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Abstract 

Aims  

Microvessel density (MVD), proliferating MVD (pMVD) and vascular proliferation index (VPI) are 

methods used to quantify tumour vascularity in histopathological sections. In this study we assessed 

MVD, pMVD and VPI in non-luminal subtypes of breast cancer. Differences between subtypes were 

studied, and the prognostic value of each method was assessed.  

 

Methods 

All non-luminal subtypes (61 basal phenotype (BP), 60 HER2 type and 30 five negative phenotype 

(5NP)) were selected from a series comprising 909 cases of breast cancer. Sections were stained for 

Ki67 and von Willebrand factor. Associations between MVD, pMVD and VPI, molecular subtypes 

and prognosis were studied.  

 

Results 

MVD was highest in 5NP (Δ54.3 microvessels/mm2 compared to BP, 95% confidence interval (CI) 

30.3-78.3), whereas no clear difference was found between HER2 type and BP (Δ8.8 

microvessels/mm2, 95% CI -9.6-27.1). pMVD and VPI did not differ between subtypes. For MVD, 

hazard ratio (HR) was 1.07 (95% CI 1.03-1.11) per 10 vessel increase and 1.93 (95% CI 1.21-3.07) if 

MVD was > median value. High MVD was associated with poor prognosis in the HER2 type (HR 

1.07 (95% CI 1.02-1.12)) and 5NP (HR 1.13 (95% CI 1.03-1.23)), but not in BP (HR 1.04 (95% CI 

0.94-1.14) per 10 vessel increase). pMVD and VPI were not associated with prognosis.  

 

Conclusion 

MVD appears to be an independent prognostic factor in HER2 and 5NP subtypes of breast cancer, 

where high MVD is associated with poor survival. MVD was higher in the 5NP compared to both BP 

and HER2 type.  
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INTRODUCTION 

Inducing angiogenesis is one of the six original hallmarks of cancer (1). Tumour angiogenesis occurs 

when cancer cells stimulate adjacent blood vessels to proliferate and infiltrate the tumour tissue (2-4). 

The result is a vascularised tumour with potential for exponential tumour growth and metastasis (4, 5). 

Knowledge of tumour vascularity might provide information about the biology of a tumour, patient 

prognosis, and may ultimately aid in choice of therapy.  

As a measure of angiogenesis, Weidner et al introduced microvessel density (MVD), which is the 

average number of vessels per mm2 in the most vascularised area of the tumour (6). However, 

although some studies found MVD to have prognostic value in cancer (6-9), it is merely a descriptive 

measure of vascular density in a tumour, and does not describe ongoing angiogenesis. Therefore, it has 

been suggested that vascular proliferation may be a better estimate of ongoing tumour angiogenesis. 

Proliferating microvessel density (pMVD), defined as the average number of proliferating vessels per 

mm2, and vascular proliferation index (VPI) which is the ratio of proliferating vessels to the total 

amount of vessels, can be used to assess vascular proliferation (10).  

Breast cancer is a heterogeneous group of diseases. Gene expression analyses enable sub-classification 

of breast cancers into molecular subtypes with differing biology and prognosis (11-13). 

Immunohistochemistry (IHC) and in situ hybridisation (ISH) can be used as surrogates for gene 

expression analysis, and thus, reclassify breast cancers into molecular subtypes as shown in Figure 1 

(14). Each subtype displays a distinct survival pattern (14-16). The Luminal A subtype has a relatively 

constant rate of death over time, while mortality rates in the other subtypes are initially high, peak 

within five years after diagnosis and then decrease, with few deaths occurring from five years and 

onwards (15). Before the advent of trastuzumab the HER2 type had the poorest prognosis (14, 17, 18), 

followed by the Five Negative Phenotype (5NP) and the Basal Phenotype (BP) (18), often classified 

together as triple negative (TN) tumours (14). Patients with non-luminal subtypes do not qualify for 

endocrine therapy, leaving chemotherapy as the only systemic adjuvant treatment available for TN 

tumours (19). There is an urgent need for a better understanding of the biological characteristics of 

non-luminal subtypes, and for new prognostic and predictive markers. 

The aims of this study were to assess MVD, pMVD and VPI in non-luminal subtypes of breast cancer, 

and to evaluate if they differ between subtypes. In addition, we wished to study the prognostic impact 

of MVD, pMVD and VPI for the non-luminal subtypes combined and in each subtype separately. 

 

MATERIALS AND METHODS 

Study population and specimen characteristics 

The study material comprised 909 primary breast carcinomas from women born between 1886 and 

1928 in Nord-Trøndelag County, Norway. These women were invited to participate in a survey for 
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early breast cancer detection organized by the Norwegian Cancer Society, between 1956 and 1959. 

They were followed for breast cancer occurrence from 1961 to 2008, through information linkage with 

the Cancer Registry of Norway. After diagnosis, the women were followed until death from breast 

cancer, death from other causes or December 31st 2010, whichever came first. Date and cause of death 

was obtained from the Cancer Registry of Norway after linkage with the Causes of Death Registry 

(20, 21).  

Pathology reports and formalin-fixed, paraffin embedded (FFPE) tissue from tumours were available 

from the Department of Pathology and Medical Genetics, St Olav’s Hospital, Trondheim University 

Hospital, Norway. As described by Engstrøm et al (14), tumours were classified into histopathological 

type according to the WHO Classification of Tumours of the Breast (22), and grade according to the 

Nottingham Grading System (23). Next, they were reclassified into molecular subtypes using IHC and 

ISH as surrogates for gene expression analysis. Briefly, tissue microarrays (TMA) were constructed 

using Tissue Arrayer MiniCore® with TMA Designer2 software (Alphelys). Three 1mm in diameter 

tissue cores were extracted from peripheral regions of each tumour and inserted into the TMA 

recipient blocks. Sections were stained with HES and IHC for oestrogen receptor (ER), progesterone 

receptor (PR), human epidermal growth factor receptor 2 (HER2), the proliferation marker Ki67, 

cytokeratin 5 (CK5) and epidermal growth factor receptor (EGFR). Chromogenic ISH was used for 

the assessment of HER2 gene copy number. Based on biomarker expression, tumours were classified 

into molecular subtypes as outlined in Figure 1 (14). 

 

Dual-colour immunohistochemical staining 

For the present study, full-face sections from all non-luminal tumours were included. Sections, 4µm 

thick, were retrieved from storage at -20⁰C and placed into a heating cabinet at 42⁰C overnight. Heat 

Induced Epitope Retrieval was performed in a Pre-Treatment link. Sections were immersed in Dako 

Target Retrieval Solution buffer pH 6, S1699 (DAKO). Temperature was raised from 80⁰C to 97⁰C, 

and maintained for 20 minutes before cooling. Sections were then immersed for 3 minutes x2 in Dako 

Wash Buffer, S3006 10x diluted with deionized water (dH2O).  

Immunostaining was done at room temperature, using Dako Autostainer Plus (DAKO Denmark A/S, 

Produksjonsvej 42 DK-2600 Glostrup, Denmark). Enzyme blocking was performed for 8 minutes, 

using Dual Endogenous Enzyme Block, S2003 (DAKO). Sections were incubated with a cocktail of 

primary antibodies for 60 minutes. The cocktail contained rabbit von Willebrand factor, 3.8µg/L 

(Polyclonal rabbit, A0082, DAKO) and mouse Ki67 antibody, 160µg/L (Clone MIB1, M7240, 

DAKO). A mixture of detection systems containing Southern Biotech alkaline phosphatase/goat anti-

mouse for Ki67 diluted 1:100 and EnVision Detection System-Peroxidase/rabbit for von Willebrand 

factor, was incubated for 30 minutes. Each step in the immunostaining process was followed by 5 
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minutes of rinsing with Dako Wash Buffer (DAKO). To visualise Ki67, Ferangi blue (BIOCARE 

medical) FB81335S diluted 1:50 with Ferangi Blue Buffer was incubated for 15 minutes followed by 

three dH2O rinses. For von Willebrand Factor, sections were incubated for 15 minutes with amino-

ethyl-carbazole substrate chromogen, K3469 (DAKO) and then rinsed twice with dH2O. Sections were 

put into lukewarm water after immunostaining and coverslipped with Dako Faramount aqueous 

medium, S025 (DAKO). Von Willebrand factor positive cells displayed reddish-brown cytoplasm and 

Ki67 positive cells displayed blue nuclei (Figure 2). 

Scoring and reporting 

All cases were assessed by one observer (MRK) who had undergone training on a test series of 24 

colon cancer sections prior to the study material (9).  The most vascularised area of each tumour was 

marked by two authors (AMB and MRK) at low magnification (100x). Within the marked area, 

microvessels and proliferating microvessels were counted in 10 high-power fields (400x) with tumour 

tissue in at least 50% of each field of vision. Areas with sclerosis, necrosis, fibrotic scars and normal 

breast tissue were avoided. A vessel was defined as a von Willebrand factor positively stained 

endothelial cell or cell cluster. In cases with glomeruloid microvascular proliferations or long, twisted 

branches of endothelial cells, each lumen was counted as a separate vascular unit. A proliferating 

vessel was defined as a vascular unit containing at least one nucleus with distinct staining for Ki67. 

MVD and pMVD were expressed as the number of vessels per square millimetre (mm2), and estimated 

as the average number of vessels per field of vision divided by the visual field area of the microscope. 

VPI is the ratio between pMVD and MVD, given in percent. The study is reported in accordance with 

the REMARK recommendations for tumour marker studies (24).  

Statistical analyses 

Multiple linear regression analyses were performed to study the association between non-luminal 

breast cancer subtypes and MVD, pMVD and VPI. Adjustments were made for age at diagnosis (<65, 

65-79, ≥80 years) alone, and for age, grade (1, 2 and 3) and stage (I, II, III and IV) together. For 

survival analyses, the median was set as cut-off to distinguish high and low values of MVD, pMVD 

and VPI. Cumulative incidence of death from breast cancer was calculated, where death from other 

causes was treated as a competing event. The cumulative risk of death from breast cancer can be 

interpreted as the risk of dying from breast cancer before dying from other causes (25). To compare 

the equality of the cumulative incidence curves, Gray’s test was used (26). Multiple Cox proportional 

hazards regression analyses were performed to estimate relative risk of death from breast cancer, given 

as hazard ratios (HR) with 95% confidence intervals (CI). HR was assessed per unit increase in MVD, 

pMVD and VPI, as well as for values above and below the median. Adjustments were made for age, 

grade, stage and subtype together (if applicable). The proportional hazard assumption was met for all 

models, as assessed from log-minus-log plots and tests based on Schoenfeld residuals. Survival 

analyses were performed for all cases combined and separately for each molecular subtype. To 
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evaluate the robustness of the findings, analyses were also performed adjusting for age as a continuous 

variable, adjusting for decade of diagnosis and by using the 75th percentile as cut-off. All analyses 

were performed using STATA 13.1.  

Ethics 

The study was granted approval including dispensation from the general requirement of patient 

consent by the Regional Committee for Medical and Health Sciences Research Ethics (REK, Midt-

Norge, ref. nr: 836/2009).   

RESULTS 

Characteristics of the study participants are presented in Table 1. Median age at diagnosis was 72 

years for BP patients, 67 for HER2 patients and 73.5 for 5NP patients. Fifty-three percent died from 

breast cancer during follow-up. Among BP patients, 44.3% died from breast cancer, compared to 

61.7% of the HER2 patients and 53.3% of the 5NP patients. 

For all tumours combined, median MVD was 83.6 microvessels/mm2 (interquartile range [IQR] 55.5-

120.0), median pMVD was 2.3 proliferating microvessels/mm2 (IQR 1.2-5.2) and median VPI was 

3.6% (IQR 1.2-6.7). Figure 3 shows the distribution of MVD and pMVD for all tumours combined, 

and for each molecular subtype separately.  

There was no difference in mean MVD between HER2 and BP tumours (Δ8.8, 95% CI -9.6-27.1, 

Table 2). In both unadjusted and adjusted analyses, 5NP had higher MVD than BP (Δ54.3 

microvessels/mm2, 95% CI 30.3- 78.3, p<0.001) (Table 2). Since the 95% CIs between HER2 type and 

5NP did not overlap, the 5NP also had higher MVD than the HER2 type. For pMVD and VPI, no 

difference in mean value was found between subtypes. 

Figure 4 shows the cumulative risk of breast cancer death according to MVD in all patients. Cases 

with high MVD had a poorer prognosis compared to those with a lower MVD, regardless of cut-off 

level. With the median as cut-off, cumulative risk of death for patients with low MVD was 34.2% 

(95% CI 24.7-46.0) five years after diagnosis, and 41.6% (95% CI 31.3-53.7) 15 years after diagnosis. 

The corresponding cumulative risks for patients with high MVD were 56.0% (95% CI 45.2-67.4) and 

64.1% (95% CI 53.3-74.8), respectively (Table 3). After adjustments for age, grade, stage and 

molecular subtype, HR was 1.07 (95% CI 1.03-1.11) per 10 vessels increase, and 1.93 (95% CI 1.21-

3.07) for those with high MVD compared to those with low MVD (Table 4). 
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Table 1    Descriptive characteristics for the 151 breast cancer cases. 

 BP HER2 type 5NP Total 

Number of cases (%) 61 (40.4) 60 (39.7) 30 (19.5) 151 (100) 
Median age at diagnosis, years (IQR) 72 (65-80) 67 (58.5-74.5) 73.5 (66-83) 71 (64-78) 
Median follow-up time, years (IQR) 4.9 (2.4-11.2) 3.2 (1.3-9.4) 3.9 (2.5-10.3) 3.8 (1.6-10.5) 
Median time to breast cancer death, years (IQR) 2.5 (1.3-3.7) 1.7 (1.0-3.1) 3.0 (2.0-4.5) 2.4 (1.2-3.7) 
Death from breast cancer, n (%)     
   Yes 34 (55.7) 23 (38.3) 14 (46.7) 71 (47.0) 
   No 27 (44.3) 37 (61.7) 16 (53.3) 80 (53.0) 

Grade, n (%)     
   1 2 (3.3) 0 (0.0) 0 (0.0) 2 (1.3) 
   2 7 (11.5) 10 (16.7) 18 (60.0) 35 (23.2) 
   3 52 (85.3) 50 (83.3) 12 (40.0) 114 (75.5) 
Tumour diameter (mm), n (%)     
   ≤20 25 (41.0) 19 (31.7) 9 (30.0) 53 (35.1) 
   >20, ≤50 12 (19.7) 3 (5.0) 4 (13.3) 19 (12.6) 
   >50  2 (3.3) 1 (1.7) 2 (6.7) 5 (3.3) 
   Uncertain, but ≥20 10 (16.4) 22 (36. 7) 10 (33. 3) 42 (27.8) 
   Unknown 12 (19.7) 15 (25.0) 5 (16.7) 32 (21.2) 
Lymph node status, n (%)     
   Negative 19 (31.2) 15 (25.0) 5 (16.7) 39 (25.8) 
   Negative, less than 5 measures 5 (8.2) 4 (6.7) 3 (10.0) 12 (8.0) 
   Positive 26 (42.6) 33 (55.0) 14 (46.7) 73 (48.3) 
   Unknown (not examined) 11 (18.0) 8 (13.3) 8 (26.7) 27 (17.9) 
Stage, n (%)      
   I 25 (41.0) 23 (38.3) 13 (43.3) 61 (40.4) 
   II 30 (49.2) 27 (45.0) 13 (43.3) 70 (46.4) 
   III+IV 6 (9.8) 10 (16.7) 4 (13.3) 20 (13.3) 
Ki67 status, n (%)     
  <15% 10 (16.4) 12 (20.0) 17 (56.7) 39 (25.8) 
  ≥15% 50 (82.0) 48 (80.0) 13 (43.3) 111 (73.5) 
Median MVD, microvessels/mm2 (IQR) 72.7 (49.6-99.8) 83.6 (60.6-125.7) 122.0 (70.4-182.8) 83.6 (55.5-120.0) 

Median pMVD, microvessels/mm2 (IQR) 2.3 (1.2-4.6) 2.9 (1.2-6.3) 2.5 (1.2-6.9) 2.3 (1.2-5.2) 
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Median VPI, percentage points (IQR) 3.6 (1.4-7.1) 4.1 (1.6-6.3) 2.3 (0.8-6.5) 3.6 (1.2-6.7) 
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Table 2   Mean differences in MVD, pMVD and VPI according to tumour subtype based on linear 

regression. Basal phenotype (BP), HER2 type and five negative phenotype (5NP). 

 Δ 

Unadjusted 

95% CI Δ  

Adjusted1 

95% CI Δ 

Adjusted2 

95% CI 

MVD, microvessels/mm2      

   BP  Ref  Ref  Ref 

   HER2 type* 14.7  -3.2-32.6 12.3 -5.9-30.6 8.8 -9.6-27.1 

   5NP 55.7  33.8-77.5 55.9  34.1-77.7 54.3  30.3-78.3 

pMVD, microvessels/mm2      

   BP  Ref  Ref  Ref 

   HER2 type* 0.6  -1.3-2.6 0.6  -1.4-2.5 0.5  -1.5-2.5 

   5NP 1.6  -0.8-3.9 1.5  -0.8-3.9 1.9  -0.7-4.5 

VPI, percentage points      

   BP  Ref  Ref  Ref 

   HER2 type* 0.0  -1.7-1.6 0.1  -1.6-1.8 0.2  -1.5-1.9 

   5NP -0.2  -2.2-1.8 -0.3  -2.3-1.7 0.1  -2.1-2.3 
1Adjusted for age. 2Adjusted for age, grade, stage. 
*One outlier, which was HER2 type, was excluded from linear regression analyses. 

 

 

Table 3   Risk of death from breast cancer (cumulative incidence) according to MVD. Cut-off set at 

median value. 

  5 years after diagnosis 15 years after diagnosis 

MVD 

median 

Total 

(n) 

Breast cancer 

deaths (n) 

Risk (%), (95% CI) Breast cancer 

deaths (n) 

Risk (%), (95% CI) 

All cases      

   ≤83.6 76 26 34.2 (24.7-46.0) 31 41.6 (31.3-53.7) 

   >83.6 75 42 56.0 (45.2-67.4) 48 64.1 (53.3-74.8) 

BP       

   ≤72.7 31 11 35.5 (21.5-54.9) 13 42.7 (27.4-62.1) 

   >72.7 30 11 36.7 (22.3-56.4) 14 46.7 (30.9-65.7) 

HER2 type      

   ≤83.6 30 12 40.0 (25.1-59.6) 13 43.5 (28.0-62.9) 

   >83.6 30 21 70.0 (53.5-85.0) 23 76.7 (60.6-89.7) 

5NP      

   ≤122.0 15 4 26.7 (11.0-56.4) 7 46.7 (25.6-73.7) 

   >122.0 15 9 60.0 (37.2-83.5) 9 60.0 (37.2-83.5) 
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Table 4     Relative risk of death from breast cancer according to MVD, pMVD and VPI in all non-

luminal breast cancers. Cut-off set at median value. 

 Unadjusted 

HR 

95% CI Adjusted1 

HR 

95% CI Adjusted2 

HR 

95% CI 

MVD, microvessels/mm2      

   ≤83.6* 1 Ref 1 Ref 1 Ref 

   >83.6* 2.0 1.3-3.1 1.9 1.2-3.0 1.9  1.2-3.1 

   Per 10 vessels  

   increase 

1.07  1.03-1.10 1.07  1.03-1.10 1.07  1.03- 1.11 

pMVD, microvessels/mm2      

   ≤2.3* 1 Ref 1 Ref 1 Ref 

   >2.3* 0.9  0.6-1.4 0.9  0.6-1.4 0.8 0.5-1.3 

   Per 1 vessel  

   increase 

1.03  1.00-1.07 1.04  1.00-1.07 1.04  1.01- 1.07 

VPI, percentage points      

   ≤3.6* 1 Ref 1 Ref 1 Ref 

   >3.6* 1.0  0.6- 1.5 1.0  0.6- 1.5 1.0  0.6- 1.5 

   Per percentage  

   point increase 

1.01 0.95-1.06 1.00  0.95-1.06 1.02  0.96-1.08 

1 Adjusted for age. 2Adjusted for age, stage, subtype, grade. *Subtype-specific median value. 

 

When each molecular subtype was studied separately, high MVD was associated with poor prognosis 

in the HER2 type in both unadjusted and adjusted analyses (Figure 5, Tables 3, 5 and 6). HR was 1.07 

(95% CI 1.02-1.12) per 10 vessel increase in the adjusted analyses, and 2.51 (95% CI 1.25-5.02) for 

those with MVD above the HER2-median compared to those with values below. High MVD was not 

associated with prognosis in BP tumours (HR 1.04 (95% CI 0.94-1.14) per 10 vessel increase). For 

5NP, high MVD was associated with increased risk of death with adjusted HR 1.13 (95% CI 1.03-

1.23) per 10 vessel increase.

For all cases combined, neither high pMVD nor high VPI was associated with prognosis in the 

unadjusted analyses (Figure 6, Tables 4 and 7). In adjusted analyses, HR was 1.04 (95% CI 1.01-1.07) 

per single vessel increase for pMVD and 1.02 (95% CI 0.96-1.08) per percentage point increase for 

VPI. In analyses stratified for subtype, HR was 1.05 (95% CI 1.01-1.08) per single vessel increase in 

the HER2 subtype. Vascular proliferation was not associated with prognosis in the BP or 5NP.  
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Table 5   Relative risk of death from breast cancer according to MVD, pMVD and VPI by tumour 

subtype. HER2 type, basal phenotype (BP) and five negative phenotype (5NP) 

 Unadjusted 

HR 

95% CI Adjusted1 

HR 

95% CI Adjusted2 

HR 

95% CI 

MVD, microvessels/mm2      

   BP, per 10  

   vessel increase 

1.06  0.96-1.16 1.05  0.95-1.15 1.04 0.94-1.14 

   HER2 type, per  

   10 vessel increase  

1.07  1.03-1.12 1.07  1.02-1.12 1.07  1.02-1.12 

   5NP per 10  

   vessel increase 

1.10  1.03-1.18 1.10  1.02-1.18 1.13  1.03-1.23 

pMVD, microvessels/mm2      

   BP, per single  

   vessel increase 

1.08  1.00-1.16 1.09  1.00-1.18 1.06  0.97- 1.16 

   HER2 type, per  

   single vessel  

   increase  

1.03  1.00-1.07 1.03  1.00-1.07 1.05 1.01- 1.08 

   5NP, per single  

   vessel increase 

0.94  0.83-1.06 0.96  0.85-1.10 0.96  0.79- 1.16 

VPI, percentage points      

   BP, per 1     

   percentage  

   point increase 

1.08  0.99-1.19 1.08  0.98-1.19 1.06  0.95- 1.18 

   HER2 type, per    

   1 percentage  

   point increase 

0.99  0.92-1.07 0.99  0.91-1.07 1.05  0.97- 1.15 

   5NP, per 1     

   percentage  

   point increase 

0.87  0.75-1.02 0.89  0.74-1.06 0.81  0.63-1.04 

1Adjusted for age. 2Adjusted for age, grade, stage 
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Table 6   Relative risk of death from breast cancer according to MVD by basal phenotype (BP) and 

HER2 type. Cut-off for each subtype is the median MVD value for the individual subtype.  

 Unadjusted 

HR 

95% CI Adjusted1 

HR 

95% CI Adjusted2 

HR 

95% CI 

MVD, microvessels/mm2      

BP       

   ≤72.7 1 Ref 1 Ref 1 Ref 

   >72.7 1.15  0.54-2.46 1.10  0.51-2.36 1.04  0.48- 2.22 

HER2 type       

   ≤83.6 1 Ref 1 Ref 1 Ref 

   >83.6 2.48  1.27-4.85 2.45  1.24- 4.84 2.51  1.25- 5.02 
1Adjusted for age. 2Adjusted for age, grade, stage 

 

 

Table 7   Risk of death from breast cancer (cumulative incidence) for all cases combined according to 

pMVD and VPI. Median as cut-off. 

  5 years after diagnosis 15 years after diagnosis 

 Total 

(n) 

Breast cancer 

deaths (n) 

Risk (%), (95% CI) Breast cancer 

deaths (n) 

Risk (%), (95% CI) 

pMVD      

   ≤2.3* 77 37 48.1 (37.6-59.7) 40 52.4 (41.7-64.0) 

   >2.3* 74 31 41.9 (31.6-53.9) 39 53.2 (42.3-65.0) 

VPI      

   ≤3.6* 77 36 46.8 (36.4-58.5) 41 53.7 (42.9-65.2) 

   >3.6* 74 32 43.2 (32.9-55.3) 38 51.9 (41.0-63.8) 

*Median value for all cases. 
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DISCUSSION 

In the present study of non-luminal breast cancer, high MVD was associated with poorer survival. 

Furthermore, MVD appears to be an independent prognostic factor in the 5NP and HER2 subtypes of 

breast cancer, but not in the BP.  

While some studies have found MVD to be of prognostic value in breast cancer (6-9), others have not 

(27, 28). Varying cohort profiles and lack of consensus with regard to staining methods, antibodies, 

area of the tumour selected for vessel counting and counting procedures may, in part, explain this 

discrepancy (6, 8, 27-29). Furthermore, previous studies have not taken the heterogeneity of breast 

cancers into account when studying the prognostic value of MVD (6-8, 28).  To the best of our 

knowledge, the prognostic value of MVD across the three non-luminal molecular subtypes of breast 

cancer has not previously been reported. The finding that MVD is a prognostic marker in the HER2 

type and 5NP, but not in the BP, further supports the suggestion that molecular subtypes have different 

biology and prognostic markers. Our findings indicate that if studying breast cancers as one disease 

entity rather than each subtype specifically, important information may be lost.  

In this study, MVD appears to be of prognostic value in the 5NP. However, there were only 30 cases 

of this subtype and the 95% CIs were wide. Further studies on a larger number of cases are needed to 

determine the true prognostic value of MVD in 5NP tumours.  

Neither pMVD nor VPI differed significantly between the three subtypes. There are several possible 

explanations for this. Firstly, the sample size may not have been sufficiently large to detect the 

differences in question. Secondly, the number of proliferating microvessels in breast cancer is low and 

therefore particularly vulnerable to random variation. Thirdly, all tumour subtypes in the present study 

are known to have aggressive features. The lack of difference in pMVD and VPI between these 

subtypes might be due to a generally higher vascular proliferation in all non-luminal subtypes.  

Some studies have found vascular proliferation markers to have independent prognostic value in 

endometrial cancer, prostate cancer and breast cancer (10, 27, 28, 30), while others have not (9). VPI 

was not associated with prognosis in the present study. When the median was set as cut-off, high 

pMVD was not associated with poor prognosis. However, there was an increased risk of breast cancer 

death per single proliferating vessel increase. The significance of this finding is uncertain and could be 

due to random variation or non-linearity of the underlying association. Furthermore, it should be noted 

that low pMVD is vulnerable to observer variation and intratumoural heterogeneity.  

This study comprises only non-luminal tumours, which would be expected to have high tumour cell 

proliferation rates. At total 73.5 % of all cases were Ki67 high. The causal relationship between 

tumour cell proliferation and vessel proliferation, including the possibility that MVD and pMVD 

might be a consequence of tumour cell proliferation, is not well understood and would require a 
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different study design than the present study. Others have reported that the process of tumour 

angiogenesis occurs independent of tumour cell proliferation and oncogenic stimulation (31, 32), and 

is regulated by a set of factors referred to as the angiogenic switch (31).  

According to present guidelines, breast carcinomas are classified into subgroups using ER, PR, HER2 

and Ki67. As a result, BP and 5NP tumours are grouped together as TN breast cancers, and receive the 

same therapy (19). In the present study, linear regression analyses were also performed with 5NP and 

BP tumours grouped together as one TN subgroup, and compared to the HER2 group. There were no 

differences between the TN and HER2 groups in MVD, pMVD or VPI (data not shown). Thus, the 

observed differences in tumour vascularity in the present study would not have been discovered if TN 

cancers had been studied as one group. Importantly, the greatest differences in MVD were found 

between the BP and 5NP. Based on our findings, grouping 5NP and BP together as a common TN 

group may camouflage important information about tumour biology.  

The 5NP appears to be a distinct molecular subtype with poor prognosis (14, 15). Some have even 

found 5NP to have the second poorest prognosis of all subtypes in patients who did not receive 

systemic adjuvant therapy (14). Still, very little is known about the biological characteristics of this 

subtype, and patients today are only treated with chemotherapy in addition to surgery and radiation 

(19). To ensure 5NP patients the most appropriate treatment, more information about the biology of 

these tumours is needed. In the present study, 5NP tumours had higher MVD than both BP and HER2, 

despite the low sample size. Vascular proliferation is generally low in breast cancer (28), implying that 

ongoing angiogenesis is low. It is possible for tumour cells to gain access to vasculature by means of 

other processes than angiogenesis (33-36). One example is co-option, where tumour cells hijack 

existing vasculature and migrate along the vessels of the host organ (35, 37). Another is 

intussusception, where vessels that already exist are split into daughter vessels (38). A third is 

vasculogenic mimicry, where tumour cells with high plasticity gain endothelial cell-like characteristics 

and form tubules (36). There is a need to investigate whether some molecular subtypes of breast 

cancer avail themselves of mechanisms other than angiogenesis for gaining tumour vasculature. Based 

on our results, this might be particularly interesting in the 5NP subtype, which has considerably 

increased MVD compared to other subtypes, but no corresponding increase in vascular proliferation.  

Conclusions 

MVD is an independent prognostic factor in the HER2 and 5NP subtypes of breast cancer, where high 

MVD is associated with poor survival. MVD is not associated with poor survival among BP cases. 

The 5NP subtype has significantly higher MVD than both the BP and HER2 subtypes.  
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Key messages 

Microvessel density is higher in the five negative phenotype compared to the HER2 type and the basal 

phenotype.  

High microvessel density is associated with poor survival in the HER2 type and the five negative 

phenotype, but does not have prognostic value in the basal phenotype.  
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Figure 1. Classification algorithm for molecular subtyping. Oestrogen receptor (ER), progesterone receptor (PR), 

human epidermal growth factor receptor 2 (HER2), Cytokeratin 5 (CK5), epidermal growth factor receptor 
(EGFR). Adapted from Breast Cancer Res Treat, 2013, Vol 140, Engstrøm et al, Molecular subtypes, 

histopathological grade and survival in a historic cohort of breast cancer patients (14), page 466, Figure 2. Open 
access, permission for reprint not required. 

 

 
Figure 2. Breast cancer section at x400 magnification, stained with immunohistochemistry. Case number 538, 

HER2 type. Von Willebrand factor-positive endothelial cells display reddish-brown cytoplasm and Ki67 positive 

proliferating cells display blue nuclei. Photo: MRK/AMB. 
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Figure 3   Distribution of non-luminal subtypes according to microvessel density (MVD) and proliferating MVD 

(pMVD). Predicted values were estimated by linear functions. One extreme outlier (HER2 type) is not displayed 
in the scatterplot (MVD 470.6/mm2, pMVD 67.5/mm2). a: All cases. b: Basal phenotype. c: HER2 type. d: Five 

negative phenotype. 
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Figure 4. Risk of death from breast cancer (cumulative incidence) according to quartiles of microvessel density. 

Gray’s test: p=0.027. 

 

 
Figure 5. Risk of death from breast cancer (cumulative incidence) according to microvessel density. The cut-off 
for each subtype is the median MVD value for the individual subtype. a: Basal phenotype. Gray’s test: p=0.671. 

b: HER2 type. Gray’s test: p=0.0135. c: 5 negative phenotype. Gray’s test: p=0.139. 
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Figure 6.  Risk of death from breast cancer (cumulative incidence) according to vascular proliferation above and 

below the median. a: Proliferating microvessel density. Gray’s test: p=0.947. b: Vascular proliferation index. 
Gray’s test: p=0.855. 

  



22 
 

Figure legends 

Figure 1. Classification algorithm for molecular subtyping. Oestrogen receptor (ER), progesterone receptor (PR), 
human epidermal growth factor receptor 2 (HER2), Cytokeratin 5 (CK5), epidermal growth factor receptor 
(EGFR). Adapted from Breast Cancer Res Treat, 2013, Vol 140, Engstrøm et al, Molecular subtypes, 
histopathological grade and survival in a historic cohort of breast cancer patients (14), page 466, Figure 2. Open 
access, permission for reprint not required. 

Figure 2. Breast cancer section at x400 magnification, stained with immunohistochemistry. Case number 538, 
HER2 type. Von Willebrand factor-positive endothelial cells display reddish-brown cytoplasm and Ki67 positive 
proliferating cells display blue nuclei. Photo: MRK/AMB. 

Figure 3   Distribution of non-luminal subtypes according to microvessel density (MVD) and proliferating MVD 
(pMVD). Predicted values were estimated by linear functions. One extreme outlier (HER2 type) is not displayed 
in the scatterplot (MVD 470.6/mm2, pMVD 67.5/mm2). a: All cases. b: Basal phenotype. c: HER2 type. d: Five 
negative phenotype.  

Figure 4. Risk of death from breast cancer (cumulative incidence) according to quartiles of microvessel density. 
Gray’s test: p=0.027. 

Figure 5. Risk of death from breast cancer (cumulative incidence) according to microvessel density. The cut-off 
for each subtype is the median MVD value for the individual subtype. a: Basal phenotype. Gray’s test: p=0.671. 
b: HER2 type. Gray’s test: p=0.0135. c: 5 negative phenotype. Gray’s test: p=0.139.  

Figure 6.  Risk of death from breast cancer (cumulative incidence) according to vascular proliferation above and 
below the median. a: Proliferating microvessel density. Gray’s test: p=0.947. b: Vascular proliferation index. 
Gray’s test: p=0.855. 

 




