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Research summary: A learning-by-hiring approach is used to scrutinize scientists’ mobility in 
relation to the recruiting firms’ subsequent innovation output. Our starting point is that among 
firm hires, individuals with university research experience — hired from universities or firms — 
can be particularly valuable. However, conflicting institutional logics between academia and 
industry makes working with academic scientists challenging at times for firms. We suggest two 
solutions to this difficulty: hiring ‘ambidextrous’ individuals with a mix of experience of 
university research and working for a technologically advanced firm, and a strong organizational 
research culture in the recruiting firm reflected by the presence of a scientist on the top 
management team. We track the mobility of R&D workers empirically using patent and linked 
employer-employee data. (max 125 words).  
Managerial summary: An important way to make organizations more innovative is hiring 
individual researchers with the right types of skills and experience. We show that individuals 
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with university research experience beyond their final degree are particularly likely to help boost 
firm-level innovation output after hiring compared to R&D workers with other types of skills and 
experience. However, to obtain good returns to innovation from hiring such individuals, firms 
need a university research-friendly organizational culture when hiring individuals with university 
research experience, from either firms or academia. (max 125 words).       
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INTRODUCTION 

It is well-established that science and university scientists make central and important 

contributions to the innovation output of private business firms in a variety of industries (see e.g., 

Jaffe, 1989; Gambardella, 1992; Fleming and Sorenson, 2004; Gittelman, 2007; Kotha, George, 

and Srikanth, 2013). However, the conditions allowing firms to benefit from expanding their 

scientific capacity through inward mobility of academic scientists with heterogeneous work 

experience are less well understood. In this paper, we examine whether private firms’ hiring of 

scientists with university research experience has a stronger impact on these firms’ innovation 

output than hiring of other types of researchers, and we address the related question of how other 

knowledge-work experienced hires and the recruiting firm’s research culture, might affect the net 

benefits of scientists’ mobility.  

The extant literature on learning-by-hiring considers recruitment of research scientists to be 

an important source of knowledge that affects the hiring firm’s innovation process (e.g., Almeida 

and Kogut, 1999; Rosenkopf and Almeida, 2003; Hoisl, 2007; Tzabbar, 2009; Corredoira and 

Rosenkopf, 2010; Singh and Agrawal, 2011; Kaiser, Kongsted, and Rønde, 2015; Jain, 2016). The 

study by Rosenkopf and Almeida (2003) examines pairs of firms, and shows that dyads involved 

in high levels of mutual labor mobility are involved also in greater knowledge flows. Tzabbar 

(2009) shows that the recruitment of technologically distant scientists is related positively to firm-

level technological repositioning. In a paper that uses the Danish register data employed in our 

study, Kaiser, Kongsted and Rønde (2015) find that workers recruited from a technologically 

leading firm compared to individuals recruited from non-leading firms, appear to increase the 

innovation output of the new employer. However, although this research stream provides valuable 

insights, it has some limitations. First, work on how scientists affect the innovation output of 

1 



University Scientist Mobility 
 

private business firms generally analyzes hirings from other industrial firms, irrespective of the 

type and mix of research experience accumulated by the recruited researchers from disparate 

organizational contexts (e.g., universities vs. employment in other business firms). Second, this 

literature looks mostly at how labor mobility affects the hiring firms’ technological problem-

solving processes (reflected in patent citations) rather than their innovation output.  

Taking the learning-by-hiring literature as our point of departure, the present study analyzes 

the extent of the heterogeneity in the benefits derived from hiring R&D workers with different kinds 

of knowledge-related experience with respect to firm-level, quality adjusted innovation output. We 

focus on the joint effects of scientists’ previous university research experience combined 

possibly with experience of working in a firm with a strong technological record, and the 

recruiting firm’s research culture. To our knowledge, ours is the first paper to study the combined 

influence of newly recruited researchers’ different university and private firm experience, and to 

link this heterogeneity to the firm-level research culture and firm innovation output.  

We propose that firms’ hirings of individuals with university research rather than other types 

of experience provide important support for science-based problem solving which in turn, leads to 

more firm-level innovation output. However, given the potentially conflicting institutional logics 

between industrial and academic research (Dasgupta and David, 1994; Sauermann and Stephan, 

2013), hiring university scientists can present problems, and may not pay off. We hypothesize about 

two approaches to this problem which may allow firms to benefit from hiring individuals with 

university research experience in relation to their quality adjusted innovation output. The first 

approach involves hiring individuals with a mix of industry and university research experience, and 

the second refers to firms with a research culture which allows them to accommodate individuals 

with academic research experience and related preferences.  
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We use unique data on the entire population of Danish firms and their employees over the 

period 1999 to 2004. These data allow us to measure the average effect on innovation of R&D 

workers moving to private firms, and to assess the effect of inward mobility of scientists with 

heterogeneous experience. We link these data to the number of a firm’s patent applications to the 

European Patent Office (EPO) which we use to measure innovation output. The analysis focuses on 

5,385 firms (15,984 observations) that employ at least one R&D worker and which are more likely to 

patent. The econometric analysis takes account of state dependence — previous innovation output is 

likely to have an impact on current innovation, and on unobserved firm-specific time-invariant 

heterogeneity since some firms — due perhaps to better management of R&D — may be inherently 

more innovative than others. We control for these fixed firm effects using a pre-sample variable, the 

mean of the dependent variable prior to the time period of the study (Blundell, Griffith, and van 

Reenen, 1995; Bettis, Gambardella, Helfat, and Mitchell, 2014), and control for the inward mobility 

of science or engineering graduates.  

THEORETICAL BACKGROUND 

We follow the mainstream literature and consider technological innovations as inventions with 

commercial application, where inventions refer to the development of a new idea or an act of 

creation (see, Ahuja and Toh, 2015). Also in line with the literature, we define firm-level innovation 

output as the sum of the technological innovations created by a firm over a given period. Quality 

adjusted innovation output is this construct corrected by its economic and technological value (see 

for instance, Sampson, 2005; Singh, 2008; Hess and Rothaermel, 2011).  

With respect to R&D workers’ inward mobility we consider two types of scientist 

experience to be particularly salient in our case: (1) previous university research experience, and 

(2) experience of working in a firm with a strong technological record. These two dimensions are 
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the basis for the 2×2 matrix depicted in Figure 1 below. 

[Insert Figure 1 about here] 

Arora and Gambardella (1994) make an important distinction between scientific 

capabilities whose relative strength is in evaluation of technological information, and 

technological capabilities whose relative strength is in utilization of technological information. In 

the context of the former, Arora and Gambardella (1994: 102) argue that ‘Scientific capability 

enables the firm to reduce the uncertainty about the outcome of individual projects...science 

provides information that helps restrict the search for successful innovations at the downstream 

applied research and development stages’. As Arora and Gambardella (1994) argue, scientific 

capability is particularly useful for evaluating technological information. We posit that overall, 

new hires with university research experience increase the focal firm’s scientific capabilities, and 

that given the importance of the ability to evaluate technological information in the innovation 

process such hires should increase the firm’s innovation output.  

Arora and Gambardella (1994: 96–97) suggest also that the value of an innovation project 

‘depends upon the ability of the firm to utilize effectively the [relevant] know-how.’ We argue that 

this ability can be enhanced by new hires with work experience in a technologically strong firm. In 

the context of technology spinoffs, Klepper and Sleeper (2005) suggest that firms that are more 

successful own more knowledge, resulting in there being more knowledge for previous employees 

to exploit. Also, former employees of patent active compared to non-patenting firms are likely to 

have deeper and broader technological knowledge (Kaiser et al., 2015). Scientists moving from 

patent active firms are likely to bring technological experience in the form of knowledge useful for 

innovation output, and to have the ability to utilize technological information. 

Figure 1 Panel (1) includes newly hired individuals with neither type of experience; Panel (2) 
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includes newly hired individuals with university scientific experience but no experience of 

working in a technology active firm — i.e., the hire will increase ability to evaluate technological 

information; Panel (3) includes newly hired individuals with technological experience but no 

university scientific experience — i.e., the hire will increase ability to utilize of technological 

information; and Panel (4) includes newly hired individuals with both types of experience — i.e., 

the hire will increase both evaluation and utilization of technological information abilities. Using 

this 2×2 matrix as our starting point, in what follows we derive our hypotheses.    

HYPOTHESES 

An important type of external experience that can be acquired by firms through recruitment is 

experience of academic research in a university context beyond the level of doctoral research. 

We propose that inward mobility of scientists with academic research experience compared to 

recruitment of R&D personnel lacking such experience, is particularly useful for solving innovation-

related problems, and therefore, for the quality-adjusted innovation output of firms. We suggest that 

firms will achieve a greater boost to their innovation output from recruiting an individual with the 

types of experience described in Panels (2) and/or (4) in Figure 1 compared to an individual with the 

type of experience described in Panels (1) and/or (3). Knowledge transfer in the context of the links 

between science and technology is ‘mainly person-embodied, involving personal contacts, 

movements, and participation in national and international networks’ (Pavitt, 1991: 112). For this 

reason, recruitment of scientists is an important means for private firms to obtain access to science. 

Following the literature (see, Pavitt, 1991; Salter and Martin, 2001), we argue that scientific 

capability enables the evaluation of technological information in innovation projects through 

scientists’ application in the technological setting through three different mechanisms. 

First, in relation to the importance of general scientific research skills and techniques, Fleming 
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and Sorenson (2004) argue that by providing inventors with a ‘map’ or a stylized (or theoretical) 

representation of the solution-space, scientific knowledge can lead to other types of problem-

solution than would be possible using regular technological problem solving abilities. Gibbons 

and Johnston (1974) found that when faced with a problem scientists may be able to provide 

direct solutions but are more likely to suggest an alternative way to tackle the problem to reduce 

the range of possible solutions, or to access equipment and procedures to test the feasibility of a 

proposed solution. Second, specific problem-solving skills can be directly useful for technological 

problem-solving in private firms. For instance, the general principle related to a pharmaceutical 

drug may be scientific knowledge; however, innovations by electronics firms also exhibit strong 

links to science (Pavitt, 1991; Klevorick, Levin, Nelson, and Winter, 1995). In this context, 

Gibbons and Johnston (1974) argued that scientists are particularly critical for ‘translating’ 

information from scientific journals into a form that is meaningful to industry problem-solvers. 

Finally, former university scientists can draw on social university networks to help in their 

technological problem-solving activities (Gibbons and Johnston, 1974), and to exploit 

international networks of colleagues and co-authors which increases the industry employer’s 

awareness of the leading scientists and relevant scientific resources (Murray, 2004).  

We argue that given the potentially major benefit to firms of combining scientific 

knowledge, skills, and techniques with the firm’s already existing technological problem-solving 

activities, hiring a scientist with university experience will have a stronger effect on quality-

adjusted innovation output compared to recruiting someone with no experience of working in 

academia. Hiring recent university masters and doctoral graduates also allows firms to access 

scientific knowledge, skills, and techniques (Pavitt, 1991; Salter and Martin, 2001). However, 

we argue that there are two reasons why new graduates embody fewer scientific capabilities than 
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individuals who have also been employed by a university (we control empirically for such 

hirings). The first reason is based on an organizational learning argument: It takes time to 

acquire scientific capability. Graduates spend a significant amount of time on educational 

activities which reduces the time available to practice science while scientists who are employed 

by a university after graduating have spent more time conducting research in an academic 

environment. The have also had more time to develop social networks within the university 

system compared to graduates employed by private firms immediately after graduation. The 

second reason is that graduates choosing employment in a university as an initial career choice 

may be inherently more motivated to perform scientific research than graduates choosing 

employment in a private firm immediately after graduation. In sum, these arguments suggest that:  

Hypothesis 1: Newly hired individuals coming from universities, or individuals with 

university research experience who are hired from firms, should provide higher positive 

returns with respect to quality-adjusted innovation output than individuals with no 

university research experience who are hired from firms. 

The non-trivial challenges of hiring university scientists  

While there are clear benefits to firms deriving from science and the recruitment of university 

scientists, hiring scientists imposes on the recruiting firm some non-trivial problems (additional 

to the usual adjustment problems related to new hires) including the integration of university 

scientists into the firm’s local knowledge production. According to Dasgupta and David (1994), 

the fundamental differences between scientific and technological knowledge are the types of 

goals, behavior norms behavior, and reward systems considered legitimate by the two researcher 

communities. Based on these goals, norms, and incentives, academically trained scientists tend 

to have a strong ‘taste for science’ including a preference for basic research, freedom to choose 
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among research projects, and disclosure of research results through publication (Stern, 2004; 

Roach and Sauermann, 2010; Agarwal and Ohyama, 2013). The strong taste for science among 

academically trained scientists suggests that employing former university scientists might be 

problematic for profit-oriented business firms which need an appropriate strategy to exploit 

potentially valuable knowledge inputs.  

Complementarities between academic and industrial research experience  

Despite conflicting logics between industrial and academic research, Sauermann and Stephan 

(2013: 904) maintain that ‘the ideal types of ‘academic logic’ and ‘commercial logic’ overstate 

differences between industrial and academic science while ignoring important heterogeneity 

within each sector.’ In other words, bridging between the two spheres is possible but requires 

explicit attention. One possibility is to hire scientists with a mix of experience from academic 

and technological/industry contexts. In this case, we argue that individual-level academic 

research experience can be (even) more productive for a firm when combined with work 

experience from a highly technology-active firm (Figure 1 Panel 4) compared to other mixes of 

relevant experience (Figure 1 Panels 1, 2 and 3). 

The starting point for our analysis is that heterogeneity in the previous experience of newly 

hired scientists is central to explaining firm-level innovation outcomes. Agarwal, Echambadi, 

Franco, and Sarkar (2004) argue that the level of a new employee’s technological know-how is 

to an important extent a function of the previous employer’s technological knowledge. Indeed as 

suggested above, successful firms possess more knowledge, implying that there is more 

knowledge available to a leaving employee to apply in a new setting (Klepper and Sleeper, 

2005). That knowledge includes not only idiosyncratic technological knowledge in the narrow 

sense but also includes tacit, process-related know-how about how to create innovations 
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(Thompson, 1967). Thus, it can be argued that recruits with experience from employment in a 

technologically strong firm (Kaiser et al., 2015), or inward mobility of individuals with 

academic research experience (Hypothesis 1) will increase the hiring firm’s innovation activities 

more than recruitment of individuals with neither type of experience.  

Central to our argument is that we predict a higher increase to the recruiting firm from 

individuals with both types of experience. In other words, hiring individuals with strong 

academic research experience combined with strong technological experience should increase 

innovation output more than recruitment of individuals with just one or neither type of 

experience. As argued above, given that on balance, academic research experience and the 

capabilities it endows are directed more towards evaluating technological information, and that 

technological capabilities are directed more towards utilizing technological information aimed at 

commercial exploitation, the combination of these capabilities should provide a superior 

outcome since successful innovation requires both competences (Agarwal and Ohyama, 2013). 

The literature on individual-level ambidexterity suggests that individual ambidexterity increases 

with experience (Mom, Bosch, and Volberda, 2009); in our context, scientists with both academic 

and industry technological experience will be better able to manage the (partially) conflicting 

logics underlying academic scientific and industrial technological activities. In other words, 

experience of working in both domains should render the individual better able to bridge those 

spheres. It follows that experience of working in both domains should outperform having only 

one type or no such experience. This complementarity logic underpins the following hypotheses:  

Hypothesis 2a: Individuals with university research experience newly hired from firms 

with patenting experience should provide higher positive returns with respect to quality-

adjusted innovation output than individuals with university research experience hired from 
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universities or non-patenting firms.  

Hypothesis 2b: Individuals with university research experience hired from firms with 

patenting experience should provide higher positive returns with respect to quality-

adjusted innovation output than individuals hired from firms with patenting experience but 

no university research experience. 

Hypothesis 2c: Individuals with university research experience hired from firms with 

patenting experience should provide higher positive returns with respect to quality-

adjusted innovation output than individuals hired from non-patenting firms and with no 

university research experience. 

Organizational culture  

The tension between the (academic) science and (commercial) technology spheres can be 

managed through the hiring of individuals with experience in both spheres (see arguments 

related to Hypotheses 2a/b/c). However, the potential boost to innovation output from hiring a 

researcher of the type described in Figure 1 Panel 2 or 4 also may depend significantly on the 

observed heterogeneity in the firms’ emphasis on an academic or a commercial logic as 

highlighted by Sauermann and Stephan (2013). There may be important differences in how well 

private firms are able to exploit and manage researchers oriented to academic research 

(Cockburn and Henderson, 1998). For instance, Liu and Stuart (2014: 1136) describe some 

central organizational features of the ‘university research-friendly’ firms they analyzed: ‘To the 

extent possible, the firm creates a university-like milieu to cater to the preferences held by their 

researchers. For biologists, who have almost all spent many years training at universities, BTCO’s 

research division will seem a relatively familiar place.’ Organizational culture is defined generally 

as ‘a system of shared values defining what is important, and norms, defining appropriate attitudes 
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and behaviors, that guide members’ attitudes and behaviors’ (O'Reilly and Chatman, 1996: 166). A 

university research-friendly organizational culture emphasizes the importance of academic 

research and the associated norms and practices. 

We suggest that relevant experience and a resulting culture of employing academic 

scientists will alleviate some of the tensions discussed above. A research-friendly organizational 

culture helps to reduce the problems associated to integrating university scientists into the firm’s 

knowledge production. The absorptive capacity literature regards such a culture as a social 

integration mechanism which reduces the counter-productive gap between exploration and 

exploitation (Zahra and George, 2002). Indeed, despite private firms’ for-profit objectives, some 

companies have a research culture which generally accommodates academic research activities. 

This includes allowing former university scientists a degree of autonomy, and the right to 

continue to publish (Rosenberg, 1990; Cockburn and Henderson, 1998; Roach and Sauermann, 

2010; Ding, 2011) although sometimes after some delay to comply with protection of intellectual 

property rights (Lei, Juneja, and Wright, 2009). Nevertheless, an academic research-friendly 

culture reduces frustration in academically-oriented scientists which arguably, should increase 

their productivity (Mudambi and Swift, 2009). Such a culture is likely to satisfy the firm’s profit 

and coordinated problem-solution goals as well as catering to scientists’ research preferences. 

This should increase the hiring firm’s quality-adjusted innovation output. 

Scientists with university research experience can be recruited directly from universities, or 

hired from other firms. We argue that the successful integration of individuals with both types of 

experience regarding innovation output requires an appropriate research culture. Although 

researchers with both academic and industrial research experience may have a better 

understanding of the research requirements in industry compared to researchers hired directly 
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from a university although their industry experience is unlikely to have erased their taste for 

science. Indeed, it is likely that scientists with academic experience hired from industry will 

more likely have been employed by a firm characterized by an academic research-friendly 

culture. In sum, we posit that:  

Hypothesis 3: A research friendly organizational culture in the focal firm enhances the 

positive effect on the quality-adjusted innovation output of individuals with university 

research experience newly hired from universities or firms. 

METHODS 

Data  

Patent data. The first set of data are patent applications filed with the EPO since 1978 (when the 

EPO was established) with at least one Danish applicant. These data are taken from the EPO’s 

PatStat (‘Worldwide Patent Statistical Database’). This data set is critical since our basic 

measure of innovation output is patent counts. Although patent counts are imperfect proxies for 

innovation output (Arundel and Kabla, 1998), they are representative of a specific invention 

(patent applications refer to single inventions), and can be related to patent value correlates 

(Trajtenberg, 1990). Patent counts are used extensively in the management (Stuart and Podolny, 

1996; Almeida and Kogut, 1999; Song, Almeida, and Wu, 2003) and economics literatures 

(Griliches, 1990; Blundell et al., 1995; Kim and Marschke, 2005).  

Linked employer-employee data. We use linked employer-employee information provided by 

Statistics Denmark: Our data set includes the whole (not a selected sample) population of Danish 

firms and workers. The database is a recognized and valuable resource for research in the social 

sciences (see, for instance, Sørensen, 2007; Marx and Timmermans, 2017 for recent applications of 

these data). Linked employer-employee data at the workplace level are available from 1980 

although information on the firm-level variables is available only from 1999 due to a break in 
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recording of the unique firm identifiers used by Statistics Denmark. To create our data set we 

linked the unique firm identifiers to the patent applicants in our patent data. We achieved a match 

for 95 percent of the applicants. The 5 percent unmatched firms exited before 1999 and would have 

been excluded because our firm-level information begins only in 1999. Since current patent counts 

are the result of past research efforts, we lag all R&D-related variables by one year as in Blundell, 

Griffiths, and Reenen (1999). Therefore, the effective starting date of the within-sample period is 

2000; 1978–99 is a pre-sample period of information on patents used in the estimation (see below). 

Our linked employer-employee/patent assignee data contain information on the highest 

level of education attained by the individual worker and her/his current occupation. We use this 

information to define our population of R&D workers. They are defined as individuals with a 

master’s or a doctoral degree in the technical, natural, veterinary, agricultural, or health sciences, 

occupying a job function that requires a ‘high’ (professional) or ‘intermediate’ (technician and 

associate professional) level of skills, and aged between 20 and 75. The employee-level data 

were aggregated at firm level before being merged, i.e., our estimations consider each firm’s 

total R&D work force. The information on job functions was retrieved from the International 

Standard Classification of Occupations (ISCO) published by the International Labor Office. 

We do not include firms with no R&D workers since they are unlikely to patent (see the 

findings in Kaiser, Kongsted, and Rønde, 2008 based on inventor survey data). Therefore, our 

final data set includes firms with at least one R&D worker. Moreover, we include only private 

sector firms (although we consider labor mobility from the public sector). The main estimation 

results are based on 15,964 firm-year observations of 5,385 unique R&D active firms. A total of 

293 unique firms patented at least once during the five years 2000–2004. 

Dependent Variable. We adopt the terminology used in the literature (see, for instance, Jaffe, 
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Trajtenberg, and Henderson, 1993; Shan, Walker, and Kogut, 1994; Ahuja and Katila, 2001; 

Joshi and Nerkar, 2011) and measure innovation output as each firm’s patent count. In order to 

account for the skewed patent value distribution (Lanjouw, Pakes, and Putnam, 1998; Harhoff, 

Narin, Scherer, and Vopel, 1999; Hall, Jaffe, and Trajtenberg, 2005), we include also a quality 

dimension of innovation (Joshi and Nerkar, 2011), and hence, use quality-adjusted innovation 

output as our main dependent variable. Specifically, we adopt Trajtenberg’s (1990) weighted 

patent count measure, the number of applications by firm i in year t plus the total number of 

forward citations received by those patents within the three years following the year of EPO 

publication (a 5-year time window is more common; we chose a shorter time because our 

citation data end less than 4 years after the patent data). For example, if firm i applied for 10 

patents in t and received 15 citations to these patents in the subsequent 3 years, our dependent 

variable would add to 25. Forward citations constitute a verified measure of both technological 

impact and private and social value (Hall et al., 2005). Other patent value correlates considered 

in the literature, such as backward citations, family size, number of technological areas, breadth, 

and renewal, have been shown to be less reliable predictors of patent value (see Jaffe and de 

Rassenfosse, 2017 for a recent survey).  

Explanatory variables. We separate the population of R&D workers by mobility status. 

We identify movements of knowledge-intensive R&D workers — workers with high levels of 

scientific and technological capability — from universities to firms, and movements between 

non-affiliated firms. We consider as a control variable, R&D support workers or workers in 

positions requiring an intermediate level of scientific and technological capability. We define 

hires as workers employed by different employers in t-1 and t. We consider the following broad 

groups of mobile knowledge-intensive R&D workers: (i) Hires from universities, (ii) Hires from 
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(non-affiliated) firms, (iii) University graduates (workers employed in a firm in t who were 

university students in t-1), and (iv) Other hires (workers who joined the firm in t whose 

employment status in t-1 is unknown). Finally, stayers we define as non-mobile R&D workers 

i.e., who were employed by the same firm in t-1 and t. We split hires from firms along two 

further dimensions of experience — hires from a patenting firm vs. hires from a non-patenting 

firm, and workers previously employed as university researchers vs. those never employed in a 

university. 

Finally, we interact the variables representing hires from firms with and without university 

experience as well as university hires on the one hand, with a dummy variable that is coded 1 if 

the present top management team (TMT) includes at least one individual with an R&D 

education, on the other hand. We use the inclusion of a scientist on the TMT (Researcher on 

TMT dummy) as a proxy for firms with an academic research-friendly organizational culture. 

Hambrick (2007: 335) notes that ‘researchers have generated substantial evidence that 

demographic profiles of executives (both individual executives and TMTs) are highly related to 

strategy and performance outcomes.’ The composition of the TMT is likely to reflect the general 

types of problems that the firm can expect to face (Carpenter, Geletkanycz, and Sanders, 2004; 

Strandholm, Kumar, and Subramanian, 2004). In the context of innovation more specifically, 

Balsmeier and Buchwald (2015) argue that top-management experience is a central aspect of the 

firm’s innovation strategy since it enhances understanding of the processes involved.  

We would argue that having a scientist on the TMT is indicative of the focal firm’s 

objective to encourage an organizational research culture that facilitates the integration of 

scientists with academic research experience who typically have a ‘taste’ for academic science. 

By facilitating and supporting a university research-friendly culture, the TMT member’s scientific 
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experience and skillset will be beneficial for managing the integration of newly-recruited scientists 

with academic research experience.  

We control also for a set of variables conventionally considered determinants of innovation 

output. First, we include the variable ln(# of R&D workers) which is the natural logarithm of the total 

number of R&D workers. Second, we include ln(capital) expressed as the natural logarithm of capital 

stock measured as the book value of physical capital. Third, we include a set of sector dummies 

defined according to the two-digit NACE Rev.1 industry classification, and control for regional effects 

and time-fixed effects using dummy variables. Fourth, we account for unobserved permanent firm 

heterogeneity and state dependence — as described below. Fifth, we include a variable PhD employee 

dummy, reflecting the employment of at least one R&D worker with a PhD degree. 

Model specification and estimation 

The patent production function. We employ a Cobb-Douglas knowledge production function 

(Hausman, Hall, and Griliches, 1984; Blundell et al., 1995) in which quality-adjusted innovation 

output depends on the R&D labor and capital inputs. A key feature of our model is that we treat 

R&D labor as a differentiated input. We split the firm’s R&D labor force into hires from 

university research, LU, recent graduates, LG, hires from firms, LF, other hires, LO, stayers, LS, and 

support workers, LP.  At this level of disaggregation, many firms will have zero hires of some 

particular R&D labor type in any given year. To properly accommodate this important feature of 

our data, we construct a composite measure of R&D labor which combines the different R&D 

labor inputs in a linear way (Griliches, 1967; Hellerstein, Neumark, and Troske, 1999; Galindo-

Rueda and Haskel, 2005; Kaiser et al., 2015). Each labor type k adds to the composite with a 

separate coefficient 𝜃𝜃𝑘𝑘 which measures its impact relative to stayers (for whom the coefficient is 

normalized at 1). Embedding this composite into the Cobb-Douglas knowledge production 
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function and using natural logarithms, we then obtain the approximate relationship:  

𝑙𝑙𝑙𝑙𝑙𝑙 = ln𝐴𝐴 + 𝛿𝛿 ln𝐾𝐾 + 𝜌𝜌 ln𝐿𝐿 +  𝛽𝛽𝐹𝐹𝑠𝑠𝐹𝐹 +𝛽𝛽𝑈𝑈𝑠𝑠𝑈𝑈 + 𝛽𝛽𝐺𝐺𝑠𝑠𝐺𝐺 + 𝛽𝛽𝑂𝑂𝑠𝑠𝑂𝑂 + 𝛽𝛽𝑃𝑃𝑠𝑠𝑃𝑃,  (1) 

where P denotes quality-adjusted innovation output, 𝐿𝐿 = 𝐿𝐿𝐹𝐹 + 𝐿𝐿𝑈𝑈 + 𝐿𝐿𝐺𝐺 + 𝐿𝐿𝑂𝑂 + 𝐿𝐿𝑆𝑆 + 𝐿𝐿𝑃𝑃  is the 

simple count of R&D workers of any type, and sk denotes the share of labor type k, Lk/L. All 

firms in our sample employ at least one R&D worker. Hence, all observations on L are positive 

so the actual formation of the labor shares sk does not present a problem. The labor shares add to 

1, thus, we need to exclude one worker share from the estimation to avoid the model being 

perfectly collinear. The term A denotes additional control variables such as industry and time 

dummies. The 𝛽𝛽𝑘𝑘 parameters relate to the relative impacts 𝜃𝜃𝑘𝑘 of labor type k via the relationship 

𝛽𝛽𝑘𝑘 = 𝜌𝜌(𝜃𝜃𝑘𝑘 − 1). Equation (1) allows us to compare the impacts of different labor types on 

innovation output, and hence, to infer the validity of our theoretical hypotheses.  

Note that Equation (1) is not a standard log-linear specification due to the introduction of 

the linear R&D labor composite. The many zeros introduced by the differentiated nature of our 

measure of R&D labor inputs essentially precludes such a specification. Hence, the 𝛽𝛽 𝑘𝑘 

parameters do not translate directly into elasticities. They are best interpreted by referring back to 

the relative impacts of labor type k via the relationship 𝛽𝛽𝑘𝑘 = 𝜌𝜌(𝜃𝜃𝑘𝑘 − 1). Basically, a positive 𝛽𝛽𝑘𝑘 

coefficient implies that an additional unit of labor type k provides higher returns with respect to 

innovative output than would one additional stayer, the excluded category. This is also the basis 

for assessing the effect size of the estimated differences (effect size is arguably of critical 

importance, see Bettis et al., 2016). It is based on the marginal effect of adding a further unit of a 

specific R&D labor type on innovative output. We derive their precise expression and present 

graphs of the marginal effects in the Online Appendix. 

Count data models. The dependent variable is discrete and takes the value zero or a positive 
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integer, making a count data model appropriate. The most popular count data model is a Poisson 

regression (Cameron and Trivedi, 1986; Winkelmann, 2008) with an exponential mean function 

similar to its application to patent data in Hausman, Hall, and Griliches (1984). However, the 

Poisson model assumes equality between the conditional mean and conditional variance, i.e., 

equi-dispersion. This assumption is often violated when using patent data (Blundell et al., 1995; 

Cincera, 1997). Therefore, we use the negative binomial (NegBin) model which allows for a more 

flexible relationship between the mean and variance, and for over-dispersion in the data. Tests for 

equality of mean and variance favor the NegBin model over the Poisson model in our case also.  

Unobserved heterogeneity. Our specification controls for firm-specific permanent heterogeneity 

in innovation output, e.g., due to differences in R&D management, different R&D investment 

appropriability conditions, or different technological opportunities. Random effects are 

inappropriate in our setting since unobserved permanent heterogeneity is likely to be correlated 

with the regressors. Blundell et al. (1995, 1999) suggest a correlated effects approach using a 

proxy for unobserved permanent heterogeneity. Their ‘pre-sample mean estimator’ is developed 

for count data models where the information on the dependent variable is longer than on the 

explanatory variables. This applies to our data: Patent data start in 1978, firm-level data 

(allowing for lags) start in 2000. The estimator uses the average of the dependent variable over 

the pre-sample period as a proxy for the correlated effects (for each firm). Hence, the main 

assumption here is that the source of unobserved permanent heterogeneity in innovation output is 

reflected mostly in the firm’s pre-sample patent history. 

The pre-sample mean estimator relies on the stationarity of the dependent variable. Since 

there is a strong upward trend in the number of patent applications, we apply a trend adjustment 

to the proxy variable as suggested by Kaiser et al. (2015). In our practical implementation of the 
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correlated effects proxy variable, we follow Blundell et al. (1995, 1999, 2002) and include the 

variable ln(# of pre-sample patents) expressed as the natural logarithm of the pre-sample mean 

number of patent applications per firm. Because 87 percent of our observations relate to firms with 

no pre-sample patent applications, we substitute an arbitrary small constant to allow logarithmic 

transformation, and account for this substitution by including a dummy variable which is coded 1 if 

the firm has at least one pre-sample patent and 0 otherwise (# of pre-sample patents > 0 dummy). 

State dependence. We control for possible state dependence in innovation output. Blundell et al. 

(1995) include firm i’s discounted patent stock as an explanatory variable. However, we follow 

the approach in Crépon and Duguet (1997) and introduce state dependence by including a 

variable, Lagged patent dummy, reflecting patent output in t-1 since this emphasizes recent 

patent output and circumvents collinearity problems when using fixed effects proxy variables. 

RESULTS 

Table 1 presents the firm-year level descriptive statistics for the dependent and explanatory 

variables as well as a correlation matrix of our key explanatory variables. Stayers (63.9%) 

constitute by far the largest group of R&D workers among current R&D employment, followed 

by support workers (16.2%), and private sector hires (jointly 11.2%) the majority of whom are 

not from a patenting firm nor do they have university research experience. Other hires and recent 

graduates account for about 4 percent each of the R&D workforce, while hires from university 

research constitute the smallest employment category at 0.8 percent of all R&D workers. In our 

data, the average firm employs 6.8 R&D workers. The correlation matrix shows that the 

correlations among variables generally are low, confirmed by mean variance inflation factors 

ranging between 1.97 and 2.1 depending on the model, which is well below the critical value of 

10 suggested by Belsley, Kuh, and Welsch (1980). 

[Insert Table 1 about here] 
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Table 2 presents our main estimation results. We estimate three different models that 

correspond to Hypotheses 1 to 3. Note that the estimated coefficients corresponding to R&D worker 

shares do not translate directly into marginal effects. The estimated coefficients should be interpreted 

relative to the base category, stayers. For example, the estimated coefficient of hires from universities, 

𝛽𝛽𝑈𝑈, in Table 3 Model I is 1.496 which implies that workers of that type have a 1 + 𝛽𝛽𝑈𝑈
𝜌𝜌

= 7.53 times 

higher impact on firm quality adjusted innovation output than the impact of R&D stayers. This is 

similar to the estimates for other knowledge-intensive worker groups in Kaiser et al. (2015). 

[Insert Table 2 about here] 

We derive exact marginal effects and corresponding standard errors in the Online 

Appendix. The marginal effect on quality-adjusted innovation output of adding one worker of 

type k in Model I depends on (i) the share of type k workers, (ii) the initial innovative output 

(number of patents applied for by the firm plus citations), and (iii) the initial number of R&D 

workers of all different skill types. To provide meaningful and interpretable marginal effects we 

set the number of patents per worker applied for by the employing firm equal to the sample 

average, and set the number of workers of any mobile skill type other than k to zero. The 

marginal effect of hiring one additional worker of type k then depends on the share of type k 

workers in total R&D employment. Note that all marginal effects are downward-sloping (see 

Online Appendix), implying that if a firm already has a high share of a certain type of 

researchers, hiring additional researchers of this type will yield relatively low marginal 

innovation output. Our estimates are depicted in the Online Appendix Figures 2 to 4 which map 

the marginal effect of worker type k to the respective employment share.  

Table 2 Model I tests Hypothesis 1 which predicts that workers with university research 

experience from either firms or universities should provide higher positive returns with respect to 
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firms’ quality-adjusted innovation output than firm hires with no university research experience. 

This hypothesis is strongly supported by our estimation results (p=0.014). The coefficient of 

hires from firms with university experience is as high as the coefficient of hires from university, 

with no statistically significant differences. In contrast, both coefficients are around 2.6 times 

larger than the coefficient of hires from firms with no university experience. The overall 

significant result seems to be driven mainly by firm hires with university research experience 

whereas the difference between university hires and firm hires without university experience is 

only marginally significant (p=0.080).  

The related marginal effects and the associated confidence bands are depicted in the Online 

Appendix (Figure 2) and show that adding one hire with university experience is associated to 

0.061 additional patents if the receiving firm hires workers of this type only. The marginal effect 

decreases with the increasing initial share of hires from firms with university experience. To 

properly gauge the economic significance of this result, we can compare the marginal effect of 

0.061 to the sample average of quality-adjusted innovative output of 0.306. Hence, the effect of 

hiring another worker with university experience amounts to 20 percent of the overall sample 

average. We note that the change results from the addition of one worker which is a fairly large 

change given that the sample average of the overall number of R&D workers employed is about 

8. The marginal effect of university hires is around 0.059 at the maximum, more than twice as 

large as the largest marginal effect for firm hires with no university experience. It is of similar 

economic significance to the effect of hiring researchers from universities. For hires from firms, 

adding one additional worker with no university experience results in a marginal effect of 10 

percent of the average innovative output.  

Hypotheses 2a/b/c combine the two dimensions of worker experience and are tested in Table 
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2 Model II. They predict that hiring individuals with both types of experience (Figure 1 Panel (4)) 

boosts quality-adjusted innovation output more than hires with the types of experiences depicted in 

Figure 1 Panels 1, 2, and 3. Note that hires of individuals with university experience but no 

experience of working in a patenting firm (Figure 1 Panel 2) may be from universities or from 

firms with no patenting experience. For transparency, we estimate two separate coefficients to 

capture this kind of experience (coefficients (4) and (7) in Table 2). Hence, to test Hypotheses 

2a/b/c we consider a total of five coefficients. In line with our expectations, firm hires with both 

past patenting and university experience has the highest estimated coefficient followed by 

university hires, and then firm hires with no patenting experience but with university experience. 

The estimated coefficient of hires with no university experience from patenting firms, is smaller 

than the coefficient of hires with university experience from non-patenting firms but larger than the 

coefficient of hires with university experience from patenting firms. The lowest estimated 

coefficient is for individuals with neither type of experience, hired from firms is not significantly 

different from the base category of stayers.  

However, the positive differences between the size of the parameters for hires with 

university experience from patenting firms, and each of the other types of firm hires show 

varying degrees of statistical significance (see lower part of Table 2). We find support for 

Hypotheses 2b and 2c since the coefficient of hires with university experience from patenting 

firms is larger than the coefficient of hires without university experience (marginally significant, 

p=0.058) and hires with neither type of experience (p=0.003) from similar firms. We find no 

support for Hypothesis 2a. There is no statistically significant difference between the size of the 

coefficient of hires with university experience recruited from patent active firms on the one hand, 

and the coefficients of hires with university experience from non-patenting firms (p=0. 314), or 
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hires from universities (p=0. 486) on the other. In sum, while either type of experience clearly 

matters on its own, we find no strong support for the idea of complementarity between 

individual-level experience from patenting firms and from university research employment. 

What seems to matter strongly for the effect on quality-adjusted innovation performance is 

whether or not the focal hire has university research experience. The Online Appendix Figure 3 

depicts these differences as the related marginal effects. They are largest for hires with university 

experience from patenting firms, and smallest and statistically insignificant for firm hires with 

neither university nor patenting firm experience.  

Hypothesis 3 predicts that a research-friendly organizational culture increases the impact of 

both hires of firm employees with university experience and hires from universities. To test this 

hypothesis, we interact (1) the shares of firm hires with university experience, and (2) hires 

directly from university respectively, with a dummy variable for a TMT with at least one 

scientist member. We include the TMT dummy interacted with the share of R&D hires with no 

university experience, in order to control for any additional impact of a research-friendly 

organizational culture in the focal firm on the effect of hiring an employee with general (non-

university) experience. Hence, our base case which assumes no additional impact of scientific 

culture consists of hires with unknown experience, graduates straight from university, support 

workers, and workers who choose not to move. Table 2 Model III presents the corresponding 

estimation results. It shows that the interactions involving the Researcher on TMT dummy are 

positive and of a similar magnitude for both worker types with university experience. The 

interactions are statistically significant both on their own and jointly (p=0.018) which is in line 

with Hypothesis 3. Also interesting is that the presence of a scientist on the TMT seems not to 

matter for the effect on innovation output of hires without university experience recruited from 
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other firms. The interaction term for this group is estimated very imprecisely which makes 

inference vis-à-vis the effects of the university experience groups similarly very imprecise (the 

joint test of differences between all three groups yields an insignificant p-value of 0.29). In line 

with our argument, the (precisely estimated) additional effects of hires of workers with university 

experience show that an academic research-friendly culture is important for integrating 

individuals with university research experience.  

Online Appendix Figure 4 shows the related marginal effects and confidence bands. It 

distinguishes between a TMT with and without a member with R&D experience. The marginal 

effects for the two types of hires with university experience, and a scientist member on the TMT 

are highly significant both economically and statistically. For shares of workers of either type 

close to 0, the marginal effects are around 0.13, and more than twice as large as for the same type 

of worker if the TMT does not have a researcher member. The difference is economically 

significant; it amounts to approximately 20 percent of the innovative output of an average firm in 

the sample. 

ALTERNATIVE EXPLANATIONS AND ROBUSTNESS CHECKS 

In this section we discuss the possibility that other factors are driving our estimation results, and 

run alternative models to check whether our results hold in different settings. These checks are 

presented in the Online Appendix. A potential alternative explanation for our main result that 

hires with university experience increase quality-adjusted innovation output more than any other 

skill group, might be that university hires and firm hires with university experience are more 

experienced and/or older than other types of R&D workers, and particularly individuals without 

university experience hired from other firms. Our data show that both hires with university 

experience recruited from firms, and university hires are younger on average than hires without 

university experience. Firm hires with university experience have the same number of years of 
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work experience as firm hires without university experience while hires from universities have 

fewer accumulated years of work experience.  

Of course, individuals with university experience compared to any of the other groups are 

more likely to hold a doctoral degree. To test whether years of employment in a university setting 

might be affecting our results, we use the empirical setup used to test Hypothesis 1 (Table 2, 

Model I). We split research workers hired from universities, and university research experienced 

hires from firms, into low and high university tenure categories split at the median (3 years of 

university employment). Although the coefficient of university hires with above-median tenure is 

larger, a t-test does not reveal significant differences across tenure categories in the effect of 

university hires. For recruitment from firms of individuals with university experience there are 

very few observations with three or more years of working in a university so the test is not 

feasible for this group.  

An alternative explanation of our finding for organizational culture might be that the match 

between TMT scientific expertise and the expertise of the hired scientist matters more than the 

organizational culture in the recruiting firm for the new recruit’s innovation output. However, if 

the specific expertise match drives the effect of hiring academic scientists, we should observe 

more frequent matches between TMT member’s and recruited scientist’s educational fields in 

recruitments of scientists with academic research experience, compared to recruitments of 

scientists without such experience. However, a t-test reveals no significant difference (p=0.20) 

between the mean percentages of TMT and research scientist educational field match, for hires 

with university experience and hires with no university experience. We interpret this as evidence 

that any match between TMT and research scientist expertise is not driving the observed 

differences in terms of impact of innovation output. 
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We conducted several robustness checks. First, we examined whether not adjusting for 

citation quality changed the results. The results of Model I the baseline model are supported without 

applying citation adjustments to the dependent variable, although the corresponding estimated 

coefficients and marginal effects are slightly smaller compared to the specification adjusted for 

citation quality. We also analyzed the extent to which a few particularly patent active firms (defined 

as owning more than 100 patents), or firms in the chemicals sector (which includes biotechnology) 

matters for the results. We found that excluding either one or other of these groups does not affect 

our estimation results for the baseline model substantially. However, again the corresponding 

estimated coefficients and marginal effects are smaller than when using the full data.  

Although our main results are robust, and alternative explanations seem not to hold, it is 

possible that our results are driven by unobserved time-varying factors which affect both 

patenting and the hiring of workers with university experience. For example, firms that want to 

increase their innovation output will make various types of R&D investment including hiring 

university researchers, or workers with university experience from other firms. These 

investments might jointly be determining innovation output and hiring. This type of unobserved 

time-varying heterogeneity is not accounted for in our main estimates. Therefore, as a further 

robustness check we ran a general method of moments (GMM) regression where we instrument all 

labor shares. GMM estimation is used widely in strategic management research (see for instance, 

Milanov and Shepherd, 2013 for use of this method in a strategic management context).  

We use the estimator derived by Blundell et al. (2002) which accounts for both fixed 

effects and the lagged dependent variables. The estimator is comparable to to the popular linear 

regression dynamic panel data models (Arellano and Bond, 1991; Arellano and Bover, 1995). 

Following Kim and Marschke (2005), and as suggested by Wooldridge (1991), we apply a quasi-
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differencing transformation to correct for fixed effects similar to the standard ‘within 

transformation’ of linear models, and use longer lags of the dependent and independent variables 

as instruments. In addition to these lags, we use the share of each worker type in other firms 

within the same industry and region as instruments (for an account of the properties of 

instrumental variables and how they help alleviate endogeneity concerns, see Hamilton and 

Nickerson, 2003; Semadeni, Withers, and Trevis Certo, 2014), based on the idea that labor 

supply shocks affect the hiring strategies of all firms in the same industry and the same region, 

without being correlated to the error term in the count data model.  

The GMM estimator is extremely data-demanding since it does not allow for gaps in panel 

data, and needs at least three consecutive observations per firm. The data available for the GMM 

estimation consists of 9,416 observations for 2,864 unique firms, a substantially reduced sample 

size. In addition to the low shares of hires from patenting firms, and of firms with a scientist TMT 

member, it is not feasible to use this estimator to test Hypotheses 2 and 3. However, the GMM 

results related to Hypothesis 1 are qualitatively very similar to our initial estimates although the 

coefficient estimates for the various worker groups are much larger for the GMM. This might 

partly reflect the fact that the GMM estimator can be poorly identified in short samples such as 

ours. However, Hypothesis 1 is strongly supported at the conventional significance levels.  

While the GMM estimation results support our baseline results, it could be argued that having 

a TMT member with a R&D background might be endogenously determined — having a TMT 

member with an R&D education might simply reflect the firms’ efforts to promote innovation 

output. One way to resolve this identification problem is to identify the instrumental variables and 

re-apply the GMM estimation. Since we do not have appropriate instrumental variables to identify 

the causal effects of a TMT with a scientist member, we employ coarsened exact matching (CEM, 
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Iacus, King, Porro, and Katz, 2012) and propensity score matching (PSM, Rosenbaum and Rubin, 

1983), and run a NegBin count data estimation on the matched data. The identifying assumption 

here is that having a TMT member with an R&D education — i.e., being ‘treated’ — is random 

conditional on the observable variables that affect both treatment and patenting.  

Consistent with Hypothesis 3, our interest is in the difference derived from TMT with at 

least one member with a science background in the effect of firm hires with university 

experience, and hires direct from a university. Our treatment group comprises all firms with both 

a science trained TMT member and at least one firm hire with university experience, or a 

university hire. The corresponding control group consists of firms with a university hire or a firm 

hire with university experience but no scientist TMT member. The first step in the PSM 

estimation is to estimate probit models for treatment, run on our treatment and control group 

firms, using essentially the same set of explanatory variables as for our main estimation. Our 

probit model is a good predictor of selection into treatment. We use nearest neighbor PSM with 

replacement. The log number of R&D workers, two year dummies, and three sector dummies are 

not well matched; the respective means of the treatment and control group firms are statistically 

significantly different. Therefore, we use these variables as additional control variables in our 

NegBin regression for patent counts on the treatment dummy variable.  

For the CEM, the matching is exact within a set of strata, subsets of the explanatory 

variables. While this is an advantage over PSM, the downside is that CEM discards observations 

that cannot be matched (43% of our treated observations). Finally, using the matched treatment 

and control observations, we estimate NegBin models for the number of patent applications. We 

use the dummy variable for treatment. The estimated coefficient of the treatment dummy is 3.0 

for the CEM-based regression, and 3.6 for the PSM-based approach. Both coefficients are 
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statistically highly significant. These figures are qualitatively and quantitatively in line with our 

main results (Table 2, Model III).  

CONCLUDING DISCUSSION 

This paper started from the proposition that hiring researchers with university experience can 

provide the firm with science-based problem-solving capabilities which in turn, should lead to 

more firm-level quality adjusted innovation output since individuals with this type of experience 

increase innovation output more than hires of researchers with other types of experience. We found 

support for the general idea that inward mobility of researchers has a positive effect on the level of 

innovation output in private business firms. More specifically, we showed that newly hired 

researchers with university experience have a greater effect on innovation than other types of 

inward mobility. This difference is economically significant and amounts to 20 percent of the 

innovative output of the average firm in our sample. 

We observed also that hiring a scientist with a mix of employment experience — as a 

university scientist and as an employee in a patenting firm — has a stronger effect than the other 

three possible types of individual-level experience combined. However, these differences are 

driven largely by the hired individual’s university researcher experience. The hypothesis that there 

are no differences between having these types of experience compared to university research 

experience only, cannot be rejected (Hypothesis 2a). Accordingly, we found no support for the 

hypothesis of complementarity. In contrast, we found strong support for the idea that hiring 

organizations need to have a university research friendly culture to benefit from hiring individuals 

with university research experience — reflected by the presence of a scientist on the TMT (in line 

with Hypothesis 3), and that this effect appears to be present regardless of whether the individual 

with university experience was recruited directly from a university, or from another firm.  

We make an empirical contribution to the learning-by-hiring literature by accounting 

29 



University Scientist Mobility 
 

explicitly for important heterogeneity in experience among individual hires in affecting the 

innovation output of private firms. However, when viewed jointly, the results related to 

Hypotheses 2 and 3 indicate that hiring individuals with experience additional to university 

research experience does not reduce the incentive and coordination problems because of the 

different nature of academic and industrial research. However, our results indicate the presence of 

an ‘organizational advantage’ (Ghoshal and Moran, 1996). It seems that organizations with 

appropriate organizational cultures are able (very) productively to integrate individuals with 

academic research experience into their innovation activities.  

A focus on creating and managing a university research friendly culture may mean that such 

organizations are able to incentivize individuals with academic research experience, and to 

coordinate their activities with those of workers with different experience, to the benefit of 

innovation output. In other words, these organizations become better at evaluating technological 

information (Arora and Gambardella, 1994) when hiring academic scientists, because of their 

ability to integrate these scientists in their innovation processes. Our findings are in line also with 

the idea in Cohen and Levinthal (1990) and Rosenberg (1990) in the context of private firms’ 

absorptive capacity; knowledge is not a public good, and its absorption requires substantial and 

specific investment in the form of an appropriate organizational culture in the context of 

academic scientists’ productive integration in for-profit firms.  

Our arguments and findings contribute also by highlighting the existence in some researchers 

of a taste for science (Stern, 2004; Roach and Sauermann, 2010; Agarwal and Ohyama, 2013). We 

show that the benefits to the hiring firm of recruiting individuals with university research experience 

who also have experience of working in industry, seem to persist. That is, the advantages of 

academic research experience do not appear to be eroded by later industry experience.  
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The findings from this study have implications for managerial practice. For example, the 

impact of R&D stayers is small in both absolute and relative terms which suggests that firms 

need to devise strategies to keep their worker stock up to date with science and engineering 

developments. This could be achieved by implementing initiatives to facilitate exchanges of 

knowledge between academia and industry. Of course, hiring from academia should reduce the 

adverse effects of knowledge decay, prompting the question of why industry does not recruit 

more often from universities, especially given our finding that the direct impact on innovation 

output of stayers is much lower than the impact made by mobile workers. We believe that the 

answer to this question is related to the firm’s organizational culture with respect to how 

academic research is supported (Cockburn and Henderson, 1998). Certainly, our results suggest 

that organizational culture is crucial in this context: Firms with little or no experience related to 

creating and managing a university research friendly culture can find it difficult to integrate 

academic researchers into their knowledge production.  

This study has some limitations. As already noted, we use a proxy only for organizational 

culture: A scientist member of the TMT. While this is advantageous for our study, future 

research could model organizational culture in a more direct way. An emerging stream of 

literature (Corredoira and Rosenkopf, 2010; Godart, Shipilov, and Claes, 2014; Kaiser et al., 

2015) argues that workers who leave one organization and move to another may continue to 

contribute to the previous organization’s innovation output based on individual social ties. We do 

not account for this effect in this paper. Future research could explore heterogeneity in 

experience but in the context of the effect on the previous employer’s innovation related benefits. 

Finally, Fleming and Sorenson (2004) suggest that scientific thinking in relation to technological 

problem solving is more important if technologies are tightly coupled. We need to investigate 
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whether hiring university scientists is more beneficial for firm-level innovation output for 

companies working with very similar technologies compared to less similar technologies.  

In conclusion, among firm hires, individuals with university research experience are 

particularly valuable for firms’ innovation output. However, the returns from hiring individuals 

with such experience depend critically on whether the hiring firm has a research-friendly culture. 

Indeed, a research-friendly culture is needed regardless of whether the researcher with university 

research experience is hired from a university or from a private firm. We hope that our findings 

will prompt further research on R&D worker recruitment, and the types of workers and 

organizations that bring the most benefits.      
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Table 1. Summary statistics and correlation table (n=15,964) 

  

Mean Std.dev. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
# of citation-weighted patents in t  (dependent variable) 0.306 4.452

(1) # of pre-sample patents 0.000 0.002 1

(2) # of pre-sample patents > 0 dummy 0.128 0.334 0.225 1

(3) Lagged patent dummy 0.041 0.198 0.283 0.462 1

(4) Hires from patenting firms w/ university exp. 0.003 0.044 0.015 0.036 0.033 1

(5) Hires from non-patenting firms w/ university exp. 0.011 0.081 0.002 0.003 0.009 -0.005 1
(6) Hires from patenting firms w/o university exp. 0.018 0.103 0.017 0.058 0.056 0.024 -0.007 1

(7) Hires from non-patenting firms w/o university exp. 0.080 0.225 -0.015 -0.048 -0.023 -0.020 -0.017 -0.032 1

(8) Hires from universities 0.008 0.072 0.009 0.046 0.027 0.008 -0.008 -0.004 -0.024 1

(9) Other hires 0.041 0.169 -0.008 -0.031 -0.020 -0.012 -0.020 -0.029 -0.059 -0.019 1

(10) University graduates 0.039 0.153 0.002 0.000 0.012 -0.010 -0.012 -0.024 -0.055 0.001 -0.034 1

(11) R&D support workers 0.162 0.330 -0.015 0.023 -0.003 -0.027 -0.044 -0.055 -0.138 -0.045 -0.098 -0.102

(12) Researcher on TMT dummy 0.041 0.199 0.195 0.214 0.226 0.003 -0.008 0.025 -0.032 0.001 -0.029 -0.008

(13) Researcher on TMT dummy ×  hires from patenting firms w/ university experience 0.000 0.003 0.149 0.079 0.136 0.075 0.005 0.030 -0.004 0.004 -0.005 0.007

(14) Researcher on TMT dummy ×  hires from non-patenting firms w/ university experience 0.000 0.009 0.038 0.041 0.042 0.005 0.110 0.006 -0.003 -0.001 -0.006 0.000

(15) Researcher on TMT dummy ×  hires from patenting firms w/o university experience 0.001 0.020 0.084 0.085 0.099 0.011 -0.001 0.180 -0.013 0.000 -0.010 -0.002

(16) Researcher on TMT dummy ×  hires from non-patenting firms w/o university experience 0.002 0.023 0.050 0.049 0.067 0.003 0.000 0.003 0.075 -0.004 -0.013 0.002

(17) Researcher on TMT dummy ×  hires from university 0.000 0.008 0.067 0.064 0.073 0.004 -0.003 0.004 -0.011 0.105 -0.006 0.026
(18) # of R&D workers 6.826 33.646 0.740 0.157 0.216 0.008 -0.002 0.008 -0.020 0.001 -0.016 0.002

(19) Capital stock/1000000 173.636 2073.755 0.170 0.074 0.065 0.000 -0.005 -0.003 -0.011 -0.004 0.002 -0.006
(20) PhD employee dummy 0.139 0.346 0.147 0.283 0.254 0.056 0.033 0.031 -0.037 0.054 -0.035 0.015

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
(11) R&D support workers 1

(12) Researcher on TMT dummy -0.007 1

(13) Researcher on TMT dummy ×  hires from patenting firms w/ university experience -0.005 0.228 1

(14) Researcher on TMT dummy ×  hires from non-patenting firms w/ university experience -0.008 0.163 0.098 1

(15) Researcher on TMT dummy ×  hires from patenting firms w/o university experience -0.014 0.305 0.199 0.059 1

(16) Researcher on TMT dummy ×  hires from non-patenting firms w/o university experience -0.011 0.385 0.117 0.086 0.085 1

(17) Researcher on TMT dummy ×  hires from university -0.013 0.217 0.087 0.025 0.061 0.042 1
(18) # of R&D workers -0.024 0.246 0.136 0.042 0.083 0.076 0.067 1

(19) Capital stock/1000000 0.003 0.122 0.036 0.012 0.021 0.031 0.019 0.233 1

(20) PhD employee dummy -0.032 0.250 0.114 0.058 0.076 0.096 0.094 0.290 0.107 1
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Table 2. The effect of inward mobility of researchers on the innovation output of firms 

 

Note: Robust t-values are clustered by firms. All explanatory variables are lagged by one period. Time dummies and 
sector dummies are included.      
     

 

 

Coeff. p -val. Std.err. Coeff. p -val. Std.err. Coeff. p -val. Std.err.
Employment shares
(1) Hires from firms w/ university experience 1.559 0.000 0.341 1.462 0.000 0.359
(2) Hires from firms w/o university experience 0.580 0.006 0.213 0.503 0.027 0.228
(3) Hires from patenting firms w/ university experience 1.963 0.000 0.499
(4) Hires from non-patenting firms w/ university experience 1.268 0.011 0.498
(5) Hires from patenting firms w/o university experience 0.908 0.001 0.282
(6) Hires from non-patenting firms w/o university experience 0.338 0.256 0.298
(7) Hires from universities 1.496 0.003 0.501 1.476 0.003 0.503 1.361 0.011 0.533

Other hires 0.234 0.593 0.438 0.230 0.599 0.437 0.231 0.588 0.427
University graduates 0.784 0.019 0.334 0.771 0.021 0.334 0.707 0.041 0.345
R&D support workers 0.342 0.143 0.233 0.330 0.155 0.233 0.338 0.155 0.238

TMT interactions with various emplyment shares
(8) Researcher on TMT dummy 0.143 0.379 0.163
(9) Researcher on TMT dummy × hires from universities 2.405 0.036 1.146
(10) Researcher on TMT dummy × hires from firms w/ university experience 2.357 0.045 1.176
(11) Researcher on TMT dummy × hires from firms w/o university experience 0.470 0.575 0.840

Control variables
ln(# of R&D workers) 0.229 0.001 0.071 0.230 0.001 0.071 0.202 0.004 0.070
ln(capital) 0.140 0.000 0.033 0.141 0.000 0.033 0.139 0.000 0.033
PhD employee dummy 0.077 0.577 0.138 0.073 0.596 0.138 0.062 0.650 0.137
Lagged patent dummy 1.112 0.000 0.137 1.111 0.000 0.137 1.123 0.000 0.137
ln(# of pre-sample patents) 0.524 0.000 0.071 0.520 0.000 0.071 0.519 0.000 0.071
# of pre-sample patents > 0 dummy 0.178 0.590 0.331 0.180 0.585 0.330 0.203 0.534 0.327

Hypotheses tests
Chi2 p -val. Chi2 p -val. Chi2 p -val.

Hypothesis 1
 (1) = (2) 6.61 0.010
 (7) = (2) 3.06 0.080
 Joint 8.50 0.014
Hypothesis 2
 (3) = (4) 1.01 0.314
 (3) = (5) 3.61 0.058
 (3) = (6) 8.86 0.003
 (3) = (7) 0.49 0.486
 Joint 11.49 0.022
Hypothesis 3
 (9) = 0 4.02 0.045
 (10) = 0 4.41 0.036
 Joint 9.15 0.018
Observations 15,964 15,964 15,964
Firms 5,385 5,385 5,385

Model I Model II Model III
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Figure 1. Heterogeneity in the innovation-related benefits to firms from experiences among 
R&D worker recruits 
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ONLINE APPENDIX 

Marginal effects 

The conditional mean function of our most general estimation model, Model III in Table 2, is: 
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where 
∧

P denotes the predicted number of patents of a firm within the current year. The term 

)0( 1 >−itYD  is a dummy variable that is coded 1 if the firm patented during the previous year and 0 

otherwise. Worker shares are 
L
L

  j=js  where jL  denotes the number of R&D workers of type j in the 

firm, while L denotes the total number of R&D workers in the firm, ∑ =
=

7

1j jLL . The latter summation 

goes over all worker types we consider: hires from firms with university experience, hires from firms 
without university experience, hires from university, other hires, recent graduates, support workers and 

stayers. Stayers constitute the base category in the summation ∑ =

∧6

1j jj sβ which is why the first sum in 

Equation (A.1) is from 1 to 6 only. The term )1( =TMTD  denotes a dummy variable that is coded one if 
there is at least one TMT member with an R&D education in the firm. The second sum in Equation (A.1), 

∑ =

∧3

1m mm sγ , is, following Hypothesis 3, over the three worker groups hires from university, firm hires 

with university experience and firm hires without university experience. The term W denotes additional 

control variables. 

The marginal effect of worker type k on the number of patents is: 
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The marginal effect hence depends upon the number of patents per worker, the TMT dummy variable and 
the worker shares. To simplify the analysis and to be able to present interpretable and meaningful 

marginal effects we set LP /
∧

to the sample mean. We additionally set the number of workers except for 
skill group k and stayers to 0. Equation (A.2) then reduces to: 
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which is positive and linearly decreasing in ks  and decreasing if k

∧

β , k

∧

γ and 
∧

ρ are positive.  
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We calculate the corresponding standard errors using the “Delta-method” (Greene 2003, p. 913-914). Let 

θ denote a vector of parameters with 







=
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ργβθ ,, kk  and let kΨ denote the corresponding variance-

covariance matrix. The variance of the marginal effect of skill group k is then given by  

)()'(/ θψθ CCLPV kk =
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where )(θC  denotes the vector of partial derivatives of the marginal effect with respect to each 
parameter in θ : 
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Online Appendix Figure 2. Marginal effects for Model I (90 percent confidence bands) 
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Online Appendix Figure 3. Marginal effects for Model II (90 percent confidence bands) 

 

 

Online Appendix Figure 4. Marginal effects for Model III (90 percent confidence bands) 
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Online Appendix Table 1. Worker characteristics 

 

 

Online Appendix Table 2. Extra robustness checks for Model I 

 

Note: Robust t-values are clustered by firms. All explanatory variables are lagged by one period. Time dummies and 
sector dummies are included. 

  

Firm Hires Firm Hires University
w/ uni. exp. w/o uni exp. Hires

Age 37.3 39.17 35.1
Years of working experience 13.7 13.6 11.7
PhD dummy 26.4% 4.2% 34.5%

Coeff. p -value Std.err. Coeff. p -value Std.err. Coeff. p -value Std.err.
Employment shares
(3) Hires from firms w/ university experience 1.456 0.000 0.391 1.480 0.000 0.348 1.207 0.000 0.334
(4) Hires from firms w/o university experience 0.484 0.029 0.221 0.577 0.007 0.213 0.465 0.021 0.201
(9) Hires from universies 1.261 0.014 0.512 1.485 0.004 0.521 1.239 0.013 0.501

Other hires 0.171 0.697 0.438 0.244 0.573 0.433 0.030 0.945 0.439
University graduates 0.711 0.028 0.323 0.733 0.031 0.340 0.565 0.085 0.329
R&D support workers 0.383 0.126 0.251 0.339 0.146 0.233 0.141 0.464 0.192

Control variables
ln(# of R&D workers) 0.215 0.009 0.082 0.218 0.003 0.073 0.094 0.125 0.061
ln(capital) 0.139 0.000 0.038 0.145 0.000 0.033 0.131 0.000 0.034
PhD employee dummy 0.155 0.235 0.131 0.098 0.499 0.145 0.363 0.010 0.142
Lagged patent dummy 1.148 0.000 0.136 1.108 0.000 0.142 1.229 0.000 0.143
ln(# of pre-sample patents) 0.509 0.000 0.068 0.502 0.000 0.077 0.310 0.000 0.062
# of pre-sample patents > 0 dummy 0.244 0.423 0.304 0.295 0.400 0.350 1.138 0.000 0.289

Hypotheses tests
Chi2 p -value Chi2 p -value Chi2 p -value

Hypothesis 2
 (3) = (4) 4.42 0.036 5.63 0.018 4.39 0.036
 (9) = (4) 2.14 0.144 2.85 0.092 2.24 0.134
 Joint 5.79 0.055 7.57 0.023 6.09 0.048
Observations 15,964 15,715 15,964

No citation weights No chemical sector No major patenters
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Online Appendix Table 3. Dynamic fixed effect Poisson GMM estimation results 

 

Note: All explanatory variables are lagged by one period. Specification includes a set of time dummies. 

 

Online Appendix Table 4. NegBin estimates based on matched control observations 

 

Coeff. p -value Std.err.
(1) Hires from firms w/ university experience 2.265 0.000 0.287
(2) Hires from firms w/o university experience 1.849 0.000 0.180
(3) Hires from universities 5.048 0.000 0.727

Other hires 5.048 0.000 0.831
University graduates 3.590 0.000 0.624
R&D support workers 1.105 0.000 0.271

ln(# of R&D workers) 0.228 0.000 0.063
ln(capital) 0.769 0.000 0.049
Lagged patent dummy 0.253 0.001 0.073
Twice lagged patent dummy 0.961 0.000 0.076

Hypotheses tests Chi2 p -value
Hypothesis 1
 (1) = (2) 0.726 0.394
 (3) = (2) 7.705 0.006
Joint 79.213 0.000

Specification tests
Chi2 p -value

AR(1) -2.532 0.011
AR(2) -0.994 0.320
Sargan 95.023 0.286

Observations 9416
Firms 2864

Model I

# treated # controls Mean Std. dev. Mean Std. dev. Coeff. Std. err. Coeff. Std. err.
H3 195 1174 13.197 1.079 5.697 3.090 3.007 0.933 3.557 1.454

CEM matches 58.5% of the treated observations.
Additional control variables in PSM-based NegBin regression:
ln(R&D workers), year 2002, year 2004; sectors: 
plastic & glass, medical devices, patent intensive

Propensity
score matching

Unmatched
raw difference matching raw difference

Matched Coarsened exact
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