
1

Coarse Alignment for Model Fitting of Point Clouds
using a Curvature-Based Descriptor

Adam Leon Kleppe, Member, IEEE, Lars Tingelstad, Member, IEEE, and Olav Egeland, Member, IEEE

Abstract—This paper presents a method for coarse alignment
of point clouds by introducing a new descriptor based on the
local curvature. The method is developed for model fitting a
CAD model for use in robotic assembly. The method is based
on selecting keypoints depending on shape factors calculated
from the local covariance matrix of the surface. A descriptor
is then calculated for each keypoint by fitting two spheres that
describe the curvature of the surface. The spheres are calculated
using conformal geometric algebra, which gives a convenient and
efficient description of the geometry. The keypoint descriptors for
the model and the observed point cloud are then compared to
estimate the corresponding keypoints, which are used to calculate
the displacement. The method is tested in several experiments.
One experiment is for robotic assembly, where objects are placed
on a table and their position and orientation is estimated using
a 3D CAD model.

Note to Practitioners:
Abstract—3D cameras can be used in robotic assembly for

recognizing objects, and for determining position and orientating
of parts to be assembled. In such applications 3D CAD models
will be available for the objects, and point clouds representing
each object can be generated for comparison with the observed
point clouds from the 3D camera. It is not straightforward to use
existing descriptors in this work, as the point cloud from the CAD
model and the observed point cloud may differ due to different
view points and potential occlusions. The method proposed in
this paper is intended to be easy to apply to industrial assembly
problems where there is a need for a robust estimation of the
displacement of an object, either as a coarse estimate for use
in grasping, or as an initial guess to use in fine registration
for demanding assembly operations with close tolerances. The
method exploits the curvature of the point clouds to accurately
describe the surrounding surface of each point. This method
serves as a basis for future industrial implementations.

Keywords—keypoint descriptor, conformal geometric algebra,
initial alignment, point clouds

I. INTRODUCTION

The 3D-3D registration problem [22] is well-established
in computer vision, and is still an active field of research.
The problem involves two sub-problems: Calculation of the
displacement between two point clouds, and estimation of
the point correspondences between the point clouds [5]. A
large number of methods have been proposed to solve the
registration problem in 3D [32], [5], where Iterative Closest

A. L. Kleppe, L. Tingelstad and O. Egeland are with the Department of
Mechanical and Industrial Engineering, Norwegian University of Science and
Technology (NTNU), NO-7491 Trondheim, Norway

This work was partially funded by the Norwegian Research Council, SFI
Offshore Mechatronics, project number 237896

Point (ICP) [3], [6], [27] is widely used. These methods can
be classified as either coarse or fine registration methods, and
usually both have to be applied in order to get globally optimal
solution to the registration problem. Coarse registration is
typically used to find an initial alignment, which provides the
initial conditions for the fine registration using, e.g., ICP.

Most of the fine registration methods, including ICP, can
be described as Expectation-Maximization algorithms [22],
because they alternate between solving the two sub-problems
until both reach a local minimum. A known restriction with
Expectation-Maximization algorithms is that they converge to
locally optimal solutions. To ensure convergence to the global
optimum, the algorithm either has to be expanded to include
global optimization techniques, such as Go-ICP [39] or Sparse
ICP [4], or it has to have good initial conditions in order to
converge to the correct solution. This is achieved with coarse
registration methods, such as [8], [28], [29], [31].

The coarse registration methods usually only solves one of
the sub-problems: Finding the pose that aligns the two point
clouds. This means that these methods do not take the point
correspondences into account. Coarse registration methods
can be further divided into two categories; global and local
approaches [5], where the global approach tries to estimate the
displacement between two point clouds using global properties
such as centroid to find the translation, and global principal
component analysis to find the orientation. A local approach
creates a set of features or signatures in each point cloud, and
search for correspondences between the features. Examples
of this are Point Signatures [7], Spin Images [19] and Point
Feature Histograms [28], [29].

When using local coarse registration, the focus is on creating
descriptors which accurately describe a point and its surround-
ing surface, in such a way that a region of an object should
have the same descriptor regardless of what methods were used
to generate the point cloud, be it with a camera or sampled
from a CAD model. This means that the descriptor has to
be robust in regards to noise and to the density of the point
cloud. Descriptors such as [12], [17], [19], [29], [31] achieves
this robustness by discretizing the descriptor into bins. This
makes it possible to filter out noise and set a known density
of the point cloud and also shrink the size of the descriptor to
a known size, which is important for fast computation.

As shown in [24], [18], the curvature of an object can be
used to calculate different properties of the object. In [24], it
is used for 2D alignment, while in [18] it is used for feature
extraction.

In this paper we propose a descriptor that can be used in
continuous analytic expressions, which makes it possible to
formulate the correspondence problem as a continuous opti-

2

mization problem. The motivation is that this approach may
use geometric information to a larger extent, and that this may
improve the estimation of the point correspondences between
the point clouds, which again provides a more accurate pose
estimation.

We propose to use this type of descriptor in a new method
for initial alignment of two point clouds. The method first
samples the point clouds using principal component analysis
at each point, then the points that are considered unique in
each point cloud are labelled as keypoints, and for each of
these keypoints a descriptor is generated. This descriptor is
based on the fitting of two spheres, representing the curvature
in two orthogonal directions of the surface. The keypoint
descriptor is calculated using conformal geometric algebra.
The descriptors of both point clouds are then compared to
estimate the point correspondence between the keypoints using
least-squares optimization. The displacement that aligns the
descriptors of two point clouds is then found, resulting in an
initial alignment between the two point clouds.

This paper provides an extensive amount of experiments
that validates the method. This contributed to a modification
to the method presented in [20], which is has a more stable
point correspondence estimation on point clouds with planar
surfaces.

This paper is organized as follows: Section II is the pre-
liminaries, which introduces the parts of conformal geometric
algebra used in the paper. Section III describes the proposed
method. Section IV shows the conducted experiment, where a
3D camera captures a point cloud of a table, extracts the point
cloud of the desired object and uses the proposed method to
find the initial alignment between the captured point cloud and
a 3D model, as well as performing a fine estimation algorithm
on it. The proposed method is also compared with other state-
of-the-art descriptors. The result from these experiments are
then presented and discussed, and lastly the conclusion is
found in Section VI.

II. PRELIMINARIES

A. 3D-3D Registration Problem
Consider the point cloud X = {xi}, i = 1, . . . , nx of

observations xi ∈ R3, and the point cloud Y = {yj},
j = 1, . . . , ny of model point positions yi ∈ R3, where
the model points are assumed to be calculated from a CAD
model of an object. The 3D-3D registration problem is then
to minimize the error function

E(R, t) =

nx∑
i=1

‖yj∗ −Rxi − t‖2 (1)

with respect to R and t, and yj∗ is the model point corre-
sponding to the data point xi. In the ICP method, the model
point yj∗ corresponding to the data point xi is found from

j∗ = argmin
j
‖yj −Rxi − t‖ (2)

The solution is then found by iteration where at each step the
correspondence is found from the minimization of (2) for the
current estimate of the pose, and then the estimate of the pose

R, t is found by minimizing (1) for the current estimate of the
correspondence. This minimization will require that the initial
guess for the pose and the correspondence is sufficiently close
to the optimal solutions.

Initial alignment can be performed with a local approach
using descriptors for points in the model and observation point
clouds, and then to find the initial pose by matching the two
point clouds based on these descriptors. Such descriptors can
be calculated for all points in the point cloud, as in [28], or
for keypoints that are selected based on some criterion.

B. Conformal Geometric Algebra

We will use methods based on Conformal Geometric Alge-
bra [11], [16] in this paper as this is a formulation that is well
suited to do calculations on points, planes and spheres, which
will be used to describe descriptors for the point clouds, and
to do optimization based on these descriptors. The Conformal
Geometric Algebra extends the Euclidean space R3 with basis
vectors given by the orthogonal unit vectors e1, e2, e3 to the
5 dimensional space R4,1 = span{e1, e2, e3, e0, e∞} where
ei · ej = δij for i, j ∈ {1, 2, 3} where δij is the Kronecker
delta, e0 · e0 = e∞ · e∞ = 0 and e0 · e∞ = −1.

Consider a Euclidean point p = p1e1 + p2e2 + p3e3 ∈ R3,
which can be given by the column vector [p] = [p1, p2, p3]T.
This point can be represented by the conformal point P ∈ R4,1

defined by

P = p +
1

2
p2e∞ + e0 (3)

where P has the property that P1 · P2 = − 1
2 ||p1 − p2||. The

conformal point P can also be written as the column vector

[P] =

 [p]
1
2p

2

1

 (4)

A plane can be given by

Π = n + δe∞ (5)

where n is the unit normal of the plane, while δ is the distance
from the origin to the plane. This is referred to as a dual plane
in [11]. The vector representation of Π is

[Π] =

[
[n]
δ
0

]
(6)

A sphere S is denoted as

S = PC −
1

2
r2e∞ (7)

where PC is the center point of the sphere and r is the radius
of the sphere. The vector representation of S is

[S] =

 [p]
1
2 (p2 − r2)

1

 (8)

3

The radius r of a given sphere S could be found using

S · S = (PC −
1

2
r2e∞) · (PC −

1

2
r2e∞) (9)

= PC · PC − r2e∞ · PC +
1

4
r4e∞ · e∞

= r2

and the distance d from the center of the sphere S to a point
P can be found by

d2 = S · S − 2S · P (10)

= r2 − 2(pC +
1

2
(p2
C − r2)e∞ + e0) · (p +

1

2
p2e∞ + e0)

= r2 − 2p · pC + (p2
C − r2) + p2

= p2 − 2p · pC + p2
C

= (p− pC)2

III. METHOD

A. Introduction
The method, which can be described as a coarse registration

method, is based on the following steps: First keypoints are
selected in the model point cloud Y and observation point
cloud X based on the geometry of the neighbourhood of each
point. Then a descriptor is calculated for each keypoint in Y
and X . Then a point correspondence is established between
the keypoints in Y and X using the descriptors. Finally, the
pose is estimated using the point correspondence from the
keypoint matching.

B. Selection of keypoints
1) Covariance matrix: To solve the correspondence prob-

lem, a few points, called keypoints, are selected to represent
each point cloud, which are used to find the same or equivalent
points in the second point cloud. This has two effects: One
is that it reduces the number of points in the computations,
which increases the execution speed. The second is that it
is more likely to find the correct correspondences when the
search space is reduced in this way.

For each point pi a neighbourhood Ni is defined as the set
of all points in a ball of radius r about pi. A covariance matrix
Cpi

is calculated for all the points in this neighbourhood
according to

Cpi =
∑

pk∈Ni

([pk]− p̄i)([pk]− p̄i)
T (11)

where p̄i = 1
n

∑
pk∈Ni

[pk], and n is the number of points in
Ni. The eigenvalues of Cpi

are denoted λi, and eigenvectors
are vi for i = 1, 2, 3.

2) Shape factors: Keypoints are the points where the neigh-
bouring points represents a unique shape of the point cloud. To
determine which points to choose, we first have to analyze the
shape around each point. This is done using the eigenvalues
and eigenvectors calculated earlier.

An ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 (12)

can be formed around the center p̄i with the eigenvectors vpi

as the principal axes and the eigenvalues λpi
and a = λ1, b =

λ2, c = λ3, where λ1 ≥ λ2 ≥ λ3 ≥ 0 and λpi
= [λ1 λ2 λ3]

T

With this ellipsoid, we can evaluate the shape of the sur-
rounding points. If λ1 > 0, λ2 = λ3 = 0, then the surrounding
points are on a line in the direction of the eigenvector v1, while
if λ1 = λ2 > 0, λ3 = 0, then all the points lie on the plane
spanned from the eigenvectors v1 and v2. If λ1 = λ2 = λ3,
then the surrounding points form a sphere or an otherwise
voluminous form.

Knowing this, we can classify the surface of the point cloud
at the specific point, by using three shape factors [1], [26]

Cl =
λ1 − λ2

λ1 + λ2 + λ3
(13)

Cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
(14)

Cs =
3λ3

λ1 + λ2 + λ3
(15)

where Cl + Cp + Cs = 1, which means that the three shape
factors are less than or equal to unity.

The neighbourhood of a point can then be classified as
follows: If Cl = 1, the neighbourhood forms a linear shape; if
Cp = 1, the neighbourhood has a planar form; and if Cs = 1
the neighbourhood has a spherical form.

3) Selecting keypoints: We define a point pi to be a keypoint
if the neighbourhood Ni of the point has at least nmin points,
and the shape factors satisfy the conditions

Cl ≥ δl or Cp ≥ δp or Cs ≥ δs (16)

where nmin, δl, δp and δs are user-specified keypoint param-
eters. The parameter ni defines the minimum of neighbouring
points that is required. This parameter is used to ensure that
the calculated shape factors for pi are reliable. With too few
neighbouring points, which happens with outliers, each point
will have a big impact on the eigenvalues, and therefore the
shape factors, which means that measurement noise has a large
impact on the shape factors. By having a large ni, we can
effectively filter out these outliers.

When considering the values of these parameters, one has to
take into account the shape of the point cloud and the density
of points. The goal is to use these parameters to select as
few points from both point clouds, but also that the points
are chosen from the same regions on the point clouds. For
instance, a point cloud with many large flat surfaces benefits
from having δp > 1, effectively disregarding the Cp shape
factor, and choosing a high δl and δs, in a range from 0.3−0.5,
which will select the points that are not in the flat surface
regions, but rather the edged surfaces. An example of point
selection is shown in Fig 1.

4

(a) A CAD model view of
object A, with the approx-
imately same view angle
as in Fig 1b.

(b) A 3D camera mea-
surement of object A

(c) A 3D camera mea-
surement of object B

Fig. 1. A sample of the keypoint selection process using (16) with the
parameters n = 200, δl = 0.3, δp = 1 and δs = 0.3. It is seen that the
keypoints in Fig 1a and Fig 1b are similar, while that of Fig 1c is different.
This is a wanted behaviour as the match between the point cloud in Fig 1a
and Fig 1b will be better than that of Fig 1a and Fig 1c.

4) Automatic generation of keypoint parameters: When
comparing large sets of point clouds it is tedious to manually
select keypoint parameters nmin, δl, δp and δs. It would then
be beneficial to analyze each point cloud and automatically
determine which points seem more unique than others, and
generate keypoint parameters based on this.

We define following function to rank the points in a point
cloud

F (pi) =

{
ClCp + CpCs + CsCl, |Ni| ≥ nmin
1
3 , |Ni| < nmin

(17)

where |Ni| is the number of points in the neighbourhood Ni,
and Cl, Cp and Cs are calculated for the point p using (13),
(14) and (15) respectively. Since Cl + Cp + Cs = 1, F = 0
if either Cl = 1, Cp = 1 or Cs = 1, which represents a very
unique point. F = 1

3 means that Cl = Cp = Cs = 1
3 , which

is not a unique point, which is the maximum value of F .
By arranging each point pi in a point cloud from the lowest

to the highest value of F (pi), we can select k points with the
lowest score which, will be the keypoints selected from the
point cloud. In other words,

Xkeypoints = {pi : i = 1, . . . , k, k < |X|} (18)

where k is a user-defined parameter. In order to sample the
same type of points from Y we need to estimate the parameters
that would yield the same results as in Xkeypoints.

To do this we perform an algorithm
δl = δp = δs = 1
for all p ∈Xkeypoints do

if Cl = max(Cl, Cp, Cs) and Cl < δl then
δl = Cl

else if Cp = max(Cl, Cp, Cs) and Cp < δp then
δp = Cp

else if Cs = max(Cl, Cp, Cs) and Cs < δs then
δs = Cs

end if
end for

where Xkeypoints are the k points in X with the lowest S. The
algorithm effectively groups the keypoints into three groups,
one where Cl is the maximum, one where Cp is the maximum
and one where Cs is the maximum. The algorithm then checks
each group and selects the corresponding δ to be the lowest
value of C within each group.

This gives an estimate of δl, δp and δs which can be used
to pick the keypoints Ykeypoints in Y using (16). The nmin

parameter is still dependent on the point density of Y , and
cannot be estimated from the keypoints in Xkeypoints, however,
unless there is a significant difference in the point density
between X and Y then nmin can be chosen to be the same
for both X and Y .

C. Generation of keypoint descriptors

In order to compare keypoints from Xkeypoints and Ykeypoints,
we need to find a measurable comparison between them. This
is done by generating a descriptor for each keypoint which
describes the shape of the keypoint and can be used to compare
with other descriptors.

To do this, we define the curvature along the surface where
each keypoint lie. This is done by generating two spheres,
one which describes the curvature along the least curving
direction of the surface as given by the eigenvector v1 of the
covariance matrix Cpi

, and the orthogonal direction as given
by the eigenvector v2.

Note that the covariance matrix was computed from (11)
at an earlier step of the method, and that this covariance
matrix defines an ellipsoid which is fitted to the points of the
neighbourhood in the sense that the point of the neighbourhood
forms the volume of the ellipsoid. In contrast to this, the
neighbourhood is regarded as the surface of the spheres that
are fitted in this step, which means that these spheres have a
different geometry from the ellipsoid defined by the covariance
matrix.

To estimate these spheres, we use the method for n-sphere
fitting to a set of points using Conformal Geometric Alge-
bra [10]. The motivation for this is that conformal geometric
algebra provides a convenient and very efficient description of
spheres, and the distance between points and spheres. Note
that the algorithms of the implementation can be formulated
efficiently in terms of linear algebra. The method reduces to a
to a Pratt fit [25] in the case that the sphere fit is reduced to
a circle fit, as pointed out in [10].

The method generates a 5 × 5 covariance matrix for a set
of points Pi

C =

n∑
i=0

([Pi][Pi]
T)G (19)

5

where Pi ∈Xkeypoints are conformal points and

G =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

 (20)

In order to find the sphere S we can find the eigenvector
corresponding to the smallest eigenvalue, v5, and define it as
the dual of the optimal sphere estimate

[S] = v5 (21)

In order to generate the sphere that represents the least
curvature, a weight is added to each point when calculating C.
First we define the plane Π kp1 which is spanned from v1 and
v3 and also intersects Pkp ∈ Xkeypoints, where v1 and v3 are
the eigenvectors found using the covariance matrix describing
the neighbourhood of Pkp, N [kp].

Since v1 is the eigenvector that corresponds to the eigen-
value λ1, it also represents the direction of most variance in
regards to the neighbourhood Nkp. The direction with the most
variance, when considering surfaces, is also the direction with
the least curvature. The plane Π 1 is therefore the plane which
cuts the surface along the least curved direction.

By extending the n-sphere method to a weighted sum
equation

CPkp1
=

n∑
i=0

([Pi][Pi]
Te−w|Pi·Π kp1 |)G (22)

where Pi ∈ Xkeypoints, w is a weight parameter, and |Pi ·
Π kp1 | is the distance from the point pi to the plane Π kp1 .
The weight is calculated so that all points that lie on the plane
Π kp1 are given the weight of 1, and the weight will decrease
the further the point is from the plane. This makes the points
close to Π kp1 , i.e. the points that represents the curvature along
the least curving direction are weighted higher than the ones
further away.

The weight element can be viewed as a Gaussian distribution

f(x, µ, σ) = exp(− (x− µ)2

2σ2
) (23)

where Pi ·Π kp1 = −(x− µ)2 and w = 1
2σ2 .

We can then use the covariance matrix Ckp to find the
sphere Skp1 by finding the eigenvector which corresponds to
the smallest eigenvalue, i.e. v5.

[Skp1] = v5 (24)

To find the curvature along the direction orthogonal to that
of v1, we calculate yet another plane, Π kp2 , which is spanned
from v2 and v3 and intersects the same point Pkp ∈Xkeypoints,
where v2 and v3 are the eigenvectors are found using the
covariance matrix describing the neighbourhood of Pkp, N [kp].

This is again used to calculate the covariance matrix

CPkp2
=

n∑
i=0

([Pi][Pi]
Te−w|Pi·Π kp2 |)G (25)

Fig. 2. An example of a descriptor. The spheres are shown as circles in the
figure to make it easier to view. The blue circle of S1 lies on the blue v1-v3

plane, while the green circle of S2 lies on the green v2-v3 plane. Note that
the green sphere does not intersect with the keypoint pkp.

which describes the curvature along the direction orthogonal
to that of v1. We can then generate the sphere Skp2 by using
the eigenvector corresponding to the smallest eigenvalue of C.

[Skp2] = v5 (26)

With these two spheres we can define the descriptor for the
keypoint pkp

Fkp = {Skp1 ,Skp2} (27)

An example of such one descriptor can be seen in Fig 2. In
the figure, sphere fitting cases of Fig 4 are used in the two or-
thogonal planes v1-v3 and v2-v3. This generates a descriptor
which is unique for each keypoint and can accurately describe
the surrounding surface. It can be seen that the blue sphere has
an almost infinite radius, which is because in that direction the
point cloud is flat as a plane. If the point cloud was a corner,
then both the green and blue spheres would be equal and with
a small radius.

Fig 3 shows a set of examples of different surfaces, and the
estimated spheres that are calculated. The different values of
r and d can be seen in Fig 4.

This process is then repeated on all keypoints in Xkeypoints
and Ykeypoints.

D. Estimating point correspondences

When all the descriptors are generated, it is possible to
estimate the correspondences between Xkeypoints and Ykeypoints.

To find the corresponding point to pk ∈Xkeypoints we solve
the equation

min ε(pk,pl), ∀ pl ∈ Ykeypoints (28)

6

(a) A flat shape. S1 (blue) and S2

(green) are both flat and therefore has
d ≈ r ≈ ∞.

(b) A wedge shape. S1 (blue) has the
parameters r ≈ d ≈ ∞. S2 (green) is
a edge shape, resulting in d > r.

(c) A corner shape. S1 (blue) and S2

(green) are both edge shapes and there-
fore have d > r.

(d) A curved shape. S1 (blue) has the
parameters r ≈ d ≈ ∞. S2 (green)
follows the curve along the surface,
resulting in r ≈ d.

Fig. 3. A sample of different types of surfaces, and their corresponding r and d values. The sphere estimates are marked as a blue circle for S1 and a green
circle for S2. The spheres are represented by circles to simplify the figure.

where

ε(pk,pl) = (rk1 − rl1)2 + (dk1 − dl1)2 (29)
+ (rk2 − rl2)2 + (dk2 − dl2)2 (30)

and

r2k1 = Sk1 · Sk1
d2k1 = Sk1 · Sk1 − 2Sk1 · Pk
r2k2 = Sk2 · Sk2
d2k2 = Sk2 · Sk2 − 2Sk2 · Pk

(31)

r2l1 = Sl1 · Sl1
d2l1 = Sl1 · Sl1 − 2Sl1 · Pl
r2l2 = Sl2 · Sl2
d2l2 = Sl2 · Sl2 − 2Sl2 · Pl

(32)

where rk1, rk2, rl1 and rl2 are the radii of Sk1, Sk2, Sl1 and
Sl2 respectively, and dk1, dk2, dl1 and dl2 are the distances
between the center of Sk1 and pk, Sk2 and pk, Sl1 and pl
and Sl2 and pl respectively. The results from different sphere
estimates and the relationship between r and d can be seen in
Fig 4.

E. Pose estimation

At this stage, all the points xi in Xkeypoints has an estimated
correspondence to a point yj in Ykeypoints. With this correspon-
dence, the pose can be found by minimizing (1) for the point
clouds Xkeypoints and Ykeypoints defined by the keypoints. This
is straightforward, and can be done in the usual way using
Singular Value Decomposition (SVD) as described in, e.g.,
[2], [37].

In this work, the pose estimation was done in terms of
Conformal Geometric Algebra using the method of [38]. The
reason for this was that the estimation of the spheres of the
descriptors was based on geometric algebra, and it was decided
to use this also for the pose estimation. It turned out the pose
estimation gave as good as identical accuracy with the methods

of [38] and the SVD method of [2], [37], and that the SVD
method had 10 % less computation time.

To proceed, it is necessary to introduce the outer prod-
uct [11], [16]. The outer product of two basis vectors in R4,1

satisfies ei∧ej = −ej∧ei, i, j ∈ {1, 2, 3,∞, 0}, and it follows
that ei ∧ ei = 0. The outer product of basis vectors is written
ei∧ej = eij , which is of grade 2, ei∧ej∧ek = eijk which is of
grade 3, and so on. Note that a repeated index means that the
outer product is zero, which follows from eii = 0. The highest
grade nonzero outer product of basis vectors is e0123∞, which
is of grade 5, and is called the pseudoscalar. The geometric
product of two basis vectors is written eiej = ei · ej + ei ∧ ej .
Calculation rules for geometric products of more than two
basis elements are found in [11].

The conformal geometric algebra over the space R4,1 is
G4,1 = span{1, e1, e2, e3, e0, e∞, e23, e31, e12, . . . , e0123∞},
which is closed under the geometric product UV of two
elements U, V ∈ G4,1. It is noted that the basis elements of
G4,1 are of grade 0, 1, 2, 3, 4, and 5. An element of G4,1

is called a multivector, and is given by U =
∑
I uIeI where

uI ∈ R are scalar coordinates, and I denotes the indices of the
basis elements of G4,1. The reverse of a multivector is given
by Ũ =

∑
I uI ẽI ∈ G4,1, where ẽI means that the ordering

of the factors in each basis element has been reversed, e.g.,
ẽij = eji and ẽijk = ekji. Then the geometric product of two
multivectors U =

∑
I uIeI and V =

∑
J vJeJ is given by

UV =
∑
I

∑
J uIvJeIeJ . The scalar part of the geometric

product UV is denoted by 〈UV 〉.
The pose can described in terms of a screw displacement

defined by a rotation θ about a line, and a translation d along
the same line. Let the line be given in Plücker coordinates by
the direction vector a = a1e1 + a2e2 + a3e3 and the moment
b = b1e1 + b2e2 + b3e3, where a · b = 0. Then in conformal
geometric algebra the pose can be described by the motor [35]

M = cos
θ

2
+ sin

θ

2
A

+ ε

(
d

2
cos

θ

2
A+ sin

θ

2
B − d

2
sin

θ

2

)
(33)

7

r

d

pkp

(a) Sphere estimate of a spherical sur-
face. r ≈ d.

r
d

pkp

(b) Sphere estimate of a planar surface.
r ≈ d ≈ ∞.

r

d

pkp

(c) Sphere estimate of an edge. r < d.

r

d

pkp

(d) Sphere estimate of a point. r � d.

Fig. 4. A sample of resulting sphere estimates on different surfaces. The different values of r and d indicate what the different shapes are.

where A = a1e23 +a2e31 +a3e12, B = b1e23 + b2e31 + b3e12
and ε = e321∞ is the dual unit. From this it can be seen that
a motor M is in the 8 dimensional linear space

M = span{1, e23, e31, e12, e1∞, e2∞, e3∞, e123∞} (34)

Let ci, i = 1, . . . , 8 denote the basis elements of M, that is,
c1 = 1, c2 = e23, c3 = e31, Then the motor can be written
M =

∑8
i=1mici. It is seen that the motor M can be described

in terms of the coordinate vector m = [m1, . . . ,m8]T, which
is partitioned as m = [rT, tT]T. Here r and t are four-
dimensional coordinate vectors, where r describes the rotation
and t describes the translation of the displacement described
by M . It can be shown that the motor M given by (33) satisfies
M̃M = 1. Therefore M is a motor if and only if

M ∈M and M̃M = 1 (35)

The error function εk for between the point xk ∈Xkeypoints
and the corresponding point yk ∈ Ykeypoints, is defined as

εk = −1

2
d2k = (M̃ykM) · xk = 〈M̃ykMxk〉 (36)

The pose estimation problem can then be formulated as

max
M

n∑
k=1

〈M̃ykMxk〉, M̃M = 1 (37)

where n is the number of points in Xkeypoints. To solve this
optimization problem, we use the method in [38]. The operator
L is defined by LM =

∑n
k=1 ykMxk, so that the optimization

problem can be written

max
M
〈M̃LM〉, M̃M = 1 (38)

It is noted that

〈M̃LM〉 =

8∑
i=1

8∑
j=1

mimj〈ẽiLej〉 = mTQm (39)

where Q = {Qij}, and Qij = 〈ẽiLej〉.

Let the subspace M be given by

M = span{1, ẽ23, ẽ31, ẽ12, e10, e20, e30, e3210} (40)

Let the basis elements of M be denoted ci, i = 1, . . . , 8. Then
the basis elements ci of M will be reciprocal to the basis
elements ci of M, which means that cj · ci = 〈cjci〉 = δij
and δij is the Kronecker delta. The projection of a multivector
Y ∈ G4,1 onto M is given by PM (Y) =

∑8
i=1 c

i〈ciY 〉.
Define the matrix L = {Lij} by

Lij =

k∑
i=1

〈ẽiPM (Lej)〉 (41)

and let L be partitioned into 4× 4 submatrices, such that

L =

[
Lrr Lrt
Ltr Ltt

]
(42)

Then the 4× 4 matrix L′ is defined by

L′ = Lrr − Lrt(L
+
ttLtr) (43)

where L+
tt denotes the Moore-Penrose pseudoinverse. The

coefficient vector r of the rotation can then be found as the
eigenvector of L′ associated with the largest eigenvalue. This
gives the rotation with the smallest rotation angle. The coeffi-
cient vector t of the translation can be found by computing

t = −(L+
ttLtr)r (44)

Then the motor M is given by the coordinate vector m =
[rT, tT]T.

IV. EXPERIMENTS

The proposed method was compared with a selection of
state-of-the-art methods for initial alignment. These methods
were Fast Point Feature Histograms (FPFH) [28], Point-Pair
Features (PPF) [12], Signature of Histogram of OrienTation
(SHOT) [36], 3D Shape Context (3DSC) [13] and Globally
Aligned Spatial Distribution (GADS) [23].

There were a total of three experiments conducted. The first
was where two instances of the same point cloud had a known

8

Fig. 5. Multiple point clouds of the same 3D CAD model, from multiple
views

displacement between each other, and the proposed method
was run several times with different parameters, in order to
analyze what impact each parameter had. In the second ex-
periment, two instances of the same point clouds had a known
displacement between them and one was subjected to different
Gaussian noise. Both the proposed method, FPFH, PPF, SHOT,
3DSC amd GASD were used, and their performance was
evaluated. In the last experiment, the position of a 3D model
in a scene was estimated. Here, each method tried to find the
alignment between two different point clouds, one generated
from a 3D model and the other captured by a 3D camera,
where the displacement was not known. This demonstrates a
real world application where one tries to estimate the position
of an object in a scene with only the use of a 3D model.

A. Setup
1) Hardware: The hardware that was used for the exper-

iments, was the same for all three. The computer that was
used was a desktop computer with an Intel Core i7 7700k
Sky Lake at 4.2 GHz with 32GB 2666 MHz DDR4 and a
EVGA GeForce GTX 1080 Founders Edition graphics card.
The computer was running Ubuntu 16.04 LTS.

The point clouds that were taken with a 3D camera, were
taken using the Zivid 3D camera provided by ZividLabs [33].
The Zivid 3D camera outputs 2.3 Mpixel RGBD image, with
a field of view of 425×267 mm at a distance of 0.6 m with a
depth resolution of 0.1 mm at the same distance.

2) Point Cloud Data: There were a total of 129 point clouds
used in the experiments.

84 of these were generated from two 3D CAD models,
where a simulated 3D camera generated point clouds from 42
different angles around each CAD model. A sample of which
is shown in Fig 5.

10 of the point clouds were taken with the Zivid camera.
The camera captured a total of 4 scenes where a set of objects
were placed on a table. Each object was detected using the
object detection method described in [34], where the proposed
RANSAC method was used to find the table, and the region
growing algorithm was used to separate the objects on the table

(a) 2D image taken with the Zivid
Camera

(b) Point cloud acquired by the
Zivid Camera

Fig. 6. The objects on the table, where the orange and blue objects are
detected and their pose are estimated. The image is taken with the Zivid
Camera.

(a) 3D point cloud of the Stanford
Bunny.

(b) 3D point cloud
of the Stanford
Happy Buddha

(c) 3D point cloud of the Stanford
Dragon

Fig. 7. A sample of the database point clouds used.

from each other. The method for object recognition proposed in
the paper was not used, and the different objects were separated
manually. The object detection method cannot handle occluded
parts. Each object was saved as an individual point cloud,
resulting in 10 point clouds. A sample is shown in Fig 6.

35 point clouds were from the Stanford database [21], where
5 of them were of the Stanford Bunny, 15 of the Stanford
Happy Buddha and 15 of the Stanford Dragon. Fig 7 shows
an example of these point clouds.

3) Implementation: The proposed method was implemented
using the versor library [9] together with the Eigen library [15].

9

The parameters that were used in the method were selected
using the results from the first experiments. The r parameter
in (11) was 6.3 mm and w in (22) was 0.2. The algorithm per-
formed by estimating Cl(13), Cp(14), and Cs(15) as described
in Section III-B4, where n in (16) was 200 and the number
of selected keypoints were 2000 which was approximately
between 5 % and 10 % of the total point cloud for the whole
data set.

FPFH, PPF, SHOT and 3DSC were implemented using the
PCL library [30], and was implemented using the sample
codes that were provided on their websites, or other supporting
websites. The parameters were chosen to be similar to the
proposed method to the extent it was possible. The point
clouds were first down-sampled using a voxel grid of 1 mm,
followed by the normal estimation algorithm in Section II
with a radius of 30 mm. FPFH, PPF and SHOT had a search
radius of 30 mm when using the KD-tree, and SHOT had in
addition the radius of a plane defined as 1000 mm. 3DSC had
a slight variation in the parameter selection, because if they
were chosen in the same manner as the rest, it failed. It had
a normal estimation radius and search radius of the KD-tree
set to 40 mm and a minimum radius for the search sphere
set to 4 mm and a point per radius density parameter set to
8. After each method had generated a descriptor, a RANSAC
algorithm was performed with 1000 iterations and an inlier
threshold of 5 mm. GADS was partly implemented using the
PCL library, while the rest was implemented in C++. The
original implementation in [23] uses color data to generate
the global descriptor. Since the CAD models do not have
color data, it was not possible to perform this step of the
descriptor generation. The GASD descriptor used in this paper
only generates a descriptor based on the shape of the point
clouds.

All code was implemented using C++11, and was compiled
using O3 optimization. There was no parallelism involved in
the implementation.

B. Experiment 1

1) Description: The first experiment took two instances of
the same point cloud with a known displacement between
them. The proposed method then performed a pose estimation
between the two point clouds with various parameters. Each
test was performed with changing the radius r in (11), the
weight w in (22) and the number of keypoints as described
in (16). When one parameter was changed, the others stayed
constant. This was performed on all 129 point clouds.

Since the two point clouds were the same, and no noise
was involved, both the exact displacement and the point
correspondences were known. This made it possible to know
the error in displacement and the error in the estimated point
correspondence.

The radius r was tested at 0.5 mm, 0.8 mm, 1 mm, 2 mm,
5 mm, 10 mm and 20 mm. The weight w was tested at 10, 5,
2, 1, 0.8, 0.5, 0.2, 0.1, 0.05, 0.01 and 0.001. The sample size
was tested at 20000, 10000, 5000, 2000, 1000, 800, 500 and
100. The nmin was 200.

2) Results: The results from the three tests that were per-
formed are shown in Fig 8, Fig 9 and Fig 10. It is seen in
the figures that there is a correlation between the accuracy of
the method and the r and w parameters. The figures show 8
chosen point clouds; one for each of the two objects taken
with the Zivid camera, two from generated point clouds from
the 3D model from each of the two objects, a total of four,
and two point clouds from the Standford Bunny set. The point
clouds were chosen randomly.

The best fit for the radius r is between 5 mm and 10 mm
when it comes to correspondence depending on the point
cloud, while the pose estimate stays approximately the same.
As expected, the execution time grows exponentially depend-
ing on the radius, which is due to the fact that the amount
of points used in the Principal Components Analysis (PCA)
method increases exponentially with the radius.

The weight w had little to no impact on the translation esti-
mate, but a higher weight value makes a more unstable rotation
estimate. The point correspondence the optimal solution ranges
between 0.05 and 0.2 depending on the point cloud. It can be
seen that there is a correlation between the stability of the
rotation estimate and the point correspondence. The weight
had little impact on the execution time.

The number of keypoints had little to no impact on the
method’s performance. The pose estimation stayed approxi-
mately the same, while the number of corresponding points
were linear, which is expected. This meant that about 99 % of
the points were accurately estimated. The point clouds where
the graph caps off at a maximum value, is where the point
cloud uses all the points in the point cloud, and can therefore
not select more keypoints. The execution time escalates, which
is expected given that there are more keypoints to work
through.

This experiment indicates that a careful selection of the
r and w parameters is needed to ensure optimal results and
performance, while the number of keypoints has little impact
on the method’s accuracy. The experiment also indicates that
the method performs equally well in regards to pose estimation.

C. Experiment 2
1) Description: In the second experiment, the pose between

two of the same point cloud was estimated, where one point
cloud was displaced with a known displacement, and each
point within that point cloud had added a Gaussian noise.
The added noise had a µ of 3 mm and σ at 0.1, 0.3, 0.5,
1.0, 2.0. This was tested on all 129 point clouds with both
the proposed method, FPFH, PPF, SHOT, 3DSC and GADS.
The accuracy of the point correspondences were not evaluated,
since the indexing of the points in the point clouds are mixed
up when using the PCL library. Only the pose estimation error
was evaluated.

2) Results: The results from the experiment are shown in
Table I and Table II The results shows that the fastest method is
by far FPFH, and also that it is the least accurate, which is not
a desired result for industrial applications. Both SHOT and the
proposed method perform equally fast, however, the proposed
method performs with better accuracy. The only method that

10

0 2 4 6 8 10
Weight

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

An
gl

e

Angle Error

(a) Angle error [rad], measured using an angle-axis
calculation of the error transformation

0 2 4 6 8 10
Weight

7.6

7.8

8.0

8.2

8.4

8.6

8.8

Di
st

an
ce

Distance Error

(b) Distance error [mm], measured using the distance
of the error transformation

0 2 4 6 8 10
Weight

1

2

3

4

5

Ti
m

e

1e7 Execution Time

(c) Execution time [µs]

0 2 4 6 8 10
Weight

400

600

800

1000

1200

1400

1600

1800

2000

Nu
m

be
r

Number of keypoints within 5mm

(d) Number of times where the estimated corre-
spondence was within 5mm away from the correct
corresponding point

0 2 4 6 8 10
Weight

600

800

1000

1200

1400

1600

1800

2000

Nu
m

be
r

Number of keypoints within 10mm

(e) Number of times where the estimated correspon-
dence was within 10mm away from the correct
corresponding point

0 2 4 6 8 10
Weight

800

1000

1200

1400

1600

1800

2000

Nu
m

be
r

Number of keypoints within 20mm

(f) Number of times where the estimated correspon-
dence was within 20mm away from the correct
corresponding point

Fig. 8. Results when adjusting the weight parameter. Each coloured graph represents the results from a sample point cloud, where 8 are selected from the
total of 129 point clouds. The red, green and orange graphs are of different viewpoint point clouds of part A, the blue, purple and pink graphs are of different
viewpoint point clouds of part B, and the brown and gray graphs are two point clouds of the Stanford Bunny.

TABLE I. RESULTS FROM EXPERIMENT 2. THE RESULTS SHOW THE AVERAGE DISTANCE AND ANGLE ERROR OVER ALL 129 POINT CLOUDS FOR EACH
NOISE INTERVAL.

Noise σ = 0.1 Noise σ = 0.3 Noise σ = 0.5 Noise σ = 1.0 Noise σ = 2.0
Angle [rad] Distance [mm] Angle [rad] Distance [mm] Angle [rad] Distance [mm] Angle [rad] Distance [mm] Angle [rad] Distance [mm]

Proposed 0.122 0.645 0.132 0.833 0.151 0.944 0.262 1.267 0.643 3.562
FPFH 0.231 101.436 0.271 112.312 0.431 163.647 0.642 287.961 0.851 1663.624
PPF 0.095 1.451 0.114 1.729 0.272 2.534 0.296 3.833 0.577 6.996
SHOT 0.340 6.282 0.349 6.544 0.537 8.964 0.699 10.070 0.798 11.947
3DSC 0.242 16.125 0.365 17.938 0.777 22.153 0.825 23.775 0.846 31.858
GADS 0.542 5.341 0.601 7.625 0.677 10.511 0.751 11.753 0.910 11.884

TABLE II. RESULTS FROM EXPERIMENT 2. THE RESULTS SHOW THE AVERAGE EXECUTION TIME OVER ALL 129 POINT CLOUDS FOR EACH NOISE
INTERVAL.

Noise σ = 0.1 Noise σ = 0.3 Noise σ = 0.5 Noise σ = 1.0 Noise σ = 2.0
Execution Time [ms] Execution Time [ms] Execution Time [ms] Execution Time [ms] Execution Time [ms]

Proposed 2329.517 2328.523 2330.665 2430.101 2354.512
FPFH 829.594 843.941 901.421 830.512 854.442
PPF 17721.757 17883.121 17519.337 17329.881 19901.731
SHOT 2026.415 2139.533 2101.112 2323.121 1997.454
3DSC 16507.965 16433.103 17031.315 16831.610 17124.155
GADS 1402.442 1421.531 1411.595 1399.931 1420.40

11

6 8 10 12 14 16 18 20
Radius

0.0

0.1

0.2

0.3

0.4

0.5

An
gl

e

Angle Error

(a) Angle error [rad], measured using an angle-axis
calculation of the error transformation

6 8 10 12 14 16 18 20
Radius

7.6

7.8

8.0

8.2

8.4

8.6

8.8

Di
st

an
ce

Distance Error

(b) Distance error [mm], measured using the distance
of the error transformation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Radius

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e

1e8 Execution Time

(c) Execution time [µs]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Radius

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r

Number of keypoints within 5mm

(d) Number of times where the estimated corre-
spondence was within 5mm away from the correct
corresponding point

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Radius

0

250

500

750

1000

1250

1500

1750

2000
Nu

m
be

r

Number of keypoints within 10mm

(e) Number of times where the estimated correspon-
dence was within 10mm away from the correct
corresponding point

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Radius

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r

Number of keypoints within 20mm

(f) Number of times where the estimated correspon-
dence was within 20mm away from the correct
corresponding point

Fig. 9. Results when adjusting the radius parameter. Each coloured graph represents the results from a sample point cloud, where 8 are selected from the
total of 129 point clouds. The red, green and orange graphs are of different viewpoint point clouds of part A, the blue, purple and pink graphs are of different
viewpoint point clouds of part B, and the brown and gray graphs are two point clouds of the Stanford Bunny.

performs as accurate as the proposed method is PPF, but it
is the slowest of all the methods. It is worth noting that
though the mean error is slightly high on the overall results,
the methods had some cases with very accurate results. The
PPF method for instance got accurate results on point clouds
that had little features, such as the Stanford Bunny, where the
other methods had significantly larger errors. In this case the
proposed method got a angle error of 0.847 radians.

D. Experiment 3

1) Descriptions: The last experiment was a real world demo,
where a Zivid camera captured a 3D image of a table with a
set of objects on it, see Section IV-A2. Each of the 10 point
clouds of the real world objects were compared to a selection
of the 84 generated point clouds of the CAD models, and the
best fit was estimated as well as the pose between the CAD
model and the scene. This effectively estimated the position
of the object relative to the camera.

Since there are no known point correspondence nor known
displacements, an ICP algorithm was performed after every
estimation. This was done using the CloudCompare soft-
ware [14], which provided the final transformation as well
as an root mean square calculation of the estimated point
correspondences. This together with a visual inspection was
sufficient to evaluate the performance of each method.

TABLE III. RESULTS FROM EXPERIMENT 3. THE RMS SHOWS THE
RMS BETWEEN THE CORRESPONDING POINTS BEFORE APPLYING ICP

BETWEEN THE TWO COMPARED POINT CLOUDS. THE COMMENT
DESCRIBES SOME OF THE REMARKS THAT WERE DONE WITH THE VISUAL

INSPECTION OF THE RESULTS.

Method RMS [mm] Execution time [ms] Comment
Proposed 2.70914 21487.476
FPFH 5.94532 2390.431 Point cloud was flipped upside

down
PPF 90.01690 56926.563 Estimate before ICP was far away

from the actual point cloud
SHOT 3.35757 30411.992 Got a better RMS with a different

point cloud
3DSC 3.04315 163224.032
GADS 4.85295 1224.032 The orientation was not correct

The RMS shown in Table III is calculated between the
orange object shown in Fig 6b with the point cloud generated
from the CAD that gave the smallest RMS. The same point
cloud gave the lowest RMS in all cases except for SHOT,
where one point cloud gave a lower RMS. Using RMS is not
an accurate measurement for classification, but it was sufficient
for this experiment. As shown in the table, FPFH is the fastest
of the methods. However, it failed to give an accurate estimate,
since the estimate was flipped upside down. A note on the PPF
estimate is that the resulting pose estimate from the method
had the two point clouds very far from each other, about 10 cm
on average, and only by using the ICP method, did it achieve

12

0 2500 5000 7500 10000 12500 15000 17500 20000
Sample Size

0.1

0.0

0.1

0.2

0.3

0.4

0.5

An
gl

e

Angle Error

(a) Angle error [rad], measured using an angle-axis
calculation of the error transformation

0 2500 5000 7500 10000 12500 15000 17500 20000
Sample Size

7.4

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

Di
st

an
ce

Distance Error

(b) Distance error [mm], measured using the distance
of the error transformation

0 2500 5000 7500 10000 12500 15000 17500 20000
Sample Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e

1e9 Execution Time

(c) Execution time [µs]

0 2500 5000 7500 10000 12500 15000 17500 20000
Sample Size

0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r

Number of keypoints within 5mm

(d) Number of times where the estimated corre-
spondence was within 5mm away from the correct
corresponding point

0 2500 5000 7500 10000 12500 15000 17500 20000
Sample Size

0

2500

5000

7500

10000

12500

15000

17500

20000
Nu

m
be

r

Number of keypoints within 10mm

(e) Number of times where the estimated correspon-
dence was within 10mm away from the correct
corresponding point

0 2500 5000 7500 10000 12500 15000 17500 20000
Sample Size

0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r

Number of keypoints within 20mm

(f) Number of times where the estimated correspon-
dence was within 20mm away from the correct
corresponding point

Fig. 10. Results when adjusting the number of keypoints used parameter. Each coloured graph represents the results from a sample point cloud, where 8 are
selected from the total of 129 point clouds. The red, green and orange graphs are of different viewpoint point clouds of part A, the blue, purple and pink graphs
are of different viewpoint point clouds of part B, and the brown and gray graphs are two point clouds of the Stanford Bunny.

a more accurate pose. The resulting pose estimation can be
seen in Fig 11.

V. DISCUSSION

Experiment 1 tries to evaluate the parameter range that
achieves the best results, and the results are promising. The
point clouds that were tested are similar to some degree,
especially since the majority of point clouds are of two objects.
Because of this it is not possible to conclude the optimal
parameters before the method has been tested on a wider range
of point clouds.

It is not fair to compare the execution time of the proposed
method to the ones provided by the PCL library. The code used
for the proposed method is not yet designed for optimization,
and can in most cases be improved.

For instance, in the preprocessing step Section III-B1, each
point in the point cloud checks which points are within a given
radius. In the code, the method goes through every point for
each point, making it an algorithm with a complexity of O(n2).
This could be greatly improved by using smarter methods such
as k-d tree structures or similar methods, which could lower
the complexity to O(kN1− 1

k) where k is the dimension of the
tree.

Though the proposed method presents many equations
which uses Conformal Geometric Algebra, the implementation

could benefit from using linear algebra and matrix manip-
ulation, as this is more computationally efficient. The least
square optimization in Section III-D for instance, is a gen-
eral optimization algorithm that encompasses all Conformal
Geometric Algebra objects. Since the proposed method only
uses points, it would be beneficial to use a linear algebra least
square optimization algorithm such as [2], [37]

It is also worth noting that the results from the GADS
method, could probably be improved, if the point clouds
would have color information. This was not possible in the
experiments because of the CAD models, which did not have
any color.

The proposed method does not handle scaling. This is be-
cause the spheres in the descriptor are specified with a radius.
In order to make the method scale-invariant, the descriptors
requires a reference scale, which could be developed.

VI. CONCLUSION

The proposed method uses an analytic approach to gener-
ating descriptors, using Conformal Geometric Algebra. The
descriptor consists of two spheres which represents the cur-
vature surrounding a point. This method was compared with
a selection of some state-of-the-art methods, and the results
were presented. In the experiment where the point cloud was
compared to itself, the proposed method and PPF generated the
most accurate results, while in the experiment where a CAD

13

(a) Results from the curvature-
based descriptor.

(b) Results from FPFH. (c) Results from PPF.

(d) Results from SHOT. (e) Results from 3DSC. (f) Results from GASD.

Fig. 11. A sample of the resulting position estimation with the different descriptor methods. The red points are from the CAD model, while the black points
are taken with the Zivid camera.

model point cloud was compared to an object captured with
a 3D camera, the proposed method showed that the accuracy
and robustness was sufficient for it to be used in industrial
applications.

REFERENCES

[1] A. L. Alexander, K. Hasan, G. Kindlmann, D. L. Parker, and J. S.
Tsuruda. A geometric analysis of diffusion tensor measurements of the
human brain. Magnetic Resonance in Medicine, 44(2):283–291, 2000.

[2] K. Arun, T. Huang, and S. Blostein. Least-squares filtering of two 3-
d point sets. IEEE Trans. Pattern Analysis and Machine Intelligence,
PAMI-9(5):698 – 700, 1987.

[3] P. Besl and N. McKay. A Method for Registration of 3-D Shapes, 1992.
[4] S. Bouaziz, A. Tagliasacchi, and M. Pauly. Sparse iterative closest point.

Computer Graphics Forum, 32(5):113–123, 2013.
[5] U. Castellani and A. Bartoli. 3D shape registration. 3D Imaging,

Analysis and Applications, 9781447140:221–264, 2014.

[6] Y. Chen and G. Medioni. Object modeling by registration of multiple
range images. Proceedings. 1991 IEEE International Conference on
Robotics and Automation, 10(3):2724–2729, 1991.

[7] C. S. Chua and R. Jarvis. Point Signatures: A New Representation
for 3D Object Recognition. International Journal of Computer Vision,
25(1):63–85, 1997.

[8] D. H. Chung, I. D. Yun, and S. U. Lee. Registration of Multiple Range
Views using the Reverse Calibration Technique. Pattern Recognition,
31(4):459–464, 1997.

[9] P. Colapinto. Versor: Spatial computing with conformal geometric
algebra. Master’s thesis, University of California at Santa Barbara,
2011. Available at http://versor.mat.ucsb.edu.

[10] L. Dorst. Total Least Squares Fitting of k-Spheres in n-D Euclidean
Space Using an (n+2)-D Isometric Representation. Journal of Mathe-
matical Imaging and Vision, 50(3):214–234, 2014.

[11] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer
Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 2009.

[12] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally, match
locally: Efficient and robust 3D object recognition. In Proceedings of

14

the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 998–1005, 2010.

[13] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik. Recognizing
Objects in Range Data Using Regional Point Descriptors. In European
Conference on Computer Vision, volume 3023, pages 224–237, 2004.

[14] D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault. Change
detection on points cloud data acquired with a ground laser scanner.
International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, 36(3):W19, 2005.

[15] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[16] D. Hildenbrand. Foundations of Geometric Algebra Computing, vol-
ume 8 of Geometry and Computing. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[17] S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige. Going
further with point pair features. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 9907 LNCS:834–848, 2016.

[18] H. Ho and D. Gibbins. Curvature-based approach for multi-scale
feature extraction from 3D meshes and unstructured point clouds. IET
Computer Vision, 3(4):201, 2009.

[19] A. E. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3D scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(5):433–449, 1999.

[20] A. L. Kleppe and O. Egeland. A Curvature-Based Descriptor for Point
Cloud Alignment using Conformal Geometric Algebra. Advances in
Applied Clifford Algebras, 28(2):50, 2018.

[21] S. U. C. G. Laboratory. Stanford point cloud database.
http://graphics.stanford.edu/data/3Dscanrep, 1994.

[22] H. Li and R. Hartley. The 3D-3D registration problem revisited.
Proceedings of the IEEE International Conference on Computer Vision,
2007.

[23] J. P. S. d. M. Lima and V. Teichrieb. An Efficient Global Point Cloud
Descriptor for Object Recognition and Pose Estimation. In 2016 29th
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),
3, page 56–63, 2016.

[24] F. Mohideen and R. Rodrigo. Curvature Based Robust Descriptors.
Procedings of the British Machine Vision Conference 2012, pages 1–
41, 2012.

[25] V. Pratt. Direct least-squares fitting of algebraic surfaces. ACM
SIGGRAPH Computer Graphics, 21(4):145–152, 1987.

[26] M. Ritter, W. Benger, B. Cosenza, K. Pullman, H. Moritsch, and
W. Leimer. Visual Data Mining Using the Point Distribution Tensor.
In ICONS, pages 10–13, 2012.

[27] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.
Proceedings of International Conference on 3-D Digital Imaging and
Modeling, 3DIM, 2001-Janua:145–152, 2001.

[28] R. B. Rusu, N. Blodow, and M. Beetz. Fast Point Feature Histograms
(FPFH) for 3D registration. IEEE International Conference on Robotics
and Automation, pages 3212–3217, 2009.

[29] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3D Recognition
and Pose Using the Viewpoint Feature Histogram. In Intelligent Robots
and Systems (IROS),, pages 2155–2162, 2010.

[30] R. B. Rusu and S. Cousins. 3D is here: point cloud library. IEEE
International Conference on Robotics and Automation, pages 1 – 4,
2011.

[31] B. Sabata and J. K. Aggarwal. Surface Correspondence and Motion
Computation from a Pair of Range Images. Computer Vision and Image
Understanding, 63(2):232–250, 1996.

[32] J. Salvi, C. Matabosch, D. Fofi, and J. Forest. A review of recent range
image registration methods with accuracy evaluation. Image and Vision
Computing, 25(5):578–596, 2007.

[33] S. Skotheim, H. Schumann-Olsen, and et. al. ZividLabs. Zivid 3d
camera.

[34] A. Sveier, A. L. Kleppe, L. Tingelstad, and O. Egeland. Object Detec-
tion in Point Clouds Using Conformal Geometric Algebra. Advances
in Applied Clifford Algebras, 27(3):1–16, 2017.

[35] L. Tingelstad and O. Egeland. Motor parameterization. Advances in
Applied Clifford Algebras, 28(2):34, Mar 2018.

[36] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of histograms
for local surface description. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 6313 LNCS(PART 3):356–369, 2010.

[37] S. Umeyama. Least-squares estimation of transformation parameters
between two point patterns. IEEE Trans. Pattern Analysis and Machine
Intelligence, 13(4):376–380, 1991.

[38] R. Valkenburg and L. Dorst. Estimating Motors from a Variety
of Geometric Data in 3D Conformal Geometric Algebra. Guide to
Geometric Algebra in Practice, XVII(December):25–45, 2011.

[39] J. Yang, H. Li, and Y. Jia. Go-ICP: Solving 3D registration efficiently
and globally optimally. Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1457–1464, 2013.

Adam Leon Kleppe Adam Leon Kleppe received
his MSc in Cybernetics at the Norwegian University
of Science and Technology (NTNU), Trondheim,
Norway in 2013. He is currently working on his
PhD also at the Norwegian University of Science
and Technology. He focuses on 3D computer vision
technology and how it can be improved to be used
for assembly operations in the automotive industry.

Lars Tingelstad recieved the M.Sc. and Ph.D. de-
gree in Mechanical Engineering from the Norwegian
University of Science and Technology, NTNU, in
2011 and 2017, respectively. His Ph.D. thesis was
on the estimation of rigid body motions from obser-
vation of 3-D geometric objects such as points, lines,
planes, circles, and spheres, in conformal geometric
algebra. He is currently employed as a researcher
at the department of Mechanical and Industrial En-
gineering, NTNU, working on the research program
SFI Offshore Mechatronics funded by the Norwegian

Research Council.

Olav Egeland graduated with a MSc (1984) and a
PhD (1987) in automatic control from the Norwegian
University of Science and Technology (NTNU). He
was professor of automatic control from at NTNU
from 1989 to 2004, and was co-founder of a start-
up from 2004 - 2011. He is currently professor
of production automation at NTNU. He received
the Automatica Prize Paper Award (1996) and the
IEEE Trans. Control System Technology Outstand-
ing Paper Award (2000). He was Associate Editor
of IEEE Trans. Automatic Control (1996-1999) and

European Journal of Control (1998-2000). His research interests are within
mathematical modeling, robotic production, and offshore control systems.

