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Abstract. Detailed information on the three-dimensional dispersionof collagen fibers within

layers of healthy and diseased soft biological tissues has been reported recently. Previously

we have proposed a constitutive model for soft fibrous solidsbased on the angular integration

approach which allows the exclusion of any compressed collagen fiber within the dispersion.

In addition, a computational implementation of that model in a general purpose finite element

program has been investigated and verified with the standardfiber-reinforcing model for fiber

contributions. In this study, we develop the proposed fiber dispersion model further using an

exponential form of the strain-energy function for the fibercontributions. The finite element

implementation of this model with a rotationally symmetrical dispersion of fibers is also pre-

sented. This includes explicit expressions for the stress and elasticity tensors. The performance

and implementation of the new model are demonstrated by means of a uniaxial extension test,

a simple shear test, and an extension–inflation simulation of a residually stressed carotid artery

segment. In each example we have obtained good agreement between the finite element solution

and the analytical or experimental results.

Keywords: Constitutive modeling; carotid artery; fiber dispersion; residual stress; exclusion of

compressed fibers
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1 Introduction

Recent studies on the imaging and visualization of the microstructures of soft biological tissues

by using, e.g., second-harmonic generation [1], have revealed detailed information about the

three-dimensional (3D) organization of collagen fibers in layers of healthy and diseased tissues

[1–5]. In many of these tissues the collagen fibers are distributed around a mean direction in the

reference configuration in the ground substance within which the fibers are embedded [1, 5–8].

This type of dispersed fiber distribution has been found in human arterial tissues [1, 5], the

myocardium [9, 10], corneas [11, 12], articular cartilage [13] and other tissues. Currently, there

exist two main approaches for representing fiber dispersionin a constitutive equation: direct

incorporation in a strain-energy function through a probability density function (PDF) [14] or

by using a generalized structure tensor [15]. These two approaches are referred to as ‘angular

integration’ (AI ) and ‘generalized structure tensor’(GST) , respectively. A short survey of the

main continuum mechanical models which take fiber dispersion into account can be found in

the recent review [16].

A recent extensive experimental study has revealed that thecollagen fiber distribution in

layers of healthy human abdominal and thoracic aortas, and iliac arteries is not exactly symmet-

ric about one particular direction – the out-of-plane fiber dispersion is in general much smaller

than the in-plane dispersion [5] – in contrast to the assumption of symmetric fiber dispersion

for such tissues [15]. Recently, our group has further extended theGST-based fiber dispersion

model [15] to a more general case so that the experimentally observed non-symmetric distribu-

tion of fibers can also be captured [16].

It is often assumed that collagen fibers do not contribute to the total strain energy of the ma-

terial when loaded in compression due to their waviness and slenderness, for example. However,

modeling of this phenomenon for computational implementation has been called into question

in [17]. In some models a Heaviside step function or similar approaches have been introduced

in theAI formulation so as to exclude the strain energy of the compressed fibers; see, e.g., [18–

20]. This approach can theoretically eliminate the contribution of the fibers under compression

from the total strain energy. But, the numerical integrations over a subdomain of a unit sphere

needed for evaluation of the Cauchy stress and elasticity tensors require the integrand to be a

continuous function over the integration domain. The presence of the Heaviside step function

in the strain-energy function renders the stress and elasticity tensors discontinuous over the unit

sphere, as indicated in [19]. A recent study [4] proposed to approximate the integration for

the Cauchy stress tensor by a symmetric cubature formula with a finite number of integration

points and weights over the unit sphere [21], with each integration point representing a spatial
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fiber orientation on the sphere. In this approach, if the collagen fiber at an integration point

is compressed, then the strain energy of that fiber orientation is eliminated from the numerical

integration. This leads to a discontinuous strain-energy function over the unit sphere whereas

the cubature formula, as described in [21], requires continuous functions. Thus, a finite element

implementation of this method is not likely to be accurate for the computation of the stress and

elasticity tensors, and leads to a poor rate of convergence.

In order to obtain a continuous stress response and strain-energy function, anequivalent

transversely isotropic deformation state defined by using the squared stretch in the mean fiber

direction and an average squared stretch of all fibers in the plane transverse to the mean fiber

direction was proposed recently [22] in order to eliminate the contribution of compressed fibers.

However, as the authors pointed out, if both squared stretches are greater than1, then no fiber

would be excluded with this method. Indeed, for simple shear, e.g., it is very easy to show that

their criterion for including just the extended fibers does not exclude all the compressed fibers,

and this limitation also applies to other deformations.

To completely exclude the fibers under compression for any deformation state, we have

developed a modified fiber dispersion model [17] based on theAI approach. This model incor-

porates a weighted strain-energy function and enables the Cauchy stress and elasticity tensors

to be evaluated in a straightforward way. In addition, we have also discussed the integration

boundary of the region that admits only extended fibers underany deformation state [23], im-

plemented this model in the finite element analysis programFEAP [24] and verified it with sev-

eral numerical examples. However, in that study, for purposes of illustration of the method,

we demonstrated the new fiber dispersion model [17] by using asimple quadratic form of

strain-energy function, namely the standard fiber-reinforcing model [25], for the fiber contri-

bution. However, the quadratic form of the strain-energy function is not able to capture the

highly nonlinear mechanical response of some soft biological tissues such as arterial tissues,

and an exponential form of the strain-energy function is more suitable for those tissues [15, 26].

This can be verified by fitting the constitutive law documented in [23], which is based on the

standard fiber-reinforcing model, to experimental data of of arterial tissue. It is impossible to

accurately fit the highly nonlinear behavior of soft tissues, like the one in Section 3.3, by using

the quadratic strain-energy function for fibers. Therefore, the goal of this study is to further

develop the new model by using an exponential form of strain-energy function for collagen

fibers and to illustrate the application of the model to some representative numerical examples,

including the extension–inflation simulation of a residually stressed carotid artery.

The present study is structured as follows. In Section 2 we present the continuum mechani-
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cal framework of the proposed constitutive model with exclusion of compressed fibers from the

total strain energy in a decoupled form suitable for computational implementation, including

the expressions of Cauchy stress and the elasticity tensorsfor 3D fiber distribution. In Section 3

the theory of Section 2 is applied to several representativeexamples by using the finite ele-

ment based numerical integration scheme from [23]. In particular, three numerical simulations

are presented with the goal of demonstrating the efficacy of the proposed constitutive model

and its computational implementation. Finally, Section 4 summarizes the proposed constitutive

modeling approach and discusses possible future studies ofthe present work.

2 Continuum Mechanical Framework

In this section, we present briefly the notation and fundamental elements of nonlinear con-

tinuum mechanics in order to describe the fiber dispersion model. Then, the corresponding

Cauchy stress and fourth-order elasticity tensors needed for finite element implementation are

also discussed.

2.1 Kinematics

LetB0 be a reference configuration of a continuum body which is stress free andB its deformed

configuration. The deformation mapx = χ(X) transforms a material pointX ∈ B0 into a

spatial pointx ∈ B. From this deformation map we derive the deformation gradient F(X) =

∂χ(X)/∂X and its determinantJ = detF(X), whereJ is the local volume ratio; we require

J > 0.

Following the multiplicative decomposition of the deformation gradient in [27, 28] we de-

coupleF into a spherical (dilatational) partJ1/3I and a unimodular (distortional) partF =

J−1/3F, with detF ≡ 1. We define the right Cauchy–Green tensorC = FTF and its modified

counterpartC = F
T
F, respectively, with the related invariantsI1 = trC andĪ1 = trC.

2.2 Fiber Dispersion Model

In general, we can treat each layer of an arterial wall as an incompressible, elastic and fiber-

reinforced continuum body embedded with a 3D dispersed fiberdistribution. Collagen fibers

may be rotationally symmetrically or non-symmetrically dispersed about a mean orientation in

the 3D space [16]. Since our main focus here is to examine the effect of excluding compressed

fibers, for purposes of illustration we adopt a rotationallysymmetric dispersion of fibers. To

4



Θ

Φ

E1

E2

E3

V1
V2

V3

N

Figure 1: Unit vectorN representing an arbitrary fiber direction described in a local coordinate

system constructed from the eigenvectorsVi, i = 1, 2, 3, of C. The components ofN in terms

of the global Cartesian basis vectorsEi, i = 1, 2, 3, can be calculated by a rotation tensorR

such thatVi = REi, i = 1, 2, 3.

eliminate the fibers under compression for a general deformation state, we have proposed a

modified fiber dispersion model [17] based on theAI approach.

Briefly, an arbitrary fiber directionN from the center of a unit sphere can be described by

two spherical polar angles (Θ,Φ) as

N = sinΘ cosΦV1 + sinΘ sinΦV2 + cosΘV3, (1)

whereVi, i = 1, 2, 3, are the unit eigenvectors ofC. For a givenC, the triad{V1,V2,V3},

namely the so-called Lagrangian axes at pointX ∈ B0 in the reference configuration [29],

defines a unique local coordinate system, as shown in Figure 1. The two spherical polar angles

have the rangesΘ ∈ [0, π] andΦ ∈ [−π/2, π/2], which define a half sphere, denotedS. We

only consider a half sphere sinceN and−N represent the same fiber. In (1), the vectorN is

decomposed on the local coordinate system instead of the global Cartesian basis vectors because

this makes it more convenient to describe the boundary of theintegration domain within which

fibers are extended, as explained in [23]. The fiber orientationN can also be described in terms

of the Cartesian basis vectorsEi, i = 1, 2, 3, in a global coordinate system. The eigenvectors of

C can be expressed asVi = REi, i = 1, 2, 3, whereR is a rotation tensor (which depends on

C).

Analogously to (1), we can write the mean fiber direction, denotedM , as

M = sinΘM cosΦMV1 + sinΘM sin ΦMV2 + cosΘMV3, (2)
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whereΘM andΦM can be determined by using the relations

cosΘM = V3 · M , tanΦM =
V2 · M
V1 · M

. (3)

Note thatM is a given constant unit vector in the reference configuration, butΘM andΦM

depend onC through (3).

In this study, since we consider the soft tissue as an elasticmaterial, it is assumed that

there exists a strain-energy functionΨ(C, {N}) which depends on the macroscopic deformation

of the material throughC, the underlying fiber through each directionN, and aPDF ρ(Θ,Φ)

that describes the distribution of fibers in 3D space. Note that the notation{N} indicates the

dependence on the distribution ofN in space. ThePDF satisfies the normalization condition

1

2π

∫∫

S

ρ(Θ,Φ) sinΘdΘdΦ = 1. (4)

Specifically, for a rotationally symmetric fiber dispersion, ρ(Θ,Φ) is a function of the angle

betweenN and the mean fiber directionM . The PDF should be determined by experimental

data of the 3D fiber distribution in the specific layers of the biological tissue.

For computational purposes [33], we assume that the strain-energy function can be decou-

pled as [30]

Ψ(C, {N}) = Ψvol(J) + Ψiso(C, {N}), (5)

where the functionΨvol represents the energy contribution by a purely volumetric deforma-

tion whileΨiso represents the contribution from an isochoric (volume preserving) deformation

throughC. It is assumed that the isochoric strain energyΨiso is the superposition of the energy

contributions from the (non-collagenous) ground substanceΨg and the fibersΨf , i.e.

Ψiso = Ψg(C) + Ψf(C, {N}). (6)

Following [17, 26] we treat the ground substance as a neo-Hookean material in terms of̄I1 as

Ψg(Ī1) = µ(Ī1 − 3)/2, where the parameterµ is the shear modulus of the ground substance

in the reference configuration. Similarly to [15, 23], we assume that the isochoric part of the

strain energy per unit reference volume associated with thefibers in the directionN is a function

of Ī4. Unlike in [23], in which the standard fiber-reinforcing model [25] was adopted for the

fiber contributions, for highly nonlinear deformations an exponential form of the strain-energy

function is more suitable. Thus, following [26], the strainenergy of all the fibers orientated in

the directionN per unit reference volume now becomes

Ψn(Ī4) =
k1
2k2

(

ek2(Ī4−1)
2

− 1
)

, (7)
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wherek1 is a positive material parameter with the dimension of stress, k2 is a positive dimen-

sionless material parameter andĪ4(N) = C : N⊗ N = J−2/3I4(N), while the invariantI4(N) is

the squared fiber stretch in the directionN; see, e.g., [30]. By using (1),I4(N) is then expressed

in terms of the eigenvectors ofC as

I4(N) = C : N ⊗ N = cos2ΘV3 · (CV3) + sin2Θ
[

cos2ΦV1 · (CV1) + sin2ΦV2 · (CV2)
]

+ 2 sinΘ cosΘ(cosΦV1 + sinΦV2) · (CV3) + 2 sin2Θ sinΦ cosΦV1 · (CV2).
(8)

With respect to its eigenvectors,C has the spectral decomposition

C = λ21V1 ⊗ V1 + λ22V2 ⊗ V2 + λ23V3 ⊗ V3, (9)

where the squared principal stretchesλ2i , i = 1, 2, 3, are the eigenvalues ofC. ThenI4 can be

expressed as [17]

I4(Θ,Φ) = sin2 Θ(λ21 cos
2Φ + λ22 sin

2Φ) + λ23 cos
2Θ. (10)

Hence, the strain energyΨf due to all the extended fibers per unit reference volume is given by

Ψf =
1

2π

∫∫

Ω

ρ(Θ,Φ)Ψn(Ī4(Θ,Φ)) sinΘ dΘdΦ, (11)

whereΩ = {(Θ,Φ) ∈ S | I4(Θ,Φ) > 1} which defines the deformation dependent domain in

which fibers are extended. Note thatΨn here incorporates the factorn used previously in [31]

to represent the number of fibers per unit reference volume.

The total isochoric strain-energy function due to the ground substance and the collagen

fibers now reads

Ψiso = Ψg(Ī1) +
1

2π

∫∫

Ω

ρ(Θ,Φ)Ψn(Ī4(Θ,Φ)) sinΘ dΘdΦ. (12)

For the layers of an arterial wall with two or more families offibers, the strain energy associated

with additional fiber families can be added to (12), as in the numerical example in Section 3.3.

2.2.1 Stress Tensor

Differentiation of the strain-energy function (5) with respect toC yields the second Piola–

Kirchhoff stress tensorS = 2∂Ψ/∂C. We identify two stress contributions,Svol andSiso with

S = Svol + Siso, from the decoupled form ofΨ. Since the volumetric contributionSvol for hy-

perelastic material models has been extensively documented and implemented in finite element
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programs, see [30], here we focus only on the isochoric part,i.e.

Siso = J−2/3
P : S, S= 2

∂Ψiso

∂C
, (13)

whereS defines the so-called fictitious isochoric second Piola–Kirchhoff stress tensor [30],

P = I − 1
3
C−1 ⊗ C is a fourth–order Lagrangian projection tensor,I being the symmetric

fourth-order unit tensor with components(I)ABCD = 1
2
(δACδBD + δADδBC). From (12) and

(13)2 we obtain

S= 2ψ′
g(Ī1)I +

1

π

∫∫

Ω

ρ(Θ,Φ)ψ′
n

(

Ī4(Θ,Φ)
)

sinΘ N ⊗ NdΘdΦ, (14)

whereI is the second-order identity tensor,ψ′
g(Ī1) = ∂Ψg(Ī1)/∂Ī1, andψ′

n = ∂Ψn(Ī4)/∂Ī4.

Substituting (14) into (13)1 we obtain the isochoric second Piola–Kirchhoff stress tensor Siso.

Since the boundary of the integration domainΩ in (12) depends onC, the derivative ofΨiso

with respect toC should, in general, include an integral over the boundary ofΩ. This integral

vanishes sinceΨn vanishes on the boundary for incompressible materials. A simple derivation

of the integral in (14) based on the general Leibniz integralrule using (12) and (13) is given in

Appendix A.

The Cauchy stress tensorσ = J−1FSFT is obtained by a push forward of the second Piola–

Kirchhoff stress tensorS. The isochoric partσiso of the Cauchy stress tensor can be calculated

via the fictitious formσ by

σiso = P : σ, (15)

whereP = I − 1
3
I ⊗ I is the fourth–order Eulerian projection tensor [30],I being the symmetric

fourth–order unit tensor with components(I)abcd =
1
2
(δacδbd+ δadδbc), and the fictitious Cauchy

stress tensorσ is defined by

σ = J−1F SF
T
= J−1[2ψ′

gb +
1

π

∫∫

Ω

ρ(Θ,Φ)ψ′
n

(

Ī4(Θ,Φ)
)

sinΘ n ⊗ n dΘdΦ], (16)

whereb = F F
T

is the modified left Cauchy–Green tensor, andn = FN.

2.2.2 Elasticity Tensor

Similarly to the decoupled forms of the stress tensors, the decoupled form of the elasticity tensor

C in the Lagrangian description is given by ([30], p. 254)

C = Cvol + Ciso. (17)
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Since the volumetric partCvol of the elasticity tensorC has been well documented, in this study

we again focus our attention on the isochoric part [30], i.e.

Ciso = 2
∂Siso

∂C
, (18)

which, as given in [30], p. 255, depends on the fourth-order fictitious elasticity tensorC in the

Lagrangian description, i.e.

C = 2J−4/3 ∂S

∂C
= 2J−4/3 ∂S

∂Ī1
⊗ I + 2J−4/3 ∂S

∂Ī4
⊗ N ⊗ N. (19)

By using the expression forS from (14) in (19) we obtain

C = 4J−4/3ψ′′
g(Ī1)I⊗I+J−4/3 2

π

∫∫

Ω

ρ(Θ,Φ)ψ′′
n

(

Ī4(Θ,Φ)
)

N⊗N⊗N⊗N sinΘdΘdΦ, (20)

where

ψ′′
g (Ī1) =

∂2Ψg(Ī1)

∂Ī1∂Ī1
, ψ′′

n

(

Ī4(Θ,Φ)
)

=
∂2Ψn

(

Ī4(Θ,Φ)
)

∂Ī4∂Ī4
. (21)

Similarly to the derivation of (14) the integral over the boundary ofΩ obtained by differentiating

(14) with respect toC is omitted from (20); see Appendix A.

With the neo-Hookean model for the ground substance and the exponential model (7) for

the fibers, the fictitious elasticity tensor becomes

C = J−4/3 2k1
π

∫∫

Ω

ρ(Θ,Φ)
[

1 + 2k2(Ī4 − 1)2
]

ek2(Ī4−1)
2

N ⊗ N ⊗ N ⊗ N sinΘ dΘdΦ, (22)

and a push-forward operation onC with F yields the Eulerian form of the fictitious elasticity

tensor, i.e.

C =
2k1
π

∫∫

Ω

ρ(Θ,Φ)
[

1 + 2k2(Ī4 − 1)2
]

ek2(Ī4−1)
2

n ⊗ n ⊗ n ⊗ n sinΘ dΘdΦ. (23)

Note that for the neo-Hookean modelψ′′
g(Ī1) = 0. Finally, with (23) we obtain the resulting

isochoric part of the elasticity tensor in the Eulerian description, i.e.

Ciso = J−1
P : C̄ : P +

2

3
tr(σ̄)P − 2

3
(σiso ⊗ I + I ⊗ σiso), (24)

which is required for the computational implementation.
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3 Representative Numerical Examples

Similarly to [23], the proposed fiber dispersion model (12) has been implemented in the finite

element analysis programFEAP at the integration point level. To illustrate the method, we

adopted the von Mises distribution, given by

ρ(Θ,Φ) = 4

√

b

2π

exp[2b(N · M)2]

erfi(
√
2b)

, (25)

as thePDF for the 3D fiber dispersion in the computational implementation, where the constant

b is a concentration parameter describing how closely the fibers are distributed around the mean

direction anderfi(x) = −i erf(i x) denotes the imaginary error function in which the error

functionerf(x) is defined by

erf(x) =
2√
π

x
∫

0

exp(−ξ2)dξ. (26)

On substituting (25) into the isochoric Cauchy stress tensor (15) and the Eulerian fourth–order

fictitious elasticity tensor (23), respectively, the specific forms of the Cauchy stress and Eulerian

elasticity tensors may be obtained. Then, similarly to [23], we have adopted a finite element

based numerical integration scheme for evaluation of the double integrals in the Cauchy stress

and elasticity tensors.

In this section we demonstrate the performance and computational implementation of the

fiber dispersion model (12) by means of three representativenumerical examples, specifically

uniaxial extension and simple shear of a unit cube with a 3D fiber dispersion, and an extension–

inflation simulation of a residually stressed carotid artery. For each example we have assumed

an incompressiblehyperelastic material. The augmented Lagrangian method inFEAP was

adopted to enforce incompressibility [32]. In each example, the 3D geometry of the model

was discretized with8–node hexahedral mixed Q1/P0 elements, and the problems were solved

by using the Newton–Raphson method. The finite element results are verified with experimen-

tal data or analytical solutions obtained by using eitherMATLAB [34] or MATHEMATICA [35].

3.1 Uniaxial Extension

As our first example we consider a uniaxial extension test of aunit cube composed of one

hexahedral element in the mean fiber direction by using the fiber dispersion model (12). The

geometry of the cube is1×1×1mm aligned with the Cartesian axesE1, E2 andE3. We assume
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Figure 2: Cross-section of a unit cubic containing a rotationally symmetric fiber dispersion with

the mean fiber directionM aligned with the loading directionE3. An arbitrary fiber orientation

within the dispersion is denoted byN. The dashed lines show the deformed configuration of the

cross-section.

one family of fibers with rotationally symmetric dispersionabout the mean fiber directionM =

E3, as depicted in Figure 2. The model is subjected to unconfineduniaxial extension in theE3

direction such that the deformation is homogeneous. Because the material is incompressible,

the matrix forms of the deformation gradient and the Cauchy–Green tensors are

[F] = diag[λ−1/2, λ−1/2, λ], [b] = [C] = diag[λ−1, λ−1, λ2], (27)

whereλ is the stretch in theE3 direction. For this special case the Cartesian basis vectors

E1 = V2,E2 = V3,E3 = V1, are the eigenvectors ofC. For any fiber directionN within the

half sphere,I4(Θ,Φ) is then given by

I4(Θ) = λ−1 sin2Θ+ λ2 cos2Θ, (28)

which is independent ofΦ.

Consider the decoupled form of the fictitious Cauchy stress tensor (16) and the isochoric

Cauchy stress tensor (15), which is based on (16), so that thecorresponding Cauchy stress

tensorσ for an incompressible material is

σ = −pI + µb +
k1
π

∫∫

Ω

ρ(Θ,Φ)ek2(I4−1)
2

(I4 − 1) sinΘ n ⊗ n dΘdΦ, (29)
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where for this special caseΩ = {(Θ,Φ) | Θ ∈ [0, π/2],Φ ∈ [0, 2π], I4(Θ,Φ) > 1}, ρ(Θ,Φ)

reduces toρ(Θ), p is a Lagrange multiplier, andn = FN. The tensor productn ⊗ n can be

expanded as in [23]. Thus, the Cauchy stressσ ≡ σ33 in theE3 direction is

σ = −p + (µ+ α)λ2, (30)

whereα is defined as

α = 2k1

∫

Σ

ρ(Θ)ek2(I4(Θ)−1)
2

(I4(Θ)− 1) sinΘ cos2ΘdΘ, (31)

with Σ = {Θ ∈ [0, π/2] | I4 > 1}, and thePDF ρ in (25) specializes to

ρ(Θ) = 4

√

b

2π

exp(2b cos2Θ)

erfi(
√
2b)

. (32)

Since we are considering uniaxial extensionσ11 = σ22 = 0, the Lagrange multiplier isp =

(µ+ β)λ−1, where

β = k1

∫

Σ

ρ(Θ)e(k2(I4(Θ)−1)
2
) (I4(Θ)− 1) sin3ΘdΘ, (33)

and hence, on elimination ofp, the uniaxial Cauchy stressσ becomes

σ = (µ+ α)λ2 − (µ+ β)λ−1. (34)

We have implemented this analytical solution inMATLAB and adopted the adaptive Gauss–

Kronrod quadrature method (quadgk) for the integrations of the coefficientsα andβ using (28).

For comparison between the finite element results obtained with FEAP and the analytical solu-

tion obtained withMATLAB , we have adopted the following material parametersµ = 1.64 kPa,

b = 0.01, k1 = 5.63 kPa andk2 = 14.25. This set of parameters was chosen to highlight the ca-

pability of the fiber constitutive equation (7) for modelinghighly nonlinear materials responses.

The Cauchy stress versus stretch curves fromFEAP and MATLAB are shown in Figure 3.

Also shown are the corresponding results for the case in which the coefficientsα andβ are

evaluated numerically over the entire half sphereS instead ofΣ. Thus, the compressed and

extended fibers are both accounted for by the second method (dashed curve in Figure 3). As

shown, the difference between the two methods increases slightly with an increase in stretch,

see the surface plot ofI4(Θ,Φ) in Figure 4(a). This difference reduces for larger values of

the stretchλ because more fibers are included in the integration domain. Note that the fiber

dispersion model was implemented inFEAP based on the eigenvectors ofC. The gap shown in
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Figure 4(a), which indicates the plane whereI4 = 1, expands with increasing stretch according

to (28). Figure 4(b) shows the surface plot of thePDF ρ(Θ,Φ) from which we can see that

there are slightly fewer fibers distributed in the domain whereI4 ≤ 1, than in the domain where

I4 > 1.

3.2 Simple Shear

Similarly to Section 3.1, in this example we test the capability of the proposed constitutive

model by subjecting the same unit cube (1 × 1 × 1mm) to a simple shear deformation. All

the nodes on the bottom face of the cube in the (E1,E2)-plane are constrained in all three

translational degrees of freedom, see Figure 5, and a horizontal displacement in theE1 direction

is applied on the top face. The mean fiber directionM is assumed to be oriented at 135◦ from

theE3 direction in the (E1,E3)-plane in the reference configuration, as illustrated in Figure 5.

Thus, the matrix forms of the deformation gradient and the right Cauchy–Green tensor are

[F] =









1 0 c

0 1 0

0 0 1









, [C] =









1 0 c

0 1 0

c 0 (1 + c2)









. (35)

Similarly to Section 3.1, for this particular example we canrepresent an arbitrary fiber

orientationN with respect to the Cartesian basis vectorsEi, i = 1, 2, 3, as

N = sinΘ cosΦE1 + sinΘ sinΦE2 + cosΘE3. (36)

Then, the invariantI4(N) becomes

I4 = 1 + c2 cos2Θ+ c sin 2Θ cosΦ. (37)

In this examplec is taken to be positive, so the integration domainΩ is determined by the

inequality

c cos2Θ+ sin 2Θ cosΦ > 0 (38)

within a half sphere defined byΘ ∈ [0, π] andΦ ∈ [−π/2, π/2]. Substitutingn = FN into the

general form of the Cauchy stress tensor (29), we obtain the shear stress in the (E1,E3)-plane

as

σ13 = (µ+ α)c+ γ, (39)
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Figure 3: Comparison of the analytical solutions, obtained by usingMATLAB , and the numer-

ical results obtained by usingFEAP (µ = 1.64 kPa,b = 0.01, k1 = 5.63 kPa,k2 = 14.25). The

solid curve is for the case with compressed fibers excluded, and the dashed curve for the case

with all the fibers included.
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ΘΦ
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Figure 4: Surface contour plots of (a)I4(Θ,Φ) and (b)ρ(Θ,Φ) for a uniaxial tension test within

the half sphereS = {(Θ,Φ) | Θ ∈ [0, π],Φ ∈ [−π/2, π/2]}, defined with respect to a local

coordinate system constructed from the eigenvectors ofC (b = 0.01, λ = 1.2). The small gap in

(a) represents the plane whereI4 = 1. Thus, only the fibers located within the domain enclosed

by the gap are extended. In either plot, the center point (Θ = π/2,Φ = 0) represents the mean

fiber orientation along theV1 axis in the local coordinate system, which is coincident with the

E3 axis in the global Cartesian coordinate system; the line atΘ = 0 represents theV3 axis on

the unit sphere; the point located atΘ = π/2 andΦ = π/2 represents theV2 axis on the unit

sphere.
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E3 c

M

N

E1

Figure 5: Cross-section of a unit cube subjected to simple shear in the(E1,E3)-plane. The mean

fiber directionM is aligned at135◦ from theE3 direction in the reference configuration. The

fiber dispersion is rotationally symmetric aboutM , andN represents a general fiber orientation.

The dashed lines show the deformed configuration, wherec is the amount of shear.

whereα andγ are defined as

α =
k1
π

∫∫

Ω

ρ(Θ,Φ)e(k2(I4(Θ,Φ)−1)
2
) (I4(Θ,Φ)− 1) sinΘ cos2ΘdΘdΦ,

γ =
k1
π

∫∫

Ω

ρ(Θ,Φ)e(k2(I4(Θ,Φ)−1)
2
) (I4(Θ,Φ)− 1) sin2ΘcosΘ cosΦdΘdΦ,

(40)

andΩ = {(Θ,Φ) ∈ S | I4 > 1}. The normal stresses induced by the simple shear deformation

can be determined by the method described in [23]. The coefficientsα andγ in (40) should be

evaluated in the domain defined by (38), which may be accomplished by using theNIntegrate

function together with theBoole operation inMATHEMATICA . A comparison between the finite

element results and the analytical solution obtained by using (39) andMATHEMATICA with the

material parametersµ = 7.64 kPa,b = 1.0838, k1 = 996.6 kPa, andk2 = 5.249 is shown in

Figure 6. Also shown are the computational and analytical results for the Cauchy shear stress

σ13 versus the amount of shearc for the case in which the coefficientsα andγ are evaluated

numerically over the entire half sphereS instead ofΩ.

For this example there is a significant difference between these two cases, which can be

explained by the surface plots ofI4 andρ in Figures 7(a) and (b), respectively, with respect to the
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Figure 6: Comparison of the finite element results and the analytical solutions (39) for the

simple shear test (µ = 7.64 kPa,b = 1.0838, k1 = 996.6 kPa,k2 = 5.249). The solid curve

is for the case with compressed fibers excluded, and the dashed curve for the case with all the

fibers included.

local coordinate system. From Figure 7(a), it can be seen that the region whereI4 < 1 contains

most of the fibers. Thus, by including the contribution from the compressed fibers in the strain-

energy function a significantly higher stress response is obtained. A similar observation can be

seen in the Figures 7(c) and (d) in whichI4 andρ, respectively, are plotted with respect to the

global Cartesian system. In Figure 6 the significant difference in the values ofσ13 between the

two cases can be seen. This difference gradually disappearswith increasing values ofc as more

fibers are recruited into tension.

3.3 Extension–Inflation of a Residually Stressed Carotid Artery

In this final example, we demonstrate the performance of the fiber dispersion model in a larger

problem by simulating an extension–inflation test for a carotid artery with residual stress and

two families of fibers accounted for. For purposes of illustration we consider the intact arte-

rial wall as an incompressible, one-layer thick-walled cylindrical tube structure. This approach

could be extended to the study of multi-layered arterial tissues given the detailed mechanical

properties of each layer from experimental measurements and the fiber orientation and distribu-

tion data. It has been shown that residual stresses play an important role in the biomechanics of

normal arterial walls [26, 36, 37], especially in terms of homogenizing the circumferential stress
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Figure 7: Surface contour plots of (a)I4(Θ,Φ) and (b)ρ(Θ,Φ) for a simple shear test within

the half sphereS = {(Θ,Φ) | Θ ∈ [0, π],Φ ∈ [−π/2, π/2]} defined with respect to a local

coordinate system constructed from the eigenvectors ofC (b = 1.0838, c = 0.5). The small gaps

in (a) and (c) represent the plane whereI4 = 1. In (a) and (b), the center point (Θ = π/2,Φ = 0)

represents theV1 axis in the local coordinate system; the line atΘ = 0 represents theV3 axis

on the unit sphere; and the point located atΘ = π/2 andΦ = π/2 represents theV2 axis on

the unit sphere in which the fiber stretch is one. In (c) and (d)I4 andρ, respectively, are plotted

with respect to the global Cartesian system, which was used for the analytical solution.

through the thickness direction for each layer. We incorporate the residual stress in the arterial

model by using the so-calledopening angle methodintroduced in [38]. This method assumes

the use of the three idealized configurations shown in Figure8: the load-free configuration in

which the artery is excised from the body and not subjected toany load, but is not stress-free;
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Figure 8: Kinematics of an arterial wall assumed to be a circular cylindrical tube: cross section

at (a) the reference configuration with an opening angleα; (b) the residually stressed load-

free configuration; (c) the loaded configuration (due to the applied internal pressure and axial

force) compared with the load-free configuration (dashed curves). If no torsion is considered,

an arbitrary point at radial locationρr transforms tor in the same direction after deformation.

The parametersL, ξ andl denote the length of the arterial segments at the three configurations,

respectively.

the reference configuration which is stress-free and load-free; and the loaded configuration in

which the artery is inflated with an internal pressure and axially stretched by an end force.

To model the extension–inflation of residually stressed artery tissue, the opened sector

shown in Figure 8(a) is closed to obtain the residually stressed configuration depicted in Fig-

ure 8(b). We then inflate and axially stretch the artery segment simultaneously, as in a typical

experiment, see, e.g., [39]. From [39], we obtained the pressure versus circumferential stretch

and pressure versus axial stretch curves of human carotid arteries, and we fitted the fiber dis-

persion model to both curves to obtain the corresponding material parameters. One objective of

this example is to predict the internal pressure versus circumferential stretch relation by using

pressure versus axial stretch data.

3.3.1 Determination of Material Parameters

The mechanical properties of human common carotid artery tissues have been tested previously

by our group [39, 40]. Briefly, carotid artery segment with lengths of about35mm were har-

vested from11 patients. Two black markers were affixed to the outer surfaceof the arterial

tissue with a distance of about5mm. The axial stretch and the outer radius of the arterial speci-
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mens were measured between the two markers. During the test,the arterial segment with closed

ends was pre-stretched and held at the two ends with the length fixed. Then, an internal pressure

was applied on the inner surface of the carotid artery to inflate the specimen. The transmural

pressure, axial force, outer diameter, and gage length (distance between the two black markers)

were continuously recorded during the pressurization up to33 kPa. During the entire test, the

specimen was immersed in calcium-free saline solution at37◦. It is assumed that there is no

torsion during the test.

Thus, the deformation gradientF and the right Cauchy–Green tensorC at the outer radius

of the specimen have the matrix forms

[Fo] = diag[λro, λθo, λz], [Co] = diag[λ2ro, λ
2
θo, λ

2
z], (41)

whereλθo is the circumferential stretch determined at the outer radiusro, λz is the axial stretch

determined from the gage length, andλro = (λθoλz)
−1 is the radial stretch computed from the

incompressibility constraint. Note that here the stretches were measured in the experiment with

respect to the load-free configuration. The cylindrical polar basis vectorsER,EΘ, EZ are the

eigenvectors ofC, and we note thatER andEΘ are functions of position. Thus, for any point

within the arterial wall, we can write an arbitrary fiber direction in the reference configuration

as

N = sinΘ cosΦER + sinΘ sinΦEΘ + cosΘEZ , (42)

and thenI4(Θ,Φ) is given by

I4(Θ,Φ) = λ2ro sin
2Θcos2Φ + λ2θo sin

2Θ sin2Φ+ λ2z cos
2Θ. (43)

Additionally we assume that the mean fiber directionsM andM ′ of the two fiber families in the

reference configuration are symmetrically aligned in the tangential plane of the arterial wall so

that

M = cosΘMEΘ + sinΘMEZ , M ′ = − cosΘMEΘ + sinΘMEZ , (44)

whereΘM ∈ [0, π/2] is the angle betweenM and the circumferential direction. From (16) and

(15), which is based on (16), we obtained for two families of fibers

σiso = µb +
k1
π

∑

i=4,6

∫∫

Ω

ρi(Θ,Φ)e
(k2(Īi−1)

2
)
(

Īi − 1
)

sin Θ n ⊗ n dΘdΦ, (45)

where thePDFs ρ4(Θ,Φ) andρ6(Θ,Φ) are defined as

ρ4(Θ,Φ) = 4

√

b

2π

exp[2b(M · N)2]

erfi(
√
2b)

, ρ6(Θ,Φ) = 4

√

b

2π

exp[2b(M ′ · N)2]

erfi(
√
2b)

, (46)
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and by symmetrȳI6 = Ī4. Following the modeling approach previously established [26, 40],

we have the relationship between the internal pressurepi and the isochoric stress components

from the equilibrium equation according to

pi =

∫ ro

ri

(

σiso
θθ (r)− σiso

rr (r)
) dr

r
, (47)

where the internal pressurepi and the deformed outer radiusro are measured from the ex-

periment directly. The deformed inner radiusri can be calculated from the incompressibility

condition, see (11) in [40], and the isochoric stress componentsσiso
θθ (r) andσiso

rr (r) are both

functions ofr because the circumferential and radial stretches depend onthe radius [26]. Thus,

to numerically determine the internal pressurepi from the stress through the integration in (47),

we need the isochoric stress components at each deformed radius.

For anyr contained in[ri, ro], we can compute the volume enclosed by the surfacesr = r,

r = ri, z = 0 andz = l as

Vr = π(r2 − r2i )l. (48)

Then, we assume thatr was located atρr in the load-free configuration, see Figures 8(b) and

(c), where the volume is

Vρ = π(ρ2r − ρ2i )ξ. (49)

Because of the incompressibility (Vr = Vρ), we obtain the load-free radiusρr as a continuous

function ofr, and hence the circumferential stretch is given as a function of r by

λθ(r) =
r

ρr(r)
=

r
√

λz(r
2 − r2i ) + ρ2i

. (50)

Whenr = ro, we recover the stretch at the outer surfaceλθo. With (50) and the measured axial

stretchλz, we also obtain the radial stretchλr(r) = (λθ(r)λz)
−1 as a continuous function of

r. Thus, the components of the deformation gradient and the isochoric stress tensor are ob-

tained as functions ofr. The internal pressure is then computed using a numerical integration

scheme. The five material parameters (µ, k1, k2, b, ΘM) of the fiber dispersion model were

determined through a nonlinear least-squares regression (Levenberg–Marquardt algorithm) of

the computed pressure against the experimental results; see Figure 9 for the experimental data

and model fitting of the internal pressure versus the stretchresponses. Due to the lack of struc-

tural properties, the mean fiber orientationΘM and concentration parameterb are both obtained

through the nonlinear least-square regression. The material parameters determined for one rep-

resentative specimen, an intact common carotid wall from patient II in [39], are summarized

in Table 1. The geometry, pressure load and boundary conditions for the finite element model

20



1 1.05 1.1 1.15 1.2
0

5

10

15

20

25

30

Circumferential
Axia

l

Stretch (–)

In
te

rn
al

p
re

ss
u

rep
i
(k

P
a)

Experimental
Model fit

Figure 9: Experimental results according to [39] and model fit of the pressure versus circumfer-

ential and axial stretches from a representative human common carotid artery specimen through

nonlinear regression.

Table 1: Parameters obtained from experimental data of a human carotid artery [39].

Parameter µ (kPa) k1 (kPa) k2 (-) b (-) ΘM (◦)

Value 49.31 13.95 13.4 1.2189 40.02

are then obtained from the same arterial segment for which the material parameters were deter-

mined.

3.3.2 Finite Element Modeling and Results

To save computational resources, only half the length of thearterial segment was modeled in

the finite element simulation. The geometry of the arterial model in the stress-free configuration

(see Figure 10(a)) was created based on the same experimental data set from which the material

parameters were determined. The length, inner radius and outer radius of the arterial model in

the reference configuration areL = 2.4 mm,Ri = 3.28 mm andRo = 4.29 mm, respectively.

The opening angle measured from an adjacent thin segment of the same carotid artery isα =

26.67◦. The geometry of the arterial model was meshed with576 elements, with four elements

through the thickness, see Figure 10(a).
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The finite element simulation consists of three steps: closing step, relaxing step and extension–

inflation step. In the first step, we gradually close the two cut faces together (see Figure 10(a))

by using theSPIN command inFEAP. All the nodes on the ‘symmetry plane’ are constrained

in the circumferential direction. The axial residual stress was neglected in the simulation. At

the end of the closing step the two cut faces coincide, but the‘residual’ circumferential stress

distribution is not uniform around the circumferential direction. To obtain an evenly distributed

residual stress in the circumferential direction, in the second step all the nodes on one cut face

are ‘glued’ together with the corresponding nodes on the other cut face through theELINK com-

mand inFEAP such that there is no relative motion between any pair of coincident nodes. All

the constraints on the cut faces imposed by theSPIN command in the first step are removed at

this step. To prevent rigid body motion, the four inner nodesof the arterial model on the sym-

metry plane in both the circumferential and radial directions (see the red nodes in Figure 10(a))

are constrained. At the end of the second step the model is in equilibrium, and the residual

stress distribution is uniform in the circumferential direction, see Figure 10(b). Finally, in the

third step, the axial constraint on one end of the model is replaced by a time-dependent axial

displacement boundary condition which is based on axial stretch measurements obtained from

the gage length, see Figure 9, with an axial stretch up to1.07. A pressure load up to30 kPa

obtained from the same experiment is applied on the inner surface of the model to inflate the

residually stressed artery. The final transmural distribution of the circumferential stress in the

arterial model is shown in Figure 10(c).

After the finite element simulation, at each time increment of the third step the outer diame-

ter of the arterial model was computed from the simulation result. The inner pressure versus the

circumferential stretch curve fromFEAP is compared with the experimental data, see Figure 11.

As shown in Figure 11, a good agreement between theFEAP computation and the experimental

data has been obtained. Also shown are theFEAP results predicted for the case in which strain

energy is computed over the entire half sphere (dashed curve). In this example, we observed a

very small difference between these two cases, which can be explained by the surface plots of

I4 andρ = ρ4 + ρ6 shown in Figure 12. It can be seen that the region whereI4 < 1 contains

relatively fewer fibers than the region whereI4 > 1. Thus, exclusion of the compressed fibers

from the strain-energy function resulted in only a slight change of pressure versus circumfer-

ential stretch response. Similarly, we did not observe a significant change of circumferential

Cauchy stress due to the exclusion of compressed fibers.

This particular example demonstrates that the exclusion ofcompressed fibers does not make

a significant difference with respect to the all-fiber case. However, for many other examples
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Figure 10: Extension–inflation simulation of a carotid artery with residual stress: (a) finite

element model, geometry and symmetry plane (M andM ′ denote the mean fiber directions of

the two fiber families); (b) transmural distribution of the residual circumferential stress (kPa)

showing compressive stress on the inner region and tensile stress on the outer region; (c) trans-

mural distribution of the circumferential stress (kPa) under an internal pressure of225mmHg

(30 kPa) and an axial stretch of1.07 with compressed fibers excluded.

(different boundary-value problems), it makes significantdifference, as illustrated in Figure 6

for simple shear. For any considered deformation it dependson what proportion of the fibers

are under compression.

4 Concluding Remarks

Our previous work [17, 23] on the constitutive modeling of collagen fiber dispersion in which

contributions to the strain-energy function from only those fibers under tension were included

was based on a simple fiber reinforcing model. In the present study this work has been extended
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Figure 11: Comparison of theFEAP prediction of pressure versus circumferential stretch with

experimental data. The solid curve shows the case with integration over the domainI4 > 1,

and the dashed curve shows the case with integration over theentire half sphere including
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Figure 12: Surface contour plots of (a)I4(Θ,Φ) and (b)ρ(Θ,Φ) = ρ4(Θ,Φ) + ρ6(Θ,Φ) for

the two fiber families for the extension–inflation test of carotid artery within the half sphere

S defined with respect to the local coordinate system constructed from the eigenvectors ofC

(b = 1.2189, pi = 225 mmHg). The small gap in (a) representsI4 = 1.
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to an exponential form of the strain-energy function for thefiber reinforcement in order to fit

experimental data obtained from human tissues. After introducing the mathematical form of the

constitutive equation for general 3D fiber dispersions based on the angular integration (AI ) ap-

proach, we have presented analytical expressions for the Cauchy stress and the Eulerian elastic-

ity tensors in decoupled forms suitable for large scale finite element implementation. Next, we

demonstrated the performance of the proposed model with three numerical simulations. It was

shown that the exponential form of the strain-energy function is capable of modeling the highly

nonlinear behavior of arterial tissue considered here; such a good agreement between model

results and experimental data is impossible to achieve with, e.g., a standard fiber-reinforcing

model, as used in [23]. The formulation presented here and its computational implementation

can be extended straightforwardly to accommodate the recently observed non-symmetric col-

lagen fiber dispersion in arterial walls [16]; this will be the subject of future work. Comparing

with the numerical integration rule over the entire unit sphere, the exclusion of compressed

fibers within a unit sphere requires more computational time. Thus, parallel computation on a

high-performance computer cluster is recommended.

In our last example, we have shown that the considered fiber dispersion model is able to cap-

ture the experimentally observed response of a residually stressed carotid artery under extension

and inflation. In Figure 10(c) we have observed a high transmural gradient of circumferential

stress. This can be explained as follows: (i) a high pressureof 30 kPa was applied to the artery.

Such a high pressure could cause a high transmural stress gradient even when the residual stress

is considered; (ii) experimental data were obtained from an80-year old female patient with

metastasis and medium grade atherosclerosis in the aorta, which suggests that a larger stress

may occur in the intimal layer of a carotid artery if atherosclerosis is present in it too; (iii) the

effect of smooth muscle activation has been shown to furtherhomogenize the transmural stress

distribution [36], but was neglected in the present study.

In addition, due to the absence of detailed material and structural data for each layer of the

carotid artery we modeled the intact arterial wall as a one-layer and thick–walled cylindrical

tube. A future study incorporating smooth muscle activation, patient–specific arterial geom-

etry and layer–specific material and structural information, i.e. collagen fiber orientation and

distribution, will lead to a more realistic model, the predictions of which will offer important

insights.
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Appendix A: Derivations of Stress and Elasticity Tensors

Derivation of Stress Tensor(14)

Because the boundary of the integration domainΩ in the fiber part of the strain-energy function

(12) also depends on the deformation throughC, differentiation of the strain energy of the

fiber contributions with respect toC following the Leibniz integral rule for multidimensional

integrals reads (without the factor1/π)

∂

∂C

∫∫

Ω(C)

F (C,Θ,Φ) dΩ =

∫∫

Ω(C)

∂

∂C
F (C,Θ,Φ) dΩ +

∫

∂Ω(C)

F (C,Θ,Φ)N ⊗N ds, (51)

whereF (C,Θ,Φ) = ρ(Θ,Φ)Ψn(Ī4(Θ,Φ)) and ∂Ω(C), with unit outward normalN , de-

notes the boundary ofΩ. BecauseI4 = 1 on the boundary and for strict incompressibility

J approaches1, we obtainlimJ→1 Ī4 = 1. Then,F (C,Θ,Φ) approaches0 since, from (7),

Ψn(1) = 0. Thus, the second term on the right hand side of (51) vanishes, and does not appear

in (14).

Derivation of Elasticity Tensor (20)

Similarly to the result in (51), the second differentiationof the strain-energy function due to

fiber contributions with respect toC reads (without the factor1/π)

∂

∂C

∫∫

Ω(C)

∂

∂C
F (C,Θ,Φ) dΩ =

∫∫

Ω(C)

∂2

∂C∂C
F (C,Θ,Φ) dΩ

+

∫

∂Ω(C)

∂

∂C
F (C,Θ,Φ)⊗N ⊗N ds. (52)
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Again, because on the boundaryI4 = 1 in the incompressible limit, the second term on the right

hand side of (52) vanishes, since, from (7),Ψ′
n(1) = 0. Thus, the latter term in (52) does not

appear in (20).
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