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Abstract— New offshore oil and gas discoveries are located
at deep waters with long tie-back distances. Development of
such fields require compact gas-liquid separation technologies.
Efficient operation of such separators require multiple sensors
and advanced controllers. However, the number of available
sensors at the seabed is often limited due to low reliability
(failures and low sampling frequency), lack of suitable sensor
technology and/or high cost. Therefore, this paper develops a
nonlinear MHE and UKF for estimation of indirectly measured
and unmeasured variables. The estimates are used as state
feedback to a linear MPC to study their estimation performance
in simulations.

I. INTRODUCTION

Most of the mature offshore oil and gas discoveries
are exhausted and new offshore oil and gas discoveries
are located in deep waters with longer tie-back distances.
Subsea processing is an enabling technology for the devel-
opment of these new fields and for increased oil and gas
recovery of mature fields. Subsea gas-liquid separation is
a key component of subsea processing for several reasons,
including (i) a reduced number of flowlines and topside
processing capacity, (ii) cost efficient hydrate management,
(iii) single-phase boosting required to overcome high static
pressure at deep waters and (iv) enabling longer range gas
compression from subsea to onshore processing facility [1].

The Gas-Liquid Cylindrical Cyclone (GLCC) separator
is a compact centrifugal-based separator suited for subsea
separation. A sketch of the separator is shown in Fig.
1. This separator is preferred for subsea applications over
large gravity-based separator due to its simple and compact
construction that allow for installation at deep waters and
remote operation requiring little maintenance [2]. The per-
formance of the separator depends on several variables and
therefore, multiple sensors are required to achieve efficient
operation [3].

A major challenge with subsea processing is that the
equipment is located on the seabed and is not easily available
for maintenance. Maintenance interventions require good
weather conditions and specialized lifting vessels that are
costly and need to be hired several months in advance.
Therefore, sensors must be robust and reliable to withstand
the harsh environment on the seabed and operate without
failures for very long periods. However, sensors are prone
to failures, and the sensor data quality is often low due
to indirect sensing and/or too low sampling frequency of
a process variable. Additionally, and especially for subsea
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Fig. 1. A sketch of a gas-liquid cylindrical cyclone separator showing
the separator volumes, the pressure and liquid level and the inlet and outlet
flows. The actual parabolic gas-liquid interface and the approximated gas-
liquid interface are illustrated by solid and dashed lines, respectively.

processing, the number of sensors are often limited due
to too expensive sensors and/or lack of suitable sensor
technology [4].

Estimators, or soft sensors, are a cost-efficient alternative
to physical sensors, using a mathematical model of the plant
and available measurements to filter measured states and
estimate unmeasured states and parameters. Estimators are
categorized either as stochastic or deterministic estimators
based on whether the estimates are modelled as stochastic or
deterministic variables. The Kalman Filter (KF) is an optimal
stochastic estimator for estimation of linear systems [5]. The
estimation of nonlinear systems is a challenging problem and
several extensions of the KF has been developed, includ-
ing the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF) [6]. The Moving Horizon Estimator
(MHE) is a deterministic optimization-based method for
estimation of linear or nonlinear systems. The method applies
a linear model of the plant and finds the best estimates that
fits past measurements on a finite moving time window. The
Nonlinear MHE (NMHE) is an extension of the MHE for
estimation of nonlinear systems using a nonlinear model. The
main advantage of the NMHE is the explicit consideration
of nonlinear systems and constraints, but also the optimality
of the estimates and proven stability properties [7].

The GLCC separator has been subject to extensive studies
on control and an overview is provided in [8]. The pro-
posed controllers typically achieve efficient control of the
separator, but require knowledge of several process variables
and parameters. Estimation of states and parameters for the
GLCC separator has received less attention in the literature.



In [9], the feedback linearizing controller proposed in [10]
was extended with adaptation of the unknown states and pa-
rameters. In [8], a Model Predictive Controller (MPC) using
state feedback from an EKF was proposed, but the EKF gave
low robustness and assumed knowledge of two unmeasured
states. Therefore, [11] investigated the performance of an
UKF and a linear MHE using a nonlinear measurement
model based on measured states. However, although the
linear MHE achieved good estimates of the directly and
indirectly measured states, it was only able of accurately
predicting one of the two unknown parameters. Additionally,
the UKF used for comparison operated at significantly higher
frequency than that of the MHE.

In this paper, we derive an NMHE to achieve improved ac-
curacy of the unknown parameters and extend the UKF based
on [11] so that both operate at the same frequencies equal to
that of the sensors providing measurements. The simplified
estimation model derived in [11], consisting of four states
(two directly and two indirectly measured) and two unknown
parameters, is applied by both estimators. The measurements
are inverted prior to running the estimators to have a linear
relationship between the estimates and measurements. The
estimators are specially designed to compensate for the fast
sampling of the states and the relatively slow sampling of the
measurements. The estimates calculated by the estimators are
used as state feedback for the MPC developed in [8] to study
their estimation performance in simulations.

II. DYNAMIC MODEL

The GLCC separator is constructed as a vertical tank
as shown in Fig. 1. The gas-liquid inlet flow win enters
tangentially through a downward inclined inlet resulting in
a rotational motion of the fluid inside the separator. The
rotational motion of the fluid creates high centrifugal forces
that separates the gas from the liquid due to their density
difference. The separated liquid falls down to the bottom and
establishes a liquid level hL, while the separated gas rises
to the top and establishes a gas pressure pG. The residence
time of the fluid inside the separator is short resulting in
incomplete separation of the gas-liquid inlet flow. The gas
leaving through the upper outlet wWG will contain some
droplets and is therefore called Wet Gas (WG), while the
liquid leaving through lower outlet wLL will contain some
gas bubbles and is therefore called Light Liquid (LL). The
LL and WG are the two main volumes inside the separator.

A dynamic model describing the initial separation was
first presented in [12] and later extended in [13] to include
continuous separation. In this paper, we use the latter model
given by

ṁLL,L = (1− βin)win − εin,L(1− βin)win

+ εL(1− βWG)mWG,L − (1− βLL)wLL
(1)

ṁLL,G = εin,Gβinwin − εGβLLmLL,G − βLLwLL (2)
ṁWG,L = εin,L(1− βin)win − εL(1− βWG)mWG,L

− (1− βWG)wWG
(3)

ṁWG,G =βinwin− εin,Gβinwin+ εGβLLmLL,G−βWGwWG, (4)

Fig. 2. A block diagram of the closed-loop system.

where the state mx,y is the mass of component y in x, βin ∈
[0, 1] is the inlet gas mass fraction, βx ∈ [0, 1] is the gas
mass fraction in x, εin,y ∈ [0, 1] is the immediate separation
of component y at the inlet and εy ∈ [0, 1] is the continuous
separation of component y. The subscript x represents either
in (inlet), WG or LL and the subscript y represents either G
(gas) or L (liquid).

The model includes four algebraic state equations: two for
describing the gas mass fraction in each of the main volumes,
i.e., βLL and βWG; and two for describing the controlled
variables, i.e., the level hL and pressure pG. The algebraic
states are given by

βLL =
mLL,G

mLL,L +mLL,G
(5)

βWG =
mWG,G

mWG,L +mWG,G
(6)

hL =
mLL,L +mLL,G

a
(7)

pG =
bmWG,G

aH − (mLL,L +mLL,G)
, (8)

where H is the total tank height and a and b are constants.
A control valve is mounted on both outlets and the

outlet flows are determined by the respective control valve
opening percentage z = [zWG, zLL]>. A PI flow controller
calculates the opening percentage for the respective outlet
flow based on a flow reference generated by the MPC. These
two flow references are the manipulated variables for the
control system.

III. CONTROL DESIGN

The plant is controlled by an output MPC in cascade with
two PI flow controllers as shown by the block diagram in
Fig. 2. The applied output MPC uses state feedback from
an estimator to control the level and pressure by calculating
the flow references uref = [uLL,ref, uWG,ref]

> to the PI flow
controllers. The MPC was derived in [8] and the following
summary is only included for completeness.

The optimal control objective for the MPC is to track
the level and pressure references without excessive changes
in control inputs. The MPC achieves optimal control by, at
each discrete time step k, solving a discrete-time Optimal
Control Problem (OCP) over a prediction horizon Th. The
first vector element of the optimal control input sequence is
applied to the plant and the process is repeated at the next
discrete time step k+1. This procedure is known as the MPC
principle [14].

The OCP is structured as a Quadratic Programming (QP)
problem specified by a objective function JMPC weighting



deviations in states and inputs from desired references xref
and uref, respectively, subject to constraints enforcing the dy-
namics and limiting the feasible states and inputs values. To
have a convex OCP with respect to the state and control input
variables (decision variables), the MPC uses a transformed
state-space model of (1)–(4) to predict the future behaviour
of the system. The mapping is given by

x = T (m) = [hL, pG,mLL,G,mWG,L]> , (9)

where x is the transformed state vector.
The MPC uses a different sampling rate of the states and

control inputs to have fast enough sampling of the states to
capture the fast dynamics of the plant (1)–(4) and a slow
enough sampling of the control inputs to adapt for industrial
applications. The OCP solved by the MPC is given by

min
uref

JMPC =

N∑
i=0

1

||xref||22

∣∣∣∣xi − xref,i
∣∣∣∣2

Q

+

Nu∑
i=0

1

||u∞,i||22

∣∣∣∣ui − u∞,i

∣∣∣∣2
R

(10)

s.t. x0 = xk (11)
xmin ≤ xi ≤ xmax ∀ i ∈ {0, . . . , N} (12)
umin ≤ ui ≤ umax ∀ i ∈ {0, . . . , Nu} , (13)

where Q ≥ 0 is the diagonal state weighting matrix, R ≥ 0
is the diagonal control weighting matrix, N = Th/∆ts is
the state samples over Th where ∆ts is the sampling time
of the states, Nu = Th/Tu is the number of control input
samples over Th where ∆tu is the sampling time of the
control inputs and the subscript max and min denotes upper
and lower bounds. The notation ||z||2M = z>Mz is used in
this paper.

IV. ESTIMATOR DESIGN

The plant states are estimated by a nonlinear estimator
providing state feedback to the MPC. The estimators are
based on the same transformed state-space model as the MPC
and uses the available measurements of the inlet conditions
win and βin, the level hL, the pressure pG and the two outlet
gas mass fractions βLL and βWG to estimate the transformed
states x. The estimation model was derived in [11] and is
included in this section for completeness.

A. Estimation Objective

The estimation objective is to calculate approximate values
of the states and parameters, with minimum error mean (bias)
and variance, for the MPC to control the plant.

B. Estimation Model

The estimators use the same transformed state-space
model (9) as the MPC, consisting of four states and four
separation factors. However, only four measurements are
available at the plant output resulting in limited system
observability. Therefore, to enable estimation of the system
states, the transformed state-space model is augmented with

two additional states and simplified by collecting the separa-
tion factors into two unknown parameters. The augmented,
transformed state-space model is given by

ẋ1 =
1

a

[
v1 − θ1 + θ2 − wLL

]
+w1 (14)

ẋ2 =
c2

a(H − x1)

[
b
(
v2−θ2−

a(x2/c2)(H−x1)

bx4+a(x2/c2)(H−x1)
wWG

+
(x2
c2

)(
v1 − θ1 + θ2 − wLL

)]
+w2

(15)

ẋ3 =θ2 −
x3
ax1

wLL + w3 (16)

ẋ4 =θ1 −
a(x2/c2)(H−x1)

bx4+a(x2/c2)(H−x1)
wWG + w4 (17)

θ̇1 =w5 (18)

θ̇2 =w6, (19)

where w = [w1,w2,w3,w4,w5,w6]> ∼N (0,W ) is white
process noise with covariance W disturbing the states, v =
[v1, v2]>=[(1−βin)win, βinwin]> is inlet flow and θ=[θ1, θ2]>

is the unknown time-varying parameters. The variable x2 is
scaled from Pa to bar using the scaling variable c2 = 10−5.

The available measurements give the following observa-
tion model

ỹ =
[
x1, x2,

x3

ax1
, ax2(H−x1)
ax2(H−x1)+bx4

, 0, 0
]>

+ ṽ, (20)

where ṽ = [ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6]> ∼ N (0, Ṽ ) is white
measurement noise with covariance Ṽ disturbing the mea-
surements and ỹ is the measurements.

A compact description of the estimation model is given by
˙̃x = f(x̃(t), ũ(t)) + w (21)
ỹ = h(x̃(t)) + ṽ , (22)

where x̃= [x, θ]> is the augmented state vector, ũ= [w, v]>

is the augmented inputs, f(·) is the nonlinear prediction
function comprising (14)–(19) and h(·) is the nonlinear
observation function given by (20).

To get a linear relationship between the measurements and
the augmented states, the nonlinear observation model (22)
is inverted yielding

y=h−1(ỹ)=h−1(h(x̃+ṽ))≈h−1(h(x̃))+v= x̃+v, (23)

where y is an approximation of the inverted measurements
and v = [v1, v2, v3, v4, v5, v6]> ∼ N (0,V ) with white
measurement noise and constant covariance V.

C. Implementation and Discretization
The plant, controller and estimators are implemented in

MATLAB using CasADi version 3.1.0. CasADi is a soft-
ware for numerical optimal control and algebraic differenti-
ation [15]. The continuous-time nonlinear estimation model
(21)–(22) is implemented symbolically using CasADi and
discretized using the numerical integrator CVODES [16]
with sampling ∆ts equal to that of the simulation. The
discrete-time nonlinear estimation model is given by

x̃k+1 = f̃(x̃k, ũk) + wk (24)
yk = x̃k + vk , (25)



where f̃(x̃k, ũk) is the discrete-time nonlinear prediction
model, wk ∼ N (0,W∆ts), vk ∼ N (0,V∆ts) and k is the
time step. The symbolic expressions are calculated offline
and evaluated numerically online by substituting symbolic
variables for numerical values. The interior-point solver
IPOPT [17] is used to solve the optimization problems
generated by the MPC and NMHE. CVODES and IPOPT
are external software interfaced through CasADi.

D. Unscented Kalman Filter

The discrete-time UKF is a stochastic nonlinear state
estimator that estimates the augmented states x̃k at discrete
time steps in two estimation steps: first by a prediction step
and subsequently by a correction step. The estimates are
modelled as a random variable described by its mean x̂k
and error covariance Pk. The prediction step time propagates
the a posteriori estimate x̂+k−1 and P+

k−1 from the previous
time step using the discrete-time prediction model (24) to
obtain the current time step a priori estimate x̂−k and P−k .
The correction step corrects the current time step a priori
estimate for the recent measurement ỹk using the discrete-
time observation model (25) and the Kalman gain Kk to
obtain the current time a posteriori estimate. The mean state
estimate x̂k = x̂+k is provided as state feedback to the MPC.

The frequency of the UKF is changed from that used
in [11] to that of the NMHE to operate the UKF at the
same frequency as the MPC and the sensors providing
measurements, i.e., changed from executing each ∆ts second
to each ∆ty second where ∆ty is the sampling time of the
observations. This also enables a fairer comparison between
the UKF and NMHE. The sampling frequency of the system
dynamics are much faster than the sampling frequency of the
measurements. Therefore, before each measurement update,
the estimators need to integrate the previous time a posteriori
estimate, over a time step equal to the sampling time of the
measurements, to obtain the current time a priori estimate.

The UKF is based on the principle that an approximation
of the random variable properties based on a set of trans-
formed points, called sigma points, is more correct than an
estimate of the random variable properties based on a single
point [6]. This approximation achieves provably increased
accuracy of the estimates x̂k and Pk compared to the EKF
at the expense of increased computational cost [6]. Two sets
of sigma points are chosen for each of the estimation steps.
The sigma points for the prediction step Xk−1 are chosen
based on x̂−k−1 and P−k−1, while the sigma points for the
correction step Xk are based on x̂+k and P+

k . The mean
and error covariance for each of the estimation steps are
approximated as the sample mean of the transformed sigma
points using the corresponding model for the estimation step.
The sigma points are chosen according to the distribution

Xi,k =

{
x̂?k +

(√
nP ?

k

)
i
∀ i = 1, . . . , n

x̂?k −
(√

nP ?
k

)
i
∀ i = 1 + n, . . . , 2n ,

(26)

where Xi,k is ith sigma points at time k in the set of sigma
points Xk, n is the dimension of x̂k,

√
nP ?

k i
is the ith row

Algorithm 1 Discrete-time UKF
Require: Input: ỹk, x̂k−1, ũk−1, P+

k−1, W, V
1: if mod(time, ∆ty) == 0 then

PREDICTION STEP
2: for j = 1 to ∆ty/∆ts do
3: Choose Xk−1 by (26) using x̂+k−1 and P+

k−1
4: Calculate Xi,k = f̃(Xi,k−1, ũk−1)
5: Update x̂−k = 1

2n

∑2n
i=1 Xi,k

6: Update P−k = 1
2n

∑2n
i=1 ||Xi,k − x̂−k ||2 + W

CORRECTION STEP
7: Choose Xk according to (26) using x̂−k and P−k
8: Calculate Yi,k = Xi,k

9: Update ŷk = 1
2n

∑2n
i=1 Yi,k

10: Calculate Kk using Xk, x̂−k , Yk, ŷk and V
11: Update x̂+k = x̂−k +Kk(ỹk − ŷk)

12: Update P+
k =P−k−Kk

(
1
2n

∑2n
i=1 ||Yi,k−ŷk||2+V

)−1
K>k

13: return x̂k = x̂+k and Pk = P+
k

14: else
15: return x̂k = x̂k−1 and Pk = P+

k−1

of
√
nP ?

k and ? represents either a priori estimate (−) or a
posteriori estimate (+).

The pseudo code of the implemented discrete-time UKF is
given in Algorithm 1 and is based on [18] and [19, Ch. 14].

E. Nonlinear Moving Horizon Estimation

The NMHE is a deterministic, optimization-based state
observer that estimates the augmented states x̃k at discrete
time steps. The estimates are modelled as deterministic
variables. The estimate at a discrete-time step is calculated
by solving an Optimal Estimation Problem (OEP) using
N previous observations of the measurements and inputs
on a fixed-size moving time window to obtain a posteriori
sequence of state estimates X̂k = X̂+

k that best fits these
observations. The observations at time step k on the moving
time window is gathered in the information vector ιk.

The OEP is structured as a Nonlinear Programming (NLP)
problem with a objective function JMHE weighting deviations
between the estimated states x̃ from the past observations
subject to constraints enforcing the discrete-time estimation
model and limiting the feasible estimated states. The last
vector element of the optimal state estimation sequence x̃k
is provided as state feedback to the MPC.

The NMHE executes at discrete time instants when new
measurements are available, i.e., each ∆ty second. New
measurements are added to the moving time window and
the oldest are removed at the beginning of each execution.
Similar to the UKF, the fast sampling of the states relative
to the slow sampling of the measurements requires the
NMHE to operate with different sampling of the states and
observations. Thus, the information vector is given by

ιk =[yk−N+Nx
, . . . , yk−N+NyNx

, ũk−N , . . . , ũk−N+NyNx
],

(27)



where N = Th/∆ts is the moving window horizon, Th is
the time horizon of the moving window, Ny = Th/∆ty is
the number of gathered observations and Nx = N/Ny =
∆ty/∆ts is the number of states predictions between each
observation sample.

The OEP only considers the N most recent observations,
as observations further into the past are removed from
the moving time window as new observations are added.
The NMHE approximates the importance of these discarded
observations by including a weighting term in the objective
function called the arrival cost and requiring knowledge of
the a posteriori estimate x̂k−N = x̂+k−N . The OEP solved by
the NMHE at each discrete-time step is given by

min
x̃,v,w

JMHE =
∣∣∣∣x̂k−N − x̃k−N ∣∣∣∣2S−1+

Ny∑
i=1

∣∣∣∣vk−N+iNx

∣∣∣∣2
V−1

+

Ny∑
i=1

Nx−1∑
j=0

∣∣∣∣wk−N+(i−1)Nx+j

∣∣∣∣2
W−1

(28)

s.t. x̂k−N = f̃(x̃k−N−1−Nx
, ũk−N−1−Nx

) (29)
x̃k−N+1+i = fk(x̃k−N+i, ũk−N+jNx

)+wk−N+i

∀ i ∈ {k−N, . . .N−1}, j∈{1, . . . Ny}
(30)

yk−N+iNx
= x̃k−N+iNx

+vk−N+iNx

∀ i ∈ {1, . . . Ny}
(31)

xmin ≤ x̃i ≤ xmax ∀ i ∈ {k −N, . . .N}, (32)

where W ≥ 0 is the diagonal state prediction weighting
matrix expressing the confidence in the state prediction,
V ≥ is the diagonal predicted observation weighting matrix
expressing the confidence in the past measurements, and
S ≥ 0 is the diagonal arrival cost weighting matrix indicating
the importance of the discarded information that is not part
of the moving time window.

The OEP is simplified by substituting the equality con-
straints into the objective function and transcribed using
the multiple shooting method. In order to ensure a feasi-
ble starting point for the numerical solver and reduce the
computational time required to solve the OEP, the NMHE
is provided with an initial guess of the estimates X̂−k =
[x̂−k−N , . . . , x̂

−
k ]>. The initial guess is the a priori estimates

for the NMHE computed by time shifting the previous a
posteriori estimates one time step into the future. The empty
data space for current time a priori estimate is padded with
the previous time a posteriori estimate.

The pseudo code of the implemented NMHE is given in
Algorithm 2 and is based on [7], [20].

F. Tuning

The quality of the estimates depends on the tuning of the
weighting matrices. Ideally, for the case without plant-model-
mismatch, W and V would equal the process and measure-

TABLE I
STATISTICAL NOISE PROPERTIES.

Az[%] µwin [kg/s] µβin [-] µhL [m] µpG [bar] µβLL [-] µβWG [-]
3.00 12.40 0.23 1.50 50.00 0.05 0.85

Algorithm 2 NMHE

Require: Input: x̂k−N−1−Nx , ũk−N−1−Nx , ιk, X̂k−1,S, W, V
1: if mod(time, ∆ty) == 0 then
2: Update X̂−k by time shifting X̂+

k−1
3: Substitute inputs for symbolic variables
4: Update and solve NLP (28)–(32) to obtain x̂+k = x̃k
5: return x̂k = x̂+k
6: else
7: return x̂k−1

ment variance noise, respectively. However, this is rarely the
case and tuning of these matrices are necessary to achieve
good estimation performance. Therefore, these matrices were
tuned by trial-and-error until satisfactory performance was
achieved. Good tuning gives less noisy estimates as well as
faster convergence to the true states, but does not remove
deviations between an estimate and the true value.

V. SIMULATIONS AND DISCUSSION

The performance of the estimators were studied in separate
simulations, shown in Figs. 3–4, for changing inlet conditions
using measurements with additive band-limited zero-mean
Gaussian white noise. The noise variance is given by σz =
(Azµz)2 where σz is the standard deviations of measurement
z, Az is the variation of z and µz is the mean nominal value
of z. The mean nominal values are determined a priori of
the simulations and are given in Table I. The inlet conditions
changed between a low, intermediate and high inlet gas mass
fraction flow using physical properties and parameters of 25◦

API crude oil at 50 bar and 30◦C similar to [8]. The tuning
and configuration parameters for the estimator that are used
in the simulations are listed in Table II.

A general observation of the estimator performances in
Figs. 3–4 show that both estimators achieve good estimation
performance of the controlled variables, but indicate that the
UKF achieves slightly better estimates for the indirectly mea-
sured states (mLL,G and mWG,L) and the unknown parameters.
However, the figures indicate that the differences between the
estimators are small, and therefore the statistical properties
of the estimation error e = x̂ − x̃ of all estimates, for both
estimators, are calculated to objectively evaluate their per-

TABLE II
TUNING AND CONFIGURATION PARAMETERS.

Parameters Value Unit

Q diag[8000; 8000; 0; 0; 1000; 1000]> -
R diag[200; 200]> -
Th 15 s
∆tu 1 s
∆ty 1 s
∆ts 0.02 s
WUKF diag[0.001, 0.05, 0.001, 0.01, 0.01, 0.001]> -
VUKF diag[0.001, 0.001, 0.1, 0.1]> -
Sl-MHE diag[1, 10−3, 1, 10−3, 10−8, 10−8]> -
Wl-MHE diag[0.001, 0.05, 0.001, 0.01, 0.0001, 0.00001]> -
Vl-MHE diag[0.001, 0.001, 0.1, 0.1]> -
xmin [hL,min, pG,min,−∞,−∞,−∞,−∞]> -
xmax [hL,max, pG,max,∞,∞,∞,∞]> -
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Fig. 3. Estimation performance of the discrete-time UKF.

formances. As mentioned earlier, the estimator objective is
to calculate unbiased estimates with minimum variance that
satisfy constraints, i.e., E[e] = 0 and mine E

[
(e − E[e])2

]
.

The statistical properties are given in Table III.
The statistical properties show that the UKF achieves

more accurate estimates than the NMHE with few exceptions
and that the magnitudes are small. The UKF achieves a
good estimate of hL with negligible bias and variance and
an acceptable estimate of pG with small bias and reduced
variance compared to the measurement noise. The NMHE
achieves an equally good estimate of hL and a better estimate
of pG with smaller bias and variance than the UKF. The UKF
obtains good estimate of both mLL,G and mWG,L with small
bias and reduced variance compared to the measurement
noise. The NMHE achieves a good estimate of mLL,G, but
only an acceptable estimate of mWG,G with small bias and
significant variance. The UKF achieves good estimates of
both the unknown parameters θ1 and θ2 with negligible bias

TABLE III
STATISTICAL PROPERTIES FOR THE ESTIMATOR ERRORS.

Statistical Mean
(
ē = E

[
e
])

Variance
(
σ2
e =E

[(
e−ē

)2])
properties UKF NMHE UKF NMHE
hL −0.0005 −0.0013 0.0009 0.0015
pG −0.1043 −0.0606 2.1377 1.8136
mLL,G 0.1951 0.1077 0.0660 0.0453
mWG,L −0.0086 0.0576 0.0119 0.0921
θ1 −0.0004 −0.0408 0.0007 0.0015
θ2 0.0098 −0.0370 0.0009 0.0007
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Fig. 4. Estimation performance of the discrete-time NMHE.

and small variance. The NMHE achieves tolerable estimates
of θ1 and θ2. The bias of these estimates are larger than for
the UKF, but with equally small variance.

A general observation of the controlled variables show
acceptable control performance for the changes in inlet
conditions with respect to the experimental start-up response
in [3]. RMS values of the control error ectrl = x̂ − x̃ref
and closed-loop system error esys = x̃ − x̃ref are given in
Table IV to enable objective evaluation of their performance.
The RMS values measuring the control performance shows
as expected that the MPC using state feedback from the
UKF achieves slightly better level control, but poorer pres-
sure control, than the MPC using state feedback from the
NMHE. The same behaviour for the estimator performance is
recognised by RMS values measuring the closed-loop system
performance.

The slightly better overall estimation performance
achieved by the UKF over the NMHE is not unexpected.
Stochastic estimators like the UKF are designed to maximize
the probability that the estimate is correct, given all the
past measurements that are parametrized in the mean and

TABLE IV
RMS VALUES FOR THE CONTROL AND CLOSED-LOOP SYSTEM ERRORS.

RMS Control (x̂− x̃ref) System (x̃− x̃ref)
value UKF NMHE UKF NMHE
hL 0.0359 0.0471 0.0171 0.0191
pG 1.6425 1.6473 0.7543 0.6884



covariance, while deterministic estimators like the NMHE is
designed to obtain the state trajectory that best fits a limited
sequence of past measurements.

The dynamics of the a priori nonlinear prediction model
(21) is largely described by the unknown parameters. This
reduces the quality of the prediction model and causes
significant errors in the state prediction.

A comparison of the performance of the UKF in this paper
to that in [11] reveals that the oscillations are significantly
increased. This increase is due to the increased sampling time
between correction step resulting in an increased prediction
step from ∆ts to ∆ty . However, the significant oscillations
in pG and the smaller oscillations in mWG,L are likely to
occur due to the relatively poor prediction model.

As expected, a comparison of the NMHE in this paper
to that of the MHE in [11] with equal covariance matrices
reveals that the NMHE generally achieves better estimates
than the MHE, especially of θ1 which was inaccurately
estimated by the MHE with a large bias. The significant
oscillations in pG is likely to caused by the relatively poor
prediction model.

VI. CONCLUSIONS AND FURTHER WORK

This paper presents a nonlinear UKF and MHE with
different frequencies for state prediction and measurements
update for the estimation of unmeasured states and param-
eters of a GLCC separator. These estimators provide state
feedback to an output MPC that controls the separator. The
estimators use pre-inverted measurements to obtain a linear
mapping between the states and measurements. The NMHE
uses multiple shooting for transcribing the continuous-time
optimization problem and an interior-point solver for solving
the optimization problem.

The estimator performance was studied in two separate
simulations for the same conditions. The estimation perfor-
mance was evaluated based on the statistical properties of the
estimates revealing better performance for the UKF than for
the NMHE. The control and closed-loop system performance
were evaluated based on RMS values of the control and
closed-loop system error. The results showed that the MPC
using state feedback from the UKF achieved slightly better
level control, while the MPC using state feedback from the
NMHE achieved slightly better pressure control. However,
the differences between the estimators were relatively small
and their performances are sensitive to tuning. Thus, a
different tuning might change the result.

In the prediction model, the pressure dynamics is nonlinear
and largely described by unknown parameters resulting in a
poor prediction model. This relatively poor prediction model
is likely to cause the larger oscillations in the pressure
estimate compared to the other estimates experienced by both

The UKF is able to estimate the unknown parameters
with negligible bias from the true values, while the NMHE
experiences a small bias. The overall performance may be
improved by compensating for this bias. Thus, bias estima-
tion using a disturbance model is left as future work.

In reality, the level measurement in a GLCC separator
is often unavailable and difficult to measure because of the
complex, non-flat liquid surface. Therefore, estimation of the
liquid level from other measurements is an unsolved problem
left as future work.
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