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We have derived an analytical solution for the transient potential drop due to a step function

excitation of a four-point probe on a conducting plate. Similar expressions have already been devel-

oped based on a previous analysis for a conducting half-space. The purpose of this article, however,

is to extend the theory to measurements on conductors of arbitrary thickness and thereby broaden the

practical applicability of the technique. The results are useful for non-destructive measurements of

the conductivity, permeability and wall thickness of metals. Further applications of the technique

include monitoring material loss due to corrosion and measurement of factors that affect the electro-

magnetic properties of materials such as mechanical stress. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975494]

Potential drop (PD) methods are widely established for

materials characterization,1 non-destructive measurement of

cracks,2 and detection of corrosion.3 Measurements are com-

monly made using an arrangement of four pin electrodes in

contact with a conducting material. An electrical current is

injected via two terminals, and the resulting potential drop is

measured as the differential voltage between two voltage

electrodes. Probes can be either portable, where electrical

contact is achieved using spring-loaded pins, as shown in

Fig. 1, or permanently attached to the specimen, for example,

by spot welding. Although we are mainly motivated by

measurements on macroscopic specimens and structures, the

technique also finds applications in semiconductor character-

ization using special probes of sizes approaching the

nanoscale.4

Alternating current potential drop (ACPD) measure-

ments are commonly made at frequencies where the electro-

magnetic skin depth is small, meaning that the current flows

in a near-surface layer which results in high sensitivity to

surface-breaking cracks. For this reason, ACPD is often used

as an alternative to the traditional direct current potential

drop (DCPD) method. Furthermore, multi-frequency poten-

tial drop measurements have the advantage of providing

information at different depths in the inspected material.

For example, four-point probe measurements were used by

Saguy and Rittel5 for crack identification in specimens

containing internal cracks. Bowler and Huang12 demon-

strated the use of multi-frequency ACPD for improved con-

ductivity and permeability measurements in homogeneous

plates, in particular, for ferromagnetic materials, for which

conventional eddy current conductivity probes are inaccu-

rate. In addition, Bowler et al.6 showed that the technique is

suitable for model-based measurement of the depth of case

hardening in steel, circumventing the need of calibration.

When pulsed current is used as the excitation source, the

resulting potential drop is a transient signal carrying

information on the variation of electromagnetic properties

with depth. In practice, the technique combines the capabil-

ity of ACPD and DCPD and requires simpler instrumentation

compared to multi-frequency ACPD since the depth-

dependence is contained in a single transient signal that can

be simply captured using a digital oscilloscope. In an earlier

investigation, the transient potential drop method was used

for the evaluation of stress in ferromagnetic steel7 based on

the principles of the magneto-mechanical effect.8

Recently, as a step in the theoretical analysis of the tran-

sient potential drop, analytical expressions were derived for

the time varying response of a four point probe on a homoge-

neous metal half-space.9 The half-space corresponds to an

idealized geometry that extends infinitely in the thickness

direction, as well as in the directions parallel to the surface.

In practical applications, the thickness of the material can

sometimes be ignored, for example, when measurements are

made on plates that are thick compared to the electrode sepa-

ration, and half-space results can be used.10 In this article,

we take into account the thickness of materials by finding

analytical expressions for the transient potential drop of a

four-point probe for the case of a step current being injected

FIG. 1. A four-point probe consisting of spring-loaded pins in contact with a

plate of thickness a.
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into a metal plate. First, the limiting case of a plate that is

thin compared to the probe length is considered. Then, the

solution is found for a plate of arbitrary thickness.

The time-dependent potential drop of a four-point probe

on a planar surface can be written as

V tð Þ ¼ I0

2pr
F q22; tð Þ�F q12; tð Þ�F q21; tð ÞþF q11; tð Þ½ �; (1)

where r is the electrical conductivity of the material and I0 is

the magnitude of the injected current. For the alternating cur-

rent potential drop, frequency replaces time as the dependent

variable.11 The function F(q, t) represents the surface poten-

tial at a radial distance q from a single current source and qij

represents the distance between electrode contact points on

the surface, as indicated in Fig. 2. The structure of this

expression reflects the approach used to derive the surface

potential drop where the potential due to a single current

injection wire is first found and then the complete four-point

solution is found by the superposition of two current sources

having opposite polarity. An elementary example is the

response due to direct current injected into a conducting

half-space which can be found by using F(q)¼ 1/q, where q
is the standard radial variable in a cylindrical polar coordi-

nate system centered at the injection point.

Finding the response V(t) due to a time-dependent

source requires that we solve Maxwell’s equations for a

time-dependent field. A common approach is to seek a solu-

tion using the Laplace transform

vðsÞ ¼
ð1

0

e�stVðtÞdt; (2)

where the voltage is expressed in terms of the complex fre-

quency parameter s. The time-domain solution of interest

is then found by first solving for the characteristic function

f(q, s) related to the surface field represented by a transverse

magnetic potential for a single point injection and then find-

ing the time dependence by using the Bromwich integral or

lookup tables.

We begin by considering an approximate solution that is

valid when the plate is thin compared to the probe electrode

spacing. This is in contrast to the existing half-space solution

that represents the limit in which the electrode separation is

small compared to the thickness of the specimen.

In the thin-plate regime, the response to a time-

harmonic current source can be expressed by the function14

ftpðq;xÞ ¼ �ik cothðikaÞln q; (3)

whose real and imaginary parts determine the amplitude and

phase of the response to alternating current. Here, a is the

thickness of the plate and k2 ¼ ixlr where x is the angular

frequency of the source and l is the magnetic permeability

of the material. Since ftp depends on q only through the fac-

tor lnq, the potential drop, in the form of a time-harmonic

version of Eq. (1), can be written simply as

vtpð�ixÞ ¼ v0ika cothðikaÞ: (4)

In the limit of low frequency (x! 0) of the injected current,

cothðikaÞ ! 1=ika and the potential drop reduces to v0

which is equivalent to the DCPD result and given by

v0 ¼
I0

2pra
ln

q12q21

q11q22

� �
: (5)

Inversion to the time-domain is done by interpreting the

frequency response as the Laplace transform of the time-

domain impulse response of the system consisting of the

probe in contact with the material. Using the correspondence

s! �ix in the expression for vtp and multiplying the result

by the Laplace transform of the injected current, I(s), give

the following expression for the probe response:

vtpðsÞ ¼ IðsÞv0j
ffiffi
s
p

cothðj
ffiffi
s
p
Þ; (6)

where j2¼ lra2. In the following, I(s) will be expressed on

a normalized form by assuming that I0 is contained in v0. In

the case of an ideal step current excitation, I(s)¼ 1/s which

gives

vtp sð Þ ¼ v0

jffiffi
s
p coth j

ffiffi
s
p� �

: (7)

Although this expression cannot be inverted directly, it can

be expressed in a series form by first writing cothðj ffiffi
s
p Þ as

coth j
ffiffi
s
p� �
¼ 1þ e�2j

ffiffi
s
p� � 1

1� e�2j
ffiffi
s
p ; (8)

and expanding the fraction on the right hand side

1

1� e�2j
ffiffi
s
p ¼

X1
n¼0

e�2nj
ffiffi
s
p
: (9)

The following series expression is then obtained for the

transform of the step response:

vtp sð Þ ¼ v0

jffiffi
s
p 1þ 2

X1
n¼1

e�2nj
ffiffi
s
p

 !
: (10)

The time-domain response can now be obtained by using the

transform pair13

1ffiffi
s
p e�c

ffiffi
s
p
$ 1ffiffiffiffiffi

pt
p e�c2=4t; (11)

where the constant c� 0 and doing a term-by-term inversion

of the expression for vtp(q, s) in Eq. (10), which gives the

result

Vtp tð Þ ¼ v0

ffiffiffiffiffi
j2

pt

r
1þ 2

X1
n¼1

e�n2j2=t

 !
: (12)

FIG. 2. Definition of four-point probe distances on a planar surface.
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Fig. 3 shows the first few terms of the normalized poten-

tial drop. A relatively few number of terms are required in

calculations since the transient decays rapidly towards the

steady state (DC) value and we only require that the late part

of the decay has converged sufficiently towards this value.

Note that in the thin-plate approximation the decay of

the transient is determined only by the material properties

and the plate thickness through the parameter j2¼ lra2 and

is independent of the separation between probes. The probe

parameters appear only in the factor v0, meaning that their

influence on the signal is due to the non-uniform spatial cur-

rent distribution at the surface of the conductor.

When t� j2, the exponential terms in the expression

for Vtp disappear and the voltage decays according to

Vtp tð Þ � v0

ffiffiffiffiffi
j2

pt

r
; (13)

which is independent of the plate thickness since a2 appearing

in j2 is canceled by the 1/a-dependence of v0. Physically,

this represents a short-time regime that corresponds to the dif-

fusion of the fields in the conductor, while the penetration

depth of the fields is small compared to the plate thickness.

As t approaches and exceeds the value of the parameter j2,

the exponential terms, representing multiple field reflections

from the bottom and top surfaces of the plate, are no longer

negligible and combine to form the characteristic decay

towards the steady value.

It can be noted that the thin-plate approximation is

equivalent to a far-field approximation to the fields11 since

the imposed requirement is that the distance between cur-

rent injection and voltage probe is large compared to the

plate thickness. The far-field approximation, which is valid

in regions a few skin depths away from the current injec-

tion, holds in the thin-plate approximation since the pene-

tration depth is effectively limited by the plate thickness.

Consequently, the thin-plate formula is valid provided that

the potential is measured at a distance a few times the plate

thickness away from the current injection points. A distance

of more than twice the thickness is usually sufficient for

practical purposes.10

In order to get a transient response due to a plate whose

thickness cannot be considered small compared to the probe

spacing, the following solution can be used for the fre-

quency domain response, expressed by the thin-plate

approximation and additional image summation terms that

take into account both the finite plate thickness and the

electrode separation:14

fp q;xð Þ ¼ �ik coth ikað Þln q

þ
X

n

exp ikanð Þ
an

þ ike2iknaE1 �ik an � 2nað Þ½ �
� �

;

(14)

where a2
n ¼ q2 þ ð2naÞ2. The first term in this expression is

simply the thin-plate approximation treated above.

Proceeding as in the case for the thin-plate approxima-

tion, the time-domain response due to an ideal step current is

sought by replacing every occurrence of ik with �~j
ffiffi
s
p

,

where ~j ¼ lr, and multiplying by I(s)¼ 1/s. The first term

inside the summation can be inverted directly using the

transform pair13

1

s
e�c

ffiffi
s
p
$ erfc

cffiffiffiffi
4t
p
� �

:

For the third and final terms, here denoted f3(s), apply the

following definition of the exponential integral function13

E1 xð Þ ¼
ð1

1

1

u
e�uxdu;

which, after multiplying by 1/s and replacing ik with ~j
ffiffi
s
p

, gives

f3 sð Þ ¼ �
~jffiffi
s
p
ð1

1

1

u
exp �~j

ffiffi
s
p

2naþu an � 2nað Þ½ �
	 


du;

(15)

where the factor e2ikna appearing in Eq. (14) has been

absorbed into the exponential term in the exponential inte-

gral function. Since the integration is with respect to u, the

integrand expression can be inverted using Eq. (11) to get

FIG. 3. Plot of the first three terms appearing in the summation formula for

the transient thin-plate approximation. Also shown is the sum of these terms,

forming the transient step response.

FIG. 4. The transient step responses for different values of the plate thickness

together with the half space solution. In the calculations, a co-linear equidis-

tant probe is assumed with q11¼q22¼ 10 mm, q12¼q21¼ 20 mm and I0

¼ 1 A and material properties lr¼ 100 and r¼ 4 MS/m.
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F3 tð Þ ¼ � ~j2ffiffiffiffiffi
pt
p

ð1
1

1

u
exp � ~j

4t
½2naþ uðan � 2naÞ�2

� �
du:

(16)

Finally, the step response of a four-point probe (Fig. 4)

can now be obtained from Eq. (1) with

Fp q; tð Þ¼
X1

n¼�1
�

ffiffiffiffiffi
~j
pt

r
exp �~j nað Þ2=t
h i

lnqþ 1

an
erfc

ffiffiffiffiffiffiffiffi
~ja2

n

4t

s0@
1
A

�
ffiffiffiffiffi
j
pt

r ð1
1

1

u
exp

j
4t

2naþu an�2nað Þ½ �2
� �

du: (17)

From these results, we can deduce that in the intermedi-

ate regime where the probe size is similar to the material

thickness the decay of the transient response is controlled by

two timescales. One is related to the plate thickness through

the parameter j2 ¼ lra2, which is the same as that found in

the thin-plate approximation. The second is related to the

probe distance, through j2
q ¼ lrq2, which is the characteris-

tic timescale appearing in the half-space solution.

To conclude, a current pulse excitation of a four point

probe in general gives rise to a transient potential drop that

contains information on the variation of electromagnetic

properties with depth in a material. The particular problem

we have considered is that of predicting transient potential

drop signals due to a step current excitation on homogeneous

conducting plates, while considering the effects of finite

plate thickness. The technique and its analysis have potential

for use in materials characterization and in monitoring mate-

rial degradation due to corrosion for example.

Future work includes the analysis of transient signals for

measurements made on materials where the conductivity and

permeability vary with depth and where the material is aniso-

tropic due to stress.
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