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Abstract 

The characteristic values of the extreme environmental load effects should correspond to a specified 

annual probability of exceedance. These load effects can be calculated using short-term or long-term 

methods. The full long-term method is considered the most accurate approach, but it requires 

tremendous computational effort for complicated structures, especially when nonlinearities must be 

considered. In a case study of the dynamic behavior of a three-span suspension bridge with two 

floating pylons, these nonlinearities are found to have a significant effect on the extreme values of 

some of the load effects. It is thus recommended to determine these responses in the time domain. 

However, time domain simulations can be very time consuming even by using simplified approaches 

such as the environmental contour method (ECM) and the inverse first-order reliability method 

(IFORM). Therefore, this paper introduces a computationally efficient approach utilizing the ECM and 

the IFORM to determine long-term extreme values based on responses from combined frequency and 

time domain simulations.   
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1. Introduction 

During the design of offshore structures, it is necessary to estimate the characteristic values of extreme 

load effects corresponding to specified annual exceedance probabilities. These load effects are 

calculated using short-term or long-term methods. Short-term approaches are used to analyze load 

effects during storms with N-year return periods with specified durations, e.g., three hours for offshore 

structures subject to waves and normally one hour for structures experiencing combined wind and 

wave actions; meanwhile, long-term approaches consider all storms that occur in the long-term period.  

In principle, the full long-term methods (FLM) represents the most accurate approaches for 

determining the characteristic values of extreme load effects on a structure for ultimate limit state 

(ULS) and accidental limit state (ALS) design checks. In Norwegian rules and regulations [1], the 

ULS and ALS values normally correspond to annual exceedance probabilities of 10-2 and 10-4 , 

respectively, for offshore structures. The FLM essentially integrates short-term response statistics (i.e., 

distributions of all peaks, distributions of extreme values or mean upcrossing rate) over all short-term 

environmental conditions [2]. It incorporates both the long-term variability of environmental 

conditions represented by a joint probability distribution of environmental parameters and the 

variability of short-term extreme values characterized by the conditional distribution of short-term 

responses with regard to the environmental conditions.  

However, the FLM clearly does not represent the most economical approach from a computational 

perspective because they must account for contributions from all possible short-term states [3].  

Determination of the annual probability of exceedance given a response is analogous to determining 

probability of failure (if failure is defined as exceeding a given response). Hence, structural reliability 

methods (e.g. FORM) [4-6] can be used to determine the distribution of long term extreme response 

values. If the annual probability of exceedance or return period is given, the inverse method (e.g. 

IFORM) [7-9] needs to be used. 
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The environmental contour method (ECM), which is a simplification of IFORM, decouples the 

uncertainty in the environmental conditions and the short-term extreme values and the latter is 

disregarded [10-13]. Fundamentally, the ECM calculates the contour line corresponding to a selected 

return period. It is further assumed that the most important combination of environmental parameters 

along the contour line can be used to approximate the long-term extreme value. Neglecting the short-

term variability in the extreme values can give non-conservative results. Thus, a higher percentile than 

the expected maximum is used as the short-term characteristic value rather than selecting the median 

extreme response [10]. Another alternative is to introduce a correction factor that is typically between 

1.1 and 1.3 to make the prediction conservative [13-15]. The ECM has been frequently applied in 

ocean engineering endeavors to search for the appropriate short-term design case. This method makes 

it possible to estimate the long-term extreme response without conducting a full long-term analysis, 

which is especially beneficial for complex structures.  

To an extent, a simplified FLM can guarantee both accurate and computationally efficient results 

because not all of the conditions contribute to the long-term extreme value distribution [13]. It is 

therefore necessary to assess whether the environmental conditions yield significant contributions; if 

not, they could be disregarded. By determining an appropriate range for the environmental parameters, 

e.g., wind velocities, wave heights and peak periods, significant reduction of computational times can 

be achieved.  

Most of the research so far is focusing on wave induced load effects for offshore structures, while 

there exist some studies on combined wind and wave load. This paper addresses a very complex 

structural response problem, i.e., a three-span suspension bridge with two floating pylons subjected to 

combined wind and wave loading. Three environmental parameters are considered, namely, the mean 

wind velocity, the significant wave height and the peak wave period. Due to their computational 

efficiency, frequency domain methods are normally the first choice for obtaining the structural 

response required for long-term extreme value analyses. The accuracy of the simplified FLM, ECM 

and IFORM is validated through a comparison with the results applying the FLM. The results show 
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that the simplified methods provide adequate results and can thus be used for predicting the wind- and 

wave-induced extreme load effects in this new bridge concept.  

The time domain simulations presented demonstrate that nonlinearities constitute a difference of 

approximately 20% in the extreme values of the bending moment due to vertical deformation at the 

most important position along the girder. This means that frequency domain approaches may 

underestimate the long-term extreme response. However, time domain simulations can be very time 

consuming, even by applying the ECM or IFORM. Therefore, a computationally efficient approach is 

proposed to predict the long-term extreme response values based on the combined frequency and time 

domain simulation results and the use of IFORM and ECM. The idea of using IFORM arises from the 

observation in the case study that the search for the design point converges quickly and most of the 

iterations are located in a small area near the design point. Thus the domain of environmental 

parameters can be divided into a frequency domain region and time domain region. Time domain 

simulations are utilized only as the iteration is performed in the time domain region. The time domain 

region constitutes only a small percentage, which is the key to avoid tremendous computational time.  

2. Dynamic response of a cable-supported bridge with floating pylons  

 

Fig. 1. Three-span suspension bridge with two floating pylons. Illustrated by Arne Jørgen Myhre, Statens 

vegvesen 

Fig. 1 shows a three-span suspension bridge with two floating pylons traversing Bjørnafjorden in 

Norway. The main cables are supported by two fixed pylons at each end of the bridge and two floating 

pylons in the middle. Similar to a tension leg platform, the bottom part of each floating pylon is 

moored by four groups of tethers that provide large stiffness coefficients for the heave, pitch and roll. 
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The water depths at the left and right floating pylons are 550 m and 450 m, respectively. The dynamic 

behavior of the bridge can be simulated through both time and frequency domain approaches [16, 17].  

2.1 Multi-mode frequency domain approach 

Since multi-mode approaches can consider aerodynamic coupling effects among the modes, they 

demonstrate better performance in predicting the buffeting responses of bridges relative to 

conventional mode-by-mode approaches [18, 19]. A cable-supported bridge with floating pylons 

experiences both wind and wave action, and the associated equation of motion can be written in the 

frequency domain as follows: 

 ( ( )) ( ) ( ( ) ( , )) ( ) ( ( , )) ( ) ( ) ( )
Buff waves h s h ae s h aeV V                

η η η Q Q
M M G C C C G K K K G G G  (1) 

Here, 
η

G is the Fourier transform of the displacement response; sM , sC  and sK  are the generalized 

mass, damping and stiffness matrices, respectively; aeC and aeK  denote the generalized aerodynamic 

damping and stiffness matrices; hM  and hC  are the generalized hydrodynamic mass and damping 

matrices; hK  is the hydrostatic restoring fore; 
BuffQ

G  is the Fourier transform of the wind force on the 

girder; and 
waveQ

G  is the Fourier transform of the first-order wave force on the pylons. The second-order 

wave forces are not considered in the paper since they are of minor importance for section forces in 

the cable-supported bridge with floating pylons [17].  

The frequency domain approach mainly includes two steps: (1) the modal analysis of the structure, and 

(2) the modeling of the aerodynamic and hydrodynamic actions using generalized coordinates.    

2.1.1 Structural modal analysis 

The modal analysis is performed following a static analysis, wherein time-invariant mean wind forces 

are imposed upon the bridge. In addition, the added mass when the frequency goes to infinity and the 

hydrostatic restoring stiffness are added into the structural mass and stiffness matrices, respectively, 

since these effects will substantially alter the natural modes and frequencies. Consequently, fewer 

modes are required, and some computational time can be saved. 
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The deformation along the girder, pylons and pontoons for each natural mode must be applied for the 

calculations of the generalized wind and wave actions. 
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where n ,  , , , , ,x y zn x y z     represents three translations and three rotations of  the girder and 

pylons for each mode. The positive directions of the displacements along the girder, pylons, and 

pontoons are shown in Fig. 2 and 4. Not all the displacements are necessary for the girder since only 

the drag force, lift force and torsional moment along the girder are considered in this case study.  

2.1.2 Wind actions in generalized coordinates 

(1) Aerodynamic self-excited forces 

  

Fig. 2 Aerodynamic forces acting on a bridge deck cross-section  

The self-excited forces acting on a bridge deck cross-section are commonly represented by the 

aerodynamic derivatives developed by Scanlan and Tomko [20]. The self-excited forces on a bridge 

deck for single-frequency harmonic motion can be expressed as follows: 

 ( ) ( )ae aeK K q C u K u   (3) 

The positive directions of the forces and moment are shown in Fig. 2. The displacements are positive 

in the same directions as the corresponding forces. The aerodynamic damping matrix aeC  and the 

aerodynamic stiffness matrix aeK  contain 18 aerodynamic derivatives, namely, 
*

nP , 
*

nH  and *

nA , 

 1,2,...,6n , which represent functions of the reduced frequencies of motion with ( ) /K B V : 

 

* * * * * *
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   

C K   (4) 
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Here, V represents the mean wind velocity, ρ is the air density, and B is the width of the girder. The 

elements of the generalized aerodynamic stiffness and damping matrices 
aeC  and aeK  may then be 

calculated as follows [21]: 

 

(ae)

(ae)

( , ) ( , )

( , ) ( , )

T

nm n ae m
girder

T

nm n ae m
girder

C V V dx

K V V dx
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







φ C φ

φ K φ
  (5) 

(2) Buffeting forces on the girder 

The density of the air is assumed to be 1.25   kg/m3, and the cross-spectral densities of the 

horizontal along-wind velocity component u and vertical velocity component w at the points i and j are 

assumed as follows: 
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  (6) 

Here,   is the roughness coefficient at the site, assumed to be 0.0031; and x is the distance between 

the two points considered. The vertical curvature of the girder is neglected by using the height at the 

middle of the bridge as reference for the wind load of the girder.  

The elements in the cross spectral density matrix of the generalized wind actions can be written as 

follows: 

 1 2 1 2              ( ) ( )
buffnm

T T

n q v q mS x x dx dx Q
φ B S B φ   (7) 
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B S  

Here, qB is the wind force transfer function. D denotes the height of the girder. 
DC , LC  and MC  are 

the mean values of the drag, lift and torsional moment force coefficients on the girder; and DC , LC   and 

MC   are their derivatives with respect to the angle of attack. 
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2.1.3 Wave actions in a generalized coordinate system 

(1) Radiation force 

When a floating structure oscillates from the effects of waves or within still water, it will generate 

outgoing waves, thereby resulting in oscillating fluid pressures on the body surface [22]. The 

integrated hydrodynamic pressures are identified as the radiation force, which consists of the added 

mass 
hM  and the damping hC :  

 (H) ( ) ( )se h h  F M u C u   (8) 

When the oscillation frequency   goes to infinity, the damping converges to zero while the added 

mass becomes constant and frequency independent. 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
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  (9) 

( )h M  is added into the structural mass matrix as discussed in section 2.1.1. Upon considering the 

frequency-dependent part only, the elements of the generalized hydrodynamic added mass and 

damping matrices can be calculated as follows: 
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  (10) 

Here,  1,2i  refers to the two pylons. 

(2) First-order wave excitation forces 

The irregular short-crested wave spectrum is a function of both the frequency and the wave direction: 

 ( , )= ( ) ( , )S S D        (11) 

Here ( )S  is the unidirectional wave spectral density and ( , )D    the directional distribution. The 

directional function for locally generated sea states is commonly approximated as frequency 

independent. The Jonswap spectrum is then used to estimate the unidirectional wave spectral density 

and the cos-2s distribution [23] for directional spreading: 
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Here, 
sH  and 

p  denote the significant wave height and peak wave frequency, respectively; s is the 

wave directional parameter;   is the non-dimensional peak shape parameter and is equal to 2.05 in 

this case study; and   is the spectral width parameter: 

0.07   for 

0.09   for 

p

p

 


 


 



 

The auto- and cross-spectral densities of the first-order wave excitation force in each of the six 

directions can be written as follows: 

 (1) (1)'

p S d


 S T T   (13) 

The transfer function (1) ( , ) T  depends only upon the geometry of the floating structure; thus, 

(1) (1)

1 2( , ) ( , )   T T . Here, the subscripts 1 and 2 refer to the first and second pylons instead of the 

force components.   

The elements in the generalized first-order wave action spectral matrix can be expressed as follows: 

 1 1

2 2

 ( ) ( )

 ( ) ( )
nm

T

pn m

p

pn m

S
    

     
       

S 0φ x φ x

S0φ x φ x
  (14) 

Here, 1x  and 2x  refer to the positions of the two pylons. The distance between the two pylons is 

approximately 1385 m, and thus, it is reasonable to ignore the cross-spectral densities of the wave 

force between them for short-crested waves. 

2.1.4 Response in Cartesian coordinates 

The total generalized system matrices are established by summing the contributions from the bridge 

with the girder-wind interactions and the pylon-water interactions. These matrices are then used to 

establish the generalized frequency domain transfer function ( )H : 

 2 1

0 0 0( ) ( ( ) ( ) ( ))h h ae aei          H M M C C C K K   (15) 
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The spectral response matrix can be conveniently obtained via the transformation from a generalized 

into a Cartesian coordinate system: 

 2( , ) ( ) ( )( ) ( ) ( )T T

u buff p p      S x φ x H S S S H φ x   (16) 

2.2 State-space time domain approach 

The equation of motion in the time domain can be written as follows: 

 (1)(t) ( ) ( ) ( ) (t) (t) (t) (t)

HydroAero

s s s h mean Buff se WA Radt t       

FF

M u C u K K u F F F F F   (17) 

Here, 
sM , 

sC  and 
sK  symbolize the still-air mass, damping and stiffness matrix, respectively, and u 

represents the degrees of freedom of the finite element model. FAero represents the wind actions, which 

consist of a time-invariant component meanF  due to the mean wind velocity, a dynamic component BuffF  

due to turbulence in the wind field and self-excited forces (t)seF generated by the motion of the girder. 

FHydro represents the wave actions, which consist of the radiation forces RadF  induced by the motion of 

the submerged part of the pylons, the hydrostatic restoring stiffness hK , and the first-order wave 

excitation forces 
(1)

WAF . 

2.2.1 Radiation forces in the time domain 

By applying an inverse Fourier transform to Eq. (8), the radiation forces can be expressed in the time 

domain as follows:  
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Here, (t)h  is the inverse Fourier transform of ( )H  (i.e., ( ) ( ) ( )h hi    H m c ). 

The relationship between the output (radiation force) and input (velocity) in Eq. (18) can be expressed 

as a state-space model that has previously been described in detail in [24]: 
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Here, 
( )Rad

ijz is the radiation force in ith direction induced by the motion in jth direction. X is the state 

vector and updated at each time step. 
(H)

cD , 
(H)

cE  and 
(H)

cQ  are different among each of the 6 6  state-

space models, and they can be determined through the least-square curve fitting of the transfer 

functions defined by the added mass and damping coefficients. 

 

 'ˆ    arg min ( ) ( , )ij l ij l

l

H H i
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sampling points.  

2.2.2 Aerodynamic self-excited forces in the time domain 

By applying an inverse Fourier transform to Eq. (3), the self-excited forces per unit length in the time 

domain can be expressed as a convolution integral as follows: 

(t) (t ) ( )d  



 q f u  

Similar to modeling the radiation forces, the transfer function presented above can be expressed as a 

state-space model [25-28]. After integrating the distributed self-excited forces by applying the 

principle of virtual work and then introducing the state-space model yields the following expression 

for the nodal forces [28, 29]: 
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where 
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The matrix N(y) includes the shape functions, and L refers to the length of the beam element.  
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The unknowns a1, a2, al+3 and the value of dl in the rational function can be obtained through the least-

square curve fitting of the experimental data of the aerodynamic derivatives.  

2.2.3 Wind and wave excitation forces 

The mean and buffeting forces attributable to the mean and turbulent wind actions, respectively, are 

calculated using the quasi-steady theory [30] when the aerodynamic admittance is neglected. 

Assuming that the fluctuating flow components ( , )u x t  and ( , )w x t  and the structural velocity are small 

relative to the mean wind velocity V, the linearized wind-induced forces can be defined as follows: 
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F F   (23) 

At the peaks of the turbulent wind velocities, the higher-order terms can significantly contribute to the 

wind loading and thus to the load effects in certain situations. The buffeting forces are modeled using 

the following expression to investigate the influences of nonlinear terms: 
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  (24) 
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For irregular waves, the first-order forces can be obtained by summing the contributions from all of 

the frequency components in all of the directions using the following well-known expression [31]: 

 

   (1) (1)
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  (25) 

Here, k is the wave number and  0 2mn   is a uniformly distributed random phase angle. 

3. Long-term extreme value prediction methods 

The FLM, ECM and IFORM are three of the most popular methods that are utilized to determine the 

characteristic values of long-term extreme load effects on offshore structures due to wind and wave 

action. However, as the ECM and IFORM are approximate approaches, their accuracies must be 

verified via the FLM. 

3.1 Full long-term method and simplified FLM 

In principle, the FLM approach is the most accurate for determining extreme load effects for design 

checks. The cumulative distribution function (CDF) of the extreme value ˆ ˆ ( )X X T , that is, the 

extreme value over a long-term period T, can be expressed as the integral of the short-term response 

over all possible environmental conditions [3]: 

  ˆ ( ) exp ( , , ) ( , , )
s p

X s p s p s pX V H T
F T v h t f v h t dvdh dt         (26) 

Here, X


 denotes the average  -upcrossing rate for a short-term environmental condition. For a zero-

mean, stationary Gaussian process, X


 can be written as follows:  

 
2

2

( , , )
( ) exp( )

2 ( , , ) 2 ( , , )

s pX

X

X s p X s p

v h t

v h t v h t

 
 

 

     (27) 

where the standard deviations X  and 
X

  for long-term situations are functions of the environmental 

conditions. Substituting Eq. (27) into Eq. (26), the long-term extreme value distribution can be 

expressed as follows: 
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  
     (28) 

As mentioned earlier, not all the conditions contribute to the extreme value distribution. In the 

simplified FLM, only the environmental conditions that yield significant contributions are accounted 

for. By determining an appropriate range of parameters, the computational times can be significantly 

reduced. The contribution from each environmental condition to the extreme value distribution of the 

load effects is dependent on ( , , ) ( , , )X s p s pv h t f v h t 
, which is the product of the conditional short-term 

extreme values and the probability density function of the corresponding environmental condition. 

3.2 Inverse first-order reliability method 

Unfortunately, since the FLM must account for the contributions from all possible short-term states, it 

is not the most economical method from a computational perspective. The IFORM is a relatively 

efficient approach that is utilized to achieve the extreme response corresponding to a given exceedance 

probability. A limit state function is defined as follows: 

 crit crit( , , , ; ) ( , , )d s p d s pg X V H T X X X V H T    (29) 

Here 
dX , which is a random variable, is the short-term extreme value. Failure refers to an event when 

the critical response critX  is exceeded by dX , and thus, the failure probability can be approximated as 

follows [3]: 

 

crit

ˆcrit crit , ,

( , , , ; ) 0

( ) 1 ( ) ( , , ) ( , , )
d s p

d s p

f s p s p s pX X V H T

g X V H T X

p X F X f v h t f v h t dvdh dt d 


         (30) 

Here, three environmental parameters are considered: the mean wind velocity V, the significant wave 

height Hs and the peak wave period Tp. For complex structures experiencing both wind and waves, 

other important parameters, e.g., the wind velocity, turbulence intensity and the wind and wave 

directions, must also be considered and will consequently be studied in future investigations. Directly 

solving Eq. (30) is not efficient, and therefore, this integral is transformed to a U-space consisting of 

independent, standard Gaussian variables 1 2 3 4( , , , )u u u u . This can be accomplished by for instance using 

the so-called Rosenblatt transformation scheme [32]. 
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After transformation, the failure probability can be expressed as follows: 

 

crit

crit

( , , , ; ) 0

( ) ( )

d s p

f

g X V H T X

p X d


     U
u u   (32) 

where U
 is the joint probability density function for the Gaussian variables. 

The IFORM assumes that the limit state function crit( ; ) 0g X u  in the U-space can be approximated 

linearly via a first-order Taylor expansion. Prior to this assumption, there is no loss of accuracy. 

Furthermore, to guarantee that the first-order approximation will introduce the least error, the limit 

state function is expanded at the most probable point (MPP), which provides the greatest contribution 

to the failure probability. In the U-space, the MPP is the point on the limit state surface with the 

minimal distance,  , from the origin.  The failure probability under the assumption of first-order 

expansion can be written as follows [33]: 

( )fp    

As the annual probability of exceedance is given, a hypersphere with a radius  can be determined. 

The purpose of the IFORM is to find the design point that yields the largest response on the 

hypersphere. 

Given, fp ;  

find, crit max( ( ))dX X u  subject to u  where 
1( )fp    

To perform the IFORM based on combined frequency domain and time domain simulation results, the 

U-space is divided into frequency domain region and time domain region, as shown in Fig. 3. During 

each iteration, it should firstly be determined in which region the condition 
k

u is located and then the 

following recursive formula can be used to achieve the design point [2]: 

 1 (g( ))

(g( ))

k
k

k
 

 


u
u

u
   (33) 
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Here, the notation is used for the gradient. The design point is obtained as 
1 1k k k   u u u , 

where   is the convergence tolerance. A back-tracking approach [34, 35] is applied to modify the 

updated condition 
1k

u  in order to avoid the iteration conditions oscillating among several conditions 

without convergence because 
1k

u  calculated from Eq. (33) is not guaranteed to give a sufficient 

decrease of limit state function. See [34, 35] for further details. 

 

Fig. 3 Algorithm of the IFORM based on the combined frequency domain and time domain simulation results. 

FD and TD represent frequency domain and time domain, respectively. 

3.3 Environmental contour method  

If it is assumed that the conditional probability density function of the short-term extreme value in Eq. 

(30) approaches a Dirac delta function, then the random variable dX can be replaced with its median 

value 
50%

dX , which is a deterministic value, and the integral over   can be removed [14] as follows: 

 
50%

crit

ˆ

( ( , , ); ) 0

( ) 1 ( ) ( , , )

d s p

f crit crit s p s pX

g X V H T X

p X F X f v h t dvdh dt



      (34) 
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This assumption represents the fundamental principle of ECM, which is clearly a simplification of the 

IFORM. Here, the probability of exceeding a given response level is independent of the response 

quantity and can be estimated simply from the joint distribution of the environmental conditions. 

Similar to Eq. (32), the failure probability above can be rewritten in standard Gaussian space as 

follows: 

 
50%

crit

ˆ

( ( ); ) 0

( ) 1 ( ) ( )

d

f crit critX

g X X

p F f d 


    U

u

u u   (35) 

The q-annual probability contour surface can be determined in the U-space by applying the IFORM. 

The only difference in this process is that the coordinate representing the variability in the short-term 

extreme response 4u  is assumed to be zero. By identifying the largest median response along the 

obtained contour surface, an estimate of the long-term extreme value distribution can be obtained. 

When a random variable is replaced with a deterministic value, the corresponding long-term response 

will be non-conservative. Various approaches can be employed to compensate for the omitted 

variability in the response [10]. For instance, a higher percentile is selected as the short-term 

characteristic rather than selecting a median extreme response. Using a correction factor is another 

approach to compensate for the inaccuracies introduced by disregarding the uncertainty of the short-

term extreme responses. The factor is structure-dependent. Studies have shown that it is in the range 

from 1.1 to 1.3 when calculating the load effects corresponding to an annual exceedance probability of 

10-2 for offshore structures [1, 14, 36]. It is however important to be aware of that either selecting a 

higher percentile or using a correction factor is an approximation.  The basic principle of the ECM is 

as follows: 

Given, fp ;  

    find, max( ( ))p

crit dX X u , where p is a constant larger than 50%;  

                          or find, 50%(1.1~1.3) max( ( ))crit dX X  u , subject to 
1( )fp u   

In a weakly nonlinear dynamic problem, it is reasonable to assume that the most important condition 

on the environmental contour surface and the correction factor are the same. To avoid tremendous 

time domain simulations, the most important condition and the correction factor can be determined 
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based on frequency domain simulation results. Thus, only the most important condition will be 

simulated in time domain by considering the nonlinear properties.  

4. Numerical results 

A comprehensive finite element model of the bridge (displayed in Fig. 4) is used for the dynamic 

analysis (see [37] for details of the bridge model). Each span of the bridge has a length of 1385 m and 

the floating pylons are approximately 200 m above the mean water level and have a draft of 65 m. The 

girder, main cable, tethers, hangers and pylons are modelled using the beam elements in ABAQUS 

[38]. The geometry of the submerged part of the pylon in WADAM program (Wave Analysis by 

Diffraction and Morison Theory) [39] is modelled in an identical manner to the actual one instead of 

being simplified to a beam. The user elements, developed as a one-node element in the nodes of the 

girder and the gravity center of the submerged part of the floating pylons as illustrated by the red 

markers in the figure, are used in time-domain analysis to simulated the aerodynamic self-excited 

forces and radiation forces which are represented by state space model.   

 

Fig. 4 Finite element model of the three span suspension bridge with two floating pylons 

4.1 Long-term descriptions of the wind and wave conditions 

Since measurements of the environmental conditions in Bjørnafjorden are currently not available, a 

scaled dataset from the North Sea is used in this paper, wherein the wave height and period are divided 

pylon no.1 

pylon no.2 

pylon no.4 

pylon no.3 

x 

y 
z 

model in WADAM 

×: user element  
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by 2.5 and 2.5 , respectively. The marginal distribution of V and the conditional distribution of Hs 

given the mean wind velocity are presented using a  

model. Meanwhile, the conditional distribution of Tp given both the mean wind velocity and the 

significant wave height is fitted to a lognormal distribution. Table 1 lists the assumed parameters [40, 

41].  
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Table 1 Parameters for the marginal distribution of V and the conditional distributions of Hs and Tp 

V  V      
1a  2a  3a  1b  2b  3b  

2.209 9.409 -0.255 1.0 2.136 0.013 1.709 1.816 0.024 1.787 

1e  2e  3e  1f  2f  3f  1k  2k  3k  

8.0 1.938 0.486 2.5 3.001 0.745 -0.001 0.316 -0.145 

4.2 Wind- and wave-induced responses 

The variations in the response of the floating suspension bridge under various combinations of wind 

velocity, wave height and peak period are shown in Fig. 5. At a specified wave period, the wave 

excitation force, wind buffeting force and aerodynamic damping represent the three primary 

parameters that dominate the section moment in the girder. Sea states with greater significant wave 

height induce larger wave excitation forces and correspondingly larger section moments. However, the 

structural response is not always greater under the influence of stronger winds because the 

aerodynamic damping can also increase with the mean wind velocity. The trend depends on the ratio 
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of the contributions to the responses from wind and wave loads. Wind is the primary contributor at 

small wave heights, and the section moment increases with the wind velocity. In contrast, the section 

moment initially decreases at greater wave heights and then increases with increasing wind velocities. 

In addition, the variation in the section moments depends significantly on the wave period. The peaks 

in the bending moment due to vertical deformation are located within the wave period range from 3 s 

to 8 s, which contains several vertical natural modes. 

 
                                      (a) Tp=8 s                                                         (b) V=20 m/s 

Fig. 5  Standard deviation (STD) of the bending moment due to vertical deformation 

4.3 Comparison of short-term extreme values obtained using the time and frequency 

domain methods 

Both the multi-mode frequency domain method and the state-space time domain method can be 

employed to numerically simulate the response of a bridge within a linearized system. Meanwhile, the 

dynamic behavior of a bridge is normally simulated in the time domain for a nonlinear system in 

consideration of the geometric nonlinearity and nonlinear buffeting forces.   

Time series of the stochastic horizontal and vertical wind velocity components along the bridge at 

V=30.7 m/s and the wave elevation for Hs=4.8 m and Tp=8 s are generated through Monte Carlo 

simulations (Figs. 6 through 8). The average co-spectral density of the 10 generated turbulent wind 

velocity realizations at points with a separation of 110 m and the average auto-spectral density of the 

wave elevation at the position of pylon no.2 are also compared with the target spectral densities, the 

results of which indicate a good match.  
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Fig. 6 (a) Time series of the horizontal wind component along the bridge at V=30.7 m/s. (b) Comparison of the 

average co-spectral density of the ten generated horizontal turbulent wind velocity realizations and the target 

co-spectral densities at two points with a separation of 110 m 

 

Fig. 7 (a) Time series of the vertical wind component along the bridge at V=30.7 m/s. (b) Comparison of the 

average co-spectral density of the ten generated vertical turbulent wind velocity realizations and the target co-

spectral densities at two points with a separation of 110 m 

 

Fig. 8 (a) Time series of the wave elevations along the bridge at Hs=4.8 m and Tp=8 s. (b) Comparison of the 

average auto-spectral density of the ten simulated realizations and the target spectral densities at the position of 

pylon no.1. 
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Fig. 9 Time series of the bending moment due to vertical deformation obtained from linear and nonlinear 

simulations 

Fig. 9 displays the time series of the bending moment due to vertical deformation obtained using a 

linear and a nonlinear system. Some of the bending moment peaks from the nonlinear analysis are 

larger than those from the linear analysis. The average conditional exceedance rate (ACER) method 

[42] is used to process the time series history of the section force and calculate the short-term extreme 

value distribution: 

  ( ) exp ( )X k shortF NT      (39) 

where ( )k   denotes the average exceedance rates conditional on the k-1 previous non-exceedances of 

the threshold  , N  is the average number of observed values per unit of time, and shortT  is the period 

duration for a short-term case. 

The mean exceedance rate ( )k   in the tail of a distribution is assumed to be dominated by a function 

of the form   1( )exp ( ) ( b)cq e b        [42], where 1  is an appropriately chosen tail level. The 

four parameters e, b, c and q can be obtained via the curve fitting of the expression to the data obtained 

from the time series histories by utilizing the Levenberg-Marquardt least squares optimization method. 

Fig. 10(a) and (b) show satisfying curve fitting results for the 10 realizations of the section forces in 

one hour for both linear and nonlinear simulations using the ACER method.  
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              (a) ACER curve fitting results for the linear 

analysis 

           (b) ACER curve fitting results for the nonlinear 

analysis 

Fig. 10 Average exceedance rates of the bending moment. CI  and 
fitCI  are the 95% confidence levels and 

their corresponding curve fitting results, respectively 

 
Fig. 11 Comparison of the short-term extreme value distributions obtained using the linear and nonlinear 

methods 

The short-term extreme value distribution can also be calculated based on the frequency domain 

results as follows: 
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  (40) 

Fig. 11 shows a comparison of the short-term extreme values obtained using the frequency domain 

method and the linear and nonlinear time domain methods. The ‘linear time domain method’ refers to 

the approach that does not consider nonlinear effects in the time domain simulations. It is only 

employed in the comparison with the frequency-domain results in this section to verify that the time- 
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and frequency-domain results corresponds for the linear system. The nonlinear effects are included in 

the time-domain analysis when performing the ECM and IFORM. Only very small differences exist 

between the linear time domain results and the frequency domain results; these differences were 

probably induced by the variability in the generated stochastic wind and wave fields or from the curve 

fitting of the mean exceedance rate. The comparison between the results of the frequency domain 

analysis and those of the nonlinear analysis suggests that nonlinearities can constitute a difference of 

approximately 20% in the bending moment due to vertical deformation. This means that the frequency 

domain method can underestimate the extreme value significantly. However, the time domain 

approach is very time consuming in an FLM. Therefore, three efficient alternatives are introduced 

herein to analyze the long-term extreme values of the bending moment due to vertical deformation, i.e., 

the simplified FLM, the ECM and the IFORM. 

4.4 Simplified full long-term method 

  
Fig. 12 Contribution from each environmental condition to the long-term extreme value distribution 

Fig. 12 shows the contribution from each environmental condition to the long-term extreme value 

distribution. The results have been obtained applying the computationally efficient frequency-domain 

method. The colormap represents the product of the average  -upcrossing rate for a short-term 
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environmental condition and the probability density function of the corresponding environmental 

condition, ( , , ) ( , , )X s p s pv h t f v h t 
. The threshold  is selected to be equal to 50.43MNm. As shown in 

Fig. 12, only the wind velocities ranging from 25 to 35 m/s, the wave heights ranging from 3 to 7 m 

and the wave periods ranging from 7 to 10 s seem to yield significant contributions to the integration 

in Eq. (28). The long-term extreme value distribution for the bending moment, which is based on the 

FLM and the simplified FLM, is displayed in Fig. 13. The results in Fig. 13 confirm that only the 

environmental conditions in Table 2 contributed significantly to the long-term extreme values.  

Therefore, the simplified FLM and FLM can predict equally accurate extreme values, and the former 

can save tremendous computational time. The simplified FLM based on the time-domain simulation 

results can be performed by assuming that the important region keeps the same when the nonlinear 

effects are included. It can also be performed by selecting an environmental condition inside of the 

important region determined based on the frequency-domain results and calculating its contribution to 

the long-term extreme load effects. The adjacent environmental conditions are then simulated and the 

corresponding contributions are added until the long-term extreme value converges. However, the 

number of environmental conditions required is still too large for practical purposes if the conditions 

are simulated in the time domain.  

Table 2 List of environmental conditions that yielded significant contributions to the long-term extreme values 

based on frequency-domain results 

Methods 
V  Hs  Tp  

Range Interval Range Interval Range Interval 

FLM 1 – 40 m/s 1 m/s 1 – 10 m 0.3 m 1 – 15 s 0.3 s 

Simplified FLM 25 – 35 m/s 1 m/s 3 – 7 m 0.3 m 7– 10 s 0.3 s 
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Fig. 13 Comparison of the distributions of the extreme bending moment in 100 years obtained using the FLM 

and the simplified FLM as defined in Table 2  

4.5 Environmental contour method  

(1) ECM based on the frequency domain results  

Fig. 14 shows the environmental contour surface for 100-yr-return environmental conditions. The 

short-term extreme value distribution for 63×63 cases on the surface are calculated based on Eq. (40). 

The red point in the figure shows the position of the case that yields the largest median extreme value 

of the bending moment due to vertical deformation. The blue lines represent the slice of the contour 

surface at V=30.67 m/s and Tp=8 s.  

The short-term extreme value distribution for the most important case is compared with the full long-

term extreme value distribution (Fig. 15). The correction factor   is defined as the ratio between an  

 

Fig. 14 Environmental contour surface for 100-yr-return period.. The • symbol denotes the most important 

condition on the contour surface, and the  symbol represents the design point found in the IFORM 
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Fig. 15 Comparison of the short-term and full long-term extreme value distributions obtained from the ECM 

annual probability value of 10-2 based on the FLM (50.43 MNm) and the median short-term extreme 

value (45.05 MNm):  

50.43
1.12

45.05

MNm

MNm
    

The 10-2 annual probability value is obtained from the long-term extreme value distribution as the 

CDF is (1-10-2)100=0.366.   

(2) ECM based on time domain simulations 

Evaluating many environmental conditions along the contour surface requires too much computational 

effort when it is necessary to simulate the response in time domain. Fig. 9 shows the dynamic response 

of the structure when nonlinear effects are included and disregarded. The curves are similar in the 

sense that it is only the peak values that are slightly changed while the overall characteristics of the 

response remain the same when including the nonlinear effects. This indicates that the system is only 

weakly nonlinear, which makes it reasonable to assume that the location of the most important region 

does not change significantly. Ten realizations of the most important case, which were discovered 

based on the abovementioned frequency domain results, are therefore simulated using the time domain 

method. Since this time domain approach represents a weakly nonlinear dynamic problem, it is 

reasonable to assume that the most important case on the environmental contour surface and the 

correction factor are the same as those when considering nonlinear effects. The curve fitting results of 
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the ACER function and the short-term extreme value distribution in consideration of nonlinearities 

have been shown in Fig. 11. The median extreme value for the 1-h extreme value is 54.3 MNm. 

Multiplying this value by  =1.12, which is assumed to be the same for the linear and nonlinear 

systems, the 100-yr extreme value is found to be 60.8 MNm.  

4.6 IFORM  

(1) IFORM based on the frequency domain results 

The ECM ignores the variability in the short-term extreme values and assumes that the standard 

Gaussian variable corresponding to the short-term extreme value is zero. The value of this Gaussian 

variable fluctuates for different dynamic problems, and it is usually larger than zero. Therefore, the 

design case found using the IFORM (V=28.7 m/s, Hs=4.57 m and Tp=8 s) is usually located on the 

inside of the contour surface, and it is represented by a star in Fig. 14. With an increasing importance 

of the variability in the short-term extreme value, the design point will be located increasingly toward 

the interior of the contour surface. The accuracy of the predicted extreme bending moment based on 

the IFORM (51.54 MNm) is validated through a comparison with the FLM (50.43 MNm). The 

difference for this case is: 

51.54 50.43
2.2%

50.43


 . 

(2) IFORM based on the combined frequency and time domain results  

Both ‘exact’ and approximate approaches can be used to implement the IFORM based on the 

combined frequency and time domain simulation results. With the ‘exact’ approach, the time domain 

simulations are processed during each iteration of searching for the MPP to calculate the gradient of 

the limit state function g( )k
u . Assuming that this process requires 8 iterations before the IFORM  
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 Fig. 16 Iterations of the IFORM based on a) the frequency domain results and b) the combination of the 

frequency and time domain results 

converges and that the time domain simulations require 12 h for each iteration in this case study, the 

‘exact’ approach needs 96 h to determine each response parameter since the maximum of different 

parameters don’t necessarily occur at the same time, e.g., the section force in the girder or the axial 

force in the cables or tethers. In the approximate approach, the time domain simulations are 

accomplished prior to the iterations in the IFORM. However, not all of the potential environmental 

conditions must be simulated within the time domain approach because most of the iterations are 

concentrated in a very small space (28.5<V<29.1 m/s, 4.18<Hs<4.93 m and 7.5<Tp<8.4 s), as 

indicated by the frequency domain results (blue area in Fig. 16(a)). Considering that this is a weakly 

nonlinear dynamic problem, the design case will not change significantly. Therefore, only the 

environmental conditions around the design conditions are simulated in the time domain approach in 

consideration of nonlinearities (i.e., 28<V<30 m/s, 4<Hs<6 m and 7<Tp<9 s), as shown by the blue 

space in Fig. 16(b). During each iteration, the gradient of the limit state function is calculated based on 

the frequency domain method if the condition is located in the green area. When the iteration enters 

the blue space, the gradient will be calculated using the linear interpolation of the pre-calculated time 

domain results. Thus, the time domain simulations can be conducted in parallel instead of in series as 

in the ‘exact’ approach. Furthermore, it is unnecessary to rerun the time domain simulations when 

predicting the long-term extremes values for different response parameters. 
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In this case study, wherein the extreme value of the bending moment due to vertical deformation in the 

bridge girder is predicted, the first 2 iterations are processed based on the frequency domain results 

while the final 6 iterations are accomplished based on the time domain results. The design condition 

obtained is V=28.9 m/s, Hs=4.63 m and Tp=8.04 s, which is in the time-domain region and is very 

close to that found using IFORM based on the frequency-domain results. The characteristic 100 yr 

extreme value is 
critX =62.0 MNm. Comparison to the results obtained based on the other methods are 

listed in Table 3. 

Table 3 Comparison of the 100 yr extreme values of the bending moment based on different methods 

Method 
Extreme response value based on  

FD results (MNm) 

Extreme response value based on 

FD&TD results (MNm) 

FLM 50.43 / 

Simplified FLM 50.26 / 

ECM 49.56~58.57 60.8 

IFORM 51.54 62 

5. Conclusions 

This paper presents a study of multiple efficient approaches, i.e., the simplified FLM, the ECM and 

the IFORM, used to predict the long-term extreme load effects due to combined wave and wind load 

on a cable-supported bridge with floating pylons. This research was conducted because a comparison 

of the results obtained using frequency and time domain approaches revealed that nonlinearities can 

constitute a difference of approximately 20% in the extreme values of the bending moment due to 

vertical deformation at the most important position along the girder. The findings presented herein 

indicate that the structural dynamic response should be solved in the time domain to consider 

nonlinear effects. However, time domain simulations can require tremendous computational times to 

predict the long-term extreme value distribution. 

Relative to the FLM, the simplified FLM can predict equally accurate extreme values while requiring 

approximately 10 times less computational effort. However, the number of environmental conditions 

required is still very large, and thus, the simplified FLM is not an effective choice for this case study if 

the conditions must be simulated in the time domain. 
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The ECM is the most efficient approach. The most important condition on the contour surface for N-

year-return environmental conditions and the correction factor can be obtained based on the frequency 

domain results. It is reasonable to assume that the most important case and the correction factor are the 

same when considering nonlinear effects since this is a weakly nonlinear dynamic problem. 

The IFORM can accurately predict the extreme values of the bending moment with an error of 

approximately 2.2% for this case study based on the frequency domain results. In order to include the 

nonlinear effects and to save computational time, the frequency domain and time domain results are 

combined in the IFORM iterations. The domain of environmental parameters is divided into a 

frequency domain region and a time domain region. Time domain simulations are performed only as 

the iteration is located in the time domain region. Since most of the IFORM iterations are concentrated 

in a very small space that is centered around the design case, the time domain region constitutes only a 

small percentage of the domain, which is the key to avoid tremendous computational time. 

Comparing the performance of these three approximate approaches in the prediction of long-term 

extreme load effects due to wave and wind actions, the IFORM based on combined frequency- and 

time-domain results is most recommended for this particular case. The simplified FLM is not 

recommended since it still requires tremendous time-domain simulations. The ECM requires the least 

time-domain simulations, but the assumption that the design condition and correction factor do not 

change when considering the nonlinearities cannot be proved. Although it is also assumed in IFORM 

that the design condition is in the enlarged time-domain region determined based on the frequency-

domain results, this assumption have been proved satisfied in this case study. 
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