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Distributed Kalman Filtering in Presence of
Unknown Outer Network Actuations

Sayed Pouria Talebi and Stefan Werner

Abstract—This paper presents a fully distributed approach for
tracking state vector sequences over sensor networks in presence
of unknown actuations. The problem arises in large-scale systems
where modeling the full dynamics becomes impractical. In this
work, the network only considers a subsection of the overall sys-
tem which it can detect while accounting other inputs as unknown
actuations. First a centralized technique that can consolidate
all the available observation information is introduced. Then,
operations of this optimal centralized solution are decomposed in
a manner to allow their implementation in a distributed fashion
while allowing each agent to retain an estimate of both the state
vector and unknown actuations. The filter is derived in both
diffusion and consensus formulations. The diffusion formulation
is intended as a cost-effective solution, while the consensus
formulation trades implementation complexity for accuracy.

Index Terms—Sensor networks, distributed Kalman filtering,
consensus and diffusion filtering, unknown input estimation.

I. INTRODUCTION

Intelligent multi-agent networks form an essential part of
most modern surveillance and control systems [1]–[16]. This
has made development of distributed filtering and optimization
techniques an attractive topic among the signal processing,
control, and machine learning communities [8,12]. The fun-
damental problem in this setting becomes that of tracking the
state of a given dynamic system through observations made
over a network of sensors [17]–[23]. Although initial works
on distributed Kalman filtering date back to the late 1970s
with the seminal works in [24]–[26], truly distributed Kalman
filtering solutions started to appear with the introduction of
consensus [27]–[29] and diffusion [30] frameworks for prac-
tical information fusion over networks. In essence, consensus
(cf. diffusion) based distributed Kalman filtering approaches
use local Kalman filters to obtain an intermediate estimate
of the state vector based on local observations, which are
subsequently fed to consensus (cf. diffusion) filters to arrive
at a final state vector estimate [20,21,31]–[34].

The proliferation of affordable sensor equipment that can
facilitate communication and networking solutions has resulted
in sensor networks becoming a viable solution for monitoring
systems with an ever increasing degree of complexity. In some
cases, the complexity of these systems is such that accurate
derivation of the system model based on locally available in-
formation would be impractical. Moreover, the local observer
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might be only interested in tracking a subset of the state vector.
One such example is the modern power grid that in some cases
spans more than one country and/or regulatory jurisdiction.
Modeling such a complex system would be impractical if not
impossible. However, the power grid is often divided into
more manageable sections, e.g., micro-grids. In this setting,
the sensor network is mainly concerned with monitoring the
micro-grid. Although the wide-area grid affects the micro-grid
in question, partial information regarding the wide-area power
grid will only be available to boundary agents.

Although a number of distributed Kalman filtering ap-
proaches for high-dimensional system have been presented [7,
35,36], these works either assume a fully connected network
or assume a sparse structure for the state transition matrix and
rely on elaborate distributed processing techniques, resulting in
computationally demanding algorithms. On the other hand, the
problem of filtering in presence of unknown inputs has been
studied extensively [37]–[41]. However, these techniques are
derived from a single agent perspective and are not suitable
for decentralized implementation. Therefore, a truly distributed
algorithm remains elusive.

This work considers the problem of tracking a state vector
sequence in presence of unknown actuations through observa-
tions made over a sensor network. To this end, a centralized
optimal filter that can incorporate the observations from all
sensors in the network is formulated. Then, operations of the
formulated centralized filter are decomposed and distributed
among agents of the network in a fashion that will facilitate
their distributed implementation. The proposed filter is formu-
lated in both diffusion and consensus formats. Although both
formulations allow each agent to retain an estimate of the state
vector and the unknown actuations, the diffusion formulation
is cost-effective as it does not impose computational demands
much higher than that of the single agent filter, while the
consensus formulation exchanges complexity for accuracy.
Mathematical Notations: Scalars, column vectors, and ma-
trices are denoted by lowercase, bold lowercase, and bold
uppercase letters. The state vector at time instant n is denoted
by xn, while I represents the identity matrix with the same
number of rows as the state vector. The Kronecker product is
denoted by ⊗. The transpose operator is denoted by (·)T with
E {·} denoting the statistical expectation operator.

II. PROBLEM FORMULATION

A. The Network & System Models

Akin to previous approaches [6,19]–[21,23,33], the multi-
agent network is modeled as an undirected connected graph
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G = {N , E}, where the node set N denotes the agents
of the network and the edge set E represents bidirectional
communication links between the agents. The neighborhood
of node l is defined as the set of nodes that can communicate
with it, which includes self-communication. The neighborhood
of node l is represented by the set Nl whose cardinality is
denoted as |Nl| with |N | representing the total number of
nodes in the network.

The aim is to track a state vector sequence through observa-
tions made via a network of agents (sensors). The state vector
and observations are related through the state-space model1

xn+1 =Axn + Bzn + νn (1a)
yl,n =Hlxn + ωl,n (1b)

where, at time instant n, the vectors zn and νn denote the
unknown inputs to the dynamic system and state evolution
noise, while A and B denote the state transition matrix and
a matrix of appropriate dimensions representing the effect of
the unknown inputs on the system, whereas Hl denotes the
observation matrix at node l, with yl,n and ωl,n denoting the
observation and observation noise at node l at time instant n.
The observation and state evolution noises are white Gaussian
random sequences with the joint covariance matrix

E

{[
νn
ωl,n

] [
νm
ωk,m

]T}
=

[
Σν 0
0 Σωl

δl,k

]
δn,m (2)

where δl,k is the Kronecker delta function.

B. Centralized Solution

In order to formulate a solution, observations across the
network are organized into a column vector as

ycol,n =
[
yT
1,n, . . . ,y

T
|N |,n

]T
. (3)

Now, considering the expression in (1b) the network-wide
observations can be modeled as

ycol,n = Hcolxn + ωcol

with ωcol,n =
[
ωT

1,n, . . . ,ω
T
|N |,n

]T
and

Hcol =
[
HT

1 , . . . ,H
T
|N |

]T
. (4)

The problem at hand can now be solved in a classical setting
using a robust two-stage Kalman filter [40]. The operations of
such a two-stage Kalman filter are summarized in Algorithm 1,
where ẑn and x̂n denote the estimates of zn and xn, with
Σωcol

= E
{
ωcol,nω

T
col,n

}
. This assumes that the network-

wide system, that is, the state transition equation in (1a) and
observation equation in (3), meets the required convergence
and stability criteria of conventional Kalman filtering in pres-
ence of unknown inputs, e.g., [40,41].2

1The state-space model is considered to be linear and time invariant
with stationary noise sequences for simplicity in presentation. However, the
obtained results can be readily generalized.

2Derivation of the centralized solution given in Algortihm 1 and discussions
on its optimality closely follow that of the framework presented in [37,40]
and have, therefore, been omitted.

Algorithm 1. Centralized Solution
Initialize with:

x̂0 = E {x0}

P0 = E
{(

x0 − x̂0|0
) (

x0 − x̂0|0
)T} (5)

Model update:

φn|n−1 =Ax̂n−1 (6a)

Φn|n−1 =APn−1A
T + Σν (6b)

Tn =HcolΦn|n−1H
T
col + Σωcol

(6c)

Measurement update:

φn|n =φn|n−1 (7a)

+ Φn|n−1H
T
colT

−1

n

(
ycol,n −Hcolφn|n−1

)
Φn|n =

(
I−Φn|n−1H

T
colT

−1

n Hcol

)
Φn|n−1 (7b)

Sn =BTHT
colT

−1

n HcolB (7c)

ẑn =S
−1

n BTHT
colT

−1

n

(
ycol,n −Hcolφn|n−1

)
(7d)

Combined update:

Gn =
(
I−Φn|n−1H

T
colT

−1

n Hcol

)
B (8a)

x̂n =φn|n + Gnẑn (8b)

Pn =Φn|n + GnSnGT
n (8c)

C. Motivation for Distributed Solution

The centralized solution in Algorithm 1 requires all observa-
tions, observation matrices, and observation noise statistics, to
be communicated to its central processing unit. This generates
a great deal of communication traffic and leaves this approach
vulnerable to link failures. Moreover, the centralized approach
is also vulnerable to the failure of its processing unit and
requires the inversion of large matrices, a computationally
heavy operation which is best avoided. Hence, a distributed
solution is desired.

III. THE PROPOSED DISTRIBUTE SOLUTION

From the expression in (6c) and using the Woodbury matrix
inversion lemma, we have

T
−1

n = Σ
−1

ωcol
−Σ

−1

ωcol
HcolΨ

−1

n HT
colΣ

−1

ωcol
(9)

where

Ψn = Φ
−1

n|n−1 + Q and Q = HT
colΣ

−1

ωcol
Hcol. (10)

In turn, using expression in (9), we have

Πn = HT
colT

−1

n Hcol = Q−Q
(
Φ

−1

n|n−1 + Q
)−1

Q. (11)

Now, replacing (9) and (11) into (7c) gives

Sn = BTΠnB = BTQB−BTQΨ
−1

n QB. (12)

Upon substituting (9) into (7d), we have

ẑn = S
−1

n BTξn − S
−1

n BTQΨ
−1

n ξn (13)
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where

ξn = HT
colΣ

−1

ωcol

(
ycol,n −Hcolφn|n−1

)
. (14)

In addition, from (2) it follows that Σωcol
is a block-diagonal

matrix so that

Σωcol
= block-diag{Σωl

: ∀l ∈ N}. (15)

After some mathematical manipulation and replacing (15) into
(14), the expression in (13) can be expressed as the summation

ẑn =S
−1

n BT
(
I−QΨ

−1

n

) ∑
∀l∈N

ξl,n (16)

with

ξl,n =HT
l Σ

−1

ωl

(
yl,n −Hlφn|n−1

)
(17)

=HT
l Σ

−1

ωl
yl,n −HT

l Σ
−1

ωl
Hlφn|n−1.

Alternatively, from (17) and (16) it follows that

ẑn =S
−1

n BT
(
I−QΨ

−1
) ∑
∀l∈N

HT
l Σ

−1

ωl
yl,n

− S
−1

n BT
(
I−QΨ

−1

n

)
Qφn|n−1.

(18)

In a similar fashion, replacing (9) and (11) into (7a) gives

φn|n =φn|n−1 +
∑
∀l∈N

Φn|n−1H
T
l Σωl

(
yl,n −Hlφn|n−1

)
−
∑
∀l∈N

Φn|n−1QΨ
−1

n HT
l Σ

−1

ωl

(
yl,n −Hlφn|n−1

)
=φn|n−1 + Φn|n−1

(
I−QΨ

−1

n

) ∑
∀l∈N

ξl,n. (19)

From (17) and (19), φn|n can alternatively be formulated as

φn|n =φn|n−1 + Φn|n−1

(
I−QΨ

−1

n

) ∑
∀l∈N

HT
l Σ

−1

ωl
yl,n

−Φn|n−1

(
I−QΨ

−1

n

)
Qφn|n−1. (20)

A. Diffusion Formulation

From replacing (15) and (4) into (10) we have

Q =
∑
∀l∈N

HT
l Σ

−1

ωl
Hl. (21)

Thus, similar to approaches in [6,19,33], assuming node l ∈ N
receives {HT

kΣωk
Hk,H

T
kΣωk

yk,n : ∀k ∈ Nl} from its
neighbors, the expressions in (9)-(20) allow node l to run
a local filtering operation.3 This leaves each agent with a
local estimate of the state vector, which can be combined in a
diffusion setting to improve their accuracy. Operations of such
a filter are summarized in Algorithm 2, where x̂l,n and ẑl,n
denote the estimate of xn and zn at node l, while αl,k > 0
are real-valued diffusion coefficients selected so that

∀l ∈ N :
∑
∀k∈Nl

αl,k = 1. (22)

3That is, node l implements the operations in Algorithm 1 for the network
consisted of itself and its neighbors. In this case, node l is at the center of a
star network with its neighboring nodes forming the spikes. Also these local
filtering operations are only reliant on single-hop communication links.

Algorithm 2. Diffusion-Based Distributed Solution
For node l ∈ N :
Initialize with:

x̂l,0 = E {x0}

Pl,0 = E
{(

x0 − x̂l,0|0
) (

x0 − x̂l,0|0
)T} (23)

Model update:

φl,n|n−1 =Ax̂l,n−1 (24a)

Φl,n|n−1 =APl,n−1A
T + Σν (24b)

Ql =
∑
∀k∈Nl

HT
kΣ

−1

ωk
Hk (24c)

Ψl,n =Φ
−1

l,n|n−1 + Ql (24d)

Measurement update:

φl,n|n =φl,n|n−1 (25a)

+Φl,n|n−1

(
I−QlΨ

−1

l,n

) ∑
∀k∈Nl

HT
kΣ

−1

ωk
yk,n

−Φl,n|n−1

(
I−QlΨ

−1

l,n

)
Qlφl,n|n−1

Πl,n =Ql −Ql

(
Φ

−1

l,n|n−1 + Ql

)−1

Ql (25b)

Φl,n|n =
(
I−Φn|n−1Πl,n

)
Φl,n|n−1 (25c)

Sl,n =BTΠl,nB (25d)

ẑl,n =S
−1

l,nBT
(
I−QlΨ

−1

l,n

) ∑
∀k∈Nl

HT
kΣ

−1

ωk
yk,n

− S
−1

l,nBT
(
I−QlΨ

−1

l,n

)
Qlφl,n|n−1 (25e)

Combined update:

Gl,n =
(
I−Φl,n|n−1Πl,n

)
B (26a)

x̂l,n =
∑
∀k∈Nl

αl,k

(
φk,n|n + Gk,nẑk,n

)
(26b)

Pl,n =Φl,n|n + Gl,nSl,nGT
l,n (26c)

B. Consensus Formulation
Considering decomposition of the operations of Algorithm 1

in (9)-(20) and recognizing that Q and
∑
∀l∈N HT

l Σ
−1

l yl,n
are network summations of local quantities, the centralized
solution (Algorithm 1) can be replicated at each agent using
approximations of these summation. To this end, (21) yields

Q =
∑
∀l∈N

HT
l Σ

−1

ωl
Hl =

1

|N |
∑
∀l∈N

|N |HT
l Σ

−1

ωl
Hl. (27)

In a similar manner we have∑
∀l∈N

HT
l Σ

−1

l yl,n =
1

|N |
∑
∀l∈N

|N |HT
l Σ

−1

l yl,n. (28)

Thus, Q and
∑
∀l∈N HT

l Σ
−1

l yl,n can be estimated in a
distributed fashion via the average consensus filter4 (ACF)

Fi,(η) = Fi,(η−1) +
∑
∀j∈Ni

wi,j
(
Fj,(η−1) − Fi,(η−1)

)
(29)

4For more information on consensus filters see [27]–[29].
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where Fi,(η) denotes the output of the iterative consensus
filter at node i after η iterations, while wi,j denotes a positive
real-valued weight. For analysis purposes, the ACF in (29) is
formulated from a network-wide perspective as

F(η) = (W ⊗ I)F(η−1) = (Wη ⊗ I)F(0) (30)

where I is an identity matrix of appropriate size, whereas
F(η) = [FT

1,(η),F
T
2,(η), . . . ,F

T
|N |,(η)]

T and the element on the
ith row and jth column of W are

Wi,j =


1 + wi,i −

∑
∀l∈Ni

wi,l if i = j,

wi,j if i ∈ Nj\j
0 otherwise.

Remark 1. If the weights wi,j are selected to meet conditions
in [27] and make W doubly stochastic; then, from [27], it
follows that Fi,(η) → 1

|N |
∑
∀j∈N Fj,(0) as η →∞.

From the expression in (27) and Remark 1, it follows that
each agent can reach an estimate of Q using {|N |HT

l Σ
−1

l Hl :
∀l ∈ N} as inputs of the ACF in (29). In addition, from
(28), the summation

∑
∀l∈N HT

l Σ
−1

l yl,n can be approximated
using {|N |HT

l Σ
−1

l yl,n : ∀l ∈ N} as inputs of the ACF in
(29). Therefore, each agent can replicate the operations of
Algorithm 1 in a distributed manner. In practice, however,
the ACF can only undergo a finite number of iterations at
each time instant. This leaves each agent with an estimate
of the state vector (cf. covariance information) that differs
from that of its neighbors. Motivated by the desire to force an
agreement among the agents, additional ACFs are employed to
force a consensus among the agents regarding the state vector
estimates (cf. covariance information). The operations of such
a consensus-based distributed solution are summarized in
Algorithm 3, where for the sake of simplicity in presentation,
the operation of the ACF at node i after η iterations is
represented via the schematic

Fi,(η) ← ACF ← {Fj,(0) : ∀j ∈ N}

where {Fj,(0) : ∀j ∈ N} is the network-wide inputs to the
ACF and Fi,(η) is the output at node i after η iterations.

C. Convergence and Stability

Without loss of generality, we focus on the introduced
diffusion-based filter. After some tedious mathematical ma-
nipulations, from Algorithm 2, we have

φl,n|n + Gl,nẑl,n =(I− LnQl)Ax̂l,n−1

+ Ll,n
∑
∀k∈Nl

HT
kΣ

−1

ωk
yk,n

(35)

where Ll,n =
(
Φl,n|n−1 + Gl,nS

−1

l,nBT
)(

I−QlΨ
−1

l,n

)
.

Given (24c), upon substituting (1) into the left hand side of
(35), we have

LHS(35) =(I− Ll,nQl)Ax̂l,n−1 + Ll,nQlAxn−1

+ Ll,nQlBzn−1 + Ll,nQlνn−1 + Ll,nrl,n
(36)

where LHS(35) denotes the left hand side of the expression
in (35) and rl,n =

∑
∀k∈Nl

HT
kΣ

−1

ωk
ωk,n.

Algorithm 3. Consensus-Based Distributed Solution
For node l ∈ N :
Initialize with:

x̂l,0 = E {x0}

Pl,0 = E
{(

x0 − x̂l,0|0
) (

x0 − x̂l,0|0
)T} (31)

Model update:

φl,n|n−1 =Ax̂l,n−1 (32a)

Φl,n|n−1 =APl,n−1A
T + Σν (32b)

Υl,n ← ACF ← {|N |HT
kΣ

−1

ωk
Hk : ∀k ∈ N} (32c)

Ψl,n =Φ
−1

l,n|n−1 + Υl,n (32d)

Measurement update:

ϕl,n ← ACF ← {|N |HT
kΣ

−1

ωk
yk,n : ∀k ∈ N} (33a)

φl,n|n =φl,n|n−1 + Φl,n|n−1

(
I−Υl,nΨ

−1

l,n

)
ϕl,n (33b)

−Φl,n|n−1

(
I−Υl,nΨ

−1

l,n

)
Υl,nφl,n|n−1

Πl,n =Υl,n −Υl,n

(
Φ

−1

l,n|n−1 + Υl,n

)−1

Υl,n (33c)

Φl,n|n =
(
I−Φn|n−1Πl,n

)
Φl,n|n−1 (33d)

Sl,n =BTΠl,nB (33e)

ẑl,n =S
−1

l,nBT
(
I−Υl,nΨ

−1

l,n

)
ϕl,n (33f)

− S
−1

l,nBT
(
I−Υl,nΨ

−1

l,n

)
Υl,nφl,n|n−1

Combined update:

Gl,n =
(
I−Φl,n|n−1Πl,n

)
B (34a)

x̂l,n ← ACF ← {φk,n|n + Gk,nẑk,n : ∀k ∈ N} (34b)

Pl,n ← ACF ← {Φl,n|n + Gl,nSl,nGT
l,n : ∀k ∈ N} (34c)

Now, consider the state vector estimation error given by

εl,n = xn − x̂l,n and En =
[
εT1,n, . . . , ε

T
|N |,n

]T
. (37)

From (26b), (36) and (37) the network-wide evolution of state
vector estimation error terms can be expressed as

En =(M⊗ I) (I −LnQ)AEn−1 − (M⊗ I)Lnrcol,n

+ (M⊗ I) (I −LnQ)Bzn−1 (38)
+ (M⊗ I) (I −LnQ)νcol,n

where rcol,n =
[
rT1,n, . . . , r

T
|N |,n

]T
, νcol,n =

[
νT
n, . . . ,ν

T
n

]T
,

B =
[
BT, . . . ,BT

]T
, A = block-diag{A, . . . ,A}, and

Ln =block-diag{Ll,n : ∀l ∈ N}
Q =block-diag{Ql : ∀l ∈ N}

while M is the combination matrix consisted of diffusion
weights. In a steady-state situation, where zn becomes con-
stant, zn → z, from (38), it follows that En will have stable
first and second-order moments if (M⊗ I) (I −LnQ)A
has a spectral radius of strictly less than one. However, due
to (22), M is left stochastic and hence all its eigenvalues lie
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on or within the unit circle. Thus, it suffices that all block-
diagonal elements of (I −LnQ)A, i.e., {(I− Ll,nQl)A :
∀l ∈ N} remain stable. This condition is determined by the
recursions governing Pl,n in Algorithm 2. Such recursion have
been considered in [41] and sufficient conditions for their
stability, under the assumption that rank(Hl) > rank(HlB) =
rank(B), has been provided.
Remark 2. For the case of the consensus-based filter in
Algorithm 3, all discussions in this subsection follow similarly,
where M should be replaced with Wη .
Remark 3. In essence, if the local filtering operations meet
requirements for convergence; then, each agent will obtain
local state vector estimates and the diffusion (cf. consensus)
step will have the effect of reducing the uncertainty on
these local state vector estimates. Therefore, the network-wide
system will remain convergent.

IV. NUMERICAL EXAMPLE

The performance of Algorithm 2 and Algorithm 3 is demon-
strated and compared to that of the optimal centralized solution
(Algorithm 1) in a simulation example. To this end, consider
the general discrete-time system with

A =


1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1

 and B =


0.5 0
0 0.5
0.1 0
0 0.1


while ∀l ∈ N : Hl =

[
1 0 0 0
0 1 0 0

]
.

The observation noise at node l ∈ N was considered to be
a white Gaussian random process with the covariance matrix

Σωl
= al

[
0.052 0.01
0.01 0.052

]
with al =

{
1 if l odd
4 if l even

while the state evolution noise covariance was

Σν =

([
0.025 0.5
0.5 10

]
⊗
[
1 0
0 1

])
× 10−3

and the network of 200 nodes with the topology shown in
Fig. 1 was used in the simulation example.

Fig. 1. Network of 200 nodes and 732 edges used for simulations.

The state vector consisted of four elements
{x1stD, x2ndD, x3rdD, x4thD}. In Fig. 2, the state vector
estimates obtained through the diffusion and consensus
frameworks proposed in Algorithm 2 and Algorithm 3 are

compared to that of the centralized solution in Algorithm 1.
Observe that the introduced distributed framework both in its
diffusion and consensus formulation tracked the state vector
sequence and obtained a performance level close to that of
the centralized solution in Algorithm 1.

The unknown actuations forced upon the dynamic system
was a vector of two elements {z1stD, z2ndD}. In Fig. 3, the
estimates of the unknown actuations obtained through the pro-
posed framework of Algorithm 2 and Algorithm 3 are shown.
Although both the diffusion and consensus formulations esti-
mated the unknown actuations correctly, estimates obtained via
the consensus formulation appeared to be consistently more
accurate. It should be noted that the accuracy of the consensus
formulation comes at a higher communication traffic cost as
the ACFs where iterated 10 times at each time instant in order
to achieve consensus.
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Fig. 2. The state vector estimate obtained through the proposed distributed
solutions in Algorithm 2 and Algorithm 3 are shown along side estimates
obtained via the centralized framework of Algorithm 1. Estimates obtained
through the diffusion (cf. consensus) framework across all nodes lie in the
region in green (cf. red).
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Fig. 3. Estimates of the unknown outer network actuations obtained through
the proposed distributed solution in Algorithm 2 and Algorithm 3. Estimates
obtained through the diffusion (cf. consensus) framework across all nodes lie
in the region in green (cf. red).
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V. CONCLUSION

The problem of tracking/estimating state vector sequences
in presence of unknown actuations through observations made
over sensor networks has been considered. A centralized
solution to this problem has been proposed based upon two-
stage Kalman filtering techniques. Most importantly, it has
been shown that the operations of such a centralized solution
can be decomposed into a format suitable for distributed
implementation via networked agents. This derived format
has been transformed into two formulations for a distributed
filtering technique, one based on diffusion and one based
on consensus. The diffusion formulation is a cost-effective
solution to the posed problem, while in the context of the
consensus formulation complexity is traded for accuracy. Fi-
nally, performance of the derived filtering algorithms has been
demonstrated and compared to their centralized counterpart in
a simulation example.

REFERENCES

[1] S. Xu, K. Dogancay, and H. Hmam, “Distributed pseudolinear estima-
tion and UAV path optimization for 3D AOA target tracking,” Signal
Processing, vol. 133, no. Supplement C, pp. 64–78, 2017.

[2] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3,
pp. 401–420, March 2006.

[3] S. Fattahi, G. Fazelnia, J. Lavaei, and M. Arcak, “Transformation of op-
timal centralized controllers into near-globally optimal static distributed
controllers,” IEEE Transactions on Automatic Control, Inprint, 2018.

[4] E. Franco, R. Olfati-Saber, T. Parisini, and M. M. Polycarpou, “Dis-
tributed fault diagnosis using sensor networks and consensus-based
filters,” In Proceedings of IEEE International Conference on Decision
and Control, pp. 386–391, December 2006.

[5] F. Dorfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierar-
chy: Distributed control and economic optimality in microgrids,” IEEE
Transactions on Control of Network Systems, vol. 3, no. 3, pp. 241–253,
September 2016.

[6] S. P. Talebi, S. Kanna, and D. P. Mandic, “A distributed quaternion
Kalman filter with applications to smart grid and target tracking,” IEEE
Transactions on Signal and Information Processing over Networks,
vol. 2, no. 4, pp. 477–488, December 2016.

[7] A. G. O. Mutambara, Decentralized Estimation and Control for Multi-
sensor Systems. CRC Press, 1998.

[8] J. S. Shamma, Cooperative Control of Distributed Multi-Agent Systems.
John Wiley & Sons, 2007.

[9] O. Hlinka, F. Hlawatsch, and P. M. Djuric, “Distributed particle filtering
in agent networks: A survey, classification, and comparison,” IEEE
Signal Processing Magazine, vol. 30, no. 1, pp. 61–81, January 2013.

[10] R. R. Negenborn and J. M. Maestre, “Distributed model predictive
control: An overview and roadmap of future research opportunities,”
IEEE Control Systems, vol. 34, no. 4, pp. 87–97, August 2014.

[11] R. Arablouei, S. Werner, Y. F. Huang, and K. Dogancay, “Distributed
least mean-square estimation with partial diffusion,” IEEE Transactions
on Signal Processing, vol. 62, no. 2, pp. 472–484, January 2014.

[12] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends R© in Machine Learning, vol. 7, no. 4-5, pp.
311–801, 2014.

[13] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative
control of multi-agent systems: Optimal design and adaptive control.
Springer-Verlag, 2014.

[14] W. Han, H. L. Trentelman, Z. Wang, and Y. Shen, “A simple approach
to distributed observer design for linear systems,” IEEE Transactions on
Automatic Control, Inprint, 2018.

[15] A. Mitra and S. Sundaram, “Distributed observers for LTI systems,”
IEEE Transactions on Automatic Control, Inprint, 2018.

[16] L. Wang and A. S. Morse, “A distributed observer for a time-invariant
linear system,” In Proceedings of American Control Conference, pp.
2020–2025, May 2017.

[17] B. Jia, K. D. Pham, E. Blasch, D. Shen, Z. Wang, and G. Chen,
“Cooperative space object tracking using space-based optical sensors
via consensus-based filters,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 52, no. 4, pp. 1908–1936, August 2016.

[18] R. Olfati-Saber, “Kalman-consensus filter: Optimality, stability, and
performance,” In Proceedings of the 48th IEEE Conference on Decision
and Control, pp. 7036–7042, December 2009.

[19] S. P. Talebi, S. Kanna, Y. Xia, and D. P. Mandic, “Cost-effective
diffusion Kalman filtering with implicit measurement exchanges,” In
Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing, pp. 4411–4415, 2017.

[20] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2069–2084, September 2010.

[21] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus
filters,” In Proceedings of the 44th IEEE Conference on Decision and
Control, pp. 8179–8184, December 2005.

[22] M. Alighanbari and J. P. How, “An unbiased Kalman consensus algo-
rithm,” In Proceedings of American Control Conference, pp. 3519–3524,
June 2006.

[23] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” In
Proceedings of the 46th IEEE Conference on Decision and Control, pp.
5492–5498, December 2007.

[24] J. Speyer, “Computation and transmission requirements for a decentral-
ized linear-quadratic-Gaussian control problem,” IEEE Transactions on
Automatic Control, vol. 24, no. 2, pp. 266–269, April 1979.

[25] H. R. Hashemipour, S. Roy, and A. J. Laub, “Decentralized structures
for parallel Kalman filtering,” IEEE Transactions on Automatic Control,
vol. 33, no. 1, pp. 88–94, 1988.

[26] B. S. Rao and H. F. Durrant-Whyte, “Fully decentralised algorithm for
multisensor Kalman filtering,” IEE Proceedings D-Control Theory and
Applications, vol. 138, no. 5, pp. 413–420, September 1991.

[27] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed
sensor fusion based on average consensus,” In Proceedings of Fourth
International Symposium on Information Processing in Sensor Networks,
pp. 63–70, 2005.

[28] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks
and distributed sensor fusion,” In Proceedings of IEEE Conference on
Decision and Control, December 2005.

[29] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[30] A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed
networks,” IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, vol. E90-A, no. 8, pp. 1504–1510,
August 2007.

[31] W. Li, G. Wei, F. Han, and Y. Liu, “Weighted average consensus-based
unscented Kalman filtering,” IEEE Transactions on Cybernetics, vol. 46,
no. 2, pp. 558–567, February 2016.

[32] J. Hu, L. Xie, and C. Zhang, “Diffusion Kalman filtering based on co-
variance intersection,” IEEE Transactions on Signal Processing, vol. 60,
no. 2, pp. 891–902, February 2012.

[33] S. P. Talebi and S. Werner, “Distributed kalman filtering: Consensus,
diffusion, and mixed,” In Proceedings of IEEE Conference on Control
Technology and Applications, Inprint, 2018.

[34] X. He, W. Xue, and H. Fang, “Consistent distributed state estimation
with global observability over sensor network,” Automatica, vol. 92, pp.
162–172, 2018.

[35] T. M. Berg and H. F. Durrant-Whyte, “Model distribution in decen-
tralized multi-sensor data fusion,” In Proceedings of American Control
Conference, pp. 2292–2293, June 1991.

[36] U. A. Khan and J. M. F. Moura, “Distributing the kalman filter for
large-scale systems,” IEEE Transactions on Signal Processing, vol. 56,
no. 10, pp. 4919–4935, October 2008.

[37] M. Hou and R. J. Patton, “Optimal filtering for systems with unknown
inputs,” IEEE Transactions on Automatic Control, vol. 43, no. 3, pp.
445–449, March 1998.

[38] C. Hsieh and F. Chen, “General two-stage Kalman filters,” IEEE
Transactions on Automatic Control, vol. 45, no. 4, pp. 819–824, April
2000.

[39] S. Gillijns and B. De Moor, “Unbiased minimum-variance input and
state estimation for linear discrete-time systems,” Automatica, vol. 43,
no. 1, pp. 111–116, 2007.

[40] C. Hsieh, “Robust two-stage Kalman filters for systems with unknown
inputs,” IEEE Transactions on Automatic Control, vol. 45, no. 12, pp.
2374–2378, December 2000.

[41] M. Darouach and M. Zasadzinski, “Unbiased minimum variance estima-
tion for systems with unknown exogenous inputs,” Automatica, vol. 33,
no. 4, pp. 717–719, 1997.


