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ABSTRACT 7 

In this paper, an Eulerian-Lagrangian approach, in which the gas flow is solved by the volume-averaged 8 

Navier-Stokes equation and the motion of individual particles is obtained by directly solving Newton's second 9 

law of motion, is developed within the OpenFOAM framework to investigate the effects of three well-known 10 

inter-phase drag force correlations (Gidaspow 1994, Di Felice 1994 and EHKL 2006) on the fluidization 11 

behavior in a bubbling fluidized bed reactor. The inter-particle and particle-wall collisions are modeled by a 12 

soft-sphere model which expresses the contact forces with the use of a spring, dashpot and friction slider. The 13 

simulation results are analyzed in terms of particle flow pattern, bed expansion, bed pressure drop and 14 

fluctuation frequency. Qualitatively, formation of bubbles and slugs and the process of particle mixing are 15 

observed to occur for all the drag models, although the Gidaspow model is found to be most energetic and the 16 

Di Felice and EHKL models yield minor difference. The flow behavior also shows a strong dependency on 17 

the restitution coefficient e and the friction coefficient μ and no bubbling and slugging occur at all for the 18 

ideal-collision case (e = 1, μ= 0). Quantitatively, the mean pressure drops predicted by the three models agree 19 

quite well with each other and the amplitudes of the fluctuations measured by the standard deviation are also 20 

comparable. However, a significant difference in fluctuation frequency is found and the Gidaspow model 21 
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predicts a lowest fluctuation frequency whereas the Di Felice model gets a highest one. Finally, effects of the 1 

spring stiffness and the discontinuity in the Gidaspow model are studied. The results show that both mean bed 2 

pressure drop and fluctuation frequency slightly decrease as the spring stiffness increases for all the three drag 3 

models and no significant differences are observed in the mean bed pressure drop and fluctuation frequency 4 

between the Gidaspow model and the linear continuous model. 5 

Keywords: Particle; Multiphase flow; Drag correlations; Fluidization; Simulation; Fluctuation frequency 6 

1. Introduction 7 

Gas-solid fluidized bed reactors are widely used in many industrial operations, such as gasification, 8 

combustion, catalytic cracking and various other chemical and metallurgical processes. Some of the 9 

compelling advantageous features of fluidized bed reactors are good mixing properties, high particle heating 10 

rates, and high reaction rates between gas and solids due to large gas-particle contact area. A good 11 

understanding of the hydrodynamic behavior of this system is important for the design and scale up of the new 12 

efficient reactors. Thus, in the last two decades significant research efforts have been devoted to the 13 

development of numerical models to study the complex hydrodynamics of gas-solid flows in fluidized bed 14 

reactors (see, among many others, Esmaili and Mahinpey, 2011; Hoomans et al., 2000; Kafui et al., 2002; Loha 15 

et al., 2012; Tsuji et al., 1993).  16 

Generally, all the modeling methods developed can be broadly categorized into Eulerian-Eulerian and 17 

Eulerian-Lagrangian approaches. For Eulerian-Eulerian approach, both particle and fluid phases are treated as 18 

interpenetrating continua with appropriate interaction terms representing the coupling between the phases. It 19 

can predict the macroscopic characteristics of a system with relatively low computational cost and has actually 20 

dominated the modeling of fluidization process for many years (Gerber et al. 2010; Taghipour et al., 2005). 21 
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However, in addition to the difficulty of providing closure models for mass exchange or inter-phase interaction 1 

within its continuum framework, Eulerian-Eulerian approach is unable to model the flow characteristics of 2 

individual particles. On the other hand, for Eulerian-Lagrangian approach which is sometimes called Discrete 3 

Element Method (DEM) (Cundall and Strack, 1979), the gas is treated as continuous and particle as discrete 4 

phase. The trajectories of individual particles are tracked in space and time by directly integrating the equations 5 

of motion while accounting for interactions with other particles, walls and the continuous phase. For dense 6 

particle system with multiple contacts between particles the soft-sphere collision model is usually applied. 7 

Eulerian-Lagrangian/DEM approach can offer detailed microscopic information, such as trajectories of 8 

individual particles and transient forces acting on each particle, which is extremely difficult, even impossible 9 

to obtain by macroscopic models or experiments (Jung and Gidaspow, 2005). The use of DEM for fluidized 10 

bed modeling was pioneered by Tsuji et al. (1993) and since then, thanks to the dramatic increase in 11 

computational capacity, DEM has come more and more into the focus of engineers and researchers (Lin et al., 12 

2003; Papadikis et al., 2009; Su et al., 2011; Zhou et al., 2008).  13 

For both Eulerian-Eulerian and Eulerian-Lagrangian approaches, a key consideration is the coupling 14 

between the phases. From a physical point of view, the coupling currently comprises the effect of (a) volume 15 

displacement by the particles, and (b) fluid-solid interaction forces exerted on the particles. These non-linear 16 

fluid-solid interaction forces or called generalized drag forces are believed to play a very important role in the 17 

formation of heterogeneous flow structures in dense gas-fluidized beds (Li and Kuipers, 2003). There are 18 

various drag correlations available in the literature. The Gidaspow correlation (Gidaspow, 1994) is a 19 

combination of the Ergun equation (Ergun, 1952) for dense granular regime (porosity εg<0.8) and the Wen and 20 

Yu equation (Wen and Yu, 1966) for dilute granular regime (εg>=0.8). This model is often used in the literature, 21 

but the transition between the two regimes is discontinuous, which may lead to convergence problems (Kloss 22 
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et al., 2009). Di Felice (1994), using an empirical fit to a wide range of fixed and suspended-particle systems 1 

covering the full practical range of flow regimes and porosities, proposed a continuous single-function 2 

correlation for the drag force. More recently, Hill et al. (2001a, b) proposed a Hill-Koch-Ladd (HKL) 3 

correlation applicable to different ranges of Reynolds numbers and solids volume fractions based on data from 4 

Lattice-Boltzmann simulations. Later Benyahia et al. (2006) blended HKL correlation with known limiting 5 

forms of the gas-solids drag function and constructed a extended HKL drag correlation (EHKL) which is 6 

applicable to the full range of solids volume fractions and Reynolds numbers. Although some works have 7 

investigated the effects of different drag models within the Eulerian-Eulerian framework under very different 8 

conditions from ours (Du et al, 2006; Esmaili and Mahinpey, 2011; Loha et al., 2012), few are reported for 9 

Eulerian-Lagrangian approach (Li and Kuipers, 2003). In our earlier paper (Ku et al, in press), we reported 10 

some preliminary results of the qualitative influence of various drag models on the fluidization behavior. In 11 

this paper, we detailedly present an Eulerian-Lagrangian approach with a soft-sphere collision model for the 12 

simulation of a bubbling fluidized bed. The three drag correlations (Gidaspow 1994, Di Felice 1994 and EHKL 13 

2006) as described above are implemented in our model. The simulation results are analyzed both qualitatively 14 

and quantitatively in terms of particle flow pattern, bed pressure drop, and fluctuation frequency with a focus 15 

on the detailed comparison between the different drag models.  16 

The rest of this paper is organized as follows. In section 2, the equations of motion describing evolution 17 

of the spherical particles and gas phase are firstly formulated. Then the three different drag models and the 18 

simulation setup are tabulated. In section 3, the numerical results of motion of particles in a bubbling fluidized 19 

bed are presented. Here, we first verify our approach by predicting the minimum fluidization velocity and 20 

compare our results with data available in the literature. Then we investigate the fluidization behavior and the 21 

pressure drop across the bed where the differences between the drag models are highlighted. Finally effects of 22 
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the restitution coefficient e, the friction coefficient μ, the spring stiffness kn and the effect of the discontinuity 1 

in the Gidaspow model are also documented. A short summary and conclusions are given in section 4. 2 

2. Mathematical modeling 3 

2.1. Discrete particle phase 4 

A particle in a gas-solid system undergoes translational and rotational motions as described by Newton’s 5 

second law of motion. The equation governing the translational motion of particle i, which reads in a quiescent 6 

frame and in dimensional form, is 7 

g, c,
i

i i i i

d
m m

dt
= + +

v
f f g                                    (1) 8 

where mi and vi are, respectively, the mass and velocity of particle i, and g is the gravitational acceleration. fg,i 9 

is the total fluid-particle drag force on the particle i including viscous drag force and pressure gradient force 10 

in the current case (Hill et al. 2001a,b; Kafui et al., 2002; van der Hoef et al., 2005), and fc,i is the total force 11 

on the particle i due to inter-particle or particle-wall contacts. Note that in the above force balance the added 12 

mass effects, Saffman lift force and Basset history force have been neglected, because they play a minor role 13 

for the type of flows considered here (Hoomans et al., 1996), as well as the buoyancy force which is allowed 14 

because of the negligible density of the gas phase with respect to the density of the particles.  15 

The equation governing the rotational motion of particle i is 16 

                                    i
i i

d
I

dt
=

ω
T                                       (2) 17 

where ωi is the angular velocity, Ti is the torque arising from the tangential components of the contact forces, 18 

and Ii is the moment of inertia, given as 22

5
i i iI m R=  for spherical particles with radius Ri. 19 
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 1 

Fig. 1. The spring-slider-dashpot model. 2 

Particle-to-particle collision models can be generally classified as hard-sphere or soft-sphere models. In 3 

the hard-sphere model, the particles are assumed to be rigid spheres, and collisions among particles are treated 4 

as binary, instantaneous and impulsive events. The collisions are processed one by one according to the order 5 

in which the events occur. One advantage of the hard-sphere model is that there is an analytical solution 6 

available for the collision model. Given the velocities of the particles prior to collision together with the 7 

particle properties the post-collision velocities can be calculated exactly. The hard-sphere model is more 8 

suitable for simulations of dilute or rapid granular flows since it considers two-body collisions only. However, 9 

at high particle number densities, the hard sphere model may break down with long inter-particle contact 10 

durations. For further details on the implementation of the hard-sphere model the interested reader is referred 11 

to the works of Hoomans et al. (1996, 1999, 2000) and Deen et al. (2007).  12 

Most of the commonly observed gas-solid flows are dense particle systems and exhibit multiple-particle 13 

and long-duration contacts. The soft sphere model, which is proposed by Cundall and Strack (1979), is the 14 

most applicable in such regimes and also adopted in this paper. In the soft-sphere model, the inter-particle 15 

contact forces, namely, the normal, sliding and damping forces, are computed using equivalent simple 16 

mechanical elements, such as spring, slider and dashpot (as shown in Fig. 1). The particles are allowed to 17 

overlap slightly. The normal force tending to repulse the particles can then be deduced from this spatial overlap 18 

and the normal relative velocity at the contact point. The spring stiffness kn can be calculated by Hertzian 19 
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contact theory when the physical properties such as Young’s modulus and Poisson ratio are known. Particle-1 

wall interactions are treated in the same way as particle-particle interactions except that the walls are assumed 2 

to be massive. Concerning the wall properties such as restitution and friction coefficients, the same values as 3 

the particle could apply. The net contact force fc,i and torque Ti acting on each particle result from a vector 4 

summation of the forces and torques at each particle-particle or particle-wall contact. A characteristic feature 5 

of the soft particle models is that they are capable of handling multiple particle-particle contacts which is of 6 

importance when modeling dense particle systems. Moreover, non-contact force can also be incorporated into 7 

soft-sphere model easily. Detailed implementation issues of the soft-sphere model are available in the literature 8 

(e.g. Tsuji et al., 1992), which are not stated here for the sake of shortness.  9 

2.2. Continuous gas phase 10 

The continuum gas phase hydrodynamics are calculated from the continuity and volume-averaged 11 

Navier-Stokes equations which are coupled with those of the particle phase through the porosity and the inter-12 

phase momentum exchange (Kafui et al., 2002). 13 

The continuity equation is as follows: 14 

                               g g g g g( ) ( ) 0
t


   


+  =u                             (3) 15 

and the momentum equation is given by 16 

              g g g g g g g g g g g p( ) ( ) ( )p
t


      


+  = − + + −u u u τ g S               (4) 17 

Here, εg is the porosity, and g , ug, g and p are the density, velocity, viscous stress tensor and pressure of the 18 

gas phase, respectively. Sp is a source term that describes the momentum exchange of the gas with the solid 19 

particles and will be discussed in more detail below. g is assumed to obey the general form for a Newtonian 20 

fluid (Bird et al., 1960), 21 
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T

g g g g g g

2
( )( ) (( ) ( ) )

3
g   = −   +  + τ u I u u                      (5) 1 

where the bulk viscosity 
g  can be set to zero for gas, 

g  is the dynamic gas viscosity, and I is the identity 2 

tensor. The porosity εg, which denotes the fraction of a cell volume occupied by gas, is determined by 3 

1
g 1

ck

ii

cell

V

V
 == −




                                  (6) 4 

where Vi is the volume of particle i and kc is the number of particles in the computational cell with volume 5 

ΔVcell. 6 

As the fluid drag force acting on each particle fg,i is known (see Section 2.1), according to Newton's third 7 

law of motion, the volumetric fluid-particle interaction force, Sp, in a computational cell can be obtained by 8 

summing up the fluid forces fg,i acting on all the particles in a fluid cell and dividing by the volume of the fluid 9 

cell ΔVcell, thus 10 

p g,

cellcell

1
i

iV  

=


S f                                   (7) 11 

2.3. Drag models 12 

The fluid drag force acting on particle i, fg,i, can be conventionally expressed as follows, 13 

g, g

p

( )i
i i

V 


= −f u v                                  (8) 14 

where ug is the instantaneous gas velocity at the particle position, 
p g1 = −  , and β is the inter-phase 15 

momentum transfer coefficient. Three correlations for calculating β are summarized in Table 1. 16 

Table 1 17 

Three drag correlations proposed for particulate flows 18 
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1. Gidaspow model (1994) 
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2. Di Felice model (1994) 
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3. EHKL model (2006) 
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As shown in Table 1, the Gidaspow model combines the Ergun (1952) and Wen and Yu (1966) 1 

correlations for the dilute and dense granular regime where a porosity εg of 0.8 is adopted as the boundary 2 

between these two regimes. This model is very common, but the step change inherent in the calculated drag 3 

forces at a porosity of 0.8 may be not good from a numerical point of view (Kafui et al., 2002). Di Felice 4 

(1994), using an empirical fit to a wide range of fixed and suspended-particle systems covering the full 5 

practical range of particle Reynolds number Rep and εg, proposed a continuous single-function correlation for 6 

the drag force on a particle in a multi-particle system (Di Felice Model). Hill et al. (2001a, b) proposed a set 7 

of drag correlations applicable to different ranges of Rep and solids volume fractions εp, based on data from 8 

Lattice-Boltzmann simulations. These correlations do not cover the full range of Rep and εp encountered in 9 

fluidized bed simulations. Later Benyahia et al. (2006) blended the Hill-Koch-Ladd (HKL) drag correlations 10 

with known limiting forms of the gas-solids drag function such that the blended function (EHKL model) is 11 

continuous with respect to Rep and εp. Note that, in EHKL model, Rep is based on particle radius, rather than 12 

particle diameter. 13 

2.4. Computational methodology 14 

Since the governing equations for the gas phase and the particle phase are different, different solution 15 

schemes have to be used. For discrete particle simulations, a first-order Euler time integration scheme is used 16 

to solve the translational and rotational motions of particles. For continuous gas phase, the governing equations 17 

are discretized in finite volume form and solved with a standard pressure based PISO (pressure implicit 18 

splitting of operators) solver for variable density flow. The coupling between the discrete particles and the gas 19 
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phase is numerically achieved as follows. At each time step, the discrete particle equations of motion are first 1 

solved yielding the positions ri and velocities vi of individual particles. This enables the porosity εg and 2 

volumetric fluid-particle interaction force Sp of each computational cell to be calculated. Using the known 3 

values of εg and Sp at the current time, the gas-phase hydrodynamic equations are next solved to give the gas 4 

velocity and pressure fields from which the fluid drag forces fg,i and torque Ti acting on individual particles 5 

are calculated. Using the fg,i and Ti will produce information about the motion of individual particles for the 6 

next time step. All the above schemes have been developed and implemented into an open source C++ toolbox 7 

OpenFOAM (OpenCFD Ltd, 2011). Within the OpenFOAM framework, one can customize solvers or extend 8 

the numerical libraries to their own needs relatively easily which is a major advantage over commercial 9 

software. The codes are used in a variety of scientific applications, and there are an increasing number of 10 

researchers who are using OpenFOAM as their developing platform in their work on topics related to the 11 

present work (Oevermann et al., 2009; Su et al., 2011). 12 

2.5. Simulation setup 13 

The simulated fluidized bed geometry as shown schematically in Fig. 2 is similar to those of Tsuji et al. 14 

(1993) and Xu and Yu (1997). It consists of a rectangular container of dimension 0.15m (width)×0.9m 15 

(height)×0.004m (thickness) with a jet orifice of 0.01 m in width at the centre of the bottom wall. The left, 16 

right, bottom walls, the bottom orifice and the top exit consist of the whole calculation domain boundaries. 17 

The fluidization solid particles are a group of 2400 spherical particles with a diameter of 4 mm which are also 18 

taken from Tsuji et al. (1993) and Xu and Yu (1997). Note that the thickness of the bed is set equal to the 19 

particle diameter; that is, the bed contains one layer of particles. Air at a temperature of 293 K and standard 20 

atmospheric pressure is used as the fluidizing agent and introduced from the bottom orifice with a uniform 21 

velocity. This particle-fluid combination corresponds to a Geldart group D type (Geldart, 1973). Table 2 shows 22 

https://www.sciencedirect.com/science/article/pii/S0009250913002200


 
Author’s Post-print version. Article published in Chemical Engineering Science 

DOI: doi.org/10.1016/j.ces.2013.03.038 

Published version: https://www.sciencedirect.com/science/article/pii/S0009250913002200  

 12 

the parameter settings used in the simulation and the boundary conditions for the gas phase are listed in Table 1 

3. Unless stated otherwise, all results of the following sections are based on the settings of Table 2. 2 

 3 

Fig. 2. Geometry of the fluidized bed reactor. 4 

The grid resolution employed here is arrived at by a corresponding grid independence study. To seek a 5 

proper grid system, four different grid systems of (Δx, Δy) = (25mm, 45mm), (15mm, 30mm), (10mm, 20mm) 6 

and (5mm, 10mm) are tested. In the test, only air (293 K) with the uniform inlet velocity 0.01 m/s covering 7 

the whole bottom section is sent into the reactor. Figure 3 displays the velocity distribution at the top exit of 8 

the reactor. It can be seen that the velocity profiles in terms of the third and fourth grid systems coincide with 9 

the analytic solution. This implies that the third grid system, i.e. (Δx, Δy) = (10mm, 20mm), can satisfy the 10 

requirement of grid independence. Moreover, for dense gas-solid flows, the choice of grid size is a little more 11 

complex. As is well-known, the grid size should be larger than the particle size for DEM simulations. Wang et 12 

al. (2009) concluded that in order to obtain correct bed expansion characteristics, the grid size should be of the 13 

order of three particle diameters. Considering the particle diameter is 4mm in our study, (Δx, Δy) = (10mm, 14 

20mm) is a good choice which takes both the grid independence and particle size into account. For the grid 15 
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system of (Δx, Δy) = (10mm, 20mm), three small time steps, 1.0×10-4
, 1.0×10-5, and 1.0×10-6 s which are 1 

consistent with the CFL criterion, are also tested to study the time step independence. No difference in the 2 

velocity profiles at the top exit is observed upon switching a time step 1.0×10-5 s to a smaller value of 1.0×10-3 

6
 s. So 1.0×10-5 s is chosen for all the simulation cases.  4 

Table 2  5 

Parameter settings for the simulations 6 

Particles Gas phase Bed 

Shape Spherical Viscosity, μg 1.8×10-5 Pa.s Width 0.15 m 

Diameter, dp 4 mm Density, ρg * Height 0.9 m 

Density, ρp 2700 kg/m3 Temperature, T 293 K Thickness 4 mm 

Number, Np 2400 Fluid time step, Δt 1×10-5 s Cell width, Δx 10 mm 

Restitution coefficient, e 0.9 Inlet jet velocity 48 m/s Cell height, Δy 20 mm 

Friction coefficient, μ 0.3   Orifice width 10 mm 

* ρg is determined using the ideal gas law. 7 

 8 

 9 

Table 3  10 

Boundary conditions for gas phase in the simulation. 11 

Boundaries Velocity Pressure Porosity 

Left and right walls No slip Zero gradient Zero gradient 

Bottom wall No slip Zero gradient Zero gradient 

Inlet orifice (bottom) Fixed value Zero gradient Fixed value 

Outlet (top) Zero gradient Fixed value Zero gradient 

https://www.sciencedirect.com/science/article/pii/S0009250913002200


 
Author’s Post-print version. Article published in Chemical Engineering Science 

DOI: doi.org/10.1016/j.ces.2013.03.038 

Published version: https://www.sciencedirect.com/science/article/pii/S0009250913002200  

 14 

 1 

Fig. 3. Velocity distribution at the top exit when only air with the uniform inlet velocity U0 =0.01 m/s covering 2 

the whole bottom section is sent into the reactor. 3 

3. Results and discussions 4 

3.1. Bed preparation 5 

The first step of the fluidization simulation is to obtain an initial bed configuration which is generated as 6 

follows. The container is uniformly divided into a set of small rectangular lattices throughout the calculation 7 

domain. Then 2400 particles with zero velocity are positioned at the centers of these lattices and allowed to 8 

fall down under the influence of gravity in the absence of inlet jet gas. As shown in Fig. 4, pluvial deposition 9 

of the particles finally results in a static bed of height about 0.23 m and porosity around 0.42. This deposited 10 

bed is then used as the initial input data for the fluidization simulation. As pointed out by Xu and Yu (1997), 11 

the initial input data for fluidization include not only the particle coordinates but also the forces and torques 12 

which come with the deposition of particles in the packing process. 13 
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 1 

Fig. 4. Particle configurations after a simulated packing process. 2 

3.2. Minimum fluidization velocity 3 

To test the validity of our approach, defluidization simulations, which allow the minimum fluidization 4 

velocity umf to be determined, are performed using each of the three drag correlations formulated in Table 1. 5 

As shown in Fig. 5, the defluidization curves are given by the mean pressure drop through the bed, p  vs 6 

superficial gas velocity us. The superficial gas velocity us, here as an alternative to the gas jet velocity, is 7 

defined as the total volumetric gas flow rate divided by the entire bed cross-sectional area. Totally, 20 runs of 8 

simulation are carried out for each drag model, corresponding to the cases with a decreasing us. The case for 9 

the maximum us of 3.2 m/s is simulated under the same boundary and initial conditions outlined in subsection 10 

3.1. Then the cases corresponding to the decreasing us are simulated by successively decreasing us, with the 11 

final results at a higher velocity as the initial input data for the simulation at next lower velocity. All the cases 12 

are run for 10 s real time for statistical purpose. Two regimes are indentified from the defluidization curves: 13 

fluidized bed regime and packed bed regime. As will be delineated in the following subsection, at the fully 14 

fluidized bed regime, bubbles and slugs are generated continuously during the gas flow and particles move 15 
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vigorously inside the bed. This regime is characterized by an almost constant mean bed pressure drop p . It 1 

can be observed that all three drag models predict a complete fluidization at the same level of p . The p  2 

keeps almost constant with decreasing us until a critical point (minimum fluidization velocity umf) is reached. 3 

After umf p  starts to continuously decrease with decreasing us and a packed bed regime where no bubbles 4 

exist is generated. The dotted horizontal line in Fig. 5 indicates the constant mean pressure drop at fluidized 5 

bed regime and it intersects the defluidization curves at point umf. Table 4 shows the comparison of predicted 6 

values of minimum fluidization velocity umf by the three drag models with the numerical data reported by 7 

other investigators (Boyalakuntla, 2003; Hoomans et al, 1996; Xu and Yu, 1997). It can be seen that good 8 

agreement is obtained. Figure 6 depicts the predicted porosity distributions at minimum fluidization velocity 9 

umf for the three drag models. It is observed that only a small bubble forms at the jet region and the porosity 10 

distribution is relatively homogeneous through the bed which indicates that the gas could pass through the bed 11 

without resulting in a rigorous particle flow. There are no significant differences in porosity distribution among 12 

the three drag models except for the upper surface of the bed. 13 

The umf is a key quantity for fluidized bed and the successful prediction of this quantity thereby provides 14 

an important example to verify the proposed approach. It should be noted that, although the deviation is not 15 

large, Gidaspow model predicts a smallest umf while EHKL model gives a largest one. 16 

 17 
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 1 

Fig. 5. Defluidization curves for the three drag models. 2 

   

             (a)    (b)   (c) 

Fig. 6. Simulated porosity distributions at minimum fluidization velocity for the three drag models. (a) 3 

Gidaspow model; (b) Di Felice model; (c) EHKL model. 4 

 5 
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Table 4 1 

Comparison of predicted values of minimum fluidization velocity umf by the three drag models with the data 2 

reported by other investigators. 3 

Drag model used 
Minimum fluidization velocity umf (m/s) 

This work Hoomans et al. (1996) Xu and Yu (1997) Boyalakuntla (2003) 

Gidaspow (1994) 1.7 1.77 - 1.85* 

Di Felice (1994) 1.8 - 1.8 - 

EHKL (2006) 1.9 - -  

* The drag model used by Boyalakuntla (2003) is not explicitly specified in his work. 4 

3.3. Fluidization behavior 5 

Using the particle configurations as shown in Fig. 4 as the initial input, a single central jet of air with 6 

velocity of 48 m s-1 is injected from the bottom orifice to investigate the fluidization behavior. From detailed 7 

examinations of the video sequences of the simulations (available on demand), two ranges are identified: the 8 

start-up stage and the fluidization stage. The start-up time range 0.00-0.40 s can be roughly recognized from 9 

the first fluctuation of Fig. 11 which depicts the bed pressure drop Δp against time t in the following subsection. 10 

Figure 7 illustrates the comparison of simulated particle flow patterns using different drag models at the start-11 

up stage. As an initial response of the bed to the introduction of fluidizing gas, a significant upward flow of 12 

particles is caused due to the instantaneous breakup of the inter-particle locking. For all models, it is readily 13 

observed that a bubble with an oval shape is formed at the jet region, which forces particles in its front to rise 14 

and then fall down along the walls. This bubble grows as gas flows upward and eventually collapses. Besides 15 

the bubble formation, the existence of “slug” structure at the upper part of the bed is also clearly predicted by 16 

all the models. The term “slug” is used here to describe a dilute region of particles which occupies the whole 17 

width of the bed and a similar definition is also given by other investigators (Hoomans et al., 1996; Kafui et 18 

al., 2002). The formation of bubbles and slugs in a spouting bed of Geldart group D type powder are also 19 

reported in the literature both numerically (Boyalakuntla, 2003; Hoomans et al, 1996; Xu and Yu, 1997) and 20 
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experimentally (Tsuji et al., 1993). Although the bubble shape and slug structure are accurately predicted by 1 

all the three models, the size of them as well as the height of bed expansion is different. It is easily seen that 2 

the Gidaspow model predicts the biggest bubble and slug structure. At t = 0.20 s, a bed expansion estimated 3 

at 70% of the initial bed height is observed for the Gidaspow model compared to 50% for the Di Felice model 4 

and 40% for the EHKL model.  5 

After the start-up stage, a dynamically stable fluidization stage is reached in which a periodic generation 6 

of bubbles and slugs is observed. Figure 8 shows the typical particle flow patterns at this stage for the three 7 

drag models. Because the total simulation time is 20 s, a time range which is close to 10 s (half of the total 8 

simulation time) is chosen to act as a general representative period for all the models. For each model, five 9 

snapshots of the particle patterns show the rise and fall of a bubble which roughly represents a period, which 10 

shows that the bubbling period is longest for Gidaspow model and almost same for Di Felice and EHKL 11 

models. Similar to the start-up stage, the particle flow patterns predicted by the three models featured by a gas 12 

cavity at the jet region above which a bubble is formed and continuously grows and rises until converts to a 13 

slug. However, the bubble and slug patterns can differ significantly among the drag models and their intensity 14 

is strongest for Gidaspow model and much weaker for De Felice and EHKL models. These observed 15 

differences suggest that the performance characteristics obtainable from the different drag models differ, 16 

perhaps significantly, depending on the particular application. 17 
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(a) 

     

(b) 

     

(c) 

Fig. 7. Particle flow patterns at the start-up stage. (a) Gidaspow model; (b) Di Felice model; (c) EHKL model. 1 
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(a) 

     

(b) 

     

(c) 

Fig. 8. Typical particle flow patterns at the fluidization stage. (a) Gidaspow model; (b) Di Felice model; (c) 1 

EHKL model.  2 
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 1 

Fig. 9. Comparison of drag forces acting on a 4 mm diameter particle as predicted using the Gidaspow model, 2 

Di Felice model, and EHKL model for a range of porosities at three superficial slip velocities. 3 

As indicated in Eq. (1), the motion of a particle is governed by the gravitational, fluid drag and inter-4 

particle forces. The fluid drag is closely related to the particle configuration (porosity), gas-solid slip velocity 5 

and properties of the gas and the particles. Figure 9 presents plot of the drag forces acting on a single particle 6 

for the three drag models as a function of porosity εg at three gas-solid slip velocities |ug-vp|. In the plot the 7 

step change inherent in the calculated drag forces from the Gidaspow model at a porosity εg of 0.8 is clearly 8 

observed. Three scenarios exist for constant |ug-vp|. First, for εg<0.4, De Felice and EHKL models predict drag 9 

forces close to each other which are larger than the one produced by Gidaspow model. Second, for εg between 10 

0.4 and 0.8, Gidaspow model gives much larger drag force than De Felice and EHKL models. Finally, for 11 

εg >0.8, Gidaspow model has a step change and produces a smallest drag force. These trends for the three slip 12 

velocities are similar, but the intersections of the curves shift to lower porosities when |ug-vp| increases. 13 

Considering εg ranges from about 0.42 (packed bed as shown in Fig. 4) to 0.96 (only one particle in a fluid 14 

cell) for our simulation cases, it is reasonable that Gidaspow model is found to be most energetic as shown in 15 
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Figs 7 and 8. Moreover, EHKL and De Felice models intersect at a point around εg=0.6 and produce a same 1 

level drag force for εg<0.8 which is a possible explanation to the similar fluidization behaviors observed for 2 

these two models. 3 

 

(a) 

 

(b) 

 

(c) 

Fig. 10. Degree of mixing at the end of simulation, t = 20 s. (a) Gidaspow model; (b) Di Felice model; (c) 4 

EHKL model.  5 

From the fluidization behavior shown in Figs 7 and 8, we know that most of the particle mixing occurs 6 

in two fast particle flow regions: one is away from the bottom orifice due to the gas dragging in the main 7 

stream (bubble) and the other at the upper part of the bed due to the falling of the particles to fill in the vacant 8 

space (slug). There is a big vortex developed corresponding to these two fast flow regions, which promotes 9 

particle mixing considerably. However, near the bottom corners the particles become consolidated and mix 10 

slowly. If the particles are initially colored in layers gradually changed from blue at bottom to red at top, the 11 

degree of mixing at the end of simulation (t = 20 s) for different models are shown in Fig. 10. It is evident that 12 

the mixing is best for the Gidaspow model and the particle distribution appears to be uniform throughout the 13 
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bed. Whereas for Di Felice and EHKL models there is still local accumulation of red particles along the right 1 

wall and the degree of mixing is comparable for the two models. 2 

3.4. Bed pressure drop 3 

 4 

       (a) 5 

 6 

       (b) 7 

 8 

       (c) 9 

Fig. 11. Bed pressure drop Δp against time t. (a) Gidaspow model; (b) Di Felice model; (c) EHKL model. 10 
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In the previous subsection, most comparisons between the different drag models are qualitative. In order 1 

to quantify the differences, the pressure drop across the bed Δp, which is obtained as the difference between 2 

the average gas pressure in the bottom and top rows of the computational cells, is recorded over a sufficiently 3 

long time (20 s) to permit the calculation of a time-averaged value. Figure 11 shows a comparison between all 4 

drag models in prediction of Δp against time. It is easily seen that Δp fluctuates with time and a similar 5 

fluctuating pattern is observed for the three drag models. At the start-up stage the bed pressure drop is much 6 

higher than that at the stable fluidization stage because of the need to overcome the inter-particle locking. The 7 

mean pressure drops of 2.51 kPa, 2.54 kPa and 2.53 kPa for the Gidaspow, Di Felice and EHKL models, 8 

respectively, agree quite well with each other and the amplitudes of the fluctuations measured by the standard 9 

deviation (sd), are also comparable. However, a significant difference is still evident from Fig. 11 in that 10 

Gidaspow model predicts the lowest fluctuation frequency (2.45 Hz), about 85% of what is predicted by the 11 

two other models. The frequencies predicted by Di Felice and EHKL models are close to each other, although 12 

a slightly higher (~4%) frequency is obtained with Di Felice model.  13 

The bed pressure drop fluctuations in a bubbling fluidized bed are considered to be caused by bubbles 14 

and slugs that form and collapse at regular intervals (Boyalakuntla, 2003). From a close inspection of Figs 8 15 

and 11, we see that the pressure fluctuation frequency is in accordance with the bubbling frequency thus 16 

supporting the idea that bubbles and slugs are a major cause for the pressure fluctuations. Based on the work 17 

of Tho-Ching Ho and Walawender (1983), bigger bubble or slug structure has higher rise velocity. Since 18 

Gidaspow model produces bigger bubble and slug than De Felice and EHKL models, the bubble rise velocity 19 

of Gidaspow model is highest which is in contradiction to the lowest pressure fluctuation frequency predicted 20 

by Gidaspow model as shown in Fig. 11 at first glance. Keep in mind that Gidaspow model also gives the 21 

largest bed expansion and the fluctuation period is related to the ratio of the expanded bed height to the rise 22 
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velocity. The lowest fluctuation frequency (i.e. longest period) predicted by Gidaspow model implies that the 1 

travelling distance of the bubble dominates its rise velocity for our simulation cases. 2 

3.5. Effect of collision parameters e and μ 3 

In order to study the effect of the two key collision parameters: the restitution coefficient e, and the 4 

friction coefficient μ, on the fluidization behavior, an ideal-collision case (e = 1, μ= 0) is also simulated. Figure 5 

12 shows the snapshots of particle flow patterns for the ideal-collision case at t = 15s for the three drag models. 6 

Moreover, in the animation of the results it can be observed that, except for the start-up stage (t<1s), no 7 

bubbling and slugging occur at all and after a vigorous expansion the bed remains rather homogeneously 8 

fluidized, which is completely different from the case with non-ideal, more realistic particles (e= 0.9, μ= 0.3) 9 

as shown in Fig. 8 where a bubble experiences its generation, growth and collapse process periodically. A 10 

possible explanation for this phenomenon is depicted in Fig. 13. As shown in Fig. 13, the bed pressure drop 11 

Δp is almost constant with time in the ideal-collision case, which results in a nearly homogeneous flow 12 

structure (constant bed expansion). However, the pressure fluctuation in the non-ideal case is much larger than 13 

that in the ideal case, implying that it produces a more heterogeneous flow structure (periodic bubbling). This 14 

phenomenonal difference indicates that material properties, as reflected by collision parameters (e and μ) have 15 

a strong influence on the particle pattern formation. Therefore, real parameters should be chosen in order to 16 

obtain realistic fluidization behavior. As also shown in Fig. 12, although all the three drag models predict no 17 

bubble and slug formation for the ideal case, the height of the expanded bed is different and Gidaspow model 18 

has the largest bed expansion, this feature is consistent with the previous findings in subsection 3.3. It is worth 19 

to mention that Hoomans et al. (1996) who adopted a hard-sphere collision model in contrast to our soft-sphere 20 

model also reported the same phenomenon as ours for the ideal-collision case, which qualitatively verifies the 21 

capacity of our approach.  22 
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Li and Kuipers (2003) explored the effect of non-linearity of the gas drag by altering values of the 1 

exponent of the porosity εg in drag correlations. They found that, when increasing the exponent of εg, the flow 2 

structure displays many modes, ranging from perfectly homogeneous particulate flow with small bed 3 

expansion to heterogeneous flow with high bed expansion for ideal-collision case. From Table 1, it is easily 4 

observed that the increase of porosity exponent provides a stronger drag force acting on the particles and it 5 

will make the bed height increase dramatically. They also reported that the heterogeneous flow structure for 6 

ideal-collision case features with looser packing, which differs significantly from the heterogeneous flow 7 

structure in non-ideal case (clear bubble or slug formation). The loose packing of particles in the ideal system 8 

is attributed to the fact that no energy is dissipated during the frequent particle-particle collisions. This loose-9 

packing feature is in agreement with the phenomenon presented in Fig. 12. Since the conventional values of 10 

porosity exponent are kept for each drag model in our work, enhancing exponent of the porosity to produce 11 

more heterogeneous flow structure for idea-collision case like Li and Kuipers (2003) did is beyond the scope 12 

of this work.  13 

 

(a) 

 

(b) 

 

(c) 

Fig. 12. Snapshots of particle flow patterns at t = 15 s for ideal-collision case (e = 1, μ=0). (a) Gidaspow model; 14 

(b) Di Felice model; (c) EHKL model. 15 
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 1 

Fig. 13. The comparison of bed pressure drop Δp between the ideal-collision case (e = 1, μ=0) and the non-2 

ideal collision case (e = 0.9, μ=0.3) for Gidaspow model. 3 

3.6. Effect of spring stiffness 4 

Table 5 5 

Simulation results of various spring stiffnesses for the three drag models. 6 

Model Spring stiffness  

kn, (N/m) 

Mean bed pressure 

drop,   (kPa) 

Frequency  

f, (Hz) 

Gidaspow (1994) 

1.28×105 2.51 ~2.45 

1. 28×106 2.50 ~2.30 

1. 28×107 2.49 ~2.20 

Di Felice (1994) 

1. 28×105 2.54 ~2.90 

1. 28×106 2.51 ~2.70 

1. 28×107 2.49 ~2.65 

EHKL (2006) 

1. 28×105 2.53 ~2.80 

1. 28×106 2.52 ~2.70 

1. 28×107 2.51 ~2.55 

The spring stiffness is also a parameter needed to be predetermined for the soft-sphere collision model 7 

adopted in this work. As discussed in Section 2.1, using the Hertzian contact theory, the spring stiffness can 8 

be calculated from the physical properties such as Young’s modulus and Poisson ratio (Tsuji et al., 1992). The 9 

previous researchers (Hoomans, 1999; Xu and Yu, 1997; Tsuji et al, 1993) usually assumed that the effect of 10 

spring stiffness on particle motion was negligible and a small value (102~104) was arbitrarily chosen to save 11 

Δp 
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computation time. To test the influence of the spring stiffness, totally 3 runs of simulation are carried out for 1 

each drag model, corresponding to the cases with an increasing spring stiffness of one order of magnitude. 2 

Table 5 lists the predicted mean pressure drops and fluctuation frequencies. It can be observed that both bed 3 

pressure drop and fluctuation frequency decrease as the spring stiffness increases for all the drag models 4 

although the variation is small. Therefore if experimental data is available and one aims to improve the 5 

agreement between the simulated result and the experimental one, the spring stiffness is also an issue needed 6 

to be taken into account. After detailed examinations of the video sequences of the simulations, the effect of 7 

the spring stiffness on the fluctuation frequency can be explained as follows. As discussed in section 3.4, the 8 

fluctuation frequency is in accordance with the bubbling frequency. With an increase in the spring stiffness, 9 

the particles become more rigid and the overlap allowed between them becomes smaller which leads to a 10 

particle configuration where the particles are less closely spaced which results in a higher expanded bed. 11 

Consequently it will take a rising bubble a little longer time (a lower frequency) to travel through a higher bed. 12 

3.7. Effect of the discontinuity in the Gidaspow model 13 

As mentioned above, the Gidaspow drag model has a discontinuous transition between the Ergun (1952) 14 

and Wen and Yu (1966) correlations at a gas volume fraction εg of 0.8. Physically, the drag force is a continuous 15 

function of both particle Reynolds number Rep and εg and therefore drag models should be continuous 16 

functions. In order to remove the discontinuity in the Gidaspow model, here, a similar approach to the one 17 

used by Leboreiro et al. (2008a) is implemented, namely a linear interpolation over a transition region. The 18 

Ergun (1952) expression (denoted by βE) for the inter-phase momentum transfer coefficient, is used when εg 19 

is below 0.7. If εg is above 0.8, then the Wen and Yu (1966) correlation (denoted by βWY) is employed. If εg 20 

lies in the transition region between 0.7 and 0.8, the following linear interpolation is adopted:  21 
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where βTG is the inter-phase momentum transfer coefficient in the linear transition region for the Gidaspow 2 

model. Figure 14 presents the bed pressure drop Δp against time t for the original Gidaspow model and the 3 

linear continuous one described above. No significant differences are observed in the mean pressure drop and 4 

fluctuation frequency between the original Gidaspow model and the continuous one, which is consistent with 5 

the findings by Leboreiro (2008b). 6 

 7 

Fig. 14. Bed pressure drop Δp against time t for Gidaspow model and the linear continuous Gidaspow model. 8 

4. Conclusions 9 

Numerical simulations of a bubbling gas-solid fluidized bed reactor have been performed in a pseudo-3D 10 

domain using the Eulerian-Lagrangian approach to investigate the effects of three widely used drag 11 

correlations on the hydrodynamic behaviors. A soft-sphere model is adopted to resolve the inter-particle and 12 

particle-wall collision dynamics. The results have been analyzed in terms of particle flow pattern, bed 13 

expansion height, bed pressure drop, and fluctuation frequency. Qualitatively, formation of bubbles and slugs 14 

https://www.sciencedirect.com/science/article/pii/S0009250913002200


 
Author’s Post-print version. Article published in Chemical Engineering Science 

DOI: doi.org/10.1016/j.ces.2013.03.038 

Published version: https://www.sciencedirect.com/science/article/pii/S0009250913002200  

 31 

and the process of particle mixing are observed to occur for all the drag models, although the Gidaspow model 1 

is found to be most energetic and the Di Felice and EHKL models yield minor difference. Quantitatively, the 2 

mean pressure drops predicted by the three models agree quite well with each other and the amplitudes of the 3 

fluctuations measured by the standard deviation are also comparable. However, a significant difference in the 4 

frequency of pressure fluctuations is found that the Gidaspow model predicts a lowest fluctuation frequency 5 

whereas the Di Felice gets a highest one. Considering that there are more than ten drag correlations available 6 

in the literature (Esmaili and Mahinpey, 2011; Loha et al., 2012), care must be taken to make a suitable choice 7 

for one’s particular application. 8 

The effects of restitution coefficient e, friction coefficient μ, and spring stiffness kn on the fluidization 9 

behavior are also investigated in this study. It is found that no bubbling and slugging occur at all for the ideal-10 

collision case (e = 1, μ= 0) and that both mean bed pressure drop and fluctuation frequency slightly decrease 11 

as the spring stiffness increases for all the three drag models. Finally, the discontinuity in the Gidaspow model 12 

is removed by a linear interpolation scheme and no significant differences are observed in the mean bed 13 

pressure drop and fluctuation frequency between the original Gidaspow model and the linear continuous model. 14 

However, fluidized bed is a huge and very complicated multiphase-flow system, and is affected by many 15 

related issues such as container geometry, operational conditions, particle size distribution and material 16 

properties. Further modeling efforts are required to study the influence of all these parameters. Moreover, new 17 

experimental studies should be carried out using recent advancements in instrumentation engineering in order 18 

to compare with our modeling results. 19 
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