
minerals

Article

Rock Classification Using Multivariate Analysis of
Measurement While Drilling Data: Towards a Better
Sampling Strategy

Veena S. Vezhapparambu 1,*, Jo Eidsvik 2 and Steinar L. Ellefmo 1

1 Department of Geoscience and Petroleum, Norwegian University of Science and Technology,
Sem Saelands vei 1, N-7491 Trondheim, Norway; steinar.ellefmo@ntnu.no

2 Department of Mathematical Sciences, Norwegian University of Science and Technology, Sentralbygg 2,
1034 Trondheim, Norway; jo.eidsvik@ntnu.no

* Correspondence: veena.vezhapparambu@ntnu.no; Tel.: +47-45-093-93

Received: 1 June 2018; Accepted: 10 August 2018; Published: 4 September 2018
����������
�������

Abstract: Measurement while drilling (MWD) data are gathered during drilling operations and
can provide information about the strength of the rock penetrated by the boreholes. In this paper
MWD data from a marble open-pit operation in northern Norway are studied. The rock types are
represented by discrete classes, and the data is then modeled by a hidden Markov model (HMM).
Results of using different MWD data variables are studied and presented. These results are compared
and co-interpreted with optical televiewer (OTV) images, magnetic susceptibility and spectral gamma
values collected in the borehole using down-the-hole sensors. A model with penetration rate, rotation
pressure and dampening pressure data show a good visual correlation with OTV image for the studied
boreholes. The marble class is characterized by medium penetration rate and medium rotation
pressure, whereas the intrusions are characterized by low penetration rate and medium to high
rotation pressure. The fractured marble is characterized by high penetration rate, high rotation and
low dampening pressure. Future research will use the presented results to develop a heterogeneity
index, develop an MWD-based 3D-geology model and an improved sampling strategy and investigate
how to implement this in the mine planning process and reconciliation.

Keywords: measurement while drilling; rock classification; heterogeneity; hidden Markov model;
optical televiewer

1. Introduction

This paper is part of a research project focusing on the implementation of geometallurgical
concepts in the industrial mineral sector of the Norwegian mining industry. A geometallurgical
model is a combination of geological and mineral processing information into a spatial and predictive
tool to be used in production planning and management in the mining industry [1]. These kinds
of predictive models aim at taking not only grade into account when estimating key performance
indicators (KPIs), but also parameters related to for example micro-scale texture information or strength
and hardness variations.

The goal of this paper is to develop and test methodologies for dividing a rock mass into different
rock classes based on strength and hardness variations. Measurement While Drilling (MWD) data
will be used to achieve this. Strength is a material parameter quantifying a material’s ability to
withstand an applied force without expressing plastic deformation. It is a mechanical property
and the force and deformation are linked through the modulus of elasticity. The hardness is a
physical parameter describing a material’s resistance towards abrasion. An aim is to identify and
understand the influence of the important MWD data variables that can be used to identify rock
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strength and -hardness variations. This will render it possible to conduct geological classification
of marble and other lithologies from MWD data. This can in turn be used in the development of
improved sampling strategies. This do however not include a quantification nor a description of how
each of the MWD-parameters can indicate either strength or hardness variations.

Large amounts of high resolution MWD data have been collected during mining, but its potential
use in subsequent planning- and mining processes is not well studied. In this paper, we use hidden
Markov models (HMM) and the MWD data to classify rock types in boreholes. This classification of
raw material can be used to build on-line or off-line classifiers for rock classes or constitute the basis
for a geological model of blasts. It can also use to develop a heterogeneity index for blocking of the
blast such that each block is as homogeneous or as heterogeneous as possible. In doing so, the broader
goal is to reduce ore loss and ore dilution.

2. Background

This study is based on the data collected from Brønnøy Kalk AS, a mine located near Brønnøysund
in northern Norway. Figure 1 shows the map and overview of the location. Annually, the mine
produces approximately 2 million tonnes of calcite marble from the open pit operation. The calcite
marble is further processed into ground calcium carbonate and the final product is used as a whitening
agent in paper production [2]. The carbonate deposit at Brønnøy Kalk is very heterogeneous in nature.
The deposit consists of different types of marble formation and they are informally named “speckled-”,
“banded-” and “impure” marble. In some areas layers of diabase, gneiss or aplite are present. These are
commonly termed intrusions [3]. The different lithologies and fractures vary in hardness or strength.
For instance, uniaxial compression strength (UCS) tends to be higher in diabase or gneiss than in
marble [4]. According to [5] UCS of fractures is lower than intact marble. Impure marble contains thin
banded layers of intrusive rocks. So hardness of impure marble considered to be higher than marble
but lower than thick intrusions layers. The different lithologies also can be distinguished based on
impurities and visual appearances.

Figure 1. Location and overview of the Brønnøy Kalk mine.

At Brønnøy Kalk, a blast contains approximately 100,000 tonnes of raw material. During the
normal drilling process these blasts are divided geometrically into smaller blocks or selective mining
units (SMUs). Normally each SMU consists of 10–15 boreholes. One collective sample from each
block is taken to a laboratory and a flotation technique used for the recovery of calcium carbonate.
The quality of the final product will be determined by several outputs from the lab results such as
brightness, reagent consumption and flotation loss. The good quality blocks are loaded and transported
with wheeled transportation to the primary crusher, whereas marble blocks below specification are
dumped at the waste dump. The sub-quality blocks will be stored temporarily and later blended with
good quality blocks.
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The collective sampling method has a low resolution and will homogenize and thereby smooth
out the important variations. Due to the presence of a small amount of impure marble and intrusions
in a block, the lab result might indicate that the average quality in a block is below the quality cut-off.
This diluted “ore” will hence lead to ore loss. To sample drill cuttings from each borehole could be a
very expensive solution to this challenge [6].

MWD data are collected to get relevant drilling information from the drilling rig for a systematic
evaluation of the drilling performance. According to [7] the MWD data can potentially provide
information regarding the mechanical properties of the rock. In the mining industry, MWD data
could deliver information regarding rock mass characterization and that information can be used
for long term and short term mine planning, fragmentation optimization and equipment planning
for a cost-effective production [8]. MWD data can also carry important information for the blast
design process by providing rock strength properties for individual blast holes and improve safety
during blasting [9,10]. Similarly, drilling performance parameters are used to predict the rock quality
designation (RQD) during the tunneling operation [11].

It is stated in [9,12] that the measured MWD variables can be classified as two types (1) Parameters
that are independent of rock type characteristics or so-called operator controlled variables and (2)
Parameters that are dependent or responsive to rock characteristics. References [8,13] state that
rotation pressure, and dampening pressure are dependent on the rock characteristics. Penetration
rate is depending on all of the pressures and rock characteristics. For example, if the rig increases
its rotation-, feed- and percussion pressure, without having any change in rock type, the penetration
rate will automatically increase. It concludes that penetration rate alone may not be a good indicator
of the rock characteristics. Percussive pressure and feed pressure are not dependent on the rock
characteristics but simply controlled by the rig’s system. The lower and higher extreme values in
rotation pressure and dampening pressure are controlled by changing the feed and percussion pressure
by the rig’s control system. The flush air pressure is very dependent on depth because more pressure
is needed to flush the drill cutting from deeper sections of the borehole.

3. Materials and Methods

3.1. Data

The MWD data used in this study were collected using an Atlas-Copco T-45 drilling rig. The MWD
data consist of; Depth (m), Penetration Rate (m/min), Percussion Pressure (bar), Feed Pressure (bar),
Flush Air Pressure (bar), Rotation Pressure (bar) and Dampening Pressure (bar). The data are gathered
in an interval of approximately every 2 cm. In addition to these MWD data, which are available in
all boreholes, an optical tele-viewer image (OTV), magnetic susceptibility (MSUS), spectral gamma
(SGAM) and total gamma (TGAM) are logged for some boreholes. The OTV was used to take pictures
of the borehole wall. The OTV image can be used to see the fractures and their geometry and position,
lithologies and orientation of any structure. MSUS is a measure of magnetic properties of a material.
Similarly, SGAM identifies the existence of radioactive material inside the borehole at each depth.
The SGAM measurements include the amount of existence radioactive substance such as potassium (K),
thorium (Th) and uranium (U). The TGAM is aggregation of all SGAMs. The SGAM, TGAM and MSUS
measures are used to indicate the mineral composition of the deposit. For instance, TGAM will be
comparatively high in aplites than in diabase due to the elevated content of feldspar high in potassium.
Lithologies like diabase will have higher MSUS compared to intrusions with aplite or gneiss [14].
Both MWD and logging data monitored with depth index. In this research, this borehole logging
data and OTV image are used as a tool to interpret and validate the classification result from the
MWD analysis.

Figure 2 shows a zoomed OTV image of the intrusion in one of the boreholes at depth 10–11 m
along with corresponding penetration rate, rotation- and dampening pressure. From this figure,
one can see a strong relationship between the intrusion and the penetration rate, which is clearly
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lower inside the intrusion. Rotation pressure and dampening pressure are not as sensitive to this
particular change in rock type, but both pressures show peaks at the beginning and at the end of this
presumed intrusion.

Figure 2. Penetration rate, rotation pressure and dampening pressure inside marble intrusion along
with OTV image.

Data from borehole 1939-18, borehole 1939-21 and borehole 1941-7 are considered. The original
MWD data from the selected boreholes are provided in the supplementary folder as Tables S1, S2
and S3 respectively. The boreholes are named with the blast number followed by a running number.
Figure 3 shows the location map of the selected boreholes and blast numbers in the pit. The reasons
for selecting these boreholes are based on the geological understanding of this area. Boreholes 1939-21
and 1939-18 are from the same blast 1939 and they are approximately only 3 m away. Therefore one
would expect similar lithologies and fracturing patterns in these boreholes. According to the prior
knowledge from the mine, blast 1939 contains intrusions of diabase or aplite which lower the overall
quality of the blast. Borehole 1941-7 is from blast 1941, which is located in a different area. Instead of
wide intrusions, small layers of banded, impure marbles and fractures are expected in this borehole.

Figure 3. On the left is the map of the mine with location of the selected blasts (orientation with north
up). On the right is the position of particular boreholes in each blast that is selected for this study.
The selected boreholes are highlighted with orange color.
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Figure 4 shows the OTV images 1939-18, 1939-21 and 1941-7 respectively from left to right. High
resolution images of the same boreholes are found in supplementary folder as Figures S1, S2 and S3
respectively. Along with the images, we also display a simpler numerical representation of the OTV
image for every depth (black curves). The pixel values of the image are obtained using an image
processing tool in Matlab (imread) and an average of pixel values at every depth is used for this
numerical representation of OTV image. The image from borehole 1939-21 appears most homogeneous
except for one or two clear wide intrusions (10–11 m and near 12 m). Borehole 1939-18 does not have
such wide intrusions, but the one near 10 m is likely the same as one at similar depth in borehole
1939-21. Borehole 1941-7 has many variations and potential fractures that can be seen on the top and
middle parts of the borehole.

Figure 4. OTV images of three selected boreholes, the plot adjacent to each image is a numerical
representation of the image’s color difference.

3.2. Pre-Processing MWD Data

The original data from the rig will normally contain anomalies that occur due to both normal
and abnormal operating conditions and mechanical error. To use the data for further analysis and to
identify patterns, it is necessary to remove these anomalies from the raw data.

It is important to understand the drilling procedure to eliminate the unwanted data. At Brønnøy
Kalk, drilling is done either manually or automatically depending on the operators and drilling
conditions. The drilling operations are done in constant feed pressure settings in 2 different levels,
low and high. Usually, the fragmented rock is drilled in a low-pressure setting in the rig. All data from
upper part of the borehole were removed because this part of the rock is fragmented due to the blasting
of the previous bench. After drilling through the fragmented part, the operator increases the pressure
as part of standard procedure. A change point analysis using R package changepoint [15] on percussion
pressure can detect the boundary between the pressure change [10], and the low-pressure parts are
removed from further analysis. During drilling, a new drilling rod is attached on top of the previous
one every 3.5 m. Feed pressure is the pressure that pushes the entire hammer downwards while
drilling. During the time of rod change, this pressure will decrease considerably. After the rod change,
the feed pressure increases gradually to the average. Data collected during the rod changes is not
related to any mechanical properties of the rock. It is common to remove outliers by using 3 standard
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deviations and therefore, the data where feed pressure was less than three standard deviations away
from its mean were removed from further analysis.

The processed data have unequal intervals in depth and also some data are eliminated during
preprocessing. So a linear interpolation method is used [16] to assign data at equally spaced intervals
at every 1 cm depth in the boreholes.

3.3. Hidden Markov Models

In this research, HMM are used to classify rock types from MWD data. HMM are popular for
classification of discrete variables from indirect data. Reference [17] provides a recent overview of
theory and several applications. References [18–20] demonstrate applications of HMM to borehole
data of petrophysical variables collected to understand rock type alternation styles in the context of
exploring for oil and gas resources. There are of course several alternatives to HMM for predicting
the hardness variations of rocks from borehole data. Reference [21] use machine learning techniques
such as boosting and neural networks on MWD data to study the lithological variations of the rock.
Reference [22] study the drilling penetration rate for different drilling bits and rock formations using
multiple regression models. An advantage of using HMM is the discrete sample space that naturally
leads to classification and eases interpretation. The modeling assumptions of the HMM are outlined in
the following sections, along with methods for predicting the hidden rock classes, and for parameter
estimation. A summary of the implemented workflow for classifying rock types from MWD data is
provided at the end of the section.

After the preprocessing, the MWD data are available at every 1 cm depth interval in the borehole.
Data at a single depth index i = 1, . . . , n are Y i = (yi1, . . . , yim), where yij, j = 1, . . . , m, is one of the
MWD measurements described in Section 3.1, say penetration rate, and m is the number of measured
variables. In the presentation it is assumed that m is the same for all depths, but a sensitivity study
to the size and configuration of different MWD data variables is conducted in the results section.
For instance, it is interesting to understand which of the MWD variables discussed in Section 3.1 are
more important for marble classification. The vector of all measurements, from the start of the borehole
to depth index i, is denoted Y1:i = (Y1, . . . , Y i). This collection of data will be important for the
subsequent analysis, since the approach considered here will integrate the data recursively, including
one more MWD depth index at a time. This means that the methodology implicitly incorporates
a down-the-hole spatial correlation between MWD data points. At the deepest index considered,
all data Y = Y1:n are included. The analysis is performed from top to bottom because this is the way
drilling data are acquired. An alternative, is to let the Markov transition mechanism mimic geological
deposition over time.

At a single depth index i = 1, . . . , n, Xi ∈ {1, ..., d} denotes the marble rock class. In this case
study, d = 3 rock classes {a priori pure marble, fractured rock, intrusion}, will be used. The vector of
marble classes is denoted X = (X1, . . . , Xn). As stated in the introduction, the main goal of this paper
is to use and present the HMM approach for classifying these rock classes at all depths effectively from
the MWD data.

HMM are based on a Markov chain model for the rock classes X. A first order Markov chain is
considered. The Markov property means that the conditional probabilities are

p (Xi+1 = l|Xi = k, . . . , X1 = k1) = p (Xi+1 = l|Xi = k) = Pi,k,l , (1)

which means the rock type at each depth depends only on the rock type at the previous depth.
Importantly, the variable Xi+1 is dependent on Xi−1, but when Xi is known, the variables Xi+1 and
Xi−1 are independent.

It is common to assume that the probabilities in Equation (1) are constant within the depth domain
of interest, i.e., Pi,k,l = Pk,l . The Markov chain is then said to be time-homogeneous. The probabilities
can be organized in a transition matrix P, where the rows correspond to the current state Xi = k,
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while the columns correspond to the next state Xi+1 = l, k, l = 1, . . . , d. For d = 3, the transition
matrix is

P =

 P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

 . (2)

Because of the discrete state space model, each row in the transition matrix must sum to 1,
so ∑d

l=1 Pk,l = 1, for all k = 1, . . . , d.
The initial probabilities are denoted by P(X1 = k) = πk, k = 1, . . . , d, where ∑d

k=1 πk = 1.
The joint model formulation for the rock classes along the entire borehole length is then

P(X) = P(X1 = k1, X2 = k2, . . . , Xn = kn)

= P(X1 = k1)
n

∏
i=1

P(Xi+1 = ki+1|Xi = ki, . . . , X1 = k1) (3)

= P(X1 = k1)
n

∏
i=1

P(Xi+1 = ki+1|Xi = ki) = πk1

n

∏
i=1

Pki ,ki+1
.

Equation (3) provides a framework for simulating a Markov chain. An algorithm for stochastic
simulation from the model would start at the top index, and sample a class X1 from discrete probability
vector π = (π1, . . . , πd). Next, the program would move recursively through the indexes 2, . . . , n,
sampling from the correct row in the transition matrix, i.e., (Pk,1, . . . , Pk,d), when the sampled rock
class k is given at the current depth index. Figure 5 shows realizations from two different Markov
chain models each of length n = 200. The two transition matrices are

Pleft =

 0.9 0.1 0
0 0.6 0.4
0.2 0 0.8

 , Pright =

 0.7 0.1 0.2
0.1 0.8 0.1
0.3 0.2 0.5

 .

In the left display, the classes either stay the same or move one class up (except from class 3,
where the chain moves to 1).

Figure 5. Illustration of Markov chain realizations when there are three possible rock classes. Left:
The Markov chain always goes through class 2 from class 1 to 3, and has a large probability of staying
in class 1. Right: The Markov chain transitions can take all combinations and changes in class occur
relatively often.

This might be natural for some geological deposits, where there has been fining or coarsening
sequences over time, giving these kinds of alternation styles. In the right display, there is less ordering
in the alternation and less continuity in the sense that the rock classes change more often.

The MWD data at a depth index is dependent on the rock class at that depth. For instance,
the penetration rate can be smaller in hard rock intrusion than in the pure softer marble. In HMM
this dependence between the rock class and the various MWD data is modeled by a likelihood model.
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Here a likelihood P(Y i|Xi = k) = Normal(µk, Σ) is defined for all depth indexes considered. Here,
µk = (µk,1, . . . , µk,m) is the expected value of MWD data when the marble rock class is k, and Σ

is the measurement error covariance matrix, which is assumed to be the same for all rock classes.
This covariance matrix of the measurements is of size m×m;

Σ =

 Σ11 . . . Σ1m
. . . . . . . . .
Σm1 . . . Σmm

 , (4)

where Σjj is the variance of MWD measurement yi,j (e.g., rotation pressure) and Σjj′ is the covariance
between MWD measurement yi,j and yi,j′ (e.g., rotation pressure and penetration rate).

Figure 6 shows an illustration of two different likelihood models.

Figure 6. Illustration of likelihood models for bivariate MWD data and with three rock classes. Left:
Difficult to classify the rock class from data. Right: Easy to classify rock class from data.

Here, there are bivariate MWD data, with data variable 1 on the first axis and data variable 2 on
the second axis. There are three rock classes in this illustration (d = 3), and their likelihood models are
indicated by the three ellipse shapes, representing Gaussian probability contours, and 25 data points
from the three classes (plotted as plus, circle and diamond). In the left display it is difficult to separate
the three classes. In the right display the means are more separated, and it would be easier to classify
the rock classes from a data variable Y i.

Note that the likelihood model P(Y i|Xi = k) is defined for each location, and dependence only on
the rock class at the particular depth at which the MWD data are measured. Statistically this means

P(Y i|X1, . . . , Xn, Y1, . . . , Y i−1, Y i+1, . . . , Yn) = P(Y i|Xi).

Just like for the Markov property in Equation (1) this likelihood model formulation states
conditional independence assumptions. The data Y i will be dependent on Y i−1, and it will also
be dependent on Xi−1, but once Xi is known, the data variable Y i is conditionally independent of the
remaining variables.

Figure 7 gives an illustrative summary of HMM for MWD classification. The dependencies
involved in the modeling are illustrated by the Markov chain model with edges going downwards to
the left, and with edges for the conditional independent likelihood model pointing from left to right.
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Figure 7. HMM set up for the hidden rock classes and the MWD data.

The goals associated with HMM are to find

• Most likely sequence of rock classes given all MWD data : X̂ = argmax[P(X|Y)].
• Estimation of model parameters P, π, µk for k = 1, . . . , d, and Σ.

The key steps for solving these tasks are provided next. For more background, see Appendix A or
e.g., [23].

3.4. Rock Class Prediction

One can classify the rock class from data at every depth i = 1, . . . , n, using the joint conditional
probabilities P(X|Y). The classification requires the computation of conditional probabilities. These are
computed by sequentially going through the indexes, and in doing so conditioning on the data.
The sequential routine is possible because of the Markovian structure and conditionally independent
data, where it is sufficient to regard only two variables at a time. This method is sometimes called the
forward-backward algorithm which is explained in Appendix A.

The most likely joint combination, or maximum a posteriori (MAP), of rock classes can be found
by the Viterbi algorithm which solves

X̂MAP = (X̂MAP,1, . . . , X̂MAP,n) = argmaxX [P(X|Y)] . (5)

The Viterbi algorithm obtains the solution to Equation (5) by a forward-backward evaluation and
a maximization part. Starting at the last index n

X̂MAP,n = argmaxk [P(Xn = k|Y1:n)] . (6)

For i = n− 1, . . . , 1 subsequent maximization is used as follows:

X̂MAP,i = argmaxk

[
P(Xi = k|X̂MAP,i+1, Y1:n)

]
. (7)

The required probabilities are further explained in Appendix A.
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3.5. Parameter Estimation—EM Algorithm

The expressions for the Viterbi solution in Equation (5) require specification of the model
parameters. These can be estimated using an iterative approach called the Expectation Maximization
(EM) algorithm. In the current setting the parameters are the transition matrix for marble rock class P,
the initial vector π, the mean in the likelihood µk, k = 1, . . . , d, and the likelihood model covariance
matrix Σ.

Initially, one must assign some values to the above mentioned model parameters. The EM
algorithm uses a combination of probability calculation and optimization to assess parameter values.
(See Appendix B for details.)

In the E-step, based on the current set of model parameters and the data, one calculates the
marginal probabilities P(Xi = k|Y) and P(Xi = k, Xi+1 = l|Y). In the M-step, the model parameters
πk, Pk,l , µk and Σ are updated using the probabilities found in the E-step.

3.6. Workflow Summary

The entire workflow of the EM algorithm and the prediction is given in Algorithm 1.

Algorithm 1 Workflow.

• Specify model parameters.

1. Initialize the model parameters: initial probability vector π, transition matrix P, mean vector
µk, k = 1, . . . , d, and covariance matrix Σ.

2. Iterate the following until convergence:

– E step: Calculate probabilities P(Xi = k|Y) and P(Xi = k, Xi+1 = l|Y) recursively using
the forward-backward algorithm (Appendix A) based on the current model parameters.

– M step: Update model parameters using the data and the probabilities calculated in the
E step. (The formulas for updating are in the Appendix B).

• Conduct rock class prediction using Equations (6) and (7).

Convergence of model parameters is monitored by looking at the change in parameter values at
every iteration. When this is very small, the algorithm stops. The current parameters are then said
to be maximum likelihood estimates. They are plugged into the classification algorithm described in
Section 3.4.

A priori, three rock classes in each borehole is assumed based on knowledge about the deposit;
namely intrusions (e.g., diabase and aplite), marble and fractured zones. To identify the model that
best predicts the rock classes, assuming d = 3, different combinations of MWD data are studied.
The MAP predictors of the tested models are compared with the OTV image and the other logging
data to recognize the information-content of MWD data variables. Initially, borehole 1939-21 is selected
for analysis because this borehole shows a very clear intrusion in the OTV-image and it was presumed
easier to visually compare the MAPs with the OTV image from this borehole compared to the others.
Next, two other boreholes are analyzed using the same technique.

The main R codes and Matlab codes used in this study are provided together with a readme-file
as supplementary information.

4. Results

The means and standard deviations of MWD data in the different boreholes used in this study are
shown in Table 1.



Minerals 2018, 8, 384 11 of 23

Table 1. Mean and standard deviation of MWD data in each boreholes. Standard deviation
in parenthesis.

MWD 1939-18 1939-21 1941-7

Penetration rate (m/s) 2.20(0.22) 2.11(0.28) 1.88(0.31)
Percussion pressure (Bar) 189.67(5.97) 189.35(5.50) 188.39(6.56)

feed pressure (Bar) 87.69(3.95) 87.95(3.51) 87.34(4.55)
Flush air pressure (Bar) 8.36(0.90) 8.12(0.50) 6.77(0.52)
Rotation pressure (Bar) 56.28(2.83) 53.36(3.35) 54.17(3.65)

Dampening pressure (Bar) 69.68(3.81) 70.44(3.32) 68.22(3.83)

The cleaned MWD data and the corresponding OTV image of the boreholes 1939-18, 1939-21 and
1941-7 are illustrated in Figure 8.

(a) 1939-18

(b) 1939-21

Figure 8. Cont.
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(c) 1941-7

Figure 8. MWD data along with OTV images for each borehole: (a) 1939-18; (b) 1939-21; (c) 1941-7.

4.1. Identifying the Best HMM for Rock Classification

MAPs of some of the tested models and the OTV image of borehole 1939-21 are displayed in
Figure 9. The three different rock classes predicted at a particular depth using MAP are shown by
different colors (white, grey, black). As the classes are created for each borehole, they are named with a
class number followed by its borehole running number. For example, class1-21, class2-21, and class3-21
refer to the three classes in 1939-21. The initial two MAPs from left in Figure 9 are using the model with
all MWD data (MAPall) and the model with excluding flush air pressure (MAPNoflushair). The third
one is using penetration rate, rotation pressure and dampening pressure (MAPPRD), the fourth is using
penetration rate and rotation pressure (MAPPR), the fifth is using penetration rate and dampening
pressure (MAPPD) and the final one is using only penetration rate (MAPP).

Figure 9 suggests that among the tested MAPs, all of them are able to identify the two main
intrusions at depth 10–11 m and at 12 m that are seen in the OTV image of that borehole. However we
eliminated some models from further analysis because of following reasons.

• Even though fluctuations due to rod change are eliminated in the pre-processing, feed pressure
and percussion pressure are showing trends in approximately every 3.5 m depth (see Figure 8).
This variation is also visible in dampening pressure with less intensity. In Figure 9, one can see
that MAPall, MAPno Flushair and MAPPD are showing trends in approximately every 3.5 m depth.
Because of this possible mis-classification we are not considering MAPall, MAPno Flushair and
MAPPD for further analysis.

• The penetration rate depends on the pressures and the rock characteristics. In theory, a model
with more variables will give better results. So MAPP is also not considering further.

As a result, two MAPs; MAPPR and MAPPRD are selected for further analysis. TGAM (cps), K (%),
U (ppm), Th (ppm), MSUS, MAPPRD and MAPPR along with a zoomed OTV image of the borehole
1939-21 are displayed in Figure 10. Class3-21 in MAPPR and MAPPRD are compared with peaks in
TGAM, MSUS and a zoomed OTV image of the borehole. The result shows that MAPPRD is better at
classifying all the visible peaks in MSUS and SGAM as class3-21.
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Figure 9. MAP predictors using different combinations of MWD data.

Figure 10. From left to right: Depth plot of TGAM (cps), K (%), U (ppm), Th (ppm), MSUS, and
MAPPRD and MAPPR and a zoomed OTV image of borehole 1939-21.

The same selected MWD data has also been applied to other boreholes and the MAP predictions
are compared with logging data. The HMM using penetration rate, rotation pressure and dampening
pressure is applied to boreholes 1939-18 and 1941-7 MWD data, and the corresponding MAPs are
displayed in Figure 11 for borehole 1939-18 and Figure 12 for borehole 1941-7. In the figures, on
left, depth plots of TGAM (cps), K (%), U (ppm), Th (ppm) and MSUS, are displayed. Adjacent to
the logging data, the corresponding MAPPRD predictor is displayed. The OTV image along with its
numerical representation of the image of the borehole can be seen in the rightmost displays.
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Figure 11. From left to right: Depth plot of TGAM (cps), K (%), U (ppm), Th (ppm), MSUS, MAP
estimator with penetration rate, rotation pressure and dampening pressure and the OTV image for
borehole 1939-18.

Figure 12. From left to right: TGAM (cps), K (%), U (ppm), Th (ppm), MSUS, MAP estimator with
penetration rate, rotation pressure and dampening pressure and the OTV image for borehole 1941-7.

4.2. Precision and Characteristics of Predicted Classes

Figures 13–15 show the scatter plots using all pairs of the selected data for borehole 1939-21,
1939-18 and 1941-7 respectively. In each of the figures from left, the first one is plotting penetration rate
vs rotation pressure, the second is plotting penetration rate vs dampening pressure and the third one
is plotting rotation vs pressure and dampening pressure. The three ellipse contours in each scatter plot
are created using the corresponding Gaussian likelihood model parameters of three classes estimated
by EM algorithm for each borehole. The colors in the scatter plots and the ellipses represent the classes
assigned to each point according to corresponding borehole’s MAPPRD.

In Figures 16–18 the density plots of TGAM (left) and MSUS (right) are plotted using the data
respectively from borehole 1939-21, 1939-18 and 1941-7. The three classes of MAPPRD are used to select
the subsets of the data. And this is done in every borehole. The color code in the densities match with
ellipses and scatter plot in Figures 13–15.

The different rock classes can be characterized by the average penetration rate, rotation pressure
and dampening pressure. Table 2 shows the summary statistics within each class. The last column of
the table shows the assigned characteristic of the classes when compared with OTV image and other
logging data.
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Figure 13. Likelihood model of the Gaussian distribution represented by 3 ellipses contours using the
combination of EM estimated parameters values of penetration rate, rotation pressure and dampening
pressure together with corresponding scatter plots for borehole 1939-21.

Figure 14. Likelihood model of the Gaussian distribution represented by 3 ellipse contours using the
combination of EM estimated parameters values of penetration rate, rotation pressure and dampening
pressure together with corresponding scatter plots for borehole 1939-18.

Figure 15. Likelihood model of the Gaussian distribution represented by 3 ellipses contours using the
combination of EM estimated parameters values of penetration rate, rotation pressure and dampening
pressure together with corresponding scatter plots for borehole 1941-7.
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Figure 16. On left is the densities of TGAM inside each class in the classification and on right is the
densities of MSUS inside each class in the classification for the borehole 1939-21.

Figure 17. On left is the densities of TGAM inside each class in the classification and on right is the
densities of MSUS inside each class in the classification for the borehole 1939-18.

Figure 18. On left is the densities of TGAM inside each class in the classification and on right is the
densities of MSUS inside each class in the classification for the borehole 1941-7.
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Table 2. Average penetration rate (Pen rate), rotation pressure (Rot press), dampening pressure (Damp
press), magnetic susceptibility (MSUS) and total gamma (TGAM) and assigned class characteristic of
each class.

Class Pen Rate Rot Press Damp Ress MSUS TGAM Assigned Class

Class1-18 2.2 57.7 67.5 −0.1 16.6 Pure Marble
Class2-18 2.2 55.4 71.7 0 40.7 Pure Marble
Class3-18 2.3 61.8 59.2 1.2 46.7 Fracture/small intrusion
Class1-21 2.1 51.4 70.4 −0.1 22.2 Pure Marble
Class2-21 2.3 55.8 71.3 0.5 20.1 Pure Marble
Class3-21 1.6 58.2 67.6 8.9 116.5 Hard Intrusion
Class1-7 1.7 51.8 69.0 0.3 43.5 Pure Marble
Class2-7 1.9 56.5 68.6 0.5 71.5 Impure Marble
Class3-7 2.5 60.7 63.3 0.9 90.8 Fracture

5. Discussion

The lithologies penetrated by boreholes at different locations will have different rock strengths and
characteristics, and these differences in rock strength and structure will affect the MWD data pattern.
From Table 1 we can see that borehole 1941-7 on average has a lower penetration rate and a high
standard deviation. This is partly due to the fact that it has a lower rotation and dampening pressures.
Usually, with more fracturing and heterogeneous rock characteristics, one may encounter instability
while drilling. Such unstable drilling conditions may lower the penetration rate. Percussion pressures
are on average similar, with a slightly elevated standard deviation in borehole 1941-7. This applies
to feeding pressure as well. Flush air pressure is lower in 1941-7. This again indicating that there
are some fractures which does not need much pressure to flush out as the density of rock material is
less inside fractures or cracks. Rotation pressure is highest in borehole 1939-18 and lowest in 1939-21.
The standard deviation is highest in 1941-7, possibly because of more fractures. Borehole 1939-21 has
the highest average dampening pressure, whereas the lowest value can be found in hole 1941-7.

The estimated likelihood model of the selected HMM and the density of the logging data
inside every class are used to identify the properties of the locally created classes in each borehole.
In Figure 10, the big peak in MSUS and a small peak in TGAM are visible at depths around 10 m and
12 m. The high MSUS suggests that the section of the borehole probably contains diabase, and this
area is classified as class3-21. Around depth 8–9 m, there are two peaks only in TGAM which indicates
that the lithology at this depth is a different lithology than the intrusion mentioned above at depth
10 m and 12 m. The high level of SGAM shows that this section probably contains more potassium
and thus indicating aplite. This is clear from the vertical profile of K in the same display. Note that
there is a scale difference between K and U and Th as K is given in percentage. When comparing with
the OTV image, one can see that this intrusion is not very prominent in the picture, still the MAP has
classified this area as class3-21.

According to the first and second scatter plots in Figure 13, the penetration rate is clearly lower in
class3-21 compared to other two classes. One can see a clear separate cluster in both scatter plots in
which penetration rate is involved. Also class3-21 has higher rotation pressure and lower penetration
rate. This implies that rock type in class3-21 is harder and has clearly different rock characteristics
compared with the other two groups. Moreover, Figure 16 suggests that most of the radioactive- and
magnetic material belong to class3-21. The distribution of MSUS has a very high standard deviation
because the aplite is not magnetic, but it is still an intrusion and classified as class3-21. This shows that
class3-21 in the HMM classification is having more impure materials than class1-21 and class2-21 and
this group represents an intrusion class.

Note that 1939-18 is located near the initial borehole 1939-21. So we expect similar rocks in these
two boreholes. The two small intrusions in 1939-18, are possibly the same intrusions as in borehole
1939-21, at depths near 8 m and 10 m, as seen in both the classification results and the OTV image (See
Figures 10 and 11). Similar to 1939-21, a big peak in MSUS and a small peak in TGAM around 10 m
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depth and a big peak in TGAM around 8–9 m depth are visible in borehole 1939-18. This suggests
that they are the same intrusion layer, but in 1939-18 they are smaller in thickness. In the MAP results,
the MSUS peak is clearly classified as class3-18, but the area of the peak in TGAM at depth 8–9 m is not
completely classified as class3-18 in the MAP. Moreover, in the MAP of 1939-18, one can see more areas
predicted as class3-18 but there is no visible change in MSUS or TGAM. For example, at around depth
14m, an area of about 0.5m thickness is classified as class3-18. There is no visible change in TGAM and
MSUS in that area, but a clear color change in OTV image in that section can be seen. There are also
very clear peaks in penetration rate, rotation pressure and dampening pressure visible in that area.
The contradictory data are probably due to fractures.

Unlike in class3-21, Figure 14 shows that class3-18 has the highest mean rotation pressure and
highest mean penetration rate. So one cannot clearly say that the marble inside class3-18 is a harder
rock intrusion. But the class3-18 is very well separated from other classes in the two scatter plots
and the ellipses that involve the dampening pressure. This suggests that class3-18 is different from
class1-18 and class2-18. Class3-21 and class3-18 have also different MWD characteristics. Class3-18
is suggestively a combined class of both intrusion and some fracturing of the marble deposit. Also,
class3-18 intrusions are much smaller in thickness and the MWD data inside these intrusions act like
fractures because the drilling procedure is fast. As soon as the rig increases its pressure to drill through
the hard intrusion, the hard part will end. So the pressure increase helps to increase the penetration
rate. Figure 17 indicates that most of the impure marble classified as class3-18 and marble that have no
contents of MSUS or TGAM is classified as class3-18 as well. Also, it can be seen that class1-18 and
class2-18 are pure marble and most of the impure marble which contain the magnetic and radioactive
minerals belong to class3-18.

In Figure 13 the scatter plots and the ellipses of class1-21 and class2-21 are not well separated and
similarly in Figure 14 for class1-18 and class2-18. This indicates that these two classes are not actually
different in both boreholes. As the number of classes is pre-selected in the modeling, it will give three
different classes even though the actual difference between the classes are small. Here, a slight increase
in penetration rate in class2-18 and class2-21 compared to class1-18 and class1-21 is seen due to a slight
increase in rotation pressure. This can probably be due to a smooth drilling process. Figures 16 and 17
also suggest that the distribution of magnetic rock and radioactive material is similarly distributed
and comparatively lower for class1-18, class2-18, class1-21, and class2-21.

Borehole 1941-7 is expected to behave differently than the other boreholes. According to Table 1
average penetration rate is lower than in the other boreholes even though the average rotation pressure
is not low. The standard deviation of penetration and rotation is also higher in 1941-7 compared to the
other two boreholes. There is no wide clear intrusion, but there are several small and frequent changes,
possibly small intrusions and fractures are visible in the OTV image. This applies especially to top,
middle and very bottom part. After 10 m depth, the borehole is homogeneous in color until it reaches
depths of more than 13m. Borehole 1941-7 is expected from the general geological understanding of the
deposit to be more heterogeneous than 1939-21 and 1939-18. MAPs with OTV image and other logging
data in Figure 12 show that the top and middle part of the borehole is having more class changes.
In this area, the OTV image colors are very heterogeneous and MSUS and TGAM are very high.

In Figure 15, it can be seen that in first scatter plot using penetration rate and rotation pressure,
the three classes are well separated. In the second and third scatter plots, class3-7 is a separate cluster.
This indicates that for borehole 1941-7, class1-7, class2-7, and class3-7 are having fairly different
characteristics. In Figure 12, one can see that the class3-7 coincide with the big variation on top of the
borehole around 3m depth and some small variations in the middle of the borehole and a visible color
difference in the OTV image at the bottom of the borehole. The bottom of the borehole is not having
any signals in the MSUS and TGAM but still classified as class3-7. This indicates that this is not related
to any impurities but possibly related to some fracturing or cracks. So class3-7 is mainly fractured
marble and fractured impure marble zone. This means that class3-7 is having similar characteristics
as class3-18.
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Unlike in the other boreholes, we can see from Figure 12 that class2-7 also represents an impure
marble class. Both MSUS, SGAM, and TGAM are high in both class2-7 and class3-7. Class2-7 is
frequently visible in the middle and top of the borehole in that borehole’s MAP-PRD. So this class
represents most of the impure marble except for the wide fracture zones inside impure marbles.
Figure 18 shows that the distribution of SGAM and MSUS in all the classes in this borehole are
different. Class2-7 and class3-7 are having significant amounts of magnetic and radioactive material
and class1-7 is mainly consisting of pure marble. As discussed in Section 3.1, the area of blast 1941 is
expected to have a mixture of pure, impure and banded marble. It is convincing to believe that the 3
classes have different rock characteristics.

Class3-21, class3-18, and class3-7 are characterized by a higher rotation pressure than the other rock
classes of respective boreholes. The fractures and small intrusions representing class3-18 and class3-7,
are also showing a comparatively lower dampening pressure than in thick intrusions. Class3-21 is
a thick intrusion and have a lower penetration rate, but not much decrease in dampening pressure.
This is making sense because dampening pressure acts as a pressure to make the rig stable while
drilling. So while drilling fractures, it tries to adjust the pressure to make the drilling process smoother.
Class2-7 and class3-7 are confirmed as impure according to the OTV-image and the other logging
results. These two marble classes have higher mean rotation pressure than class1-7. Class1-7 is
considered as a pure marble group because the distribution of MSUS and TGAM are similar to that of
the pure marble classes in 1939-21 and 1939-18.

If the rock formation penetrated by a borehole is totally homogeneous the bi-variate Gaussian
ellipse is expected to be very much interlinked and all the scatter plot clusters will be hard to separate.
To penetrate through a hard rock type, a higher rotation pressure needs to be applied. Rotation
pressure will also be high in broken and uneven fracture zones. Penetration rate will be low on hard
intrusions, but high in fracture zones. MWD data inside very thin intrusions resemble MWD data
from fracture zones. So the increase or decrease in rotation pressure is an indication of a change in
rock type. Also, the high variation in dampening pressure between the classes indicates the class with
lower dampening pressure has lots of fractures or small intrusions.

Based on the HMM-based analysis of the MWD data in three different boreholes, three to four
different rock classes have been identified. These are pure marble, intrusions, fractured zone and
impure marble. These have different MWD characteristics. See Table 2. Rock type “pure marble”
would have a penetration rate of around 2 m/min, a rotation pressure around 51–54 bar, dampening
pressure around 70–71 bar and a relatively low magnetic susceptibility and spectral/total gamma.
This rock type can be represented by class 1 and class 2 from borehole 1939-18 and 1939-21. This
marble group is having relatively average strength or hardness. Rock type “intrusion” is characterized
by a low penetration rate, an on average high rotation pressure (but varying), an average dampening
pressure around 69 and an extremely high magnetic susceptibility and spectral gamma. No division
has been made between the type of intrusions, but the possible lithologies present in this case are
diabase and aplite. So this class is harder than the “pure-marble” class. This rock type is represented
by class3-21. Rock type “fractured marble” has a high penetration rate, a high rotation pressure,
a low dampening pressure, a low magnetic susceptibility and a relatively high total gamma. This
is due to impurities intervened with the fractures. Fractured marble is represented by class3-18
and class3-7. The fractured marble is softer rock zone than other rock classes. Rock type “impure
marble” is represented by class1-7 and class2-7 and is characterized by a low penetration rate, a low to
medium rotation pressure, a relatively high dampening pressure and a low magnetic susceptibility
and a relatively high total gamma. The impure marble zone is relatively harder than pure marble
suggestively due to the presence of thin impurity intrusions of diabase or aplite. Given these rock
types and their characteristics, the rock material penetrated by the boreholes can be classified and used
in the development of a 3D-model of in-situ rock type variations. However, this model will be tested
on more boreholes in different locations of the mine before it is used in further development. We aim
to report the results of more advanced modeling and testing in future work.
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Geological data are to a varying degree always spatially correlated. Normally, the spatial
correlation is quantified through the variogram. The methodology implemented here resembles
to some extent a traditional cluster analysis. A cluster analysis will also classify data points based on
some distance measure, but a cluster analysis will not take spatial correlations into account. Spatial
correlation is in the HMM taken implicitly into account through the transition probability. This makes
the implementation of HMM superior to the traditional implementation of the cluster analysis.

The mining company is annually drilling approximately 2000 boreholes. MWD data are collected
on average every second centimeter. Huge amounts of data are thereby collected. Manual interpretation
of such amounts of data including a rock type classification is not manageable. It is decisive to
have routines and tools that automatically can classify rock types. Potentially this will enable
the development of a high-resolution geological model that in the future may be incorporated
in mine planning and reconciliation. This is also of uttermost importance in an geometallurgical
context. Geometallurgy is about linking in-situ geological properties with processing or metallurgical
performance. This performance is normally measured by KPIs. Knowing the rock classes in a blast
will render it possible to assess the processing performance of this blast. This places the analysis of
MWD data and the utilization of the results in the planning process into the core of geometallurgy.

6. Conclusions

A new method to classify rock types according to its rock strength and hardness, especially
hard rock intrusions in a marble deposit, using MWD data collected during normal bench drilling
is proposed. A statistical hidden Markov model is used to describe rock classes and data, and the
Expectation Maximization algorithm is used to specify the parameter in this model. By applying these
methods on different combination of MWD data, it can be concluded that penetration rate, rotation
pressure and dampening pressure together can identify and classify hard intrusions, fractured zones
and marble inside a borehole. The MWD data behave differently inside thick intrusions and very thin
intrusion. Thin intrusions and fractures have similar MWD behavior. One has to consider the fact
that during the actual mining procedure the logging data (the OTV-image, the magnetic susceptibility
and the spectral- and total gamma) will not be available. By comparing new MWD-data and the
characteristics of the MAP-classes defined in this research, it would be possible to assign a class to
every data point. A priori knowledge about the lithological variations is helpful to choose the number
of classes in advance. Cross-plotting of the bi-variate model fit of data is a helpful visualization tool
and provide a valuable aid in interpreting the classes. The results presented in this paper might be
used to develop an index quantifying the blast heterogeneity. In future research, this will be used to
develop an improved sampling strategy.

Supplementary Materials: The following are available at www.mdpi.com/2075-163X/8/9/384/s1. Table S1:
MWD data for borehole 1939-18, Table S2: MWD data for borehole 1939-21, Table S3: MWD data for borehole
1941-7. Figure S1: High resolution OTV image of Borehole 1939-18, Figure S2: High resolution OTV image of
Borehole 1939-21, Figure S3: High resolution OTV image of Borehole 1941-7. The main MATLAB codes and R
code are also be found in the folder. A “Read me” is also available, which will help to properly run the codes.
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Abbreviations

The following abbreviations are used in this manuscript:

MWD Measurement while drilling
HMM Hidden Markov Models
MSUS Magnetic Susceptibility
SGAM Spectral gamma

Appendix A. Forward-Backward Algorithm

The forward recursion computes the filtering probabilities P(Xi = k|Y1:i) and the one-step
prediction probabilities P(Xi+1 = l|Y1:i).

The filtering probabilities for i = 1, . . . , n are given by

P(Xi = k|Y1:i) =
P(Y i|Xi = k)P(Xi = k|Y1:i−1)

∑d
k=1 P(Y i|Xi = k)P(Xi = k|Y1:i−1)

, (A1)

where the starting point is P(X1 = k|Y0) = P(X1 = k). The prediction is obtained by

P(Xi+1 = l|Y1:i) =
d

∑
k=1

P(Xi+1 = l|Xi = k)P(Xi = k|Y1:i), (A2)

where we marginalize out the rock class at depth index i. Note how the Markovian structure and the
conditional independence assumptions for data simplify in the conditioning.

The backward recursion starts at the last filtering probability, P(Xn = k|Y1:n), and then it steps
backwards recursively. The backward equation is

P(Xi = k, Xi+1 = l|Y1:n) = P(Xi = k|Xi+1 = l, Y1:i)P(Xi+1 = l|Y1:n),

P(Xi = k|Y1:n) =
d

∑
l=1

P(Xi = k, Xi+1 = l|Y1:n), (A3)

where the first right-hand side probability in Equation (A3) is

P(Xi = k|Xi+1 = l, Y1:i) =
P(Xi+1 = l|Xi = k)P(Xi = k|Y1:i)

P(Xi+1 = l|Y1:i)
. (A4)

The expressions in the ratio are defined in Equations (A1) and (A2), and from the modeled
transition matrix. The Viterbi algorithm finds the most likely sequence as follows: First, maximization
rather than summing over k in (A2). Second, maximization rather than summing over l in
Equation (A3).

Appendix B. Parameter Updates in EM Algorithm

The probabilities P(Xi = k|Y) and P(Xi = k, Xi+1 = l|Y), i = 1, . . . , n, k, l = 1, . . . , d,
are computed by the forward-backward algorithm, using the current parameter values. This is
the E-step of the EM algorithm. In the M-step, the parameters are updated using these probabilities
and the data. The formulas for updating are given next.

First, for the initial probabilities;

π̂k = P(X1 = k|Y1:n). (A5)
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The transition probabilities are

P̂k,l =
∑n−1

i=1 P(Xi = k, Xi+1 = l|Y)
∑n−1

i=1 P(Xi = k|Y)
. (A6)

With regard to the likelihood parameters, each class, i.e., k = 1, . . . , d and for each MWD parameter
j = 1, . . . , m, the mean is

µ̂k,j =
∑n

i=1 P(Xi = k|Y)yi,j

∑n
i=1 P(Xi = k|Y) , (A7)

which is an average over the data, weighted by the probabilities. If we consider MWD variables
’Penetration Rate’ and ’Rotation Pressure’, and classify the borehole as 3 categories of rocks, then d will
be 3 and m will be 2. The likelihood covariance matrix is estimated by

Σ̂ =
∑n

i=1 ∑d
k=1 P(Xi = k|Y)(Y i − µ̂k)(Y i − µ̂k)

t

n
. (A8)
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