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Abstract— The development and production of hydrocarbons
from oil and gas discoveries in deep water require cost-
efficient compact separation technology. However, the small
operational volume of compact separators make them highly
sensitive to changes in flow rate and composition. Therefore,
measurements of critical variables are crucial for providing
operators with the necessary insight, as well as enabling the use
of advanced controllers to efficiently control such separators.
Available measurements are, however, often limited due to
high investment cost or lack of suitable sensor technology.
Estimators (soft sensors) can alleviate this problem. The gas-
liquid cylindrical cyclone is a type of compact separator recently
considered for subsea application. Several advanced controllers
have recently been derived for this separator, but estimators are
needed for implementation in subsea applications. Therefore, in
this paper, we develop and study the performance of the UKF
and MHE estimators providing state feedback to a linear MPC.

I. INTRODUCTION

Today, most of the developed oil and gas discoveries are
in shallow waters in areas near to shore, while recent oil and
gas discoveries are in deep waters in remote areas. Subsea
compact separation technology is a crucial component for
the development and production of these recent discoveries.
The compact design and low weight of these separators allow
installation in deep waters, where traditional separators can
not be used, enabling efficient single-phase boosting of gas
and liquid at economically feasible costs [1].

The Gas-Liquid Cylindrical Cyclone (GLCC) separator
(Fig. 1) is a type of compact separator recently considered
for subsea applications [2] and has been successfully applied
for a wide range of onshore applications [3]. The compact
operational volume of these separators reduce the separation
performance and robustness against changes in inlet flow
rates and composition. Therefore, a challenging objective
for the control system is to efficiently control the liquid
level to ensure acceptable separation performance and stable
operating conditions for downstream boosting equipment.
Advanced control systems are required to handle the large
variations in inlet flow rates and conditions, often requiring
full knowledge of the states and parameters of the model
applied by the controller.

Several issues arise for enabling operation of a subsea
compact separation plant. Measurements of critical variables
are crucial for providing operators with necessary insight,
and for enabling use of advanced controllers to efficiently
control such a plant. Available measurements are, however,
often limited due to lack of suitable sensor technology,
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Fig. 1. A sketch of a gas-liquid cylindrical cyclone separator showing
the separator volumes, the pressure and liquid level and the inlet and outlet
flows. The actual parabolic gas-liquid interface and the approximated gas-
liquid interface are illustrated by solid and dashed lines, respectively.

i.e., the variable might be impossible to measure; or the
available sensor technology might be unreliable, too difficult
to maintain or simply too expensive.

Control of GLCC separators has been extensively studied
in the literature. The proposed controllers either use few
measurements, which are all available, or several measure-
ments, some of which are unavailable. The first group of
control algorithms typically require no model of the plant
and therefore, they only achieve (feedback) control of the
measured variables (e.g. [4], [5] and [6]). The last group
of (advanced) controllers typically require a model of the
plant and therefore, they achieve both (feedback and feed-
forward) control of the measured variables and optimization
based on unmeasured variables (e.g. [7], [8], [9], [10] and
[11]). Information of these unmeasured variables are only
available through estimation and require the development of
estimators. A first attempt of state and parameter estimation
of GLCC separators was proposed in [11], where a Model
Predictive Controller (MPC) using state feedback from an
Extended Kalman Filter (EKF) was derived. However, the
EKF provided low robustness against measurement errors,
due to inaccurate stochastic knowledge and prediction model,
and was only capable of providing state feedback for approx-
imately 1% measurement noise.

Generally, state and parameter estimation problems are
either formulated using a deterministic or stochastic model
of the plant, i.e., the modelling of the initial state and
noises [12]. The objective of both estimators are, however,
typically to minimize some squared error between the true
states and the estimates states. The estimation problems are
typically solved based on past data using recursive least-
squares and differ only by addition of noise for the stochastic



estimation problems. Typical stochastic estimators are the
Extended Kalman Filter (EKF) and the Unscented Kalman
Filter (UKF), while a type of deterministic estimator is the
Moving Horizon Estimator (MHE). The EKF and MHE are
equivalent in least-squares sense for the case of an infinite
estimation horizon and no active constraints. Details on these
estimators are presented in Section IV.

To the authors’ knowledge, little research focus on state
and parameter estimation of GLCC separators, neither for
enabling advanced controllers nor providing operators with
necessary insight to efficiently operate the separator. Several
types of stochastic and deterministic estimators exists, but
only the EKF has been applied for state estimation of the
GLCC separator. Therefore, in this paper, we derive and
investigate the system performance of an UKF and a MHE
providing state feedback to the linear output MPC proposed
in [11]. A simplified model of the plant, consisting of two
aggregated unknown parameters describing the separation
performance, is derived to overcome the limited observability
of the system. In contrast to [11], which assumed that
states were directly measurable, albeit with noise, we use a
nonlinear observation model mapping that maps from states
to measurements. The UKF apply a nonlinear prediction and
observation model of the plant. The MHE uses a linearized
prediction model and a linear observation model, as the mea-
surements used by the MHE are inverted prior to execution
of the estimator. To reduce complexity and comply with
industry standards, the MHE uses low-frequency measure-
ments and high-frequency prediction, i.e., it uses software to
compensate for imperfect hardware.

II. DYNAMIC MODEL

The GLCC separator is a centrifugal-based separator ar-
ranged as a vertically aligned cylindrical tank, illustrated in
Fig. 1. The inlet gas-liquid flow win enters the separator
tangentially, creating a rotational spin inside the separator.
The high centrifugal forces created by the spinning motion
separate the gas from the liquid due to their density differ-
ence. The gas accumulates in the upper part of the separator
creating a gas pressure pG, while the liquid accumulates
at the bottom of the separator establishing a liquid level
hL. Because the separation inside the GLCC separator is
incomplete, some liquid droplets will remain mixed with the
accumulated gas, called wet gas (WG), and some gas bubbles
will remain mixed with the accumulated liquid, called light
liquid (LL). The accumulated gas and liquid are drained by
the outlet flows wWG and wLL, respectively.

A dynamic model of the GLCC separator with initial
separation of the inlet flow as developed in [6], and later
extended with continuous separation of the accumulated gas
and liquid volumes in [10]. We use this latter model in this
paper, where the dynamics are described by the four ordinary
differential equations (ODEs):

ṁLL,L =(1− βin)win − εin,L(1− βin)win

+ εL(1− βWG)mWG,L − (1− βLL)wLL
(1)

ṁLL,G =εin,Gβinwin − εGβLLmLL,G − βLLwLL (2)

Fig. 2. A sketch of the closed-loop system.
ṁWG,L =εin,L(1− βin)win − εL(1− βWG)mWG,L

− (1− βWG)wWG
(3)

ṁWG,G =βinwin− εin,Gβinwin+ εGβLLmLL,G−βWGwWG, (4)

where the state mx,y is the mass of component y in x, βin ∈
[0, 1] is the inlet gas mass fraction, βx ∈ [0, 1] is the gas
mass fraction in x, εin,y ∈ [0, 1] is the immediate separation
of component y at the inlet and εy ∈ [0, 1] is the continuous
separation of component y. The subscript x represents either
inlet, WG or LL and the subscript y represents either G (gas)
or L (liquid).

The gas mass fraction in the LL and WG are given by

βLL =
mLL,G

mLL,G +mLL,L
(5)

βWG =
mWG,G

mWG,G +mWG,L
. (6)

The dynamic model consists of two algebraic equations
describing the liquid level and gas pressure given by

hL =
mLL,L +mLL,G

a
(7)

pG =
bmWG,G

aH − (mLL,L +mLL,G)
, (8)

where H is the total height of the tank and a and b are
positive model parameters.

The outlet flows are determined by the opening percentage
z = [zWG, zLL]> of the respective control valves mounted
on each of the outlets. The opening percentage to each of
these control valves are controlled by two separate PI outlet
flow controllers based on flow references generated by the
MPC that constitute the manipulated variables for the control
system.

III. CONTROL DESIGN

The linear MPC uses state feedback from an estimator and
calculates the reference flows uref = [uLL,ref, uWG,ref]

> to the
PI flow controllers controlling the outlet flows. The applied
MPC controlling the level and pressure was presented in
[11] and the following summary only includes the details
necessary for the design of the estimators providing state
feedback to the MPC. A block diagram of the closed-loop
system is shown in Fig. 2.

The optimal control objective for the MPC is to track and
stabilize the level and pressure at their respective references
using a minimum number of changes in control inputs. The
optimal control objective is mathematically described by a
discrete-time Optimal Control Problem (OCP), structured as
a Quadratic Programming (QP) problem, over a prediction
horizon Th. The QP problem is given as an objective function



JMPC weighting deviations in states and control inputs from
desired references xref and u∞, respectively, subject to a
linear prediction model. Optimal control is achieved by
performing the following procedure, known as the MPC
principle [13], at each time step k:

1) substitute recent estimates into the OCP,
2) solve the OCP to obtain an optimal control input

sequence u∗,
3) apply the first vector element of u∗ to the plant.
The MPC applies a transformed state-space model of (1)–

(4) for prediction of the future behaviour of the system and
to create a convex optimization problem with respect to the
control variables. This mapping is a diffeomorphism on the
operational region and is given by

x = T (m) = [hL, pG, mLL,G, mWG,L]> , (9)

where x is the transformed state vector and hL and pG is
given by (7) and (8), respectively.

The fast dynamics of the plant (1)–(4) requires a fast
sampling to capture the dynamics, but this sampling is too
fast for industrial applications. Therefore, the MPC in [11]
applies different sampling of states and control inputs for
adaptation to industrial applications. The OCP is given by

min
uref

JMPC =

N∑
i=0

1

||xref||22

∣∣∣∣xi − xref,i
∣∣∣∣2

Q

+

Nu∑
i=0

1

||u∞,i||22

∣∣∣∣ui − u∞,i

∣∣∣∣2
R

(10)

s.t. x0 = xk (11)
xmin ≤ xi ≤ xmax ∀ i ∈ {0, . . . , N} (12)
umin ≤ ui ≤ umax ∀ i ∈ {0, . . . , Nu} , (13)

where Q ≥ 0 is the diagonal state weighting matrix, R ≥ 0
is the diagonal control weighting matrix, N = Th/∆ts is
the state samples over Th where ∆ts is the sampling time
of the states, Nu = Th/Tu is the number of control input
samples over Th where ∆tu is the sampling time of the
control inputs and the subscript max and min denotes upper
and lower bounds. The notation ||z||M = z>Mz is used in
this paper.

Offset-free control of the controlled variables hL and pG
is achieved by augmenting the transformed state vector (9)
with two integral error states of the controlled variables.

IV. ESTIMATOR DESIGN
The design of the UKF and the MHE are based on

the transformed state vector x, and assuming limited-state
knowledge of the plant. A comparison to an EKF was con-
sidered, but due to well-known weaknesses (specifically, it
severely underestimates the covariance, regardless of tuning)
in the estimator [14], the EKF would consistently diverge.
These weaknesses were indeed why the UKF was initially
invented. The level and pressure are the only measured states.
In addition, the gas mass fractions of the two outlet flows
βLL and βWG are measured. The inlet conditions win and βin
are considered known.

A. Estimation objective

The objective of the estimators are to estimate approximate
values of the states and parameters, necessary for the MPC
to control the plant based on the available measurements and
statistical analysis.

B. Estimation model

Ideally, the estimators should apply the same transformed
state-space model (9) as the MPC. This model consists of
four states and four individual separation factors (unknown
parameters). However, the available measurements only pro-
vide limited observability of the system and not enough
information to estimate all states and parameters. Therefore,
as in [11], the transformed state-space model (1)–(4) is
simplified by describing the separation inside the separator
using two unknown parameters and augmented the model
with these as additional states. The resulting estimation
model is given by

ẋ1 =
1

a

[
v1 − θ1 + θ2 − wLL

]
+w1 (14)

ẋ2 =
c2

a(H − x1)

[
b
(
v2−θ2−

a(x2/c2)(H−x1)

bx4+a(x2/c2)(H−x1)
wWG

+
(x2
c2

)(
v1 − θ1 + θ2 − wLL

)]
+w2

(15)

ẋ3 =θ2 −
x3
ax1

wLL + w3 (16)

ẋ4 =θ1 −
a(x2/c2)(H−x1)

bx4+a(x2/c2)(H−x1)
wWG + w4 (17)

θ̇1 =w5 (18)

θ̇2 =w6, (19)

where w = [w1,w2,w3,w4,w5,w6]> ∼ N (0,W ) is white
process noise with covariance W disturbing the states,
v = [v1, v2]> is inlet flow and θ = [θ1, θ2]> is the unknown
time-varying parameters. The variable x2 is scaled from Pa
to bar using the scaling variable c2 = 10−5.

The observation model is given by

ỹ =
[
x1, x2,

x3

ax1
, ax2(H−x1)
ax2(H−x1)+bx4

, 0, 0
]>

+ ṽ, (20)

where ṽ = [ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6]> ∼ N (0, Ṽ ) is white
measurement noise with covariance V disturbing the mea-
surements and ỹ is the measurements.

The nonlinear estimation model is compactly described by

˙̃x = f(x̃(t), ũ(t)) + w (21)
ỹ = h(x̃(t)) + ṽ , (22)

where x̃= [x, θ]> is the augmented state vector, ũ= [w, v]>

is the augmented inputs, f(·) is the nonlinear prediction
function comprising (14)–(19) and h(·) is the nonlinear
observation function comprising (20).

C. Implementation

The plant model and the controller and estimators were
implemented in MATLAB using CasADi version 3.1.0.
CasADi is a software for solving numerical optimal control



problems using symbolic variables and algebraic differenti-
ation, implemented in C++ with MATLAB wrappers [15].
The QP problems created by the MHE are solved using
QPOASES, an open-source QP solver based on the active-set
strategy [16].

The continuous-time nonlinear estimation model (21)–
(22) is implemented symbolically using CasADi and used to
calculate symbolic expressions of the discrete-time models,
including exact algebraic derivatives. These symbolic expres-
sions are calculated offline and evaluated numerically online
by substituting symbolic variables for numerical values. This
approach for calculation of the algebraic derivatives is both
more accurate and less time consuming than calculating
approximate numerical derivatives online.

D. Unscented Kalman Filter

The UKF is a stochastic nonlinear estimator that esti-
mates the discrete-time augmented state vector x̃k using a
discretized model of (21)–(22) as prediction and measure-
ment model.

This discrete-time nonlinear estimation model is obtained
from the continuous-time model (21)–(22), yielding the
algebraic equations on the form

x̃k+1 = f̃(x̃k, ũk) + wk (23)
ỹk = h(x̃k) + ṽk , (24)

where f̃(x̃k, ũk) is the discrete-time nonlinear prediction
model, wk ∼ N (0,W∆ts), ṽk ∼ N (0,V∆ts), k is the
time step, ∆t is the sampling time and h is as in (22).
The exact expression for f̃ is not explicitly found; the
complexity of f and the unsuitability (in this case) of 1st-
order Euler integration renders it impractical. Instead, the
numerical integrator CVODES [17] was used. CVODES is
an advanced numerical integrator that solves an initial value
problem (IVP) using the variable step, variable order Back-
ward Differentiation Formula (BDF) scheme and derivatives
from CasADi to obtain the discrete-time dynamics at each
discrete time sample.

The estimate retrieved by the UKF is modelled as a
random variable, completely described by its mean x̂k and
error covariance Pk. The estimate at time k is calculated
through a two-step procedure: first by a prediction step and
subsequently by a correction step. The prediction step esti-
mates the a priori estimate x̂−k and P−k based on the previous
a posteriori estimate x̂+k−1 and P+

k−1 using a discrete-time
nonlinear prediction model. The correction step estimates the
a posteriori estimate x̂+k and P+

k based on x̂−k and P−k and
the recent measurement ỹk using the measurement model
(20) and the Kalman gain Kk.

The UKF is an improvement of the EKF and is based on
the principle that an approximation of the random variable
properties based on a set of transformed points is more
correct than an estimate of the random variable properties
based on a single point [14]. This estimation approach
achieves provably increased accuracy of the estimates x̂k
and Pk compared to the EKF with the downside of increased
computational cost [14]. The UKF chooses two sets of sigma

Algorithm 1 UKF
Require: Input: ỹk, x̂k−1, ũk−1, P+

k−1, W, V
PREDICTION STEP
1: Choose Xk−1 according to (25) using x̂+k−1 and P+

k−1
2: Calculate Xi,k = f̃(Xi,k−1, ũk−1)
3: Update x̂−k = 1

2n

∑2n
i=1 Xi,k

4: Update P−k = 1
2n

∑2n
i=1 ||Xi,k − x̂−k ||2 + W

CORRECTION STEP
5: Choose Xk according to (25) using x̂−k and P−k
6: Calculate Yi,k = h(Xi,k)
7: Update ŷk = 1

2n

∑2n
i=1 Yi,k

8: Calculate Kk using Xk, x̂−k , Yk, ŷk and V
9: Update x̂+k = x̂−k +Kk(ỹk − ŷk)

10: Update P+
k =P−k −Kk

(
1
2n

∑2n
i=1 ||Yi,k−ŷk||2+V

)−1
K>k

11: return x̂k = x̂+k and P+
k

points for each of the estimation steps. The set of sigma
points Xk−1 whose elements are time-propagated using the
discrete-time nonlinear prediction model in the prediction
step is based on x̂−k−1 and P−k−1. The set of sigma points Xk

whose elements are transformed to measurements using the
discrete-time nonlinear observation model in the correction
step is based on x̂+k and P+

k . The statistical properties of the
estimates in each of the estimation steps are then approxi-
mated as the sample mean of the propagated sigma points.
The sigma points are chosen according to the distribution

Xi,k =

{
x̂?k +

(√
nP ?

k

)
i
∀ i = 1, . . . , n

x̂?k −
(√

nP ?
k

)
i
∀ i = 1 + n, . . . , 2n ,

(25)

where Xi,k is ith sigma points at time k in the set of sigma
points Xk, n is the dimension of x̂k,

√
nP ?

k i
is the ith row

of
√
nP ?

k and ? represents either a priori estimate (−) or a
posteriori estimate (+).

The implemented UKF is based on [18, Ch. 14], [19] and
[20] and the pseudo code is shown in Algorithm 1.

E. Moving Horizon Estimator

The linear MHE is a deterministic estimator that estimates
the discrete-time augmented state vector x̃k modelled as a
deterministic variable using a discrete-time linear estimation
model that approximates (21)–(22).

The measurements used by the MHE are pre-inverted
prior to execution of the estimator resulting in a linear
relationship between the measurements and the estimated
states. The discrete-time linear prediction model that linearly
approximates (21) is obtained by first linearizing and then
discretizing with time sampling ∆ts yielding

x̃k+1 =
df
dx̃

∣∣∣
x̃=x̃k

x̃+
df
dũ

∣∣∣
ũ=ũk

ũ+wk =Akx̃+Bkũ+wk (26)

yk =h
−1

(ỹk) ≈ h−1
(h(x̃k)) + vk = x̃k + vk , (27)

where yk is the discrete-time transformed measurements,
vk = [v1,k, v2,k, v3,k, v4,k, v5,k, v6,k]> ∼ N (0,V) is white
measurement noise with constant covariance V, Ak is



the continuous-time Jacobian of the states and Bk is the
continuous-time Jacobian of the inputs.

The MHE is based on solving an Optimal Estimation
Problem (OEP) using observations of measurements and
inputs on a finite moving time window in the past to estimate
the current discrete-time augmented state vector x̃k that
best fits these measurements. The OEP is structured as a
QP problem based on the available information gathered
in the information vector ιk. The QP problem is specified
by an objective function JMHE weighting the changes in
state predictions and deviations in predicted observations
from past measurements subject to the discrete-time linear
estimation and observation model. Optimal estimation of the
defined OEP1 is achieved by performing a procedure similar
to the MPC principle, which we call the MHE principle, at
each time step k:

1) substitute past observations into the OEP,
2) solve the OEP to obtain the an estimate x̂k of x̃k,
3) make the recent x̂k available to other applications

including the controller.
As for the MPC, the prediction horizon needs to be

sufficiently long to allow the system dynamics to change
and thereby ensure feasibility. The sampling of the system
dynamics is much faster than any industrial application is
able to sample measurements and change the inputs. There-
fore, to reduce complexity and comply for use in industrial
applications, the MHE operates with a sampling time equal
to the sampling of the observations, while the sampling time
of the state predictions ∆ts is much faster. The information
vector is given by

ιk = [yk−N+Nx , . . . , yk−N+NyNx ,

ũk−N , . . . , ũk−N+(Ny−1)Nx
] ,

(28)

where N = Th/∆ts is the moving window horizon, Th is
the time horizon of the moving window, Ny = Th/∆ty
is the number of gathered observations where ∆ty is the
sampling time of the observations and Nx = N/Ny =
∆ty/∆ts is the number of states predictions between each
observation sample.

The OEP can be compactly written using an objective
function given as the weighting sum of the process and mea-
surement noises subject to the discrete-time linear estimation
and observation model. The linear prediction is updated
for each measurement sampling over the moving window
horizon to increase their accuracy creating a scheduling
MHE. The OEP assumes knowledge of the first a posteriori
estimate x̂k−N = x̂+k−N that is determined using the discrete-
time linear estimator model (26) and the previous a pos-
teriori estimate x̂k−N−1−Nx

= x̂+k−N−1−Nx
. Additionally,

the MHE requires an initial guess of the estimates X̂−k =
[x̂−k−N , . . . , x̂

−
k ]> for solving the OEP. This initial guess

is actually the a priori estimates and is calculated by time
shifting the previous a posteriori estimates X̂+

k−1 one time

1Optimal estimation is usually defined as optimization of the full infor-
mation problem, but optimization of the OEP yields the optimal estimate
for this problem.

Algorithm 2 MHE

Require: Input: x̂k−N−1−Nx , ũk−N−1−Nx , ιk, X̂k−1,S, W, V
1: if mod(time, ∆ty) == 0 then
2: Invert measurements using h−1(x̃k)
3: Update linear the Jacobian matrices Ad and Bd
4: Update X̂−k by time shifting X̂+

k−1
5: Update and solve QP (29)–(33) to obtain x̂+k = x̃k
6: return x̂k = x̂+k
7: else
8: return x̂k−1

step forward in time. The OEP is solved by substituting the
constraints into the objective function and the solution is the
a posteriori estimates X̂k = X̂+

k = X̃k. The last element
of X̂k contains the current discrete-time estimate that is
provided to other applications. The compactly written OEP
is given by

min
x̃,v,w

JMHE =
∣∣∣∣x̂k−N − x̃k−N ∣∣∣∣2S−1+

Ny∑
i=1

∣∣∣∣vk−N+iNx

∣∣∣∣2
V−1

+

Ny∑
i=1

Nx−1∑
j=0

∣∣∣∣wk−N+(i−1)Nx+j

∣∣∣∣2
W−1

(29)

s.t. x̂k−N =Ad,k−N x̂k−N−1−Nx+Bd,k−N ũk−N−1−Nx (30)
x̃k−N+1+i = Ad,k−N+jNx x̃k−N+i

+Bd,k−N+jNx ũk−N+jNx+wk−N+i

∀ i ∈ {k−N, . . .N−1}, j∈{1, . . . Ny}
(31)

yk−N+iNx = x̃k−N+iNx+vk−N+iNx

∀ i ∈ {1, . . . Ny}
(32)

xmin ≤ x̃i ≤ xmax ∀ i ∈ {k −N, . . .N}, (33)

where W ≥ 0 is the diagonal state prediction weighting
matrix expressing the confidence in the state prediction,
V ≥ is the diagonal predicted observation weighting matrix
expressing the confidence in the past measurements, and
S ≥ 0 is the diagonal arrival cost weighting matrix indicating
the importance of the discarded information before the start
if the moving time window.

The implemented MHE is based on [21, Ch. 4], [22] and
[12] and the pseudo code is shown in Algorithm 2.

TABLE I
SIMULATION AND TUNING PARAMETERS.

Parameters Value Unit

Q diag[8000; 8000; 0; 0; 1000; 1000]> -
R diag[200; 200]> -
Th 10 s
∆tu 1 s
∆ty 1 s
∆ts 0.05 s
WUKF diag[0.001, 0.01, 0.001, 0.01, 0.001, 0.0001]> -
VUKF diag[0.001, 0.1, 0.01, 0.01]> -
SMHE diag[1, 10−6, 1, 10−6, 10−8, 10−8]> -
WMHE diag[0.001, 0.05, 0.001, 0.01, 0.0001, 0.00001]> -
VMHE diag[0.001, 0.001, 0.1, 0.1]> -
xmin [hL,min, pG,min,−∞,−∞,−∞,−∞]> -
xmax [hL,max, pG,max,∞,∞,∞,∞]> -
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Fig. 3. Performance of the MPC using state feedback from the UKF.

F. Tuning

The estimation performance of the UKF and MHE depend
on the tuning of the diagonal covariance matrices W and
V. A small diagonal element on W implies confidence in
the estimator model for the corresponding state estimate,
while a large diagonal value on V implies less confidence
in the corresponding measurement. The additional arrival
cost term S of the MHE weights the importance of the
discarded observations before the moving time window and
a large diagonal element implies confidence in the earliest
state predictions and thereby slower convergence rate.

The simulations were performed using different constant
covariance matrices for each of the estimators. These covari-
ance matrices were, based on the insight explained above,
individually tuned by trial-and-error until satisfactory per-
formance was achieved. The applied covariance matrices and
other simulation parameters are listed in Table I.

V. SIMULATIONS AND DISCUSSION

The estimators were studied individually in simulations
for the same inlet conditions and measurement noises. The
inlet conditions comprise the inlet flow win and the inlet
gas mass fraction βin. The inlet flow, a mixture of gas and
liquid, changes every 3 minutes over a total simulation time

TABLE II
STATISTICAL NOISE PROPERTIES.

Az[%] µwin [kg/s] µβin [-] µhL [m] µpG [bar] µβLL [-] µβWG [-]
3.00 12.40 0.23 1.50 50.00 0.05 0.85
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Fig. 4. Performance of the MPC using state feedback from the MHE.

of 15 minutes between a low, intermediate and high gas
mass fraction inlet flow to analyse estimation performance at
extreme inlet conditions. Physical parameters and properties
of 25◦ API crude oil at 50 bar and 30◦C similar to [11] are
used for the simulations.

Additive band-limited zero-mean Gaussian white noise
was added to all measurements available for the estimators.
The variance of this noise is given by σ2

z = (Azµz)2 where
σz is the standard deviation of measurement z, Az is the
white-noise variation of z and µz is the mean nominal value
of z. The mean nominal values are determined offline on the
basis of expected deviations from normal operation (nominal
operation) and are listed in Table II. The performance of the
MPC using state feedback from the individual estimators is
shown in Figs. 3–4.

A performance measure for each of the separate units
and the closed-loop system is required to objectively eval-
uate their performance. Defining the estimator error as
e = x̂− x̃, the estimator objective is to obtain unbiased es-
timates (E[e] = 0) with minimum variance, i.e., minimizing
E[(e− E[e])]. The control objective is to achieve tracking
of the controlled variable references based on recent state
estimates, i.e., minimizing the control error ectrl = x̂ − x̃ref.

TABLE III
RMS VALUES FOR THE CONTROL AND CLOSED-LOOP SYSTEM ERRORS.

RMS Control (x̂− x̃ref) System (x̃− x̃ref)
value UKF MHE UKF MHE
hL 0.0281 0.0475 0.0095 0.0188
pG 0.6101 1.6317 0.4627 0.6899



The performance of the closed-loop system combines the
objective of both the estimator and controller specified by
minimizing the system error esys = x̃−x̃ref. The performance
of the controller and the closed-loop system are evaluated
using RMS values of ectrl and esys for the controlled variables
as shown in Table III. Since the estimators are based on
a statistical analysis, their performance are evaluated using
statistical properties (mean and variance) of e = x̂ − x̃ for
all estimation variables as shown in Table IV.

The simulations show that the state feedback MPC is able
to control the plant using state feedback from both the UKF
and the MHE. The MPC using state feedback from the UKF
achieves excellent tracking of both the level reference hL,ref
and the pressure reference pG,ref with no significant transients
upon changes in inlet conditions and only minor oscillations
around the references. The MPC using state feedback from
the MHE achieves good tracking of hL,ref with no significant
transients upon changes in inlet conditions, but with larger
oscillations around the references. A general observation of
the estimator performances indicate that the UKF generally
achieves better estimates of all estimated states, but with
larger convergence rate to the true values than MHE.

The UKF uses a nonlinear prediction and observation
model of the plant, while the MHE uses a linear prediction
and observation model of the plant. The nonlinear models
provide significantly higher accuracy over the linear models
at the expense of increased computational load.

A close observation of the RMS values measuring the con-
trol performance of the level reveal that the average control
error using state feedback from the UKF is slightly smaller
than using state feedback from the MHE. The RMS values
measuring the control performance of the pressure show that
the average control error using state feedback from the UKF
is significantly smaller than using state feedback from the
MHE. As expected, equivalent observations are obtained by
comparing system performance for both estimators, but with
smaller errors for the measured variables.

A general observation of the statistical properties for
the different estimators show that the UKF achieves the
best estimates, having the smallest error mean (bias) and
error variance. The statistical properties of the estimates
show that both estimators achieve good estimates of the
level with small bias and error variance. However, only
the UKF achieves good pressure estimates with small bias
and error variance. The MHE achieves acceptable pressure
estimates with compressed measurement noise. Again the
UKF achieves good estimates of mLL,G and mWG,L. The
MHE achieves good estimates of mLL,G with small bias

TABLE IV
STATISTICAL PROPERTIES FOR THE ESTIMATOR ERRORS.

Statistical Mean
(
ē = E

[
e
])

Variance
(
σ2
e =E

[(
e−ē

)2])
properties UKF MHE UKF MHE
hL −0.0075 −0.0014 0.0006 0.0016
pG 0.0469 −0.0594 0.1382 1.8256
mLL,G 0.1058 0.1510 0.1323 0.0457
mWG,L 0.0077 0.0723 0.0029 0.0796
θ1 −0.0008 0.1929 0.0002 0.0018
θ2 0.0043 0.0043 0.0003 0.0016

and error variance, but only acceptable estimates of mWG,L
with small bias and significant error variance. Also for the
parameter estimates θ1 and θ2, the UKF achieves the best
estimates with small bias and error variance. The MHE
achieves acceptable estimates of θ2 with small bias and
significant error variance, but poor estimates of θ2 with
significant bias and error variance.

The significant pressure oscillations experienced by the
MPC using state feedback from the MHE are likely to be
caused by the variation in the mWG,L, θ1 and θ2 which
significantly affects the pressure dynamics. These variations
are severe enough to render the prediction model of the MPC
inaccurate and thus reduce the quality of the control inputs,
causing the pressure oscillations.

VI. CONCLUSIONS

In this paper, a nonlinear UKF and a linear MHE esti-
mators were designed for estimating unmeasured states and
unknown parameters of a GLCC separator. The MHE pre-
inverts the measurements before execution and uses a linear
prediction model and observation model. In contrast, the
UKF uses a nonlinear prediction model for state prediction
and the nonlinear observation function. The MHE used a
different sampling time of the state predictions and obser-
vations, and the optimization problem was solved using an
interior point solver.

The performance of the estimators were studied in separate
simulations for the same inlet conditions providing state
feedback to a linear output control MPC. The estimator
performances were evaluated based on statistical properties
of the estimates, while the control and system performances
were evaluated by RMS values. The UKF was able to accu-
rately predicting both unknown parameters without any bias,
while the MHE was only able of accurately predicting one
parameter without bias and the other with significant bias.

Generally, the MPC using state feedback from the UKF
achieved better control performance than using state feed-
back from the MHE. Especially the pressure experienced
larger oscillations using state feedback from the MHE. These
oscillations are probably due to larger error variations in the
estimates of the gas dynamics (mWG,L, θ1 and θ2), which
propagates through the MPC and causes the control input
to oscillate.

The UKF performs better than the MHE because it uses
a nonlinear prediction model, but the improved performance
comes at the cost of increased computational load. How-
ever, considering the relatively small deviations in system
performance when using the MHE, the linear MHE is an
interesting compromise.

The main difference between the UKF and the MHE is
that the UKF uses a nonlinear model, while the MHE uses
a linear model. As this study has shown, this difference
is significant, especially for estimation of the pressure and
accurate prediction of both unknown parameters. The esti-
mation performance is likely to improve using a nonlinear
prediction and observation model for the MHE and this is
left as future work.
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