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Abstract

Change blindness is a type of visual masking which affects our ability to notice changes introduced in visual stimuli (e.g. change in
the colour or position of an object). In this paper, we propose to use it as a means to identify image attributes that are less important
than others. We propose a model of visual awareness based on low-level saliency detection and image inpainting, which identifies
textured regions within images that are the most prone to change blindness. Results from a user study demonstrate that our model
can generate alternative versions of natural scenes which, while noticeably different, have the same visual quality as the original.
We show an example of practical application in image compression.
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1. Introduction

With the number of digital pictures taken every year running
into the trillions [1], it has become increasingly important to
understand how people perceive image contents in order to ma-
nipulate them more efficiently. Indeed, our visual system filters
out visual information in a variety of ways and a wide range
of image processing applications such as compression, water-
marking or cross-media reproduction rely on identifying what
we can and cannot see within images. For instance, very high
frequency components can be removed without disturbance in
typical viewing conditions due to limited contrast sensitivity,
which is useful for data reduction [2]. Other early vision1

mechanisms such as low-level texture masking [4], salience
[5, 6, 7] or chromatic adaptation [8] have also been used to pre-
dict subjective image quality assessments and improve image
processing techniques. On the other hand, higher levels of per-
ception and cognition (late vision) are also subject to a number
of flaws which can affect our perceptual experience and inter-
pretation of image quality [9, 10]. While limits in our early vi-
sion renders image attributes invisible, even if we know where
they are, late vision flaws pertain more to the perceived im-
portance of these attributes. In the case of images (as opposed
to videos) the distinction between invisible and unimportant is
crucial in that it involves time: if a distortion cannot be detected
rapidly, it can arguably be considered as acceptable. In this
study, we test this hypothesis in the particular case of natural
images containing large and complex textured regions. Unlike
prior work on exploiting perceptual failures for prediction of
image quality, we propose to identify the important informa-
tion in images via a relatively unknown high-level mechanism
of the human visual system (HVS): visual awareness.

1Typically, early vision refers to the first steps of visual perception where
basic features like motion, colour and binocular disparity are measured [3].
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Figure 1: Principle of awareness-driven image simplification: make observers
unaware that the background has been simplified by exploiting change blind-
ness. Notice that on the left image, there are two different kinds of green/brown
trees, whereas on the right, there is only one kind. As a result, the amount of
data needed to encode the latter image is smaller.

Figure 2 depicts an example of the game “Spot the differ-
ence”. We found that it takes most people at least 45 seconds
to notice the missing engine under the wing. This comes from
a remarkable shortcoming of our visual system referred to as
change blindness [12, 13]. While the origins and implications
of this phenomenon are not yet fully understood, it is known
to come from a failure to accurately represent and compare vi-
sual stimuli in memory [14]. Changes affecting the gist of the
scene are detected faster [15, 16], yet the nature and context
of the change can make it very difficult to see, even in the most
salient image regions [17, 18], as in Figure 2. Change blindness
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Figure 2: Example of image pair inducing change blindness [11].

therefore highlights a difference between attention and aware-
ness [19]. The presence of the engine in Figure 2 can then be
seen as a piece of information that our visual system consid-
ers not worth verifying in priority in the context of the game.
In other words, the HVS filters out the information that would
otherwise make us rapidly aware of the change. But once the
latter is noticed, it becomes clear which image is the original
one and which one was tempered with, as it seems unlikely that
the plane would not have an engine. Figure 3 shows another ex-
ample, where change is introduced in complex textures. Again,
given time, we can notice discrepancies that are invisible at first.
However, this time it is less obvious which image is the orig-
inal (that is of course, if one is not already familiar with the
scene) as they both convey the same meaning. Consequently,
we argue that the two images in Figure 3 can be considered as
perceptually equivalent.

Images attributes of low-level (contrasts, edges, textures) and
high-level (characteristics of objects, people, context) types are
encoded in internal representations with different levels of de-
tails [20], again depending on their presumed importance in the
context. If change blindness occurs, it implies that some of
these attributes were not encoded in short-term memory with a
sufficient fidelity [13]. Exploiting change blindness can how-
ever be a challenge. Removing the engine in Figure 2 seems
difficult to do in an automatic fashion, but most importantly
it has limited advantages when it comes for example to com-
pressing the image. Other types of image attributes such as
complex textures can be tempered with more easily and with
greater benefits. Research on texture perception [21] and tex-
ture synthesis [22] have shown that perceptual characteristics of
textures can be captured by means of only a few statistical at-
tributes. Two different textured regions may then be perceived
as similar if they match in terms of these attributes [23]. In
a previous work [24], we proposed to use exemplar-based in-
painting (also referred to as image completion or image filling)
to simplify background textures in natural images and there-
fore gain in compression ratio. We demonstrated in particular
that the simplified image can be considered as equivalent to the

original, as long as the former is free of artifacts and semantic
inconsistencies. Figure 1 illustrates the principle of exploiting
change blindness to reduce the complexity of a scene’s back-
ground.

Note that there is already a vast body of literature on texture
masking (see e.g. [4]), yet they concern mostly the early vi-
sion aspects of texture perception. What makes our work novel
is our position that it does not necessarily matter whether the
original and reproduced images are noticeably different as long
as it takes a while to notice the difference and that, once noticed,
identifying the original one is not straightforward (as in Figure
3). We build upon previous work [24], and propose a prototyp-
ical visual awareness model to exploit spatial redundancies in
textured images based on saliency detection and predictability
of image regions. We first discuss related work and contribu-
tions before presenting the model as well as our experimental
results.

2. Related work

2.1. Exploiting, inducing and measuring change blindness
So far, change blindness has mostly been studied in the field

of vision and cognitive sciences [14, 13, 20, 25] as it received
limited interest from in the image processing community [11],
mostly because too little is known as to its causes thus mak-
ing it a difficult phenomenon to predict/induce with in an au-
tomatic fashion. One of the very first attempts at exploiting
change blindness was by Cater et al. [26] in the field of com-
puter graphics. The authors suggested to lower the rendering
quality of objects of lesser saliency in a scene during a visual
disruption such as a blink. They conducted an experiment with
10 rendered scenes and modified the rendering quality at dif-
ferent locations, classified as of central or marginal interest.
Central interest changes were detected rapidly while marginal
interest changes required observers an average of 40s to be dis-
covered. They concluded that change blindness can indeed be
exploited in order to reduce the computational effort required
for rendering.
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Figure 3: Other example of image pair inducing change blindness.

When it comes to measuring the degree of change blindness
between two images, Hou et al. [27] proposed to use the Ham-
ming distance between two images’ signatures (the signature
of a greyscale image is the sign of its DCT coefficients) as a
measure of the time needed by a person to actually perceive
a change between the two images. Based on results obtained
from an experiment involving 60 image pairs manually modi-
fied to induce change blindness and nine naive observers, they
obtained an average correlation of 0.563 when the signatures
were computed in the CIELAB colour-space. In addition to
being only intended for large changes that significantly affect
the frequency content of the image, the signature-based model
is mostly ad hoc and lacks biological plausibility. More re-
cently, Ma et al.[18] proposed a measure based on a so-called
context-aware saliency detection and obtained a correlation be-
tween predicted degree of blindness and recognition time of
0.75 based on results obtained on 100 image pairs and 30 sub-
jects. The changes in image pairs were generated automatically
with a method that utilises a variety of operators such as inser-
tion, deletion, replacement, scaling, etc. They used alpha mat-
ting for segmentation and PatchMatch inpainting [28] for filling
when needed. However, Ma et al.’s model is also intended for
large changes that affect objects. In this paper, we aim to induce
more subtle changes which, while visible, do not significantly
alter our interpretation of the scene.

2.2. Exploiting spatial redundancies in images
Several studies have suggested to exploit spatial redundancy

to compress images and videos by removing macro-blocks on
the encoder’s side while making sure that they can be recovered
on the decoder’s side via inpainting-like methods [29, 30, 31].
The motivation behind these approaches is however to recover
exactly the original signal, while we suggest that some discrep-
ancies can be introduced without disturbance.

2.3. Modeling visual memory
Studies on the role of memory in the perception of visual

stimuli have shown that humans have the ability to remember

a massive quantity of visual information from natural scenes
[32, 33]. However, not all visual information is equally remem-
bered. In an attempt to understand what makes that some visual
information will be more likely to be memorised than other,
several recent studies have focused on finding the right combi-
nation of image attributes that can predict how memorable an
image is [34] or an object in an image [35]. The results high-
light in particular the importance of semantics (labels, annota-
tions). For instance, an image containing a person or a car is
more likely to be remembered than one containing a building
or a tree. While these methods are primarily intended to model
long-term visual memory and how internal representations fade
over time, our approach is substantially different as we focus
mostly on the limitations of short-term memory through the
study of awareness and change blindness.

3. Contributions

As reported in [11], change blindness and other types of
high-level visual masking have received limited attention from
the image, video, and computer graphics research communi-
ties. Here, we test the hypothesis that change blindness can be
used to identify unimportant image attributes. We build upon
previous work [24], and propose a prototypical visual aware-
ness model based on low-level feature extraction, which can
be used to exploit spatial redundancies in textured images. As
mentioned previously, what makes our work novel is our posi-
tion that it does not necessarily matter whether the original and
reproduced images are noticeably different as long as it takes a
while to notice the difference and that, once noticed, identifying
the original one is not straightforward.

4. Finding textured regions that can induce change blind-
ness

4.1. Texture representation
As most natural textures can be well modeled by blocks (also

referred to as patches, i.e. small neighbourhoods pixels, typi-
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cally square-shaped) [36], we propose to consider the hypoth-
esis that there is a block-based representation of textures in in-
ternal representations. This hypothesis can be supported by two
demonstrated facts: 1) our vision is only detailed on a small
portion of our visual field, corresponding to the size of a thumb-
nail seen at arm’s length, which corresponds to a large block
in the displayed image [23, 11] and 2) the primary visual cor-
tex contains localised receptive fields that can be modeled by
blocks [37].

4.2. Encoding fidelity map

For a digital image I divided in a set of non-overlapping
square blocks of size n, we propose a model to estimate, for
each block b, the overall fidelity with which it will be stored
in visual short-term memory noted F (b). The resulting map
of all blocks in I, noted F (I) is what we refer to as an encod-
ing fidelity map. In this study, the notion of image background
is particularly important. The proposed framework is indeed
mostly intended for scenes that contain a (group of) prominent
object(s) that constitute their foreground (e.g. the pen in Figure
3). For an image I, we note its fore- and background IF and IB,
respectively. Incidentally, we assume that every block in IF has
a maximal encoding fidelity, i.e. F (b) = 1,∀b ∈ IF (where 1
is the top of the fidelity scale). To extract IF and IB, we used
saliency detection and mean shift segmentation, as in [38]. This
allows us in particular to reduce the computational complexity
of the method by processing solely background blocks.

As previously mentioned, our model identifies those specific
blocks which have both a low saliency (i.e. part of the back-
ground) and which are somehow easy for the brain to “guess”
from the rest of I. Given S(I), a saliency map derived from I,
we obtain S(b) as the average saliency of all pixels in b. Note
that the extent to which a block can be easily guessed is what we
previously referred to as its inpaintability2 [24]. As highlighted
in previous studies [39], predicting the quality of inpainting re-
quires to account for local context. Furthermore, it has to do so
in a way that is consistent with the inpainting algorithm to be
used. Let us note b+ the surrounds of b (we consider all eight
8-connected blocks of size n) and let Πb+

be a dictionary (set)
of blocks representing

{
b′+ ∈ I|b′ < IF

}
, the set of surrounds of

all blocks not belonging to IF. Note that, for convenience sake,
Πb+

is here represented as a matrix with pixel blocks (reshaped
as row vectors) in rows. Finally, let ω+ be the vector of optimal
weights for the linear decomposition of b+ in Πb+

, in the sense
of a measure of similarityD(b1,b2), so that:

ω+ = arg min
ω
D(b+,Πb+

ω) (1)

The encoding fidelity of block b is then computed as the max-
imum accuracy with which it can be estimated from the dictio-
nary, weighted by its saliency:

F (b) = D(b,Πbω+)S(b) (2)

2We define the inpaintability of a set of pixels as the probability that it can
be replaced in a visually appealing manner, with a given inpainting method.

where Πb is a dictionary of blocks corresponding to Πb+
, but

from the set {b′ ∈ I \ IF} (i.e. without the surrounds). Figure 4
shows an example of resulting map.

Many different methods have been proposed to create a dic-
tionary of patches or blocks of pixels for image denoising,
restoration or inpainting [40]. Any of them can potentially be
used in our model. In this study however, and for the sake
of simplicity we chose to use Principal Component Analysis
(PCA) to build Πb and Πb+

. The first 50 principal components
were kept in both cases. To represent colour, we use the hue-
linearised LAB2000HL colour space [41], which exhibits more
perceptual uniformity than CIELAB overall.

4.3. Saliency detection
There is a vast literature on saliency detection for visual at-

tention modeling [6]. Although visual attention is known to be
a relatively more complex process that involves also top-down
mechanism such as culture or personal preference, bottom-up
saliency models have been reported to give very accurate pre-
diction of human fixations in some cases. We tested several
models [42, 43, 38, 44] and found that the seminal Itti model
[42] with basic features (colour opposition, luminance and ori-
entations) gives satisfying results on our experimental bench-
mark.

4.4. Block similarity measure
As a measure of block similarity D(b1,b2), it is common

to use the sum of squared differences [45]. Bugeau et al.[46]
observed however that the SSD, when used alone, tends to favor
uniform blocks, therefore we propose to use it in combination
with a contrast and a structure similarity terms derived from the
well-known SSIM index [47] such as:

D(b1,b2) =
SSD(b1,b2)

c(b1,b2)s(b1,b2)
(3)

where c(b1,b2) and s(b1,b2) are respectively the contrast and
structural similarity terms.

5. Modifying the least significant image regions

Having identified blocks of lower significance, we can al-
ter them in a way that induces change blindness. Let us con-
sider a threshold τ of internal encoding fidelity, so that the set
Λτ = {b ∈ I|F (b) < τ} represents the least significant blocks in
I. We can then discard Λτ and recover it via inpainting. We
implemented a simple method based on the seminal work by
Criminisi et al.[48]. The image with missing regions is first
divided into blocks of size n, as in the encoding fidelity map.
Every block b is then examined together with its eight neigh-
bors (the surround b+), thus creating what we will refer to as
a super-block B = {b ∪ b+}. If b, the center of B is missing,
the super-block is put in a dictionary of incomplete blocks Π◦.
In the alternative case, the super-block is put in a dictionary of
complete blocks Π•. For each incomplete element in Π◦, the
partial data is used for context matching with Π• and missing
data is copied from the best matching complete super-block. In
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(a) (b) (c) (d)

Figure 4: From left to right: original image (a), saliency map according to [42] (high energy = high saliency) (b), encoding fidelity map without (c) and with (d)
saliency weighting (high energy = high encoding fidelity). The encoding fidelity of every block in the scene’s foreground (the yellow flower), which is extracted in
the first steps of the map computation, is maximal.

the inpainting procedure, priority is given to the most complete
super-blocks. To give a sense of continuity between the known
and filled regions, we quilted blocks by means of graphcut [49]
and Poisson blending [50].

The higher the threshold τ, the lower the chance to recover
exactlyΛτ, as more blocks need to be recovered from less refer-
ence data. However, as long as there are no artifacts or semantic
inconsistencies, we argue that the result is acceptable. Unfortu-
nately, traditional image-difference metrics3 do not predict well
such inconsistencies [24], therefore we still have to rely on a
manual selection of τ. However, our results demonstrate that,
for a certain type of images, a threshold of 10% permits to ren-
der images with a similar quality or higher to that of the origi-
nal, according to a majority of people.

6. Experiments

6.1. Viewing Conditions

We used an Eizo colourEdge CG246W display (24.1” -
61cm), calibrated with an EyeOne software for a colour tem-
perature of 6500K, a gamma of 2.2 and a luminous intensity
of 80cd/m2. The experiment was carried out in a dark room.
A viewing distance of approximately 50cm was ensured for all
observers.

6.2. Observers

A group of 30 colour-normal observers participated in the
experiment. Ages ranged from 22 to 52 years old, 20 of them
were male and 15 of them had background in image processing
or vision research. Note that we found no significant correlation
between the output of the experiment and either of these criteria
(age, gender and familiarity with the task).

6.3. Stimuli and Methodology

In order to assess the extent to which the proposed model
can induce change blindness, we used 30 colour images of nat-
ural scenes consisting of a complex textured background with
a spatially compact foreground (see Figure 5). These images

3Note that the term metric is here not used according to its proper mathemat-
ical definition. It is however quite established in the image quality community.

were selected from two publicly available databases [51, 52],
except one which was computationally rendered specifically
for this study in order to show that the proposed method also
works with non-natural images. For each scene, three modi-
fied versions of the original image were rendered for τ = 5%,
τ = 10% and τ = 15%. Initially, the image pairs (original, ren-
dering at τ = 5%) were displayed in random order and position
(left/right) and observers were asked to answer the question:
Which image has the highest quality?, with the possibility of tie
scores. Participants were given no indication as to the meaning
of the term quality, it was left entirely up to them to interpret
it. We expected people to occasionally see some differences be-
tween the stimuli after a while, when the blindness would stop.
Therefore, we could not ask them to rate the fidelity or differ-
ence for instance. As long as they were not able to tell which
was the original which was simplified, the framework was suc-
cessful. In case a participant could see inpainting artifacts, the
original image was most likely considered by them as reference
and the other, distorted. These are the reasons why we chose to
use the word quality.

Furthermore, for each scene and at each level, a pair consist-
ing of twice the original image (i.e. τ = 0%) was also intro-
duced at a random position in the experiment. The purpose of
these red herrings was to test our initial intuition that, in the ab-
sence of difference between the stimuli, observers could some-
how convince themselves that they saw a difference, partly due
to the same short-term visual memory flaws that induce change
blindness. Tie scores were also allowed in these cases. We then
also counted the number of occurrences of each possible out-
come across all observers and image pairs: count4 for each
time one of the two identical images was found of higher qual-
ity than the other and count5 for when a tie score was given.

Note that we constrained the sequence order to show scenes
in order of increasing levels of simplification (i.e. τ = 5% then
10% and finally 15%), in order to avoid the perception of arti-
facts at the highest level influencing judgment at lower levels.
A screening according to [53] revealed that all observers were
valid, which implies that there was some consistency between
their judgments.

Unlike in our preliminary work [24], we focus on demon-
strating that observers find no difference in terms of quality be-
tween original and simplified images. This approach allows us
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Figure 5: Images used in our experiments, ranked from the one yielding the best (top left) to the worst (bottom right) quality of simplification at τ = 15% according
to our users panel. These images were selected from two publicly available databases [51, 52], except the last one, which was rendered specifically for this study.

to demonstrate that, even if observers can see a discrepancy be-
tween the two stimuli, the simplified one can be perceived as of
equivalent image quality to the original.

6.4. Results

Table 1 gives the results obtained for all 30 images and 30 ob-
servers. In order to demonstrate the efficiency of our method,
we compared the probability of an observer finding the original
image to be of higher quality to that of the same observer find-
ing the simplified image to be of equivalent or higher quality
than the original one. First, as a model of standard observer,
we simply looked at each image pair and computed the mode
of the decision taken by all observers (i.e. the majority). The
two probabilities can then be estimated from our experimental
data by the ratios of the number of occurrences of each case (i1
and i2) over the total number of comparisons m = 120 (4 values
of τ - 0, 5, 10 and 15% - × 30 scenes × one standard observer),
i.e.: p1 ≈ p̂1 = i1/m and p2 ≈ p̂2 = i2/m, respectively.

To determine whether these estimated probabilities were sig-
nificantly different from each other, we assumed that observers’
ability to find the original in each of the image pairs follows a
binomial distribution and used Yule’s two-sample binomial test
[54] at 95% confidence.

The test revealed that, when τ = 5% and τ = 10%, observers
did not find that the original image was of higher quality. How-
ever, when τ = 15%, they did. Additionally, our results indicate
that, when asked to compare two identical images, the probabil-
ity that observers found differences in terms of quality between
them is not significantly different from that of not seeing any
difference. This is particularly interesting as it challenges the
mainstream approach to subjective quality assessment. Though
recent studies have stressed the importance of considering the
multiple strategies employed by our visual system when assess-
ing the resemblance of an image pair [55], our results reveal
that people can as well hallucinate the presence of image dis-
tortions.

Figure 6 shows examples of best and worst results obtained,
as evaluated by our panel of observers.

Figure 6: Example of good (first row) and bad (second row) results obtained at
τ = 15%, according to the observers ratings. Note that, despite using a small
block size (n=8) to describe the textures, the coarse background of the top scene
could still be simplified with excellent quality.

6.5. Time analysis
In terms of decision times, we measured relatively large

inter-observer variability. The whole experiment took between
6.3 and 58.4 minutes with an average at 23.4 minutes (i.e. re-
spectively 3.13, 29.2 and 11.7 seconds per image pair). We also
measured a large inter-scene variability with an average stan-
dard deviation per observer of 5.2s at τ = 15% (and statistically
similar values at τ = 5% and τ = 10%4). We believe that this
can be explained by the fact that the scenes differ greatly, not

4Two mean values m1 and m2 with corresponding standard deviations σ1
and σ2 are considered to be significantly different if m1 + σ1 < m2 − σ2 (if
m1 < m2) or m2 + σ2 < m1 − σ1 (if m1 > m2).
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Table 1: Results from the subjective experiments in percentage of total number of image pairs. O: original image, S: simplified image. Note that (1), (2) and (3)
add up to 100% in each column. Values in bold are significantly larger than their counterpart (e.g. (1) is the counterpart of (2)+(3)). These results show that 1) the
simplified images were considered at least as good as the original ones quality-wise in a majority of the cases for τ =5% and τ =10% and 2) differences between
image pairs were occasionally hallucinated.

τ =0%
(red herring) τ =5% τ =10% τ =15%

(1) O was preferred 27% 29% 45% 53%
(2) S was preferred 24% 26% 23% 21%
(3) No difference 49% 45% 32% 26%

(1)+(2): Difference was hallucinated 51% / / /

(2)+(3):
S was considered of equal

or better quality than O / 71% 55% 47%

only in terms of the textures they contain (colour, coarseness,
orientation, etc) but also in terms of size, location compactness
and meaning of their foreground. Not only can each of these
attributes affect the performance of our method, they can also
significantly affect the time needed to perform the subjective
task.

Figure 7 depicts the image pairs that required the most and
least time to rate, on average. Note finally that we found no
Pearson Correlation Coefficient larger than 0.55 between deci-
sion types and decision times (globally or per observer), mean-
ing that these variables correlate poorly.

Figure 7: Image pairs that required the most (top) and least (bottom) time for a
decision, on average for 30 observers (original images are shown on the left).
The levels of simplifications are: 5% (top) and 15% (bottom). The average
times recorded are 16.7s (σ = 11.7s) and 5.2s (σ = 3.4s).

7. Discussion

The results presented in the previous section demonstrate that
we can “simplify” complex natural textures by carving out up
to 10% of data without perceivable loss of quality, in certain
types of scenes.

In broad terms, change blindness can be exploited with any
scene containing more information than one can store in visual

short-term memory. In our framework, information is defined
as details within rich textures and the quality of its results de-
pends mostly on a trade-off between three attributes of textured
regions: richness, stationarity and size. The richer the texture,
the more unlikely people are to be aware of all its details. Con-
sider the simplest possible case of an image with all its pixels
of the exact same colour: there is then no information to be
missed, so no perceptual failure to exploit. On the other hand,
the texture needs to be sufficiently stationary so it can be syn-
thesised from a small number of representative patches. The
larger the textured region, the larger the number of blocks to be
potentially removed (and the better the compression ratio). Our
framework considers 8x8 pixel blocks and 24x24 pixel super-
blocks so it should be applied to scenes with at least one tex-
tured region larger than a 24x24 pixel square.

The optimal value of τ is determined by the richness, station-
arity and size of textured regions within the scene. For instance,
when some patterns seem to be duplicated at different locations
with small variations (refer to Figure 1 for an illustration). The
larger, richer and more stationary the textures are, the larger the
optimal τ. If poor quality results are obtained with τ=5% for a
particular image, it is likely that the framework is not suitable
for it.

Of course, the proposed framework relies heavily on the per-
formance of the texture synthesis and saliency detection. Other
inpainting strategies may be more adapted for other kinds of
scenes [45] and/or may allow for higher degrees of simplifica-
tion. We believe that this constitutes the most relevant direction
for future research to improve this work. Similarly, the use of
other saliency detection models (see [6]) may be advisable de-
pending on the type of image under consideration.

In addition to providing insights into visual coding, these
findings can be used in block-based compression such as with
JPEG or HEVC. The fewer the blocks, the smaller the amount
of data to encode and consequently the better the compression
ratio. We analysed empirically how our framework can im-
prove the performance of JPEG and HEVC coding (with the
Main Still Picture profile for the latter) on the benchmark set
from Figure 5 as well as the Kodak Lossless True colour Image
Suite [56], with a block/coding tree unit size of 8x8 pixels. The
two coding schemes were implemented in Matlab and their re-
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spective compression ratios were tuned manually so as to create
high quality reproductions (we measured an SSIM index value
larger than 0.96 in each case). The framework was then applied
to each image in order to reduce the number of blocks to en-
code, resulting in an improvement in compression ratio. Our
results, reported in Table 2, indicate a marginal yet significant
average improvement over both standard JPEG and HEVC. Of
course,

Table 2: Average improvements of compression ratios permitted by our frame-
work on two different datasets. The framework was applied to JPEG and HEVC
(Main Still Picture profile with coding tree units of size 8x8). Recall that, as
per our experimental results, the framework can produce high quality images
for τ ≤ 10%.

τ (%)
5 10 15

Benchmark JPEG +3.7% +6.9% +10.6%
HEVC +3.3% +5.2% +9.0%

Kodak LTCIS JPEG +3.1% +6.2% +9.8%
HEVC +2.1% +4.7% +8.1%

The change blindness-inducing framework that we propose
can also be exploited for fragile watermarking and other secu-
rity applications. Indeed our experimental results demonstrate
that, in a significant number of cases, people were not able to
distinguish between the original and reproduced images. There-
fore, we can create several unique versions of the same image
that no one would even perceive as different, at least not at
first glance. Instead of removing as many blocks as possible
as for compression, we can select a unique pattern/combination
of blocks to be simplified, and this will basically constitute the
watermark. The whole point is that the location of these blocks
would always be unknown to the receiver, who would then find
it very challenging to fraudulently alter the watermark other
than by altering the entire file. This is of course applicable to
videos as well.

Finally, we also showed that people can hallucinate5 dis-
crepancies in terms of quality between two identical natu-
ral images. Though it is not completely clear which percep-
tual/psychological mechanisms are behind this remarkable phe-
nomenon, we believe that it challenges the mainstream ap-
proach to subjective image quality assessment (SIQA) in that
it reveals a type of subjective bias which has not yet been ac-
counted for in image quality models, especially when it comes
to near-threshold distortions [55].

8. Conclusions

We demonstrated how visual change blindness can affect
subjective tasks pertaining to image quality assessment and we
proposed a bottom-up model of visual awareness in order to
predict it. Results from a user study revealed that we can alter

5Here we use the word “hallucinate” in a broad sense, not implying specifi-
cally that the failure occurs at a purely perceptual level.

up to 10% of pixels within certain types of images without per-
ceivable loss of quality. We then demonstrated that this is ex-
ploitable for image coding as it can improve compression ratios
for block-based approaches like JPEG and HEVC. Our find-
ings call for more investigations towards understanding change
blindness, visual awareness and how it affects what we see in
natural images or video sequences.
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