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Abstract The importance to consider changes in surface albedo and go beyond simple carbon accounting
when assessing climate change impacts of forestry and land use activities is increasingly recognized.
However, representation of albedo changes in climate models is complex and highly parameterized, thereby
limiting their applications in climate impact studies. The availability of simple yet reliable albedo models can
enhance consideration of albedo changes in land use studies. We propose a set of simplified models for
estimating surface albedo in a boreal forest. We process and harmonize datasets of remotely-sensed albedo
estimates, forest structure parameters, andmeteorological records for different forest locations in Norway. By
combining linear unmixing with nonlinear programming, we simultaneously produce albedo estimates at
the same resolution of the land cover dataset (16 m, notably higher than satellite retrievals) and a variety of
flexible models for albedo predictions. We test different combinations of functional forms, variables, and
constraints, including variants specific for snow-free conditions. We find that models capture the seasonal
pattern of surface albedo and the interactive effect of forest structures and meteorological parameters, and
many of them show good statistical scores. The cross-validation exercise shows that the models derived
from one area perform reasonably well when applied to other forested areas in Norway, regardless of the
temporal and spatial scales. By incorporating changes in forest structure and climate conditions as explicit
variables, these models are simple to be used in different applications aiming at estimating albedo changes
from forest management and climate change.

Plain Language Summary Surface albedo is the fraction of solar radiation reflected back into the
atmosphere by a surface, and it determines how much energy is re-distributed in the biosphere. It is one of
the most important physical properties of land cover and a key mechanism for climate control. By combining
satellite retrievals of Norwegian boreal forest with high resolution land cover data and meteorological
records, our study produces a range of relatively simple models to estimate surface albedo using the forest
structure parameters and climate data. The models require simple variables of forest structure information
(age and/or volume) and temperature and/or snow water equivalents. These models are relatively easy and
fast to be used for quantifying effects of forest management and climate change on surface albedo.

1. Introduction

Surface albedo is the percentage of solar radiation reflected back into the atmosphere by a surface, and it
determines how much energy is re-distributed in the biosphere (Bonan, 2008; Juang et al., 2007). In northern
latitudes, land surface albedo is one of the most important mechanisms for bio-geophysical climate control
(Bala et al., 2007; Bathiany et al., 2010; Richard A. Betts, 2000; Bonan, 2008; Claussen et al., 2001; Francesco
et al., 2018). Surface albedo depends on both local climate and vegetation structure (Bright et al., 2013;
Kuusinen et al., 2014; Kuusinen et al., 2014; Kuusinen et al., 2016; Lukeš et al., 2014), and it has high seasonal
and spatial variation, especially in areas affected by seasonal snow cover (Anderson et al., 2011). Albedo
values of open land areas, such as croplands and grasses, are highly sensitive to snow cover, whereas the
masking effect of coniferous forests results in amuch smaller albedo increase in the presence of snow relative
to open land or deciduous forests (R. A. Betts et al., 2007; Cherubini et al., 2017; Zhao & Jackson, 2014).
Simulating the spatial and seasonal evolution of surface albedo and the dynamic effects of forest masking
are critical in climate modeling and system analysis (Hibbard et al., 2010; Hollinger et al., 2010; Prestele
et al., 2017). Surface albedo in the presence of snow still has a wide spread in simulations from CMIP5 models
(Dickinson, 1983; X. Qu & Hall, 2014; Thackeray et al., 2015; Wang et al., 2016). Surface albedo changes can
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exert a direct radiative forcing that is of the same order of magnitude of that from the associated carbon
fluxes (Bala et al., 2007; Bathiany et al., 2010; Perugini et al., 2017), and the importance to go beyond a simple
carbon accounting framework when assessing the impacts of land use activities on climate is increasingly
highlighted in the scientific literature (Jackson et al., 2008; Mahmood et al., 2014). There are increasing efforts
to estimate climate impacts from albedo together with those from carbon in studies that assess land-derived
biomass products such as biomaterials and bioenergy (Caiazzo et al., 2014; Cherubini et al., 2012; Muñoz et al.,
2010). However, the representation of changes in surface albedo in climate impact analysis, like Life-Cycle
Assessment (LCA), is today mostly based on satellite-derived estimates for restricted areas (Bright et al.,
2015). The availability of simplified yet reliable approaches with lower degrees of parameterization and com-
plexity of the albedo models used in climate models, can improve climate impact assessment studies of land
use changes (Cherubini et al., 2016; Perugini et al., 2017).

Surface albedo of forestland is commonly calculated using three major approaches (Essery, 2013; Xin Qu &
Hall, 2007). The first approach (type 1) is rather complex, and it uses two-stream approximations for canopy
radiative transfer (Dickinson, 1983). An example of this type of model is the CLM land surface scheme in the
Community Earth System Model (Oleson et al., 2010). The second approach (type 2) treats the snow on the
ground and snow intercepted in forest canopy differently, and it is used for instance by the climate model
CLASS (Bartlett et al., 2006; Verseghy et al., 1993). The third approach (type 3), utilizes a weighted average
of snow-covered and snow-free albedos depending on the vegetation type (Bright et al., 2013; Kuusinen,
Lukes, et al., 2014; Volodin et al., 2010). A comparison of these three common methods shows similar albedo
values of snow-covered forests in Northern Hemisphere, which is typically in line with observations, suggest-
ing that the spread in winter albedo is due to varying vegetation structures (Essery, 2013). Type 1 and type 2
approaches are rather sophisticated and require complex parameterizations, which hinders their application
in climate impact studies. On the other hand, type 3models have simpler formulations and parameterizations
that can facilitate the inclusion of changes in surface albedo in climate impact assessment of land
use disturbances.

Studies are trying to constrain albedo values of land cover classes integrating estimates from satellite retrie-
vals with high-resolution land cover maps from national forestry inventories and climatological records,
thereby inferring sub-pixel land cover type albedos and semi-empirical predicting albedo models (Bright
et al., 2013; Kuusinen et al., 2013; Lukes et al., 2016). Using observations to constrain modeled albedos of
heavily vegetated landscapes with snow cover would also reduce uncertainty in predictions of regional cli-
mate change for physically consistent regions (X. Qu & Hall, 2014). Using datasets for the boreal forest in
Norway, the aim of this paper is to further develop this approach and produce a range of relatively simple
models for the prediction of surface albedo values to facilitate albedo change parameterization in climate
impact studies. The models are in the form of nonlinear equations for each of the three most common boreal
forest types (deciduous, spruce and pine) in Norway with different combinations of vegetation structure (bio-
mass volumes and standing age) and climatological indicators like temperature and snow-water equivalent
(SWE). We also test the performance of the full-year model relative to a model framework where a specific
model is used for snow-free conditions. The model is flexible in the choice of the preferred functional form
and input variables. We show the main characteristics of the best performing models with consideration of
model complexity and test their transferability to other locations.

2. Methodology
2.1. Study Area

Norway lies in Northern Europe and it comprises the western part of Scandinavia. The western and southern
parts have more precipitation but experience milder winters than the northern and eastern parts, and the
western parts have heavier rain and snow totals than the areas to the east of the coastal mountains.
Around 38%, corresponding to about 12 million ha, of the surface area in Norway is covered by forests,
and the productive forests are about 58%. There are three most important tree species in Norway, namely
spruce (Picea abies) (47%), Scots pine (Pinus sylvestris) (33%), and deciduous species (mostly Betula pubescens
and Betula pendula) (18%). The southern and central region is dominated by spruce, whereas the south and
coastal areas are dominated by pine. At northern latitude and higher elevation, deciduous forests are
more abundant.
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2.2. Datasets

We harmonize datasets of forest structure, meteorological parameters and satellite-derived albedo esti-
mates to be used as the input for our models. Forest abundance and structure information are from
the National Forest Inventory (NFI) database ‘Sat-Skog’, which provides an overview of the forest
resources of the country with information on relative abundance of tree species, standing age, and bio-
mass volumes at 16-m resolution (Gjertsen & Nilsen, 2012; Tomter et al., 2010). The Sat-Skog product is
created by multi-band classification of remote-sensing data and by correlating observed spectral reflec-
tance with forest parameters observed at NFI sites, so that forest parameters are estimated on a nation-
wide scale with high spatial resolution (Tomppo et al., 2008). Daily observations of the meteorological
parameters SWE and temperature at 2-m height are produced at 1-km resolution from interpolation of
meteorological weather stations in Norway (Mohr, 2008). Albedo estimate is gathered from the
Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 (collection 5) composites with a spa-
tial resolution of about 500 meters. The black-sky shortwave albedo estimates are generated by clear-sky
atmospherically corrected surface reflectance estimates at 8-day resolution, with 16-day acquisition per-
iods (Schaaf et al., 2002). We retain only values with band quality 0 (best quality) or 1 (good quality). The
daily temperature and SWE data are temporally averaged to match the retrieval intervals of the MODIS
albedo time series (i.e. averaged into a new dataset of 8-day temporal resolution using a 16-day win-
dow), then intersected with the spatial extent of MODIS pixels. For each MODIS pixel, the intersecting
land-cover polygons in the Stat-Skog data are identified, and the percentage area of the MODIS pixel
represented by each land-cover type is determined. The same approach is undertaken for the meteoro-
logical parameters, which are combined and preprocessed so that they are attributed to each land cover
polygon. All the missing values and/or invalid values in the land cover database, meteorological para-
meters, and satellite derived albedos (including the retrievals that failed the quality check) are filtered
out. In addition, we reduce topographic effects on the accuracy of albedo estimates by filtering out pix-
els with average slope of the terrain higher than two percent (identified with elevation maps from the
ETOPO1 Global Relief Model from the NOAA’s National Geophysical Data Center (NGDC) (Amante &
Eakins, 2009). More specific information about the datasets used and their harmonization are available
elsewhere (Cherubini et al., 2017).

Given the large dimensions of these datasets and the complexity of the model formulations that are to be
solved, we focus our analysis on two datasets of limited space and time from two different locations. These
datasets refer to a forest area either in Southeast (Data 1) or central Norway (Data 2) and are representative
of different vegetation classes, climatic conditions, spatial and temporal scales (see Table 1). Data 1 corre-
sponds to a flat area characterized by intensive forestry, rich of spruce and pine forests but without decid-
uous forest, whereas Data 2 is an elevated area with sparser vegetation cover and more abundant in
deciduous species. We consider different time frames for the two datasets. Data 1 is made of 6 years
(2001–2005) of satellite retrievals, and Data 2 of 2 years (2001–2002). From these areas, we select all the
sub-grid land cover pixels that are forests and connect them to the corresponding MODIS pixel grid. We
summarize the information of the two datasets in Table 1. In this table, only single forest plots with the per-
centage of forests of at least 75% or more are considered in each dataset (mixed forests are thus filtered
out). N stands for the number of pixels used in the model on 500 m resolution or 16 m resolution. More
information about these three datasets can be found in Supplementary Figure S1, which shows the distribu-
tions of forest age and volume for the tree species in the different datasets.

Table 1
Information on the Mean Elevation, Temporal Scale of Albedo Satellite Retrievals, and Forest Structure Parameters (Age, Volume, and Relative Abundancy) of the Datasets
used in our Analysis

Geographic coordinate
(degree) N (500 m)/(16 m)

Elev.
(m) Year

Relative abundancy,
%

Age, years
(mean/median)

Volume, m3

(mean/median)

P. S. D. P. S. D. P. S. D.

Data 1 Lon: 11–12; Lat: 60–60.5 380257/9373644 258 2001–2005 14 85 1 100/106 55/51 16/16 76/79 148/145 56/63
Data 2 Lon: 9–10; Lat: 61–62 25461/848064 960 2001–2002 37 46 17 54/54 84/85 94/104 63/63 100/91 27/24

Note. N = number of data points with different resolutions; Elev. = elevation; P. = Pine forest; S. = Spruce forest; D. = deciduous forest.
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2.3. Model Framework

Satellite-derived albedo estimates are gathered at MODIS resolution of
500 meters, and land cover information is available at 16-m resolution.
This means that for each MODIS pixel there are many forest plots. The
radiance recorded by the satellite sensor is a linear product of the single
albedo of the individual land cover types within a MODIS pixel, as the
MODIS algorithm assumes a linear scaling of surface reflectance
(Lewis, 1995). It is thus possible to estimate albedo values at the land
cover spatial resolution through the so-called linear unmixing method
(Kuusinen et al., 2013; Kuusinen, Tomppo, et al., 2014; Lukeš et al.,
2014), with which albedo estimates are produced at higher resolution
(16-m) than the MODIS pixels (500-m) by combining remotely sensed
data with forest inventory data.

To achieve this, we construct nonlinear models to predict surface albedo
and use a nonlinear mathematical programming approach to estimate
the unknown parameters by minimizing the squared distance between
the modeled surface albedo and the satellite-derived albedo. The general
form of our model can be written as follows:

bα ¼ ∑
3

p¼1
Pp�F� ipc þ τ1f

p
1 Að Þ þ τ2f

p
2 Tð Þ

þτ3f
p
3 Vð Þ þ τ4f

p
4 Sð Þ þ τ5f

p
5 V; Sð Þ

( )
(1)

with indicator functions

τi ¼
1 when f i is present

0 otherwise
for i ¼ 1; 2;…; 5

�
(2)

where p indicates different species of forests, i.e., p = 1 for pine, p = 2 for spruce and p = 3 for deciduous
forests, Pp is the area of the forest p of the individual forest plots s within a MODIS pixel m. F is the share
of the area (in percentage) of the individual plot of land cover within the MODIS pixel. This equation
applies for a given pixel, forest plot and time. Both Pp and F are time-invariant. The parameter ipc stands
for the constant term for the forest p, f p1 Að Þ; f p2 Tð Þ; f p3 Vð Þ; f p4 Sð Þ are the functional forms for describing the
relationship between surface albedo and standing age (A), temperature (T) at 2-m height above ground
from the interpolation of the station observations, biomass volume (V), and SWE (S) of the forest, respec-
tively, and f p5 V; Sð Þ is the functional form of the interaction between biomass volume and SWE. This term
is used to capture possible interaction effects between forest structure and meteorological parameters. An
alternative version of equation (1) has standing ageA instead of biomass volume V in the interaction term.
For each forest p, the functional forms in the equation (1) are the same but with different unknown para-
meters, which need to be estimated from the data. bα denotes the estimated surface albedo of each forest
plot (16-m resolution) within each MODIS pixel at different time for different driven parameters, i.e.,
meteorological parameters and forest structure parameters. See Table 2 for a summary of the notations
used in this paper.

In addition to the general form of our model, we investigated many other model frameworks and functional
forms. For instance, another version of equation (1) uses temperature (T) instead of the snow-water equiva-
lent (S) for the functional form. However, the version of the model in equation (1), which uses snow-water
equivalent (S) as the meteorological parameter in the interaction term, is the option that shows better results,
and it is therefore the only one further discussed in this paper.

2.4. Functional Forms

In the model given by equations (1) and its alternative version with age in the interaction term, a variety of
different functional forms is used to capture the relationship between surface albedo and forest structure
or metrological parameters.

Table 2
Summary of the Notations used in this Paper

Symbol Description

m MODIS pixel
s Forest plot in MODIS pixel
t Time
αm, t Satellite-derived albedo estimates in each MODIS pixel

over time
Am, s, t Forest standing age at forest plot in MODIS pixel over time
Tm, s, t Temperature at forest plot in MODIS pixel over time

P1m;s;t

Area of Pine forest plots in MODIS pixel over time

P2m;s;t

Area of Spruce forest plots in MODIS pixel over time

P3m;s;t

Area of deciduous forest plots in MODIS pixel over time

Fm, s, t Share of the area (in percentage) of forest plots of land
cover within the MODIS pixel over time

Sm, s, t SWE of forest plot in MODIS pixel over time

V1
m;s;t

Volume of Pine forest of forest plot in MODIS pixel over
time

V2
m;s;t

Volume of Spruce forest of forest plot in MODIS pixel over
time

V3
m;s;t

Volume of deciduous forest of forest plot in MODIS pixel
over time
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2.4.1. Age
Regarding modeling the relationship between forest age and surface albedo, we consider the following
three options:

f 1;1 Að Þ ¼ i� exp �ia�Að Þ

f 1;2 Að Þ ¼ i� 1� 1
1þ exp �ia� A� iacð Þð Þð Þ

� �
f 1;3 Að Þ ¼ i� 1� 1

1þ exp �ia� A� iamð Þð Þð Þ
� � (3)

where f1, 1(A) is an exponential decay function with scaling parameter i and shape parameter ia. The shape
parameter ia controls how fast the surface albedo decays with growing forests and scaling parameter i
controls the overall scaling of the function. The exponential decay function f1, 1(A)is also used elsewhere
to fit the relationship between surface albedo and forest age (Kuusinen, Tomppo, et al., 2014). In addition
to it, we also test two more complicated functional forms that can more realistically represent the different
growth rates of the forest at different life stages. The functional forms f1, 2(A) and f1, 3(A) are logistic func-
tions with scaling parameter i, shape parameter ia and sigmoid midpoint iac and iam, respectively. In f1, 2(A)
the value of iac is fixed at predefined values, namely iac = 15 or iac = 30. On the other hand, in f1, 3(A) the
iam is treated as an unknown parameter which needs to be estimated from the data. Testing two similar
functional forms f1, 2(A) and in addition to the exponential decay function will allow us to get information
about the balancing of complexity with accuracy (in terms of model performance), because more complex
functions and unknown parameters to be estimated increase model computational time and make the
optimization harder. The same consideration holds true for the choices of functional forms for other para-
meters discussed below.
2.4.2. Temperature
The relationship between surface albedo and temperature can be modeled with logistic functions to capture
the rapid change in albedo values around snow melting temperatures. This functional form is based on the
data plots in Supplementary Figure S2(a), where MODIS surface albedo values are against mean temperature.
We have chosen two functional forms for f2(T):

f 2;1 Tð Þ ¼ k� 1� 1
1þ exp �kt� T � itcð Þð Þð Þ

� �
f 2;2 Tð Þ ¼ k� 1� 1

1þ exp �kt� T � itmð Þð Þð Þ
� � (4)

with sigmoid midpoints itc and itm, respectively. The parameter k scales the function, and the parameter kt
controls the shape of the functions. The sigmoid midpoint itc and itm control the inflection points of the
functions f2, 1 and f2, 2, respectively, and they are used to capture the dramatic change of surface albedo
when temperature T becomes higher than 0 °C. As in the case for age, the difference between the two
functional forms concerns the midpoint, which is assumed to be constant (itc = 270K) in f2.1, whereas it
is estimated from the data in f2.2.
2.4.3. Volume
One functional form with an exponential decay function is chosen for describing the relationship between
surface albedo and forest biomass volume:

f 3 Vð Þ ¼ j� exp �jv�Vð Þ (5)

with scaling parameter j and shape parameter jv. The parameter jv dictates the speed of surface
albedo decays with increasing volume, and parameter j scales the function. This functional form cap-
tures the decay of surface albedo with growing standing volume, which gradually stabilizes when the
forest approaches maturity. We only use one functional form for the volume-albedo relationship
because this trend is observed in several papers studying the link between (semi-)empirical albedo
estimates and forest volume growth (Kuusinen et al., 2016; Lukes et al., 2013; Lukes et al., 2016;
Lukeš et al., 2014).
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2.4.4. Snow Water Equivalents (SWE)
Surface albedo is very sensitive to SWE. We simulate this relationship with three different functional forms, an
exponential function and two logistic functions. The exponential function (similar to a second-half of a sig-
moid) is chosen on the basis of the trend in the scatter plot in Figure S2(b). As for the case of age-albedo rela-
tionship, the other two sigmoidal functions are tested to investigate the tradeoffs betweenmodel complexity
and accuracy:

f 4;1 Sð Þ ¼ q� 1� exp �qs�Sð Þð Þ

f 4;2 Sð Þ ¼ q� 1
1þ exp �qs� S� iscð Þð Þð Þ

� �
f 4;3 Sð Þ ¼ q� 1

1þ exp �qs� S� ismð Þð Þð Þ
� � (6)

with sigmoid midpoints isc and ism in f4, 2 and f4, 3, respectively. In all these three forms, the parameter
q scales the whole function and the parameter qs controls the shape of the function. The sigmoid mid-
points isc and ism are supposed to control the dramatic change of albedo values with and without snow
cover. The parameter isc is fixed at 15 or 30 to simplify the optimization, whereas ism is estimated from
the data.
2.4.5. Vegetation-Climatology Interaction Term
We also introduce an interaction term f(V, S) in equation (1) to capture the joint effect from the meteorologi-
cal parameter S and the forest structure parameterV,

f 5 V; Sð Þ ¼ g1 Vð Þg2 Sð Þ (7)

g1(V) concerns the volume and has the similar functional form as in equation (5), but with a different scaling
parameter, and g2(S) concerns SWE and is similar to the form for SWE discussed in equation (6). Equation (7)
has a two individual forms that make easier to separately control and interpret the individual functions. We
thus define three possible alternative forms for equation (7):

f 5;1 V ; Sð Þ ¼ r� exp �jv�Vð Þ� 1� ω� exp �rs�Sð Þð Þ

f 5;2 V ; Sð Þ ¼ r� exp �jv�Vð Þ� 1
1þ exp �rs� S� ivscð Þð Þð Þ

� �
f 5;3 V ; Sð Þ ¼ r� exp �jv�Vð Þ� 1

1þ exp �rs� S� ivsmð Þð Þð Þ
� � (8)

In f5, 1(V, S) we introduce a parameter ω, which is defined in the interval 0 ≤ ω ≤ 1, to scale the exponential
function g2(S). In these forms, r is a scaling parameter, and rs is a shape parameter that controls the shape
of the function g2(S). The parameters ivsc, ivsm are the sigmoid midpoints where ivscis fixed at 15 or 30 and ivsm
is unknown, i.e. it is estimated from the data.

In order to explore the different model performances on the type of forest variable considered, we elaborate
an alternative version of the interaction term by replacing biomass volume with forest age A:

f 5 A; Sð Þ ¼ g1 Að Þg2 Sð Þ (9)

Explicitly, it has the following three alternative forms

f 5;1 A; Sð Þ ¼ r� exp �jv�Að Þ� 1� ω� exp �rs�Sð Þð Þ

f 5;2 A; Sð Þ ¼ r� exp �jv�Að Þ� 1
1þ exp �rs� S� iascð Þð Þð Þ

� �
f 5;3 A; Sð Þ ¼ r� exp �jv�Að Þ� 1

1þ exp �rs� S� iasmð Þð Þð Þ
� � (10)

The interpretation of the parameters in equations (10) is similar to those in equations (8), with volume
replaced by age.
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2.5. Model Variant for Snow-Free Conditions

In addition to the general model described above, we also consider a variant that has a specific model to pre-
dict albedo values under snow-free conditions. To do this investigation, we first divide both the datasets Data
1 and Data 2 into two parts, with snow-free (S = 0) and snow-present (S > 0) conditions. The relationship
between surface albedo and forest structure and meteorological parameters are shown in Supplementary
Figure S3 for snow-free conditions. We see that in snow free conditions there is not a significant trend
between albedo and temperature, and we use a linear function to model the relationship. A decaying expo-
nential function is used to model the relationship between volume and albedo. This trend under snow-free
conditions was observed in previous study as well (Rechid et al., 2009).

The following equation is adopted for snow-free conditions

bα ¼ ∑
3

p¼1
Pp�F� ipc þ τ1f

p
1 Að Þ þ τ2f

p
2 Tð Þ þ τ3f

p
3 Vð Þ� �

; S ¼ 0 (11)

with

f 2 Tð Þ ¼ k�T (12)

which is a linear function with temperature T. We choose the same functional forms for f1(A) and f3(V) as
described in the previous section. The additional term ipc is a constant terms which is different for different
forest species.

We use the samemodel framework presented above for the snow-present conditions, and then combine the
two independent estimates under snow and snow-free conditions to create a dataset that can be directly
compared with the output of the full-year model.

2.6. Constraints in the Model

Some constraints are needed and introduced to confine the solution domain and make the optimization fea-
sible. There are two groups of constraints. The first group includes constraints on the parameters, and they
are used to constrain the shape and scaling parameter as well as the constant term ipc . Two parameters are
introduced, and the constraints can be written as

θ1;3l ¼ c1�θ2
θ1;3l ¼ c2�θ2

θ1;3u ¼ θ2
.

c1

θ1;3u ¼ θ2
.

c2

(13)

where, θpl and θ
p
u indicate lower and upper bounds of parameters ipc ; i; i

p
a; k; k

p
t ; j; j

p
v ; q; q

p
s ; r; r

p
s

� �
, with p = 1 for

pine, p = 2 for spruce and p = 3 for deciduous forests. With this formulation, bigger values of c, which is
defined in the interval 0< ci ≤ 1, i = 1, 2 introduce a harder constraint on the parameters. For instance, when
ci = 1, i = 1, 2, we have an idealized case where we do not distinguish among the different forest types but
treat them identically. Since the coniferous forests, i.e., pine and spruce, are more similar than deciduous for-
est, we set a bigger value for c1 and a smaller value for c2 (c1 = 0.7 and c2 = 0.25).

In the case of open land without standing forest, forest age and volume is set to 0, and the predicted surface
albedo becomes similar independently of the types of forest. This introduces the second group of constraints
with the following form bα 1;3

l ¼ c3�bα2;bα1;3u ¼ c4�bα2
(14)

when volume and/or age are/is equal to 0. The parametersα1;3l andα1;3u stand for the lower and upper bounds
of the predicted surface albedos for pine and deciduous forests, andbα2 is the predicted surface albedo for the
spruce forest. With c3 = c4 = 1, the predicted albedo for the three different forests with no vegetation (open
land) is constrained to be the same.
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2.7. Parameter Estimation

We use the nonlinear mathematical programming approach to estimate the unknown parameters in the
models with the functional forms discussed above. The models are implemented in GAMS using the standard
nonlinear optimization solver CONOPT (GAMS, 2017). The satellite–derived surface albedo α is available at
each MODIS pixelm over time t. We compute the weighted average of the estimated albedobαm;s;t of the indi-
vidual forest plot swithin each corresponding MODIS pixelm, and then compare the predicted albedo values
with the satellite-derived estimates. Our question is then formulated as a nonlinear optimization problem by
minimizing the squared distance between the predicted albedo and the satellite-derived albedo.

The mathematical optimization model can be summarized as:

min ∑
m; t

∑
s
bαm; s; t � αm; t

� �2

∀m; t (15)

subject to

bαm; s; t ¼ P1m; s; t�Fm; s; t
� i1c þ τi∑

j
f 1j

� �
þ P2m; s; t�Fm; s; t

� i2c þ τi∑
j
f 2j

� �
j∈ 1; 2; …; 5jModelf g

þ P3m; s; t�Fm; s; t
� i3c þ τi∑

j
f 3j

� �
(16)

and constraints discussed in Section 2.6. In equation (16), we use the notation ∑
j
f pj ; j∈ 1; 2; …; 5jModelf g

instead of the general form in equation (1) for each forest p, p = 1, 2, 3 since many of the models do not
need to have all the items. We group the items in τj∑

j
f j; j∈ 1; 2; …; 5jModelf g as a constant term, forest

structure terms, meteorology terms, and the interaction term between the forest structure and meteorologi-
cal parameters,

Constant term ¼ ipc ;

forest structure terms ¼ τ1f
p
1 Að Þ þ τ3f

p
3 Vð Þ;

meteorological terms ¼ τ2f
p
2 Tð Þ þ τ4f

p
4 Sð Þ;

interaction term ¼ τ5f
p
5 V; Sð Þ or τ5 f p5 A; Sð Þ; p ¼ 1; 2; 3:

(17)

With this grouping, we can investigate the contributions from forest structure parameters, meteorological
parameters and the interaction between the forest structure and the meteorological terms. To make our
model clear, one explicit example of equation (1) is given as follows

bα ¼ ∑
3

p¼1
Pp�F�

ipc þ τ1f
p
1 Að Þ þ τ2f

p
2 Tð Þ

þτ3f
p
3 Vð Þ þ τ4f

p
4 Sð Þ þ τ5f

p
5 V; Sð Þ

( )

¼ ∑
3

p¼1
Pp�F�

ipc þ τ1�i� exp �ia�Að Þ

þτ2�k� 1� 1
1þ exp �kt

� T� itmð Þð Þð Þ
� �

þτ3�j� exp �jv
�Vð Þ

þτ4�q�
1

1þ exp �qs� S� ismð Þð Þð Þ
� �

þτ5�r� exp �jv
�Vð Þ� 1� ω� exp �rs�Sð Þð Þ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(18)

3. Results and Discussion

More than 300 models are investigated in our study, and we only present the most performing options. First,
we provide an overview of the main results for some different models. Thereafter, we select two of the best
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models based on model complexity and performance, and then we depict their characteristics in detail. After
this, we perform model inter-comparison to compare the behaviors of the selected models and test their
spatial transferability. Finally, we conduct a sensitivity analysis on the constraints used in our study.

3.1. Summary of models’ Performance

We summarize the results of the best performing models with volume as interaction term based on the
regression coefficient R2 (see Table 3 and Table 4). Table 3 shows the results for Data 1, which is rich in pine

Table 3
Summary of Model Results for Data 1, Located in a Forestry Area in SE Norway

Nr.

f1(A) f2(T)

f3(V)

f4(S) f5(V, S)

R2f1, 1 f1, 2 f1, 3 f2, 1 f2, 2 f4, 1 f4, 2 f4, 3 f5, 1 f5, 2 f5, 3

1 × × × × 0.678
2 × × 0.696
3 × × 0.703
4 × × × 0.708
5 × × × 0.712
6 × × × 0.712
7 × × × 0.713
8 × × × × 0.714
9 × × × × × 0.714
10 × × × × 0.715
11 × × × × × 0.715
12 × × × × 0.715
13 × × × × × 0.715
14 × × × × 0.715
15 × × × × 0.715
16 × × × × 0.715
17 × × × × × 0.716
18 × × × × × 0.716
19 × × × × × 0.716
20 × × × × × 0.716

Note. This dataset is rich in coniferous forests, but few deciduous forests. The symbol × indicates that the model includes
the corresponding functional form; otherwise, the corresponding item is missing. The constant term ic is always included
in all models, and hence not shown in the table.

Table 4
Summary of Model Results for Data 2, Located in a Aountainous Area in Central Norway

Nr.

f1(A) f2(T)

f3(V)

f4(S) f5(V, S)

R2f1, 1 f1, 2 f1, 3 f2, 1 f2, 2 f4, 1 f4, 2 f4, 3 f5, 1 f5, 2 f5, 3

1 × 0.704
2 × × × 0.752
3 × × 0.752
4 × × 0.763
5 × × 0.765
6 × × × 0.768
7 × × 0.775
8 × × × 0.778
9 × × 0.778
10 × × 0.790
11 × × × 0.791
12 × × × 0.792
13 × × × × 0.807
14 × × × × × 0.807

Note. This dataset contains both coniferous forest and deciduous forest. The symbol × indicates that the model includes
the corresponding functional form; otherwise, the corresponding item is missing. The constant term ic is always included
in all models, and hence not shown in the table.
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and spruce, whereas Table 4 shows the results for Data 2, which has a larger fraction of deciduous species.
Models are numbered and for each of them we indicate the functional form used for age, temperature,
volume, SWE, and for the interaction term. The explicit form given in equation (18) is the model Nr. 11 in
Table 3 and Nr. 14 in Table 4.

Models applied in Data 2 achieve higher values of R2 because the dataset is smaller in terms of temporal
dimension (2 years against 6 years) and has lower entries because the forest has a lower density than
Data 1 (and therefore there is a smaller number of forested MODIS pixels). In general, the regression coef-
ficient R2 increases with more complex models, i.e., with a higher number of more complicated functional
forms. The results show that the inclusion of the interaction term between forest structure and meteor-
ology is key for improving model performance. However, using a complex functional form such as f5,
2(V, S) or f5, 3(V, S) for SWE in the f p5 V; Sð Þ does not significantly improve the results, and the simpler form
f5, 1(V, S) is sufficient to produce robust predictions at reduced complexity. In addition, when the interac-

tion term f p5 V; Sð Þ is included, extra additive terms of forest structure information like f1(A) and f3(V) are not
usually necessary, as they do not improve the results. The inclusion of meteorological parameters, i.e., tempera-
ture and SWE, as additive terms in the models improve the overall performances. In general, f2, 1(T)and f4, 2(S)
produce lower scores than f2, 2(T) and f4, 3(T), meaning that estimating the inflection points of the functional
forms for temperature and SWE with optimization provides better estimates than assuming fixed values.

There aremanymoremodels in our study, such asmultiplicative models, but they do not produce better results.
Furthermore, multiplicative models usually lead to very complex functional forms and increase nonlinearity,
which makes estimating the unknown parameters more time-consuming and computationally demanding.

3.2. Model Applicability

Many models produce results with relatively high R2 and can be chosen for practical applications. On the
basis of the relationship between model complexity and accuracy, we select two models to test the applic-
ability and explore model inter-comparison. The first model is number 7 in Table 3, or number 12 in
Table 4. This model is based on volume as the variable for forest structure in the interaction term and has
the following form:

bα ¼ ∑
3

p¼1
Pp�F� ipc þ f p2;2 Tð Þ þ f p4;3 Sð Þ þ f p5;1 V; Sð Þ

n o
(19)

with f p�;� defined in Section 2.4. This model has R2 = 0.713 in Data 1 and R2 = 0.792 in Data 2. The estimates of
the parameters for this type of model are available in the Supplementary Table S1, from which the simplicity
of its application can be appreciated.

The second model is based on forest age, instead of volume, as the variable for forest structure in the inter-
action term and has the following form:

bα ¼ ∑
3

p¼1
Pp�F� ipc þ f p2;2 Tð Þ þ f p4;3 Sð Þ þ f p5;1 A; Sð Þ

n o
(20)

This model has R2 = 0.715 over the first area and R2 = 0.791 over the second area. See Supplementary Table S2
for the estimates of the parameters. These models are selected to reflect simplicity and model performance
because only one forest structure parameter (either volume or age) is included in the interaction term but not
as individual additive items in the model (which only has climatological parameters).

Predicted albedo values using the two model types are shown in Figure 1 for selected volume (Figure 1a and
Figure 1b) and age (Figure 1c and Figure 1d) increments over months, assuming fixedmonthly means of tem-
perature and SWE. The Figure illustrates results for different forest species, pine, spruce and deciduous, and
areas, Data 1 and Data 2. The fraction of deciduous species in Data 1 is very low (see Table 1 and Figure S1),
and therefore we do not present the results for deciduous forests for this dataset.

As illustrated in Figure 1, the models capture the seasonal variation, with high surface albedo values in winter
months and low values during summer months. Albedo decreases with growing forests and stabilizes when
the forest gets mature, as the lines in the figures tend to overlap at high volumes and ages. Surface albedo
differences between coniferous species pine and spruce are small, whereas the differences are more
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significant with deciduous forests. Deciduous forest has higher albedo values than coniferous forest,
especially during winter, owing to the defoliation process and the reduced snow masking effect of snow
on the ground. As expected, surface albedo values are higher in Data 2 because the average elevation is
higher than in Data 1, where the snow appears earlier in the fall and melts later in springtime. The use of
forest age for the vegetation structure parameter predicts higher albedo than using volume as forest
structure parameter in the model when the forest is young. This is because the land cover datasets only
contain information on forest but not open land, and therefore the model predicts the albedos for open
land or very young forest by extrapolation. Since volume covers larger range comparing to age (see
Supplementary Figure S1), the extrapolation is smoother and thus predict lower values.

3.3. Model Inter-Comparison

We investigate the performance of different models using volume as the forest structure parameter in the
interaction term that differs in the SWE functional form. Selected models for this investigation are numbers
7, 4 and 3, from Table 3 for Data 1. The model number 7 has an additive sigmoid function for SWE-albedo

Figure 1. Predictedmonthly-mean surface albedo values with different biomass volumes and forest ages. P stands for pine
forest, S stands for spruce forest and D stands for deciduous forest. The results using volume in the interaction term are
shown in a for data 1 and b for data 2, and the results using age in the interaction term are given in c for data 1 and (b) for
data 2, respectively. The selected values for volume and age are V = {0; 30; 50; 100; 250; 500}m3/ha, and
A = {0; 15; 30; 60; 100; 150}years, respectively, to represent the different states of the standing forests. The default fixed
meteorological parameters are T = {260; 269; 270; 275; 280; 290; 290; 280; 275; 270; 270; 265}K for temperature and
S = {300; 300; 150; 50; 10; 0; 0; 0; 0; 10; 80; 265} mm for SWE. Different colors are used to indicate different states of the for-
ests (from young to mature forest), and different line styles to indicate different kinds of forests (pine forest with solid line,
spruce forest with dashed line and deciduous forest with dotted line).
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relationship with a sigmoid midpoint estimated from the data. In model number 4, the additive sigmoid function
term f4(S) is replaced by an exponential function, whereas model number 3 does not include the additive term,
and the SWE is only present in the interaction term. The relative differences between model outputs are
calculated in terms of relative percentage differences with respect to model number 7, and the results are
shown in Figure 2. In this way, we can single out the importance of the additive term for SWE and the role of
the functional form, either sigmoid or exponential, used for SWE-albedo relationship in the additive term.

With Data 1, the relative difference, with respect to model number 7, is generally smaller for model number 4
(Figures 2(a) and 2b) than for model number 3 (Figures 2c and 2d), for both pine and spruce forests over the
whole year. This is reasonable since both forests are coniferous, and model number 7 and model number 4
are more similar to each other than model number 3. In model number 4, the relative differences are only
within 6% and 10% for pine and spruce, respectively, and tend to decrease at higher volumes. The difference
between model number 7 and model number 3 is much significant, especially for the forest with higher
volumes or standing ages. The difference can up to 40% for mature forests for both pine and spruce in spring.
The reason is that when the forests grow, the forest gets darker and the importance of the SWE is increasing,
so the additive term becomes crucial in the model.

3.4. Transferability Analysis

One of the main purposes of our study is to produce models that can be used for easily predicting surface
albedo using the forest structures and meteorological parameters in boreal areas. Therefore, we carry out

Figure 2. Results for model inter-comparison. The figures illustrate the relative differences among model outputs in terms
of percentagewith respect to model number 7 from Table 3 for data 1. Selectedmodels for this investigation are numbers 4
and 3 from Table 3. Only the period with snow is chosen, and different colors represent different stages of the forests.
The relative differences between model 4 and model 7 are given in a for pine forest and b for spruce forest, and corre-
sponding results between model 3 and model 7 are shown in c for pine forest and (b) for the spruce forest, respectively.
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transferability analysis to validate the applicability of the selected models. In the first group of analyses, we
use the model given in equation (19), named “Model 1” hereafter, which corresponds to number 7 in
Table 3 for Data 1 and number 12 in Table 4 for Data 2. In this analysis, we first estimate the unknown
parameters from the first area and then use the corresponding model to predict the surface albedo in the
second area. Similarly, we estimate the parameters from the second area and then use the respective
model to predict the surface albedo in the first area. The chosen characteristics, bias, mean absolute error
(MAE), R2 and root mean square error (RMSE) are calculated and reported. The results are shown in the off-
diagonal sub-figures in Figure 3. As a benchmark, we include the results of predictive performance using
estimates from the first and second areas to predict themselves, respectively. This is also informing about
the model performances within the same region of the model estimates, thereby showing possible bias of
the downscaling unmixing method from 500 m to 16 m.

Figure 3. Results of the transferability analysis for model 1 (corresponding to number 7 in Table 3 for data 1 and number 12
in Table 4 for data 2) plotting the predicted surface albedo against the satellite-derived values (treated as observed values).
Model 1 uses volume as the forest structure parameter in the interaction term. The figure also shows the respective
statistical indicators, such as bias, mean absolute error (MAE), R2, root mean square error (RMSE) and number of points (N).
the red lines are y = x and the color scale indicates the normalized densities of the points.
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The transferability of the selected model in equation (20), which uses age instead of volume as the forest
structure in the interaction term, is also analyzed. The same procedure as above is applied, and the results
are illustrated in Figure 4.

Figures 3(a), 3(d), 4(a), and 4d show that results are unbiased (the values of bias are close to 0) and robust, as
the statistical indicators show good model performances. This means that each model produces robust esti-
mates when applied to the same area of its original parameterizations. Figures 3(b), 3(c), 4b and 4c illustrate
the model outputs and associated statistical indicators when the models are applied to different locations
than those from their parameterization.

In general, after comparing the scores in Figure 3 and Figure 4, the model using volume in the interaction
term f5(V, S) performs better than the model with age in the interaction termf5(A, S). The reason is that the
size of the trees with same age can differ, and there are heterogeneities in the two different areas (flat man-
aged forest vs. mountainous forest) that are better captured when volume is used instead of age as the forest
structure parameter. The volume of trees tends to be more homogenous and a better indicator of forest
growth and snow-masking effects. From Figure 3b and Figure 4b, a negative bias is observed when we use
the estimates from the first area to predict the second area, meaning that surface albedo is likely to be

Figure 4. Results of transferability analysis for model 2 plotting the predicted surface albedo against the satellite-derived
values (treated as observed values). Model 2 uses age as the forest structure parameter in the interaction term. The
figure also shows the respective statistical indicators, such as bias, mean absolute error (MAE), R2, root mean square error
(RMSE) and number of points (N). the red lines are y = x that are used as references and the color scale indicates the
densities of the points.
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underestimated. The reason is that the first area is rich in coniferous trees but has few deciduous trees, and
therefore the model has limitations to represent the higher values of albedo in winter months of deciduous
trees relative to coniferous trees, which are more abundant in the second area. For the same reason, there is
the opposite effect when using the estimates from the second area to predict surface albedo in the first area,
where we observe a positive bias. Results in Figure 3 and Figure 4 also show that our models do not capture
the outliers in the datasets. This is expected, since we used a statistical approach and the models are
unbiased in the mean. It is important to point out that it makes no sense to compare the results directly
between Figure 3a and Figure 3d or between Figure 4a and Figure 4d, using the same standard statistical
indicators. Data 1 and Data 2 have different densities of forests as well as temporal and spatial ranges,
which leads to different number of points.

Figures 3 and 4 also indicate the possible presence of two major data clusters separated with a threshold
around a value of 0.15. We therefore zoom into Figure 4d and explore possible hidden trends by splitting
the figure into two parts, and show results in Figure 5. We find that both subplots generally exhibit a similar
pattern, and model performances are relatively similar in both data clusters.

We further explore the transferability properties of the models under varying temporal and spatial scales. The
temporal scale is investigated by introducing a third dataset, Data 3. Data 3 is a subset of Data 1 and it covers
the same spatial domain, but for a shorter temporal period. Data 3 have the same temporal range of Data 2
(2 years of satellite-derived surface albedo estimates), but the numbers of the forest plots are different due to
the lower forest density in the second area. We introduced this new dataset to test model transferability
across datasets with different time ranges. The results are shown in Supplementary Figures S4 and S6, and
the statistical scores indicate that model performances are not significantly affected by the temporal scale
of the parameterization. Models results are thus relatively insensitive to variations in time scales.
Comparing the corresponding results given in Figure 3a with Figure S4(d), and Figure 4a with Figure S5(d),
the statistical scores are improved. This is because Data 3 is from the same area of Data 1, and it has a shorter
temporal range and therefore lower scattered outputs (smaller number of N).

We test the transferability across different spatial scales of the sample domain introducing a fourth dataset,
namely Data 4. Data 4 has the same time range of Data 1 and Data 3, but double size. We use the model esti-
mates for Data 1 and Data 3 to predict albedo values in Data 4. Results show that the models do not decrease
the performance when applied across different spatial ranges using either volume or age as the forest struc-
ture parameters (see Figure S6 in the supplementary material).

3.5. Model Variant for Snow-Free Conditions

The performance between the full-year model given in equation (19) is compared against a variant where a
specific model for snow-free conditions only is used. We consider the option of equation with only volume as
the forest structure parameter to be consistent with the version of the full-year model.

Figure 5. Split of Figure 4d with threshold value 0.15. A estimated albedo greater than 0.15 and b estimated albedo lower
than 0.15 against the observed albedo.
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Figure 6 shows the statistical performance against observations of the combined snow-free and snow-
present albedo estimates, so to make them comparable with the findings of the full-year model since the per-
formance from these two variants is not directly comparable with the full-year model. The two coefficients of
determination R2 for Data 1 and Data 2 are 0.714 and 0.8, which are slightly better than the full year model
(0.713 and 0.792, respectively). The other scores are slightly improved as well. From this analysis, we can con-
clude that the representation of the albedo-SWE relationship in the full-year model is sufficient to capture
variations related to snow presence. The functional form used tomodel albedo response to SWE is highly sen-
sitive to changes in SWE at low SWE values, so that the variability associated with the absence or presence of
snow is duly represented in the full-year model. A model variant specific for snow free conditions does not
improve the analysis of the two clusters either, because, as mentioned in the previous sections, low albedo
values are also possible in presence of snow. The full-year model is thus a preferred option than the model
variant with snow-free/present conditions, owing to its simpler applicability and not need for differentiated
datasets and models.

3.6. Sensitivity Analysis Based on the Constraints

When constructing models, it is important to ensure that models are accurate and at the same time feasible
to be solved. This is usually the main rational to introduce constraints in model frameworks. In order to sim-
plify the analysis and harmonize the comparison, we introduce only one parameter to control the treatment
of differences between forests and illustrate the results of the models given in the equation (19) and equa-
tion (20) with Data 1 and Data 2. The constraints in (13) can then be written as

θ1;3l ¼ c�θ2

θ1;3u ¼ θ2

c

(21)

with c = {0.05, 0.1, 0.15,…, 1}. With this setting, smaller values of c allow the bigger difference between the
parameters for different forests, and bigger values of c introduce stricter constraints. The analysis is based
on the investigation of the changes in the regression coefficient R2 as a function of the changes in c (Figure 7).

Results show that the difference in the characteristics between the two types of coniferous forests (pine and
spruce) is rather small since the values of the regression coefficient only change slightly when we tighten the
constraints (see red lines in Figure 7a and Figure 7b for Data 1, which is rich in coniferous species). This means
that the two different coniferous species can be treated as the same tree without significant losses in terms of
overall model accuracy. On the other hand, results show the different characteristics between deciduous for-
ests and coniferous forests. In this case, the regression coefficients change with tighter constraints (see blue

Figure 6. Results of snow-free and snow-present models with data 1 a and data 2 b plotting the predicted surface albedo
against the satellite-derived values (treated as observed values). The approach refers to equations (20) and (21), where we
use volume as the forest structure parameter in the interaction term. The figure also shows the respective statistical
indicators, such as bias, mean absolute error (MAE), R2, root mean square error (RMSE) and number of points (N). the red
lines are y = x that are used as references and the color scale indicates the densities of the points.
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lines in Figure 7a and Figure 7b for Data 2, which is rich in deciduous species), especially when c is increasing
from 0.7 to 1. No significant change in R2 occurs when c is smaller than about 0.6. This sensitivity analysis thus
provides an indication for selecting the best vales of the constraints under the trade-offs between model
robustness and solvability.

4. Conclusion

This study provides a simple and fast approach to simulate and predict surface albedo using forest structure
and metrological parameters. By utilizing the high spatial resolution of the forest structure datasets, surface
albedo can be estimated at high-resolution (from 500 m of satellite retrievals to 16 m) and predicted using
statistical models. In this study, many models are investigated and the ones with the best statistical scores
are presented and discussed in detail. We find that they are generally unbiased with high values of the regres-
sion coefficient R2, low MAE, and low RMSE, and have good transferability properties. They can be used to
predict surface albedo in another area with similar forest composition (deciduous vs. coniferous species)
and meteorological parameters regardless of the spatial range and time scales.

This analysis offers many alternative models that can be used to study the effects of forest management and
climate change on surface albedo. There is a large flexibility and choice for practitioners, depending on the
particular case. Models can have different complexity in terms of functional forms and variables of forest
structure (volume and/or age) and climate (temperature and snow water equivalents). The choice of the
model can reflect the considerations highlighted in this paper and the different situations in terms of data
availability of the particular study (for example, if one has only access to volume or age information, or both).
In general, robust outcomes are obtained with climate variables included in model formulations as additive
items and in the interaction term (especially SWE), whereas the representation of forest structure information
is needed in the interaction term but not as additive terms. Models using volume instead of age as the forest
structure parameter perform better, since volume is a more homogeneous indicator across different areas.
The representation of the albedo-SWE interactions in the full-year models is sufficient to capture albedo sen-
sitivity to snow, as benchmarked in the comparison with the snow-free/present model variant. The two mod-
els selected in the results section are an example of model options that reflect these considerations.

The computational time for different models depend on how complicated models are and how big the data-
set is. It varies from several minutes to several hours on a desktop computer. However, after the model is
trained and parameters estimated, it is fast to use these models in applications aiming at quantifying effects
of changes in forest structure and climate conditions on surface albedo. The equations with estimated para-
meters can be used by non-expert by directly plugging in forest structure and meteorological parameters to
obtain the surface albedo estimates.

Figure 7. Results of sensitivity analysis based on the constraints. The results for model 1 and model 2 are shown in a and b,
respectively. The red lines illustrate the results for data 1 and the blue line shows the results for data 2. The constraints
parameter c has the value from 0.05 to 1 with step size 0.05, and bigger values of c introduce stricter constraints to the
parameters for different forests.
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Availability of simple parametric models for predicting surface albedo changes as a result of forest manage-
ment or climate change can enhance the inclusion of biophysical effects in climate impact analysis. The
approach presented in this paper provides a range of models that can fit a variety of applications.
Currently, our models are tested and validated for Norwegian forests. The models are expected to perform
in other boreal forest areas with similar tree species, and future work can specifically test the transferability
in other boreal locations outside Norway. A possible extension of this work also includes the possibility to
incorporate other information of forest structures and metrological parameters, and potentially integrate
refined model versions (possibly re-estimated with the more recent MCD43A1 collection 6) with climate
impact assessment frameworks and land surface models.
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