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Abstract. Detailed information on the three-dimensional dispersiboollagen fibers within
layers of healthy and diseased soft biological tissues bas beported recently. Previously
we have proposed a constitutive model for soft fibrous sddetsed on the angular integration
approach which allows the exclusion of any compressed gatidiber within the dispersion.
In addition, a computational implementation of that modehigeneral purpose finite element
program has been investigated and verified with the starfd@dreinforcing model for fiber
contributions. In this study, we develop the proposed fibgpatsion model further using an
exponential form of the strain-energy function for the filbentributions. The finite element
implementation of this model with a rotationally symmedtidispersion of fibers is also pre-
sented. This includes explicit expressions for the stradstasticity tensors. The performance
and implementation of the new model are demonstrated by snafaan uniaxial extension test,
a simple shear test, and an extension—inflation simulafiarresidually stressed carotid artery
segment. In each example we have obtained good agreememtnghe finite element solution
and the analytical or experimental results.
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1 Introduction

Recent studies on the imaging and visualization of the retanatures of soft biological tissues
by using, e.g., second-harmonic generation [1], have fesledetailed information about the
three-dimensional (3D) organization of collagen fibersaiyers of healthy and diseased tissues
[1-5]. In many of these tissues the collagen fibers are Higed around a mean direction in the
reference configuration in the ground substance within vttie fibers are embedded [1, 5-8].
This type of dispersed fiber distribution has been found im& arterial tissues [1, 5], the
myocardium [9, 10], corneas [11, 12], articular cartilagig][and other tissues. Currently, there
exist two main approaches for representing fiber dispelisianconstitutive equation: direct
incorporation in a strain-energy function through a proligidensity function €DF) [14] or

by using a generalized structure tensor [15]. These twoosmes are referred to as ‘angular
integration’ (A1) and ‘generalized structure tens@¥T) , respectively. A short survey of the
main continuum mechanical models which take fiber disparsito account can be found in
the recent review [16].

A recent extensive experimental study has revealed thatdahagen fiber distribution in
layers of healthy human abdominal and thoracic aortas,le@udhirteries is not exactly symmet-
ric about one particular direction — the out-of-plane fibispérsion is in general much smaller
than the in-plane dispersion [5] — in contrast to the assionpmif symmetric fiber dispersion
for such tissues [15]. Recently, our group has further edddrtheGsT-based fiber dispersion
model [15] to a more general case so that the experimentadigroed non-symmetric distribu-
tion of fibers can also be captured [16].

It is often assumed that collagen fibers do not contributbeddtal strain energy of the ma-
terial when loaded in compression due to their waviness lemdisrness, for example. However,
modeling of this phenomenon for computational implemeorelbas been called into question
in [17]. In some models a Heaviside step function or simifggraaches have been introduced
in the Al formulation so as to exclude the strain energy of the conspikfibers; see, e.g., [18—
20]. This approach can theoretically eliminate the contidn of the fibers under compression
from the total strain energy. But, the numerical integragiover a subdomain of a unit sphere
needed for evaluation of the Cauchy stress and elastigigots require the integrand to be a
continuous function over the integration domain. The preseof the Heaviside step function
in the strain-energy function renders the stress and ellgsiensors discontinuous over the unit
sphere, as indicated in [19]. A recent study [4] proposedpjar@imate the integration for
the Cauchy stress tensor by a symmetric cubature formulaaninite number of integration
points and weights over the unit sphere [21], with each atiégn point representing a spatial



fiber orientation on the sphere. In this approach, if theag@h fiber at an integration point
is compressed, then the strain energy of that fiber oriemtadi eliminated from the numerical

integration. This leads to a discontinuous strain-eneuggtion over the unit sphere whereas
the cubature formula, as described in [21], requires captis functions. Thus, a finite element
implementation of this method is not likely to be accuratetifi® computation of the stress and
elasticity tensors, and leads to a poor rate of convergence.

In order to obtain a continuous stress response and stnairgpe function, arequivalent
transversely isotropic deformation state defined by udiegsjuared stretch in the mean fiber
direction and an average squared stretch of all fibers in ldr@egransverse to the mean fiber
direction was proposed recently [22] in order to elimin&e¢ontribution of compressed fibers.
However, as the authors pointed out, if both squared s&stahe greater than then no fiber
would be excluded with this method. Indeed, for simple shear, it is very easy to show that
their criterion for including just the extended fibers doesexclude all the compressed fibers,
and this limitation also applies to other deformations.

To completely exclude the fibers under compression for arfigrohation state, we have
developed a modified fiber dispersion model [17] based oatlaproach. This model incor-
porates a weighted strain-energy function and enables élely stress and elasticity tensors
to be evaluated in a straightforward way. In addition, weehalso discussed the integration
boundary of the region that admits only extended fibers uadgrdeformation state [23], im-
plemented this model in the finite element analysis prograap [24] and verified it with sev-
eral numerical examples. However, in that study, for puega¥ illustration of the method,
we demonstrated the new fiber dispersion model [17] by usisgrgple quadratic form of
strain-energy function, namely the standard fiber-retifay model [25], for the fiber contri-
bution. However, the quadratic form of the strain-energycfion is not able to capture the
highly nonlinear mechanical response of some soft biokldissues such as arterial tissues,
and an exponential form of the strain-energy function isevsuitable for those tissues [15, 26].
This can be verified by fitting the constitutive law documenite [23], which is based on the
standard fiber-reinforcing model, to experimental datafarterial tissue. It is impossible to
accurately fit the highly nonlinear behavior of soft tissuidg® the one in Section 3.3, by using
the quadratic strain-energy function for fibers. Therefdine goal of this study is to further
develop the new model by using an exponential form of stemiergy function for collagen
fibers and to illustrate the application of the model to soepesentative numerical examples,
including the extension—inflation simulation of a residyatressed carotid artery.

The present study is structured as follows. In Section 2 wegnt the continuum mechani-



cal framework of the proposed constitutive model with eximn of compressed fibers from the
total strain energy in a decoupled form suitable for comfpartal implementation, including
the expressions of Cauchy stress and the elasticity tefm@b fiber distribution. In Section 3
the theory of Section 2 is applied to several representaanples by using the finite ele-
ment based numerical integration scheme from [23]. In paldr, three numerical simulations
are presented with the goal of demonstrating the efficach®fproposed constitutive model
and its computational implementation. Finally, Sectiowhmarizes the proposed constitutive
modeling approach and discusses possible future studtbs pfesent work.

2 Continuum Mechanical Framework

In this section, we present briefly the notation and fundaaiezlements of nonlinear con-
tinuum mechanics in order to describe the fiber dispersiodehoThen, the corresponding
Cauchy stress and fourth-order elasticity tensors neeutefihfte element implementation are
also discussed.

2.1 Kinematics

Let B, be a reference configuration of a continuum body which isstiieee and its deformed
configuration. The deformation map = x(X) transforms a material poiX € 5, into a
spatial pointx € B. From this deformation map we derive the deformation gratdi€X) =
Ox(X)/0X and its determinanf = det F(X), whereJ is the local volume ratio; we require
J > 0.

Following the multiplicative decomposition of the defortioa gradient in [27, 28] we de-
coupleF into a spherical (dilatational) part'/?I and a unimodular (distortional) pa =
JY3F, with det F = 1. We define the right Cauchy—Green ten€ot= F'F and its modified
counterparC = F'F, respectively, with the related invariartts= trC and, = trC.

2.2 Fiber Dispersion Model

In general, we can treat each layer of an arterial wall as eonipressible, elastic and fiber-
reinforced continuum body embedded with a 3D dispersed @isribution. Collagen fibers
may be rotationally symmetrically or non-symmetricallgpersed about a mean orientation in
the 3D space [16]. Since our main focus here is to examineftbet ®f excluding compressed
fibers, for purposes of illustration we adopt a rotationaljynmetric dispersion of fibers. To
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Figure 1: Unit vectorN representing an arbitrary fiber direction described in allooordinate
system constructed from the eigenvectdrsi = 1,2, 3, of C. The components dfl in terms
of the global Cartesian basis vectds i = 1,2, 3, can be calculated by a rotation tensor
such thav, =RE;,i = 1,2, 3.

eliminate the fibers under compression for a general defiwmmatate, we have proposed a
modified fiber dispersion model [17] based on theapproach.

Briefly, an arbitrary fiber directioN from the center of a unit sphere can be described by
two spherical polar angle®( ®) as

N = sin © cos PV + sin O sin PV, + cos OV, (1)

whereV,, i = 1,2, 3, are the unit eigenvectors &. For a givenC, the triad{V,,V,, V3},
namely the so-called Lagrangian axes at pXine B, in the reference configuration [29],
defines a unique local coordinate system, as shown in Figurae.two spherical polar angles
have the range® € [0, 7] and® € [—n/2, /2], which define a half sphere, denotgd We
only consider a half sphere sinbkand —N represent the same fiber. In (1), the vedtbis
decomposed on the local coordinate system instead of thalgiartesian basis vectors because
this makes it more convenient to describe the boundary ahtiegration domain within which
fibers are extended, as explained in [23]. The fiber orieam&ican also be described in terms
of the Cartesian basis vectdfs, i = 1, 2, 3, in a global coordinate system. The eigenvectors of
C can be expressed & = RE;, i = 1,2, 3, whereR is a rotation tensor (which depends on
C).

Analogously to (1), we can write the mean fiber direction,atedM, as

M = sin Oy cos PV + sin Oy sin Py V4 + cos O Vs, (2)



where©,; and®,; can be determined by using the relations
V,y-M
V,-M’
Note thatM is a given constant unit vector in the reference configunatbut ©,; and @,
depend orC through (3).

In this study, since we consider the soft tissue as an elasdterial, it is assumed that

cos Oy =Vs3-M, tan @y, =

(3)

there exists a strain-energy functi@C, {N}) which depends on the macroscopic deformation
of the material througlIC, the underlying fiber through each directibh) and aPDF p(O, ®)
that describes the distribution of fibers in 3D space. No& the notation N} indicates the
dependence on the distributionfin space. TheDF satisfies the normalization condition

%// p(0,P)sin®dOdP = 1. (4)
S

Specifically, for a rotationally symmetric fiber dispersigni©, ®) is a function of the angle
betweenN and the mean fiber directio. The PDF should be determined by experimental
data of the 3D fiber distribution in the specific layers of tiedmgical tissue.
For computational purposes [33], we assume that the straéngy function can be decou-
pled as [30]
U(C,{N}) = ¥y (J) + ¥io(C, {N}), (5)

where the functionV, represents the energy contribution by a purely volumeteioana-
tion while ¥, represents the contribution from an isochoric (volume gméag) deformation
throughC. It is assumed that the isochoric strain enefgy is the superposition of the energy
contributions from the (non-collagenous) ground substancand the fibersl, i.e.

\Iliso = \Ijg(6> + \Ilf(év {N}) (6)

Following [17, 26] we treat the ground substance as a nedemomaterial in terms aof;, as

U, (1) = p(I, — 3)/2, where the parameter is the shear modulus of the ground substance
in the reference configuration. Similarly to [15, 23], welwasg that the isochoric part of the
strain energy per unit reference volume associated withilibes in the directiom is a function

of I,. Unlike in [23], in which the standard fiber-reinforcing ned25] was adopted for the
fiber contributions, for highly nonlinear deformations apenential form of the strain-energy
function is more suitable. Thus, following [26], the stramergy of all the fibers orientated in
the directionN per unit reference volume now becomes

B k _
(L) = 5 ("~ 1), ()



wherek; is a positive material parameter with the dimension of stresis a positive dimen-
sionless material parameter ahdN) = C : N@ N = J~*31,(N), while the invariant’,(N) is
the squared fiber stretch in the directinsee, e.qg., [30]. By using (1J,(N) is then expressed
in terms of the eigenvectors @fas

I,(N) = C:N®@N = cos’ ©OVj - (CV;) +sin® © [cos” DV, - (CV,) + sin® BV, - (CV,)]
+ 25in O cos O(cos DV, + sin ®V,) - (CV3) + 2sin® O sin ® cos DV, - (CV,).
(8)

With respect to its eigenvectorS,has the spectral decomposition
C=AV,®V,+ AV, ®Vy+ A3V ® Vs, (9)

where the squared principal stretchgsi = 1,2, 3, are the eigenvalues &. ThenI, can be
expressed as [17]

1,(0,®) = sin® O(\] cos” @ 4 A3sin® @) + Aj cos” ©. (10)
Hence, the strain energly; due to all the extended fibers per unit reference volume gy

W, — %//p(@,<I>)\Ifn(l_4(@,<1>))sin@d@dq), (11)
Q

where() = {(©,®) € S | I,(©,®) > 1} which defines the deformation dependent domain in
which fibers are extended. Note thia{ here incorporates the factarused previously in [31]
to represent the number of fibers per unit reference volume.

The total isochoric strain-energy function due to the gbgnbstance and the collagen
fibers now reads

Uyo = U, (1) + % // p(0, @)V, (I,(6,®))sinO© dO dd. (12)
Q

For the layers of an arterial wall with two or more familiedibkers, the strain energy associated
with additional fiber families can be added to (12), as in thmarical example in Section 3.3.

2.2.1 Stress Tensor

Differentiation of the strain-energy function (5) with pest toC yields the second Piola—
Kirchhoff stress tensod = 20V /0C. We identify two stress contributionS,, andS,,, with
S=S,,+ S, from the decoupled form o¥. Since the volumetric contributio®,,, for hy-
perelastic material models has been extensively documhanidimplemented in finite element



programs, see [30], here we focus only on the isochoric part,

_ _ O
Ww=J PS5 S=27 13
S e (13)

where S defines the so-called fictitious isochoric second Piolaglidioff stress tensor [30],
P=1I- %C‘l ® C is a fourth—order Lagrangian projection tensbheing the symmetric
fourth-order unit tensor with component§ szcp = %(5A053D + d4p0pc). From (12) and
(13), we obtain

S= 2, (L)l + % // p(0, @)y, (1,(0,®)) sin® N @ NdO dd, (14)
Q

wherel is the second-order identity tensaly(1,) = 0V, (1,)/91,, andy), = OV, (1,)/d1,.
Substituting (14) into (13)we obtain the isochoric second Piola—Kirchhoff stressdeBs,.
Since the boundary of the integration dom&inn (12) depends o, the derivative ofl,_,
with respect taC should, in general, include an integral over the boundar.of his integral
vanishes sinc&,, vanishes on the boundary for incompressible materialsnm¥pls derivation
of the integral in (14) based on the general Leibniz integrid using (12) and (13) is given in
Appendix A.

The Cauchy stress tenser= J 'FSF' is obtained by a push forward of the second Piola—
Kirchhoff stress tensd®. The isochoric parsr,,, of the Cauchy stress tensor can be calculated
via the fictitious forma by

Oi,.=P: 0O

: (15)

wherep =1 — %I ® | is the fourth—order Eulerian projection tensor [3Meing the symmetric

fourth—order unit tensor with components,,., = %(ciwébd + 0,40.), @and the fictitious Cauchy
stress tensar is defined by

o

7ESE = 20+ - [[ (.00l (1. 9) smem s ndedal, ()
Q

whereb = FF' is the modified left Cauchy—Green tensor, ang FN.

2.2.2 Elasticity Tensor

Similarly to the decoupled forms of the stress tensors, éitedpled form of the elasticity tensor
C in the Lagrangian description is given by ([30], p. 254)

C= (Cvol + Ciso- (17)



Since the volumetric paft,,, of the elasticity tensof has been well documented, in this study
we again focus our attention on the isochoric part [30], i.e.

aSISO

=2
CISO aC )

(18)

which, as given in [30], p. 255, depends on the fourth-ordgitius elasticity tenso€ in the
Lagrangian description, i.e.

C=2J"22 0S _ SN e 0S @1 42743 95 @N®N. (19)

oC o1, oI,

By using the expression f&@from (14) in (19) we obtain

@:4J—4/3¢g(11)|®|+r4/3%/ p(0, )¢ (1,(6,®)) NoN@N®Nsin ©dOd®, (20)

where

82‘Ilg(]_1) " 02 (]_4(97(1)))
—___5 7 I (6} — .
oL,01, ’ ¥n ( 4(@ )) 01,01,

Similarly to the derivation of (14) the integral over the bdary of(2 obtained by differentiating

Ve (I)) = (21)

(14) with respect t& is omitted from (20); see Appendix A.
With the neo-Hookean model for the ground substance andxienential model (7) for
the fibers, the fictitious elasticity tensor becomes

_ 2k _ r
C= J_4/3_1/ p(©,®) [1+ 2ky(I, — 1)°] 2 i=D°N @ N @ N ® Nsin©dO dd, (22)
T

and a push-forward operation @éhwith F yields the Eulerian form of the fictitious elasticity
tensor, i.e.

2k
c= 1// (0, ) [1 + 2ky(I, — 1)%] &r2e™ V'R @R en e Asin®do do. (23)

Note that for the neo-Hookean modg¢|(7,) = 0. Finally, with (23) we obtain the resulting
isochoric part of the elasticity tensor in the Eulerian diggion, i.e.

2 2
Cioo =J 'P:C:P+ gtr(&)lp — g(aiso D141 ® 0, (24)

which is required for the computational implementation.



3 Representative Numerical Examples

Similarly to [23], the proposed fiber dispersion model (123 lheen implemented in the finite
element analysis prografeAP at the integration point level. To illustrate the method, we
adopted the von Mises distribution, given by

B b exp[2b(N - M)?]
p(O,2) = 4\/; erfi(v2b) =

as thepDF for the 3D fiber dispersion in the computational implemeatgtwhere the constant

b is a concentration parameter describing how closely thesfilne distributed around the mean
direction anderfi(x) = —i erf(i x) denotes the imaginary error function in which the error
functionerf(x) is defined by

erf(z) = % / exp(—£€2)de. (26)
0

On substituting (25) into the isochoric Cauchy stress te(lss) and the Eulerian fourth—order

fictitious elasticity tensor (23), respectively, the sfiedorms of the Cauchy stress and Eulerian
elasticity tensors may be obtained. Then, similarly to [28¢ have adopted a finite element
based numerical integration scheme for evaluation of thubkointegrals in the Cauchy stress
and elasticity tensors.

In this section we demonstrate the performance and conmgughimplementation of the
fiber dispersion model (12) by means of three representativeerical examples, specifically
uniaxial extension and simple shear of a unit cube with a 3&r filispersion, and an extension—
inflation simulation of a residually stressed carotid grt&or each example we have assumed
an incompressibléhyperelastic material. The augmented Lagrangian methaeEapr was
adopted to enforce incompressibility [32]. In each examfile 3D geometry of the model
was discretized witB—node hexahedral mixed Q1/P0 elements, and the problenessoked
by using the Newton—Raphson method. The finite elementteeaté verified with experimen-
tal data or analytical solutions obtained by using eitharLAB [34] or MATHEMATICA [35].

3.1 Uniaxial Extension

As our first example we consider a uniaxial extension test ohid cube composed of one
hexahedral element in the mean fiber direction by using tlex fiispersion model (12). The
geometry of the cube isx 1 x 1 mm aligned with the Cartesian axés, E, andE;. We assume
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Figure 2: Cross-section of a unit cubic containing a rotationally syetric fiber dispersion with
the mean fiber directioNl aligned with the loading directioB;. An arbitrary fiber orientation
within the dispersion is denoted B The dashed lines show the deformed configuration of the
cross-section.

one family of fibers with rotationally symmetric dispersianout the mean fiber directiovt =
E;, as depicted in Figure 2. The model is subjected to unconfinekial extension in th&,
direction such that the deformation is homogeneous. Bectiesmaterial is incompressible,
the matrix forms of the deformation gradient and the Cau@rgen tensors are

[F] = diagl\™2, 0720, [b] = [C] = diag[A™, A7, M, (27)

where \ is the stretch in thé; direction. For this special case the Cartesian basis \&ctor
E, =V, E, = V3 E; =V, are the eigenvectors &. For any fiber directiomN within the
half sphere/,(©, @) is then given by

1,(0) = X\ 'sin? © + X cos® O, (28)

which is independent cb.

Consider the decoupled form of the fictitious Cauchy streasdr (16) and the isochoric
Cauchy stress tensor (15), which is based on (16), so thatdiresponding Cauchy stress
tensoro for an incompressible material is

k 2
o=—pl +ub+ ;1 // p(0, ®)e"2=D" (1, — 1)sin® n ® ndO dd, (29)
Q
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where for this special cage = {(0,®) | © € [0,7/2],® € [0,27], [,(O, D) > 1}, p(O, P)
reduces tg(0), p is a Lagrange multiplier, and = FN. The tensor produat ® n can be
expanded as in [23]. Thus, the Cauchy stress o35 in the E; direction is

0o=—-p+ (ru + a))\27 (30)
whereq is defined as

a =2k, / p(@)ek@(l‘*(@)_l)2 (I,(©) — 1) sin © cos® © dO, (31)

by

with ¥ = {© € [0,7/2] | I, > 1}, and thePDF p in (25) specializes to

B b exp(2bcos® O)
p(©) = 4\/;W- (32)

Since we are considering uniaxial extensign = 05, = 0, the Lagrange multiplier ip =
(1 + B)A™", where

5=k, / p(0)e®:20@-1Y) (1. (©) — 1) sin® © dO, (33)

by

and hence, on elimination @f the uniaxial Cauchy stressbecomes
o= (u+a)X = (u+BA (34)

We have implemented this analytical solutiorMaTLAB and adopted the adaptive Gauss—
Kronrod quadrature methodyadgk) for the integrations of the coefficientsand/ using (28).
For comparison between the finite element results obtainddrEAP and the analytical solu-
tion obtained withvATLAB , we have adopted the following material parametets 1.64 kPa,
b= 0.01, k; = 5.63kPa andk, = 14.25. This set of parameters was chosen to highlight the ca-
pability of the fiber constitutive equation (7) for modelinighly nonlinear materials responses.

The Cauchy stress versus stretch curves franp and MATLAB are shown in Figure 3.
Also shown are the corresponding results for the case inlwthie coefficientsy and g are
evaluated numerically over the entire half sph8rmstead of>.. Thus, the compressed and
extended fibers are both accounted for by the second metlasti€d curve in Figure 3). As
shown, the difference between the two methods increagg#lgliwith an increase in stretch,
see the surface plot df, (O, ®) in Figure 4(a). This difference reduces for larger values of
the stretch\ because more fibers are included in the integration domaaote Mhat the fiber
dispersion model was implementedrABAP based on the eigenvectors@©f The gap shown in

12



Figure 4(a), which indicates the plane whére= 1, expands with increasing stretch according
to (28). Figure 4(b) shows the surface plot of #er p(0, ) from which we can see that
there are slightly fewer fibers distributed in the domain kehlg < 1, than in the domain where
I, > 1.

3.2 Simple Shear

Similarly to Section 3.1, in this example we test the capghdf the proposed constitutive
model by subjecting the same unit culdex( 1 x 1 mm) to a simple shear deformation. All
the nodes on the bottom face of the cube in tBe E,)-plane are constrained in all three
translational degrees of freedom, see Figure 5, and a malzdisplacement in thig, direction

is applied on the top face. The mean fiber direcfibris assumed to be oriented at 2360m
the E; direction in the E,, E;)-plane in the reference configuration, as illustrated guFe 5.
Thus, the matrix forms of the deformation gradient and tgbtrCauchy—Green tensor are

10c¢ 10 c
Fl=1|o10], Cl=1(01 0 . (35)
001 c0(1+c)

Similarly to Section 3.1, for this particular example we gapresent an arbitrary fiber
orientationN with respect to the Cartesian basis vecteysi = 1,2, 3, as

N = sin © cos PE; + sin O sin PE, + cos OE;. (36)
Then, the invarianf,(N) becomes
I, =1+ ¢ cos® © + ¢sin 20 cos P. (37)

In this examplec is taken to be positive, so the integration domg&ins determined by the
inequality

ccos® O + sin20 cos > 0 (38)
within a half sphere defined Iy € [0, 7] and® € [—7/2, 7/2]. Substitutingh = FN into the

general form of the Cauchy stress tensor (29), we obtainhbarsstress in thee(, E;)-plane
as

o3 = (p+aje+7, (39)

13
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Figure 3: Comparison of the analytical solutions, obtained by usingLAB , and the numer-
ical results obtained by usirggaP (1 = 1.64kPa,b = 0.01, k; = 5.63kPa,k, = 14.25). The
solid curve is for the case with compressed fibers excludediflze dashed curve for the case
with all the fibers included.
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Figure 4: Surface contour plots of (d) (0, ®) and (b)p(©, ®) for a uniaxial tension test within
the half spher§ = {(0,®) | © € [0,7],® € [-7/2,7/2]}, defined with respect to a local
coordinate system constructed from the eigenvecto@s(6f= 0.01, A = 1.2). The small gap in
(a) represents the plane wheie= 1. Thus, only the fibers located within the domain enclosed
by the gap are extended. In either plot, the center péint(7/2, & = 0) represents the mean
fiber orientation along th¥,; axis in the local coordinate system, which is coincidenhvtiite

E; axis in the global Cartesian coordinate system; the line at 0 represents th¥; axis on

the unit sphere; the point located@t= = /2 and® = 7/2 represents th¥, axis on the unit
sphere.
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Figure 5: Cross-section of a unit cube subjected to simple shear iftth&;)-plane. The mean
fiber directionM is aligned at135° from the E5 direction in the reference configuration. The
fiber dispersion is rotationally symmetric abddit andN represents a general fiber orientation.
The dashed lines show the deformed configuration, wheréhe amount of shear.

wherea and~ are defined as

k 2
a= ?1 // p(0, ®)elk21OP=17) (1 (9 &) —1)sin O cos? © dO d,
Q

40)
1 (
y=2 // p(O, <I>)e<k2(]4(®’q>)_l)2) (I,(©, ®) — 1) sin® O cos © cos ® dO dP,
T
Q

and() = {(©,®) € S| I, > 1}. The normal stresses induced by the simple shear defonmatio
can be determined by the method described in [23]. The caeftexy and~y in (40) should be
evaluated in the domain defined by (38), which may be accaimgdi by using thBIntegrate
function together with thBoole operation irMATHEMATICA . A comparison between the finite
element results and the analytical solution obtained bygu&@9) andMATHEMATICA with the
material parameterg = 7.64kPa,b = 1.0838, k; = 996.6 kPa, andk, = 5.249 is shown in
Figure 6. Also shown are the computational and analyticallte for the Cauchy shear stress
015 versus the amount of sheafor the case in which the coefficientssand~ are evaluated
numerically over the entire half sphe$enstead of.

For this example there is a significant difference betweesdhwo cases, which can be
explained by the surface plots bfandp in Figures 7(a) and (b), respectively, with respect to the
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Figure 6: Comparison of the finite element results and the analytichltions (39) for the
simple shear tesu(= 7.64kPa,b = 1.0838, k; = 996.6kPa,k, = 5.249). The solid curve
is for the case with compressed fibers excluded, and the dastee for the case with all the
fibers included.

local coordinate system. From Figure 7(a), it can be sedrilibaegion wherd, < 1 contains
most of the fibers. Thus, by including the contribution frdra tompressed fibers in the strain-
energy function a significantly higher stress responsetaingd. A similar observation can be
seen in the Figures 7(c) and (d) in whi€hand p, respectively, are plotted with respect to the
global Cartesian system. In Figure 6 the significant difieesin the values of,; between the
two cases can be seen. This difference gradually disappétargicreasing values afas more
fibers are recruited into tension.

3.3 Extension—Inflation of a Residually Stressed Carotid Atery

In this final example, we demonstrate the performance of be fispersion model in a larger
problem by simulating an extension—inflation test for a tidrartery with residual stress and
two families of fibers accounted for. For purposes of illastm we consider the intact arte-
rial wall as an incompressible, one-layer thick-walledrogtical tube structure. This approach
could be extended to the study of multi-layered arteri@ués given the detailed mechanical
properties of each layer from experimental measurementthafiber orientation and distribu-
tion data. It has been shown that residual stresses playortamt role in the biomechanics of
normal arterial walls [26, 36, 37], especially in terms off@genizing the circumferential stress
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Figure 7: Surface contour plots of (d)(0, ®) and (b)p(©, ®) for a simple shear test within
the half spher§ = {(©,®) | © € [0,7],® € [-7/2,7/2]} defined with respect to a local
coordinate system constructed from the eigenvecto@s(bf= 1.0838, ¢ = 0.5). The small gaps
in (a) and (c) represent the plane whére- 1. In (a) and (b), the center poird(= 7/2, ® = 0)
represents th¥,; axis in the local coordinate system; the linecat= 0 represents th¥; axis
on the unit sphere; and the point locatedat= 7/2 and® = 7/2 represents th¥, axis on
the unit sphere in which the fiber stretch is one. In (c) and (@ndp, respectively, are plotted
with respect to the global Cartesian system, which was useithé analytical solution.

through the thickness direction for each layer. We incaxpmthe residual stress in the arterial
model by using the so-callezpening angle methomtroduced in [38]. This method assumes
the use of the three idealized configurations shown in Figuithe load-free configuration in

which the artery is excised from the body and not subjectexhjoload, but is not stress-free;
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Reference configuration Load-free configuration Loaded configuration
(load-free, stress-free) (residually stressed)

Figure 8: Kinematics of an arterial wall assumed to be a circular dylical tube: cross section
at (a) the reference configuration with an opening angl€b) the residually stressed load-
free configuration; (c) the loaded configuration (due to thgliad internal pressure and axial
force) compared with the load-free configuration (dashedes). If no torsion is considered,
an arbitrary point at radial location transforms ta- in the same direction after deformation.
The parameters, £ and/ denote the length of the arterial segments at the three emaftigns,
respectively.

the reference configuration which is stress-free and loael-fand the loaded configuration in
which the artery is inflated with an internal pressure andlxstretched by an end force.

To model the extension—inflation of residually stresseérgrtissue, the opened sector
shown in Figure 8(a) is closed to obtain the residually sedsconfiguration depicted in Fig-
ure 8(b). We then inflate and axially stretch the artery segrsienultaneously, as in a typical
experiment, see, e.g., [39]. From [39], we obtained thesanesversus circumferential stretch
and pressure versus axial stretch curves of human careéides; and we fitted the fiber dis-
persion model to both curves to obtain the correspondingmahparameters. One objective of
this example is to predict the internal pressure versusigiferential stretch relation by using
pressure versus axial stretch data.

3.3.1 Determination of Material Parameters

The mechanical properties of human common carotid artesyéis have been tested previously
by our group [39, 40]. Briefly, carotid artery segment withdéhs of abouB5 mm were har-
vested froml1 patients. Two black markers were affixed to the outer surtddbe arterial
tissue with a distance of abotimm. The axial stretch and the outer radius of the arteriatispe



mens were measured between the two markers. During thétesirterial segment with closed
ends was pre-stretched and held at the two ends with thenlérgt. Then, an internal pressure
was applied on the inner surface of the carotid artery totmfilae specimen. The transmural
pressure, axial force, outer diameter, and gage lengtta(ais between the two black markers)
were continuously recorded during the pressurization ui8tdPa. During the entire test, the
specimen was immersed in calcium-free saline solutiosrat It is assumed that there is no
torsion during the test.

Thus, the deformation gradieRtand the right Cauchy—Green teng$omt the outer radius
of the specimen have the matrix forms

[FO] = diag[)\TO7 )\907 )\2]7 [CO] = dlaq)\72“07 )\307 )\3]7 (41)

where)\, is the circumferential stretch determined at the outerusj, A, is the axial stretch
determined from the gage length, akd = (A, \,) " is the radial stretch computed from the
incompressibility constraint. Note that here the stresciere measured in the experiment with
respect to the load-free configuration. The cylindricalapdiasis vector&, Eg, E, are the
eigenvectors o€, and we note thaE ; andEg are functions of position. Thus, for any point
within the arterial wall, we can write an arbitrary fiber dit@n in the reference configuration
as
N = sin © cos PE + sin © sin PEg + cos OE (42)

and then/, (O, @) is given by
1,(0,®) = A2, sin® © cos® ® + \j, sin® O sin® ® + A2 cos” ©. (43)

Additionally we assume that the mean fiber directivhandM’ of the two fiber families in the
reference configuration are symmetrically aligned in tmgéantial plane of the arterial wall so
that

M = cos O Eg + sin O E, M’ = — cos O Eg + sin ©E, (44)

where©,; € [0, 7/2] is the angle betweeM and the circumferential direction. From (16) and
(15), which is based on (16), we obtained for two families loéfs

N F _
Tiso = pb + ;1 > // 0:(0, Yokl (I, - 1)sin® N ®NdO do, (45)
Q

i=4,6

where therDFs p, (O, @) andps (O, @) are defined as

B b exp[2b(M - N)?] B b exp[2b(M’ - N)?]
Y Y (2 A
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and by symmetry; = I,. Following the modeling approach previously establist2&] §0],
we have the relationship between the internal presguaad the isochoric stress components
from the equilibrium equation according to

P = / (o) — o) X (a7)

r

where the internal pressuge and the deformed outer radius are measured from the ex-
periment directly. The deformed inner radigyscan be calculated from the incompressibility
condition, see (11) in [40], and the isochoric stress coreptsvyy (r) and oy’ (r) are both
functions ofr because the circumferential and radial stretches depetiteaadius [26]. Thus,
to numerically determine the internal presspr&om the stress through the integration in (47),
we need the isochoric stress components at each deformed.rad

For anyr contained inr;, r,], we can compute the volume enclosed by the surfaces:,
r=r,z=0andz=1[as

V., =w(r® — i)l (48)

Then, we assume thatwas located ap, in the load-free configuration, see Figures 8(b) and
(c), where the volume is

V, = m(p; = pi)E (49)
Because of the incompressibility,(= V), we obtain the load-free radiys as a continuous
function ofr, and hence the circumferential stretch is given as a fundiae by

Ao (50)

r) = LN ! .
o) PP =+t
Whenr = r_, we recover the stretch at the outer surfage With (50) and the measured axial
stretch)\,, we also obtain the radial stretéh(r) = (\y(r)A,)”" as a continuous function of
r. Thus, the components of the deformation gradient and teha@ic stress tensor are ob-
tained as functions af. The internal pressure is then computed using a numeritajration
scheme. The five material parametess Xk, k,, b, ©y;) of the fiber dispersion model were
determined through a nonlinear least-squares regredsawerjberg—Marquardt algorithm) of
the computed pressure against the experimental resutt$iigare 9 for the experimental data
and model fitting of the internal pressure versus the streisphonses. Due to the lack of struc-
tural properties, the mean fiber orientati©g, and concentration parameteare both obtained
through the nonlinear least-square regression. The rabpaiiameters determined for one rep-
resentative specimen, an intact common carotid wall frotrepall in [39], are summarized
in Table 1. The geometry, pressure load and boundary condifor the finite element model
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Figure 9: Experimental results according to [39] and model fit of thesgure versus circumfer-
ential and axial stretches from a representative human eaonwarotid artery specimen through
nonlinear regression.

Table 1: Parameters obtained from experimental data of a humandartery [39].

Parameter | 1 (kPa) | k (kPa) | k() | b() | Ou(")

Value | 49.31 | 13.95 | 134 | 1.2189 | 40.02

are then obtained from the same arterial segment for whemtiditerial parameters were deter-
mined.

3.3.2 Finite Element Modeling and Results

To save computational resources, only half the length oftherial segment was modeled in
the finite element simulation. The geometry of the arteriatiel in the stress-free configuration
(see Figure 10(a)) was created based on the same expeliaeiataet from which the material
parameters were determined. The length, inner radius ated @dius of the arterial model in
the reference configuration afe= 2.4 mm, R; = 3.28 mm andR, = 4.29 mm, respectively.
The opening angle measured from an adjacent thin segmeiné slaime carotid artery is =
26.67°. The geometry of the arterial model was meshed Wwithelements, with four elements
through the thickness, see Figure 10(a).
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The finite element simulation consists of three steps: otpsiep, relaxing step and extension—
inflation step. In the first step, we gradually close the twofaces together (see Figure 10(a))
by using theSPIN command inFEAP. All the nodes on the ‘symmetry plane’ are constrained
in the circumferential direction. The axial residual str@gms neglected in the simulation. At
the end of the closing step the two cut faces coincide, butrdsedual’ circumferential stress
distribution is not uniform around the circumferentialadition. To obtain an evenly distributed
residual stress in the circumferential direction, in theosel step all the nodes on one cut face
are ‘glued’ together with the corresponding nodes on theratht face through theL.INK com-
mand inFEAP such that there is no relative motion between any pair ofa@dent nodes. All
the constraints on the cut faces imposed by3hEN command in the first step are removed at
this step. To prevent rigid body motion, the four inner nodkethe arterial model on the sym-
metry plane in both the circumferential and radial direcsi¢gsee the red nodes in Figure 10(a))
are constrained. At the end of the second step the model iguitilgium, and the residual
stress distribution is uniform in the circumferential ditien, see Figure 10(b). Finally, in the
third step, the axial constraint on one end of the model itacg by a time-dependent axial
displacement boundary condition which is based on axiat@dirmeasurements obtained from
the gage length, see Figure 9, with an axial stretch up(i@. A pressure load up t80 kPa
obtained from the same experiment is applied on the innéaciof the model to inflate the
residually stressed artery. The final transmural distidlouof the circumferential stress in the
arterial model is shown in Figure 10(c).

After the finite element simulation, at each time incremdithe third step the outer diame-
ter of the arterial model was computed from the simulaticulte The inner pressure versus the
circumferential stretch curve frorEAP is compared with the experimental data, see Figure 11.
As shown in Figure 11, a good agreement betweermr e computation and the experimental
data has been obtained. Also shown arerthep results predicted for the case in which strain
energy is computed over the entire half sphere (dashed)cunvehis example, we observed a
very small difference between these two cases, which camfdaieed by the surface plots of
I, andp = p, + pg shown in Figure 12. It can be seen that the region wligre 1 contains
relatively fewer fibers than the region whelig> 1. Thus, exclusion of the compressed fibers
from the strain-energy function resulted in only a sligh&ehe of pressure versus circumfer-
ential stretch response. Similarly, we did not observe aifsogint change of circumferential
Cauchy stress due to the exclusion of compressed fibers.

This particular example demonstrates that the exclusieomwipressed fibers does not make
a significant difference with respect to the all-fiber cas@wever, for many other examples
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Figure 10: Extension—inflation simulation of a carotid artery withidesl stress: (a) finite
element model, geometry and symmetry pladegndM’ denote the mean fiber directions of
the two fiber families); (b) transmural distribution of thesrdual circumferential stress (kPa)
showing compressive stress on the inner region and teriseson the outer region; (c) trans-
mural distribution of the circumferential stress (kPa) endn internal pressure @25 mmHg
(30 kPa) and an axial stretch f07 with compressed fibers excluded.

(different boundary-value problems), it makes significdifference, as illustrated in Figure 6
for simple shear. For any considered deformation it dependshat proportion of the fibers
are under compression.

4 Concluding Remarks

Our previous work [17, 23] on the constitutive modeling oflagen fiber dispersion in which
contributions to the strain-energy function from only tad#ers under tension were included
was based on a simple fiber reinforcing model. In the presedyshis work has been extended
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Figure 11: Comparison of th&EAP prediction of pressure versus circumferential stretclnwit
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compressed fibers. The dots correspond to experimental data

Figure 12: Surface contour plots of (a),(0, ®) and (b)p(0, ®) = p,(O, P) + ps(O©, P) for
the two fiber families for the extension—inflation test ofatat artery within the half sphere
S defined with respect to the local coordinate system corstiuitom the eigenvectors &
(b = 1.2189, p; = 225 mmHg). The small gap in (a) represemis= 1.
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to an exponential form of the strain-energy function for tiber reinforcement in order to fit
experimental data obtained from human tissues. Afterdhtcong the mathematical form of the
constitutive equation for general 3D fiber dispersions 8asethe angular integratiomi) ap-
proach, we have presented analytical expressions for theh@atress and the Eulerian elastic-
ity tensors in decoupled forms suitable for large scaledialement implementation. Next, we
demonstrated the performance of the proposed model wigle tumerical simulations. It was
shown that the exponential form of the strain-energy fuorcis capable of modeling the highly
nonlinear behavior of arterial tissue considered hereh sugood agreement between model
results and experimental data is impossible to achieve, with, a standard fiber-reinforcing
model, as used in [23]. The formulation presented here antbinputational implementation
can be extended straightforwardly to accommodate the tlgaainserved non-symmetric col-
lagen fiber dispersion in arterial walls [16]; this will beetBubject of future work. Comparing
with the numerical integration rule over the entire unit esgh the exclusion of compressed
fibers within a unit sphere requires more computational tifiteus, parallel computation on a
high-performance computer cluster is recommended.

In our last example, we have shown that the considered fispedsion model is able to cap-
ture the experimentally observed response of a residuadigsed carotid artery under extension
and inflation. In Figure 10(c) we have observed a high tramahgradient of circumferential
stress. This can be explained as follows: (i) a high pressiuse kPa was applied to the artery.
Such a high pressure could cause a high transmural streismgraven when the residual stress
is considered; (ii) experimental data were obtained frons@year old female patient with
metastasis and medium grade atherosclerosis in the adrielh wuggests that a larger stress
may occur in the intimal layer of a carotid artery if athelesasis is present in it too; (iii) the
effect of smooth muscle activation has been shown to futiberogenize the transmural stress
distribution [36], but was neglected in the present study.

In addition, due to the absence of detailed material andtstral data for each layer of the
carotid artery we modeled the intact arterial wall as a @yl and thick—walled cylindrical
tube. A future study incorporating smooth muscle activatioatient—specific arterial geom-
etry and layer—specific material and structural informmgtice. collagen fiber orientation and
distribution, will lead to a more realistic model, the pradins of which will offer important
insights.
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Appendix A: Derivations of Stress and Elasticity Tensors

Derivation of Stress Tensor(14)

Because the boundary of the integration donfain the fiber part of the strain-energy function
(12) also depends on the deformation throwghdifferentiation of the strain energy of the
fiber contributions with respect t6 following the Leibniz integral rule for multidimensional
integrals reads (without the factoy )

ac// (C,0,9)d2 = /—FC@@dQ+/F(E,@,<I>)N®Nds, (51)

Q(C) aQ(C)

where F(C,0,®) = p(0,®)¥,(I,(6,®)) and 9Q(C), with unit outward normal\/, de-
notes the boundary dk. Becausel/, = 1 on the boundary and for strict incompressibility
J approaches, we obtainlim;_,, I, = 1. Then, F(C,©, ®) approache$ since, from (7),
U, (1) = 0. Thus, the second term on the right hand side of (51) vanistmeisdoes not appear
in (14).

Derivation of Elasticity Tensor (20)

Similarly to the result in (51), the second differentiatioihthe strain-energy function due to
fiber contributions with respect 10 reads (without the factar/)

4] areomn- [[ Lorcaon

Q(C)
+ [ Lrces)onNeNds (52)

oC
9Q(C)
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Again, because on the bounddiy= 1 in the incompressible limit, the second term on the right

hand side of (52) vanishes, since, from (@},(1) = 0. Thus, the latter term in (52) does not

appear in (20).
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