for the HOCA as a whole is
speci�ed beneath. All cells have a random state and (where applicable) rule as initial
con�guration. Black is 1 and white is 0 for the state patterns, and black is fb and white
is fa in the rule pattern.
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Rule 255 is class I and rule 28 is class II, but as we can see, the combination seems
to be class III or perhaps IV. The pattern also creates quite a few di�erent patterns; the
state pattern has diagonal stripes, triangles and vertical stipled stripes, while the rule
pattern has all of these plus some brick-like pattern.

Figure 2.3: Is the randomness due to the random initial conditions or is it inherent to
the HOCA?

Two other examples are pictured in �gure 2.3. Both seem to exhibit complex be-
haviour, but one cannot help but wonder whether the complexity is due to the rule, or
if maybe the random initial condition is the only source of complexity, and the rule is
only shu�eling it around. For most patterns exhibiting complex or chaotic behaviour
examined by the author, such behaviour would also emerge when started from some very
simple seed, like a single cell with state 1 that was surrounded by only state 0 cells11.
But some few appeared at �rst to exhibit only simple behaviour. However, most of
them would show complex behaviour with some other simple input, like a state 0 cell
surrounded by only state 1 cells, or some small number of state 0 cells in a row.

Shown in �gure 2.4 is what happens to the HOCA in 2.3(a) if we start it with all
cells set to state 1 with rule fa, except one, which we give state 0. We can see that it is
initially behaving in a very predictable manner, but as soon as the pattern has wrapped
around completely, complex behaviour emerges.

Another specimen that was particularly hard to force into exhibiting non-simple be-
haviour is shown in �gure 2.5. For most initial con�gurations, a pattern like 2.5(a) was

11Many of these did not start behaving in a complex way until the information propagating left and
right had met after wrapping around the lattice, which means that on an in�nite lattice, they would
have simple behaviour, if started from such a simple initial con�guration.
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Figure 2.4: Complex behaviour arising because of a wrapping lattice.

the result, and such patterns stay predictable even on �nite wrapping lattices. But for
certain special initial con�gurations, some very di�erent patterns would emerge, and for
some, it even depended on the width of the lattice, as is appearant from �gure 2.5(b)
and 2.5(c). It is hard to believe that all these patterns could have been made by the
same CA.

The HOCA in this example can also be used to extract or highlight patterns created
by any other CA, by setting fa = fb. Now the pattern created will not be in�uenced
at all by which rule is used, since they're both the same, but the rule pattern will show
a pattern based on the evolution of the neighbourhood con�guration of each cell. Some
examples are shown in �gure 2.6.

This HOCA has been a suprisingly rich source of di�erent behaviours, and might be
worth further study.
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Figure 2.5: Complex behaviour arising out of simple initial conditions. All the images are
of the same HOCA with fa = 241, fb = 94, ca = 1, cb = 2. Each image subtext speci�es
the pattern of initial states with which the initial con�guration was made, placed in the
�center� of a lattice that has state 1 (black) elsewhere. The number in paranthesis is the
width of the lattice. The rule is initially set to fa for all cells.
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(a) Creating new pattern (b) Highlighting features

(c) Highlighting features (d) Highlighting features

(e) Highlighting features (f) Showing hidden features

Figure 2.6: Some examples of the HOCA presented in section 2.4.1



54 CHAPTER 2. HIGHER ORDER CELLULAR AUTOMATA

2.4.2 The Game of Life

With a general HOCA framework implemented it is rather easy to change an existing
CA in some way. The following example shows how adding very simple 2-dynamics to
the Game of Life will change its long-term behaviour, while still keeping it deterministic
and behaving mostly as before on a short time scale.

When starting the standard Game of Life from a random initial con�guration, there
is at �rst very much activity, but soon much of it dies down and settles into blinkers or
still life. It is inevitable that some activity starting somewhere else on the lattice crashes
into these �xtures during its evolution, which of course causes it to behave di�erently
than it would have, had the unmoving life not been there. What if we could remove
the clutter if it was left alone for some time, so that the moving patterns could unfold
naturally? We can use 2-dynamics to do this.

Cellular Automaton 8 Binary outer totalistic 2-CA

Lattice: L = Z× Z or Zn × Zm
Alphabet: S = Z2

2-Neighbourhood: N = {NM} (2-dimensional Moore neighbourhood)
2-Rule: R = {f0, f1, . . . , fk, fk+1, . . . , fk+l}
LTFs: fi = g ◦ h : S9 −→ Z9 × Z2 −→ S for i < k

fi : S9 −→ {0} for k ≤ i ≤ k + l
2-Transition map: φ : S9 ×R −→ R

All the fi LTFs for i ∈ {0, 1, . . . , k−1} are the normal Game of Life LTF, completely
unchanged. The rest of the fi functions are, as is obvious from their codomain, the
null function. The 2-transition map depends on the states of the cells in the Moore
neighbourhood and the current rule. We reuse the function f from section 1.4.4 to de�ne
the 2-transition map:

φ(s0, s1, . . . , s8, fi) =


fi+1 if i < k and f(s0, s1, . . . , s8) = s0 and s0 = 1
fi+1 if k ≤ i < k + l
f0 otherwise.

So for a total of k−1 time steps, a cell that remains unchanged and alive will behave
as in the normal game of life. But then in the kth time step, such a longlived cell will
suddenly become dead, and remain dead no matter what happens around it for a further
l time steps12. After that, it will behave normally again. If the long-lived cell dies by
normal means before k time steps have passed, it will start from �scratch� again and use
f0 as its local transition function, so even if it immediately comes alive again and stays
that way, it will have another k− 1 time steps before it's killed o� by our null functions.

12This is to kill o� the very stable 2 × 2 squares that are so common � they will rebound if just one
cell is killed at a time, so we need to wait until more than 2 are dead to actually remove such patterns
from the lattice.
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It's quite straightforward to implement this HOCA as a standard CA by changing
the alphabet to something like S = Z2 × Zk+l and changing the LTF to also count the
number time steps a cell has been alive. However, any CA with only 2-dynamics and not
2-morphology is conjugate to an ordinary CA � this is just a case that can very easily be
seen as such. [2]
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Figure 2.7: A couple of simulations with the same initial con�guration for the traditional
Game of Life CA and our HOCA variant. Both �gures show a simulation on a Z200×Z200

lattice. The initial con�guration is constructed by setting the state of each cell to alive
with 30% probability, and otherwise dead.

To study what e�ect the 2-dynamics has on the CA, we run the CA and the HOCA
simultanously with the same initial con�guration, and for each time step, we count the
number of cells that change from alive to dead or from dead to alive, and plot this number
vs. time. The results of two such simulations are shown in the sub�gures of �gure 2.7.
The HOCA always seems to end up with just some small number of gliders, while the CA
stabilizes into the usual clutter of still life and blinkers � a glider would soon collide with
the clutter, so there are no gliders left when the CA stabilizes. We haven't got enough
information to draw any conclusions yet � we need more data.

So instead of plotting the number of changes vs. time, we make a note of the time
step at which the number of changes stabilized for both the CA and its equivalent HOCA.
Then we plot this data as in �gure 2.8.

Here we see a de�nite tendency, which is that the HOCA will stabilize sooner than
its equivalent CA. So the still life and blinkers are actually not preventing the moving
life from living, but helping it stay moving for a longer period than it would otherwise
have done.
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Figure 2.8: The time to stabilization for a Game of Life CA vs. its HOCA equivalent
with the same initial con�guration. The lattice and initial con�guration are as described
in �gure 2.7.
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2.4.3 Hodgepodge and activition-inhibition

The author has not managed to think of any ways these two CAs can meaningfully be
given 2-dynamics or 2-morphology without breaking away from the purpose the CA was
designed for. The hodgepodge machine was made to simulate a chemical reaction, and
it does that job well. There are no hierarchies involved in the reaction, and using the
same rule and neighbourhood for all cells is su�cient, more dynamics is not needed.

The activition-inhibition model was also made for a spesi�c purpose which it ful�lls
nicely; to reproduce patterns found on snail shells. These patterns are produced by rows
of glands around the base of the snail as they secrete the shell itself. The existing model
obviously does a good job of it, and there are no obvious hierarchical structures we may
add here either.

We therefore move on to the last example, which is much better suited for higher
order extensions.
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2.4.4 WATOR-World

Sharks are known for their excellent sense of smell, especially when it comes to blood,
and they use this to �nd places nearby where other sharks have found food. We will
add this behaviour to our WATOR-World CA by adding 2-morphology and altering the
algorithm from section 1.4.6.

Cellular Automaton 9 A predator-prey simulation HOCA

Lattices: L1 = Z× Z or Z3n × Z3m

L2 = Z× Z or Zn × Zm
Alphabets: S1 = Z3 × Zmax(bf ,bs)+1 × Zs+1 × Z2 × Z2

S2 = Z9900 ×NvN

2-Neighbourhoods: N1 = {NvN} (�rst neighbours)
N2 = {NvN} (�rst neighbours)

2-rules: R1 = {fw}
R2 = {fd}

Local Transition Functions: fw : S5
1 × S2 −→ S5

1 (asynchronous, algorithmic)
fd : S5

2 × SC1 −→ S2 (algorithmic)

We have appended ×Z2 to the alphabet of the �rst level to serve as the indicator of
blood having been spilt in a cell during that time step. We will denote the new state of
a 1-cell by (w, a, l,m, b), where the �rst four are as before, while b is 1 if a �sh was eaten
in this cell this turn, and 0 if not.

As the �rst level lattice is 3 times larger than the second level lattice, we will use the
functions 2.1 and 2.2 to map each 2-cell to the 1-cells it contains and vice versa. In these

formulas,
⌊

(x,y)
3

⌋
= (
⌊y

3

⌋
,
⌊
x
3

⌋
).

M(~z ∈ L2) = {~x ∈ L1 |
⌊
~x

3

⌋
= ~z} (2.1)

M∗(~x ∈ L1) =
⌊
~x

3

⌋
(2.2)

The second level state is a two-tuple that we'll denote by (c, d), where c ∈ Z9900 is
the concentration of blood in the water of that cell13, and d ∈ NvN is the direction of the
greatest increase of blood concentration. We'll let πc and πd be the projections of the
state set down to its factors, so that πc((c, d)) = c and πd((c, d)) = d. The projections
from section 1.4.6 we will alter so that they project from the new alphabet set, and we
will add a projection for the new b indicator, which will then be πb((w, a, l,m, b)) = b.

Now we are ready to list the modi�ed �rst level algorithm, which we've called fw.
Unaltered portions are grayed out.

1. Denote the current state of the cell by (w, a, l,m, b).
139900 is a coarse upper bound for the concentration of blood in the water that can be achieved with

the algorithm we'll use.
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2. If w = 0, do nothing more for this cell.

3. If w = 1 and m = 0, then:

a) If a ≤ bf , then increase a by one, aging the �sh.

b) Let D = {~n ∈ NvN | πw(a1(~z + ~n)) = 0}.
c) If D = ∅, the �sh has nowhere to move, so update the state of the cell with

the new age by setting a1(~z) = (1, a, 0, 1, 0), and do nothing more for this cell.

d) If D 6= ∅, then pick a ~nx ∈ D at random.

e) If a = bf then the �sh will breed, so we set a1(~z + ~nx) = (1, 0, 0, 1, 0) and
a1(~z) = (1, 0, 0, 1, 0).

f) If a < bf , the �sh simply moves, so we set a1(~z + ~nx) = (1, a, 0, 1, 0) and
a1(~z) = (0, 0, 0, 1, 0).

4. If w = 2 and m = 0, then:

a) If a ≤ bs, then increase a by one, aging the shark.

b) If l = s, then the shark dies from hunger, so set a1(~z) = (0, 0, 0, 0, 0), and do
nothing more for this cell.

c) If l < s, then increase l by one, making the shark hungrier.

d) Let D = {~n ∈ NvN | πw(a1(~z + ~n)) = 1}.
e) If D 6= ∅, then pick a ~nx ∈ D at random, and set l = 0 and b = 1, since the

shark will eat the �sh at ~z + ~nx.

f) If D = ∅, then let D = {~n ∈ NvN | πw(a1(~z+ ~n)) = 0} instead, and set b = 0,
since the shark did not �nd any food.

g) If D = ∅ even now, the shark has nowhere to move (very unlikely), update the
state of the cell with the new age and hunger by setting a1(~z) = (2, a, l, 1, b),
and do nothing more for this cell.

h) If l 6= 0, then:

i) Let ~np = πd(a2(M∗(~z))).
ii) If ~np ∈ D then let ~nx = ~np.

iii) If ~np /∈ D then let ~nx =
[

0 −1
1 0

]
~np.

14

iv) If ~nx /∈ D then let ~nx =
[

0 1
−1 0

]
~np.

v) If ~nx /∈ D then let ~nx =
[−1 0

0 −1

]
~np.

i) If a = bf then the shark will breed, so we set a1(~z + ~nx) = (2, 0, l, 1, b) and
a1(~z) = (2, 0, 0, 1, 0). The baby shark is born with a full stomach.

14This amounts to rotating the vector ~np in a counterclockwize direction. The next step then attempts
a clockwize rotation instead, and the last one is a 180◦ turn. Thus, when there is a de�nite gradient in
the 2-cell and no food around, the movement of the sharks is wholly deterministic.
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j) If a < bf , the shark simply moves, so set a1(~z + ~nx) = (2, a, l, 1, b) and
a1(~z) = (0, 0, 0, 0, 0).

To summarize the changes: we added a bloodspill indicator to a cell whenever a shark
eats a �sh, and we made the shark swim in the direction of the gradient aquired from
the 2-cell, if in could not �nd food. If unable to swim in that direction, it would try to
go around the obstackle.

The second level algorithm, which we've called fd is rather more straightforward.
We'll de�ne the aggregate k(~z) ∈ SC1 of the 1-cells in each 2-cell as k(~z) =

∑
~x∈M(~z) πb(a1(~x)).

Then we do the following for each ~z ∈ L2:

1. Let ~ng ∈ NvN be a vector such that πc(a2(~z+~ng)) > πc(a2(~z+~n)) for all ~n ∈ NvN

such that ~ng 6= ~n.

2. If no such vector exists, then let ~ng = (0, 0).

3. Let

c =
∑

~n∈NvN

(
πc(a2(~z + ~n))

1.1 · 5

)
+ 100k(~z).

4. The next state of the 2-cell at ~z will be (c, ~ng).

What happens is that any shark killing a �sh will cause a sharp increase of the blood
concentration in the 2-cell containing that cell. After only one time step that concentra-
tion will have di�used completely across �ve 2-cells, so if a 2-cell has a concentration of
100 in time step 1, all cells in its von Neumann neighbourhood will have a concentration
of 20 at time step two, barring other sharks eating nearby. That is not quite the truth
however, because we also divide by a decay factor of 1.1, so that the actual concentration
of all �ve cells at time step two is 18.

Because of the decay factor, the smell of an old kill will not linger for very long, and
the concentration of blood in the water is bounded. A typical run of this new algorithm
results in quite di�erent behaviour than the original algorithm, as is shown in �gure 2.9
and 2.10(a). What is more, the lattice size dependency that we noticed in section 1.4.6
is now very much diminished, as �gure 2.10(b) shows cleary when compared with �gure
1.32(a). The HOCA model reaches the 1000th time step all 10 times without the sharks
dying out, compared with 0 times for the plain CA.

Whether this is a step in the right direction can be debated however. The population
graphs of �gure 2.10(b) no longer displays the characteristic predator-prey curves that
the Lotka-Volterra model produces, which are known to occur in nature.
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(a) t=1 (b) t=2 (c) t=20

(d) t=50 (e) t=100 (f) t=400

Figure 2.9: The evoultion of the HOCA presented in this chapter. Compare with the sim-
ulation from section 1.4.6 in �gure 1.30, and notice that the introduction of 2-morphology
resulted in quite di�erent behaviour. Apart from the modi�ed algorithm and the rota-
tion of the lattice by 90◦, nothing is changed. The right part of each sub�gure shows the
relative concentration of blood in the 2-cells, where darker means more. Observe that the
regions where shark and �sh meet match up with the regions with high concentrations
of blood.
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(a) Population graph for simulation in �gure 2.9.
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Figure 2.10: Population graphs.
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Chapter 3

Conclusions

In this thesis we have given an introduction to the concepts of cellular automata and
higher order cellular automata. We have seen some examples of the widely di�erent and
sometimes unexpected patterns that cellular automata can produce.

Then we went on to introduce higher order cellular automata, and considered how,
while giving a lot of advantages, they also slow the implementation down to some degree
because the presumptions that various optimisation techniques rest upon are no longer
satis�ed.

We have observed how some cellular automata are in a sense complete, and giving
higher order structures or 2-dynamics to them seems unnatural. Other cellular autmoata
very naturally accept higher order structures, and can rather easily be extended to better
approximate the real world phenomena the model is based upon to give better and more
accurate answers.

63



64 CHAPTER 3. CONCLUSIONS



Bibliography

[1] Baas, N. A. [1994], Emergence, hierarchies and hyperstructures, in C. G. Langton,
ed., `Arti�cial Life III, Santa Fe Studies in the Sciences of Complexity', Vol. XVII,
Santa Fe Institute Studies in the Sciences of Complexity, Addison-Wesley, pp. 515�
537.

[2] Baas, N. A. and Helvik, T. [2005], `Higher order cellular automata', Advances in
Complex Systems 8(2-3), 169�192.

[3] Barker, D. M. L. [2008], A study of higher order cellular automata with examples,
Master's thesis, NTNU.

[4] Buckingham, D. J. [1996], `My experience with b-heptominos in oscillators'.
URL: http: // www. radicaleye. com/ lifepage/ patterns/ bhept/ bhept. html

[5] Delorme, M. and Mazoyer, J. [1999], Cellular Automata, A Parallel Model, Kluwer
Academic Publishers.

[6] DeSouza, K. [2006]. Presentation.
URL: http://doursat.free.fr/docs/CS790R_S06/CS790R_S06_6_Pattern_Formation2.pdf

[7] Drepper, U. [2007], `What every programmer should know about memory'.
URL: http: // people. redhat. com/ drepper/ cpumemory. pdf

[8] Gosper, W. [1984], `Exploiting regularities in large cellular spaces', Physica D: Non-
linear Phenomena 10(1-2), 75�80.

[9] Helvik, T. [2001], Emergence and dynamical structures of higher order, Master's
thesis, NTNU.

[10] Kusch, I. and Markus, M. [1996], `Mollusc shell pigmentation: Cellular automa-
ton simulations and evidence for undecidability', Journal of Theoretical Biology
178, 333�340.

[11] McIntosh, H. V. [1987], Linear Cellular Automata.
URL: http: // delta. cs. cinvestav. mx/ ~mcintosh/ comun/ lcau/ lcau. pdf

65

http://www.radicaleye.com/lifepage/patterns/bhept/bhept.html
http://people.redhat.com/drepper/cpumemory.pdf
http://delta.cs.cinvestav.mx/~mcintosh/comun/lcau/lcau.pdf


66 BIBLIOGRAPHY

[12] Mollison, D. [1991], `Dependence of epidemic and population velocities on basic
parameters', Math Biosciences 107, 255�287.
URL: http: // sjsu. rudyrucker. com/ ~rudy. rucker/ wolfram_ review_ AMM_

11_ 2003. pdf

[13] Omniperiodic [n.d.].
URL: http: // conwaylife. com/ wiki/ index. php? title= Omniperiodic

[14] Rokicki, T. G. [2006], `An algorithm for compressing space and time'.
URL: http: // www. drdobbs. com/ high-performance-computing/ 184406478

[15] Rucker, R. [2003], `Review of a new kind of science', American Mathematical
Monthly pp. 851�861.
URL: http: // sjsu. rudyrucker. com/ ~rudy. rucker/ wolfram_ review_ AMM_

11_ 2003. pdf

[16] Schi�, J. L. [2008], Cellular Automata, Wiley Interscience.

[17] Semeniuk, I. [2009], `Seven questions that keep physicists up at night'.
URL: http: // www. newscientist. com/ article/

dn18041-seven-questions-that-keep-physicists-up-at-night. html

[18] von Neumann, J. [1966], `Theory of self-reproducing automata'.

[19] Wolfram, S. [2002], A New Kind of Science, Wolfram Media, Inc.

http://sjsu.rudyrucker.com/~rudy.rucker/wolfram_review_AMM_11_2003.pdf
http://sjsu.rudyrucker.com/~rudy.rucker/wolfram_review_AMM_11_2003.pdf
http://conwaylife.com/wiki/index.php?title=Omniperiodic
http://www.drdobbs.com/high-performance-computing/184406478
http://sjsu.rudyrucker.com/~rudy.rucker/wolfram_review_AMM_11_2003.pdf
http://sjsu.rudyrucker.com/~rudy.rucker/wolfram_review_AMM_11_2003.pdf
http://www.newscientist.com/article/dn18041-seven-questions-that-keep-physicists-up-at-night.html
http://www.newscientist.com/article/dn18041-seven-questions-that-keep-physicists-up-at-night.html


Appendix A

Application documentation

A.1 General documentation

This thesis includes a digital appendix with source code for the applications used to
produce the results presented. Some of the applications are written only using the python
programming language. Some are written in python but use python extension modules
written in C for the heavy processing. Other applications are written using C++.

All applications depend only on free and open libraries. They were compiled and
executed on the GNU/Linux Ubuntu operating system, and are only tested on such a
system. They are not tested on any Windows system, and it will probably be much easier
to just temporarily install Linux than to try to make the programs work on Windows.
How to set up a Linux system and install the prerequisite packages is beyond the scope of
this documentation. Resources for this are readily available on the internet. The Ubuntu
distribution has a Windows installer that can be downloaded from http://www.ubuntu.

com/desktop/get-ubuntu/windows-installer.

A.2 Prerequisites

These are the names of the Ubuntu packages requried to compile and/or use the appli-
cations, as far as the author is aware:

python python-numpy python-wxgtk2.8 python-imaging

python-setuptools python-dev python-reportlab g++

qt4-designer qt4-dev-tools libboost1.38-dev
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A.3 Vector graphics cellular automata

Folder: pdf-ca

The python-reportlab module is used to generate PDF �gures of cellular automata.
PDF grapics (or vector graphics) are better suited for displaying small lattices than
pixel-based image formats like jpeg. In this thesis these �gures are used for illustration
purposes; only very basic cellular automata were illustrated using this program. Each
�gure is generated by a small python script that uses the ca.py library to generate the
CAs and the pdfdraw.py library to draw them.

• Figure 1.1 on page 5 is generated by rule30.py.

• Figure 1.10 on page 18 is generated by rule30-equivalents.py.

• Figures 1.12, 1.13 and 1.15 is generated by classes.py.

• The right sub�gure of �gure 1.14 is generated by rule-24-shifted.py.

• Figure 1.16 is generated by rule110.py.

• The overview of all 88 radius 1 binary 1-CAs in appendix B is generated by
similar-1d-rules.py.

A.4 CA Explorer

Folder: ca-explorer

The CA Explorer program has a user interface written in the python programming
language, and uses a python extension module written in C as a backend. This backend
does the heavy calculations neccessary, while python deals with everything else. The
backend needs to be compiled before the application will work, and the script called
compile.sh in the cca subfolder will do so automatically when run. It needs to be
executed once before running the application itself.

The program presents an interactive view of three di�erent cellular automata: the
radius 1 binary 1-CA, any totalistic 1-CAs, and the Kusch-Markus CA from section 1.4.3.
It has the following controls:

• Scrollwheel scrolls up and down the pattern.

• Shift-scrollwheel scrolls left and right.

• Ctrl-scrollwheel zooms in and out.

In addition, the parameters for the CA can be adjusted either by manually typing in
an alternative number and pressing enter, or by hovering the mouse over the parameter
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�eld while using the scrollwheel. Holding down the shift button while using the scroll-
wheel like this will cause the numbers to change in smaller increments than they would
otherwise do, while holding down control will cause them to change in larger increments.

The program will pick a rule or code at random for you if you click in the parameter
box for the rule or code and hit the R button. To go back to a previously viewed rule or
code, hit Ctrl-Z.

Finally, any portion of the CA can be saved to a PNG image using the File−→Save
menu choice, where you will �rst be asked to name the �le to save. Then you have to
type in which spesi�c part you want saved, by specifying the x and y coordinates of
the upper left corner of a box with width w and height h. The desired coordinates can
be found by looking at the coordinates in the lower right corner of the program before
saving, which show the coordinates of the mouse pointer at any time.

The �gures below were generated with this program:

• Figure 1.19 on page 24.

• Figure 1.20 on page 25.

• Figure 1.21 on page 26.

• The sub�gures in �gure 1.22 on page 29.

A.5 Game of Life

Figure 1.24 in section 1.4.4 was generated with the Golly program, which is freely
available from http://golly.sourceforge.net, using the RLE pattern for the cater-
pillar spaceship, available from http://www.yucs.org/~gnivasch/life/article_cat/

caterpillar.zip.

A.6 Hodgepodge

Folder: hodgepodge

This C++ program was programmed using the Qt library. The author has not made
it an interactive program like CA Explorer, but rebuilt it with various code changes
to serve di�erent purposes. The publicly available Qt �mandelbrot� demo served as a
starting point for this program, so the copyright notices and license of the program �les
have been kept unchanged as required by the GNU GPL license, which the demo was
licensed under.

Using the Qt Creator application it is relatively easy to change the behaviour of
the program. Simply open the project �le hodgepodge.pro, doubleclick on the �le
renderthread.cpp, and alter the commented constants de�ned in the upper part of
that �le. Then click the green �play� button to the lower left, and the program will
compile and run, provided your changes did not introduce any errors.

http://golly.sourceforge.net
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• The state patterns in �gure 1.26 on page 34 was generated by this program and
composed into one picture with the GNU Image Manipulation Program (GIMP).

• If run without modi�cation, this program will generate the sub�gures in �gure 1.27
on page 35. The initial con�gurations will be slightly di�erent each time, as they
are randomly generated.

A.7 WATOR-World

Folder: wator

This program is written in pure python. It is rather slow, but very �exible. The
program generates images at speci�ed intervals, and stores the population data to a
.dat �le each time step. The program also creates a custom .p �le that can be executed
by the gnuplot program to generate the population graphs.

There are several small programs that each execute one or more speci�c simulations.
All use the WatorInterface.py library to display the CAs while the simulation(s) are
running. The CAs are generated by the WatorHOCA.py library.

• The sub�gures of �gure 1.30 on page 40 and the data for the graph in �gure 1.31
is generated by wator.py.

• The data for the graphs in �gure 1.32 on page 42 are generated by lattice-compare.py.

• The sub�gures of �gure Figures 2.9 on page 61 and the data for the graph in �gure
2.10(a) is generated by wator-hoca.py.

• The data for the graph in �gure 2.10(b) is generated by hoca-lattice-compare.py.

A.8 HOCA

Folder: hoca

This program is a modi�ed version of the WATOR-World program, and works in the
same way, except that all the small python scripts below use the interface.py library
to display the CAs and the hoca.py library to generate them.

• Figure 2.2 on page 49 is generated by hoca-255-28.py.

• The sub�gures of �gure 2.3 on page 50 is generated by hoca-example2.py.

• Figure 2.4 on page 51 is generated by hoca-114-148.py.

• The sub�gures of �gure 2.5 on page 52 is generated by hoca-241-94.py.

• Figure 2.6 on page 53 is generated by hoca-example3.py.



Appendix B

Radius 1 binary 1-CA

This appendix lists the 256 wolfram rules grouped as explained in section 1.4.1. They are
sorted according to their wolfram number, and any rule producing an isomorphic pattern
is named in the label, with a letter in parenthesis describing what transformation to
apply to the displayed rule. There are three transformations: m, i and M, which mean
mirror, inverse and mirror-inverse, respectively.
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Rule 0 (m)
255 (iM)

Rule 1 (m)
127 (iM)

Rule 2
16 (m), 191 (i), 247 (M)

Rule 3
17 (m), 63 (i), 119 (M)

Rule 4 (m)
223 (iM)

Rule 5 (m)
95 (iM)

Rule 6
20 (m), 159 (i), 215 (M)

Rule 7
21 (m), 31 (i), 87 (M)

Rule 8
64 (m), 239 (i), 253 (M)

Rule 9
65 (m), 111 (i), 125 (M)

Rule 10
80 (m), 175 (i), 245 (M)

Rule 11
47 (i), 81 (m), 117 (M)

Rule 12
68 (m), 207 (i), 221 (M)

Rule 13
69 (m), 79 (i), 93 (M)

Rule 14
84 (m), 143 (i), 213 (M)

Rule 15 (i)
85 (mM)

Rule 18 (m)
183 (iM)

Rule 19 (m)
55 (iM)

Rule 22 (m)
151 (iM)

Rule 23 (miM) Rule 24
66 (m), 189 (M), 231 (i)

Rule 25
61 (M), 67 (m), 103 (i)

Rule 26
82 (m), 167 (i), 181 (M)

Rule 27
39 (i), 53 (M), 83 (m)

Rule 28
70 (m), 157 (M), 199 (i)

Rule 29 (M)
71 (mi)

Rule 30
86 (m), 135 (i), 149 (M)

Rule 32 (m)
251 (iM)

Rule 33 (m)
123 (iM)

Rule 34
48 (m), 187 (i), 243 (M)

Figure B.1: The 1D cellular automatas, page 1
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Rule 35
49 (m), 59 (i), 115 (M)

Rule 36 (m)
219 (iM)

Rule 37 (m)
91 (iM)

Rule 38
52 (m), 155 (i), 211 (M)

Rule 40
96 (m), 235 (i), 249 (M)

Rule 41
97 (m), 107 (i), 121 (M)

Rule 42
112 (m), 171 (i), 241 (M)

Rule 43 (i)
113 (mM)

Rule 44
100 (m), 203 (i), 217 (M)

Rule 45
75 (i), 89 (M), 101 (m)

Rule 46
116 (m), 139 (i), 209 (M)

Rule 50 (m)
179 (iM)

Rule 51 (miM) Rule 54 (m)
147 (iM)

Rule 56
98 (m), 185 (M), 227 (i)

Rule 57 (M)
99 (mi)

Rule 58
114 (m), 163 (i), 177 (M)

Rule 60
102 (m), 153 (M), 195 (i)

Rule 62
118 (m), 131 (i), 145 (M)

Rule 72 (m)
237 (iM)

Rule 73 (m)
109 (iM)

Rule 74
88 (m), 173 (i), 229 (M)

Rule 76 (m)
205 (iM)

Rule 77 (miM)

Rule 78
92 (m), 141 (i), 197 (M)

Rule 90 (m)
165 (iM)

Rule 94 (m)
133 (iM)

Rule 104 (m)
233 (iM)

Rule 105 (miM) Rule 106
120 (m), 169 (i), 225 (M)

Figure B.2: The 1D cellular automatas, page 2
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Rule 108 (m)
201 (iM)

Rule 110
124 (m), 137 (i), 193 (M)

Rule 122 (m)
161 (iM)

Rule 126 (m)
129 (iM)

Rule 128 (m)
254 (iM)

Rule 130
144 (m), 190 (i), 246 (M)

Rule 132 (m)
222 (iM)

Rule 134
148 (m), 158 (i), 214 (M)

Rule 136
192 (m), 238 (i), 252 (M)

Rule 138
174 (i), 208 (m), 244 (M)

Rule 140
196 (m), 206 (i), 220 (M)

Rule 142 (i)
212 (mM)

Rule 146 (m)
182 (iM)

Rule 150 (miM) Rule 152
188 (M), 194 (m), 230 (i)

Rule 154
166 (i), 180 (M), 210 (m)

Rule 156 (M)
198 (mi)

Rule 160 (m)
250 (iM)

Rule 162
176 (m), 186 (i), 242 (M)

Rule 164 (m)
218 (iM)

Rule 168
224 (m), 234 (i), 248 (M)

Rule 170 (i)
240 (mM)

Rule 172
202 (i), 216 (M), 228 (m)

Rule 178 (miM)

Rule 184 (M)
226 (mi)

Rule 200 (m)
236 (iM)

Rule 204 (miM)

Rule 232 (miM)

Figure B.3: The 1D cellular automatas, page 3
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infected, 33
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3-state, 16
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class II, 19
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class IV, 21
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famous, 30
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outer totalistic, 17
programming, 11
recreational, 11
repeating, 19
reversible, 13
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survey of, 11
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cellular automaton, 1
higher order, 1

Codd, Edgar Frank, 10
code, 17
codes

code 1599, 25
computer algorithm, 12
con�guration, 8, 13

�nite, 13
initial, 10
random, 34

Conway, John, 10
Cook, Matthew, 21
cyclic space, 9

d-CA, 12
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Dewdney, Alexander Keewatin, 37
di�erential equations, 37
d∞, 14

evolution, 13

f , 12
�sh, 37
follows, 13
forest �re, 9
formula, 12
function, 8

G, 13
g, 17
Game of Life, 9, 10, 30
Garden-of-Eden con�gurations, 13
Gardner, Martin, 10
Gerhardt, Martin, 33
glider, 30, 31
global function, 13

bijective, 13
global state, 8, 13, 19

homogenous, 19
initial, 13

gnuplot, 68
Gosper, William, 48

h, 17
hashing, 48
Helvik, Torbjørn, 43
higher order cellular automaton, 1
HOCA, 1
hodgepodge machine, 9

IBM, 37
inhibitor, 27
instructions, 6

Kusch, Ingo, 27

L, 12
lattice, 7, 12

�nite, 19
in�nite, 19

Life, see Game of Life
limit set, 17
local transition function, see LTF
Lotka-Volterra, 37, 60
LTF, 12

canonical lookup table, 15
explicit form, 15, 19

manhattan norm, 1, 14
map, 1
Markus, Mario, 27
Mathematica, 11
maximum norm, 1, 14
memoization, 48
Moore neighbourhood, 16
Moore, Edward F., 13
morphological level, 44
Myhill, John, 13

N , 12
NM , 14
Nr, 14
NvN , 14
neighbourhood, 8, 12, 14

con�guration, 8
�rst neighbours neighbourhood, 14
Moore neighbourhood, 14
radius > 1, 23
radius neighbourhood, 8, 14
state, 8, 15, 16
sum of states in, 17
von Neumann neighbourhood, 14

neighbourhood con�guration, 44
neighbourhood state, 8
notation, 1

organs, 45
oscillators, 31

P, 1
Palladium Oxidation, 33
patterns

stationary, 21
predator, 37
prey, 37
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quadtree, 48
quiescent state, 13
quiescent states, 12

rule, 8
rules

inverted, 18
mirror, 18
mirror-inverse, 18
rule 28, 49
rule 0, 19
rule 110, 21
rule 12, 20
rule 135, 18
rule 149, 18
rule 150, 20
rule 160, 19
rule 24, 20
rule 255, 49
rule 30, 6, 18, 20
rule 32, 19
rule 4, 20
rule 40, 19
rule 8, 19
rule 86, 18
rule 90, 20
symmetric, 18
total number of, 16

S, 12
Schuster, Heike, 33
Scienti�c American, 10, 37
seashell patterns, 27
second level alphabet, 45
self-replicating automatic factories, 10
set, 1

of all integers, 1
of non-negative numbers, 1

sets of sets, 1
sharks, 37
simple programs, 11
spaceship, 30, 31
speed of light, 31
state, 8, 10, 12

states
more than 2, 23

still life, 31
support, 13

tra�c CA, 9

Ulam, Stanisªaw, 10
universal computation, 21

vector, 1
von Neumann, John, 10

Wolfram|Alpha, 11
Wolfram, Stephen, 11, 15, 17, 19

bxe, 1
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