Coarse Alignment for Model Fitting of Point Clouds
using a Curvature-Based Descriptor

Adam Leon Kleppe, Member, IEEE, Lars Tingelstad, Member, IEEE, and Olav Egeland, Member, IEEE

Abstract—This paper presents a method for coarse alignment
of point clouds by introducing a new descriptor based on the
local curvature. The method is developed for model fitting a
CAD model for use in robotic assembly. The method is based
on selecting keypoints depending on shape factors calculated
from the local covariance matrix of the surface. A descriptor
is then calculated for each keypoint by fitting two spheres that
describe the curvature of the surface. The spheres are calculated
using conformal geometric algebra, which gives a convenient and
efficient description of the geometry. The keypoint descriptors for
the model and the observed point cloud are then compared to
estimate the corresponding keypoints, which are used to calculate
the displacement. The method is tested in several experiments.
One experiment is for robotic assembly, where objects are placed
on a table and their position and orientation is estimated using
a 3D CAD model.

Note to Practitioners:

Abstract—3D cameras can be used in robotic assembly for
recognizing objects, and for determining position and orientating
of parts to be assembled. In such applications 3D CAD models
will be available for the objects, and point clouds representing
each object can be generated for comparison with the observed
point clouds from the 3D camera. It is not straightforward to use
existing descriptors in this work, as the point cloud from the CAD
model and the observed point cloud may differ due to different
view points and potential occlusions. The method proposed in
this paper is intended to be easy to apply to industrial assembly
problems where there is a need for a robust estimation of the
displacement of an object, either as a coarse estimate for use
in grasping, or as an initial guess to use in fine registration
for demanding assembly operations with close tolerances. The
method exploits the curvature of the point clouds to accurately
describe the surrounding surface of each point. This method
serves as a basis for future industrial implementations.

Keywords—keypoint descriptor, conformal geometric algebra,
initial alignment, point clouds

I. INTRODUCTION

The 3D-3D registration problem [22] is well-established
in computer vision, and is still an active field of research.
The problem involves two sub-problems: Calculation of the
displacement between two point clouds, and estimation of
the point correspondences between the point clouds [5]. A
large number of methods have been proposed to solve the
registration problem in 3D [32], [5], where Iterative Closest

A. L. Kleppe, L. Tingelstad and O. Egeland are with the Department of
Mechanical and Industrial Engineering, Norwegian University of Science and
Technology (NTNU), NO-7491 Trondheim, Norway

This work was partially funded by the Norwegian Research Council, SFI
Offshore Mechatronics, project number 237896

Point (ICP) [3], [6], [27] is widely used. These methods can
be classified as either coarse or fine registration methods, and
usually both have to be applied in order to get globally optimal
solution to the registration problem. Coarse registration is
typically used to find an initial alignment, which provides the
initial conditions for the fine registration using, e.g., ICP.

Most of the fine registration methods, including ICP, can
be described as Expectation-Maximization algorithms [22],
because they alternate between solving the two sub-problems
until both reach a local minimum. A known restriction with
Expectation-Maximization algorithms is that they converge to
locally optimal solutions. To ensure convergence to the global
optimum, the algorithm either has to be expanded to include
global optimization techniques, such as Go-ICP [39] or Sparse
ICP [4], or it has to have good initial conditions in order to
converge to the correct solution. This is achieved with coarse
registration methods, such as [8], [28], [29], [31].

The coarse registration methods usually only solves one of
the sub-problems: Finding the pose that aligns the two point
clouds. This means that these methods do not take the point
correspondences into account. Coarse registration methods
can be further divided into two categories; global and local
approaches [5], where the global approach tries to estimate the
displacement between two point clouds using global properties
such as centroid to find the translation, and global principal
component analysis to find the orientation. A local approach
creates a set of features or signatures in each point cloud, and
search for correspondences between the features. Examples
of this are Point Signatures [7], Spin Images [19] and Point
Feature Histograms [28], [29].

When using local coarse registration, the focus is on creating
descriptors which accurately describe a point and its surround-
ing surface, in such a way that a region of an object should
have the same descriptor regardless of what methods were used
to generate the point cloud, be it with a camera or sampled
from a CAD model. This means that the descriptor has to
be robust in regards to noise and to the density of the point
cloud. Descriptors such as [12], [17], [19], [29], [31] achieves
this robustness by discretizing the descriptor into bins. This
makes it possible to filter out noise and set a known density
of the point cloud and also shrink the size of the descriptor to
a known size, which is important for fast computation.

As shown in [24], [18], the curvature of an object can be
used to calculate different properties of the object. In [24], it
is used for 2D alignment, while in [18] it is used for feature
extraction.

In this paper we propose a descriptor that can be used in
continuous analytic expressions, which makes it possible to
formulate the correspondence problem as a continuous opti-

mization problem. The motivation is that this approach may
use geometric information to a larger extent, and that this may
improve the estimation of the point correspondences between
the point clouds, which again provides a more accurate pose
estimation.

We propose to use this type of descriptor in a new method
for initial alignment of two point clouds. The method first
samples the point clouds using principal component analysis
at each point, then the points that are considered unique in
each point cloud are labelled as keypoints, and for each of
these keypoints a descriptor is generated. This descriptor is
based on the fitting of two spheres, representing the curvature
in two orthogonal directions of the surface. The keypoint
descriptor is calculated using conformal geometric algebra.
The descriptors of both point clouds are then compared to
estimate the point correspondence between the keypoints using
least-squares optimization. The displacement that aligns the
descriptors of two point clouds is then found, resulting in an
initial alignment between the two point clouds.

This paper provides an extensive amount of experiments
that validates the method. This contributed to a modification
to the method presented in [20], which is has a more stable
point correspondence estimation on point clouds with planar
surfaces.

This paper is organized as follows: Section II is the pre-
liminaries, which introduces the parts of conformal geometric
algebra used in the paper. Section III describes the proposed
method. Section IV shows the conducted experiment, where a
3D camera captures a point cloud of a table, extracts the point
cloud of the desired object and uses the proposed method to
find the initial alignment between the captured point cloud and
a 3D model, as well as performing a fine estimation algorithm
on it. The proposed method is also compared with other state-
of-the-art descriptors. The result from these experiments are
then presented and discussed, and lastly the conclusion is
found in Section VI.

II. PRELIMINARIES
A. 3D-3D Registration Problem

Consider the point cloud X = {x;}, i = 1,...,n, of
observations x; € R3, and the point cloud ¥ = {y;},
j = 1,...,n, of model point positions y; € R3, where
the model points are assumed to be calculated from a CAD
model of an object. The 3D-3D registration problem is then
to minimize the error function

E(R,t) =) |y;- — Rx; — t||” (1)
1=1

with respect to R and ¢, and y;- is the model point corre-
sponding to the data point x;. In the ICP method, the model
point y;« corresponding to the data point x; is found from

j* = argmin |ly; — Rx; — || 2)

J
The solution is then found by iteration where at each step the
correspondence is found from the minimization of (2) for the
current estimate of the pose, and then the estimate of the pose

R, t is found by minimizing (1) for the current estimate of the
correspondence. This minimization will require that the initial
guess for the pose and the correspondence is sufficiently close
to the optimal solutions.

Initial alignment can be performed with a local approach
using descriptors for points in the model and observation point
clouds, and then to find the initial pose by matching the two
point clouds based on these descriptors. Such descriptors can
be calculated for all points in the point cloud, as in [28], or
for keypoints that are selected based on some criterion.

B. Conformal Geometric Algebra

We will use methods based on Conformal Geometric Alge-
bra [11], [16] in this paper as this is a formulation that is well
suited to do calculations on points, planes and spheres, which
will be used to describe descriptors for the point clouds, and
to do optimization based on these descriptors. The Conformal
Geometric Algebra extends the Euclidean space R® with basis
vectors given by the orthogonal unit vectors ej, ez, e3 to the
5 dimensional space R*! = span{e;, e, e3,¢€0, €0} Where
e -ej = 0;; for 4,5 € {1,2,3} where J;; is the Kronecker
delta, eg - eg = €50 " €00 = 0 and eg - €5 = —1.

Consider a Euclidean point p = pi1e; + paes + pses € R3,
which can be given by the column vector [p] = [p1, p2, p3]T.
This point can be represented by the conformal point P € R*!
defined by

1
P=p+ §p2eoo + €o 3)

where P has the property that Py - P, = —1||p; — p2||. The
conformal point P can also be written as the column vector

[Pl
[P] = |3p° “
1
A plane can be given by
II =n + des &)

where n is the unit normal of the plane, while § is the distance
from the origin to the plane. This is referred to as a dual plane
in [11]. The vector representation of IT is

[n]
] = | o (6)
0
A sphere S is denoted as
S =P - %r%w (7

where P¢ is the center point of the sphere and r is the radius
of the sphere. The vector representation of S is

[S]= |5(p* —1?) (8)

The radius r of a given sphere S could be found using

1 1
S-S=(Pc— 57“2600) - (Po — 57’2600) 9)
1
=Po-Po—1%es - Po + 17“4600 €oo

and the distance d from the center of the sphere S to a point
P can be found by

?=8§-§-28-P (10)

1 1
=1r? - 2(pc + 5(1% — e +€0) - (P+ 5192600 + eo)

=r?—2p-pc + (pg — %) + p*
=p° —2p pc + pe
Z(P—Pc)2

III. METHOD
A. Introduction

The method, which can be described as a coarse registration
method, is based on the following steps: First keypoints are
selected in the model point cloud Y and observation point
cloud X based on the geometry of the neighbourhood of each
point. Then a descriptor is calculated for each keypoint in Y
and X . Then a point correspondence is established between
the keypoints in Y and X using the descriptors. Finally, the
pose is estimated using the point correspondence from the
keypoint matching.

B. Selection of keypoints

1) Covariance matrix: To solve the correspondence prob-
lem, a few points, called keypoints, are selected to represent
each point cloud, which are used to find the same or equivalent
points in the second point cloud. This has two effects: One
is that it reduces the number of points in the computations,
which increases the execution speed. The second is that it
is more likely to find the correct correspondences when the
search space is reduced in this way.

For each point p; a neighbourhood IN; is defined as the set
of all points in a ball of radius r about p;. A covariance matrix
Cp, is calculated for all the points in this neighbourhood
according to

Cp, = Y (Ipx] = Pi)([p] —)" (11)

PLEN;

where p; = + >~ [Px], and n is the number of points in
N;. The eigenvalues of Cp, are denoted A;, and eigenvectors
are v; for 1 =1,2,3.

2) Shape factors: Keypoints are the points where the neigh-
bouring points represents a unique shape of the point cloud. To
determine which points to choose, we first have to analyze the
shape around each point. This is done using the eigenvalues
and eigenvectors calculated earlier.

An ellipsoid

(EQ y2 Z2

can be formed around the center p; with the eigenvectors vy,
as the principal axes and the eigenvalues A\p, and a = Ay, b =
A2, ¢ = Az, where Ay > Xy > A3 >0 and Ap, = [\ Ay As]”

With this ellipsoid, we can evaluate the shape of the sur-
rounding points. If A\; > 0, Ao = A3 = 0, then the surrounding
points are on a line in the direction of the eigenvector v, while
if Ay = Ay > 0,3 = 0, then all the points lie on the plane
spanned from the eigenvectors vi and va. If \j = Ay = Ag,
then the surrounding points form a sphere or an otherwise
voluminous form.

Knowing this, we can classify the surface of the point cloud
at the specific point, by using three shape factors [1], [26]

A — Ao
= ——— 13
S VT Vi (13)
2(X2 — A3)
)= —F"F " 14
PN F A+ N3 14
33
Co= ——"—— 15
A1+)\2+>\3 ()

where C; + C}, + Cs = 1, which means that the three shape
factors are less than or equal to unity.

The neighbourhood of a point can then be classified as
follows: If C} = 1, the neighbourhood forms a linear shape; if
Cp = 1, the neighbourhood has a planar form; and if Cs =1
the neighbourhood has a spherical form.

3) Selecting keypoints: We define a point p; to be a keypoint
if the neighbourhood IV; of the point has at least n,;, points,
and the shape factors satisfy the conditions

Cy>6p0r Cp >0y 0r Cy >0, (16)

where 7min, 01, 6, and J, are user-specified keypoint param-
eters. The parameter n; defines the minimum of neighbouring
points that is required. This parameter is used to ensure that
the calculated shape factors for p; are reliable. With too few
neighbouring points, which happens with outliers, each point
will have a big impact on the eigenvalues, and therefore the
shape factors, which means that measurement noise has a large
impact on the shape factors. By having a large n;, we can
effectively filter out these outliers.

When considering the values of these parameters, one has to
take into account the shape of the point cloud and the density
of points. The goal is to use these parameters to select as
few points from both point clouds, but also that the points
are chosen from the same regions on the point clouds. For
instance, a point cloud with many large flat surfaces benefits
from having 0, > 1, effectively disregarding the C), shape
factor, and choosing a high 9; and J;, in a range from 0.3—0.5,
which will select the points that are not in the flat surface
regions, but rather the edged surfaces. An example of point
selection is shown in Fig 1.

(a) A CAD model view of (b) A 3D camera mea- (¢) A 3D camera mea-
object A, with the approx- surement of object A surement of object B
imately same view angle

as in Fig 1b.

Fig. 1. A sample of the keypoint selection process using (16) with the
parameters n = 200, 6; = 0.3, 6, = 1 and §; = 0.3. It is seen that the
keypoints in Fig la and Fig 1b are similar, while that of Fig Ic is different.
This is a wanted behaviour as the match between the point cloud in Fig la
and Fig 1b will be better than that of Fig 1a and Fig lc.

4) Automatic generation of keypoint parameters: When
comparing large sets of point clouds it is tedious to manually
select keypoint parameters 7min, 6, 0p and J,. It would then
be beneficial to analyze each point cloud and automatically
determine which points seem more unique than others, and
generate keypoint parameters based on this.

We define following function to rank the points in a point
cloud

F(Pi)Z{

where |IN;| is the number of points in the neighbourhood IV;,
and Cj, Cp, and C; are calculated for the point p using (13),
(14) and (15) respectively. Since C; +C, + Cs =1, F =0
if either C; =1, C, = 1 or Cs = 1, which represents a very
unique point. F' = % means that C; = C), = C; = %, which
is not a unique point, which is the maximum value of F'.

By arranging each point p; in a point cloud from the lowest
to the highest value of F'(p;), we can select k points with the
lowest score which, will be the keypoints selected from the

point cloud. In other words,

{piii=1,.. kk<|X|} (18)

‘N’L| Z Mmin

Clcp + CpCs + CSCIa
. ‘N7,| < Mmin

3

A7)

X keypoints =

where k is a user-defined parameter. In order to sample the
same type of points from Y we need to estimate the parameters
that would yield the same results as in Xjeypoints-
To do this we perform an algorithm
oy =0p,=0s=1
for all p € Xieypoinis dO
if C; = maX(C’l,C’p,CS) and C; < ¢; then
0, =C
else if), = max(Cj, C,, Cs) and C, < 4, then
dp =Cp

else if C; = max(C;, Cp, Cs) and C, < d5 then
0s = C
end if
end for

where Xieypoints are the & points in X with the lowest S. The
algorithm effectively groups the keypoints into three groups,
one where Cj is the maximum, one where C), is the maximum
and one where Cj is the maximum. The algorithm then checks
each group and selects the corresponding J to be the lowest
value of C' within each group.

This gives an estimate of ¢;, J, and J, which can be used
to pick the keypoints Yieypoins in Y using (16). The npyi,
parameter is still dependent on the point density of Y, and
cannot be estimated from the keypoints in Xieypoints, hOWever,
unless there is a significant difference in the point density
between X and Y then n,,;, can be chosen to be the same
for both X and Y.

C. Generation of keypoint descriptors

In order to compare keypoints from Xyeypoints and Yieypoints
we need to find a measurable comparison between them. This
is done by generating a descriptor for each keypoint which
describes the shape of the keypoint and can be used to compare
with other descriptors.

To do this, we define the curvature along the surface where
each keypoint lie. This is done by generating two spheres,
one which describes the curvature along the least curving
direction of the surface as given by the eigenvector v; of the
covariance matrix Cp,, and the orthogonal direction as given
by the eigenvector vs.

Note that the covariance matrix was computed from (11)
at an earlier step of the method, and that this covariance
matrix defines an ellipsoid which is fitted to the points of the
neighbourhood in the sense that the point of the neighbourhood
forms the volume of the ellipsoid. In contrast to this, the
neighbourhood is regarded as the surface of the spheres that
are fitted in this step, which means that these spheres have a
different geometry from the ellipsoid defined by the covariance
matrix.

To estimate these spheres, we use the method for n-sphere
fitting to a set of points using Conformal Geometric Alge-
bra [10]. The motivation for this is that conformal geometric
algebra provides a convenient and very efficient description of
spheres, and the distance between points and spheres. Note
that the algorithms of the implementation can be formulated
efficiently in terms of linear algebra. The method reduces to a
to a Pratt fit [25] in the case that the sphere fit is reduced to
a circle fit, as pointed out in [10].

The method generates a 5 x 5 covariance matrix for a set
of points P,

C= Z([R][PAT)G (19)

where P; € Xiyeypoinis are conformal points and

100 0 0
010 0 0
G=1001 0 0 (20)
000 0 -1
000 —1 0

In order to find the sphere S we can find the eigenvector
corresponding to the smallest eigenvalue, vy, and define it as
the dual of the optimal sphere estimate

[S] = vs @1

In order to generate the sphere that represents the least
curvature, a weight is added to each point when calculating C.
First we define the plane ITy,, which is spanned from v; and
v3 and also intersects Py € Xieypoins, Where v1 and w3 are
the eigenvectors found using the covariance matrix describing
the neighbourhood of Py, Nkp).

Since v; is the eigenvector that corresponds to the eigen-
value A, it also represents the direction of most variance in
regards to the neighbourhood INy,. The direction with the most
variance, when considering surfaces, is also the direction with
the least curvature. The plane II; is therefore the plane which
cuts the surface along the least curved direction.

By extending the n-sphere method to a weighted sum
equation

n
=Y (PP e IP G (22)

=0

CPkPl

where P; € Xieypoints, w 1S a weight parameter, and |P; -
I, | is the distance from the point p; to the plane ITy;, .
The weight is calculated so that all points that lie on the plane
IIy, are given the weight of 1, and the weight will decrease
the further the point is from the plane. This makes the points
close to Iy, , i.e. the points that represents the curvature along
the least curving direction are weighted higher than the ones
further away.

The weight element can be viewed as a Gaussian distribution

N2
(,0) = exp(~ T 23)

where P; - ITy,, = —(z — p)? and w = 5.
We can then use the covariance matrix Cy, to find the
sphere Sy, by finding the eigenvector which corresponds to

the smallest eigenvalue, i.e. vs.
[Skp,] = V5 (24)

To find the curvature along the direction orthogonal to that
of v;, we calculate yet another plane, IT kpy > which is spanned
from v and w3 and intersects the same point Py € Xieypoints
where v, and w3 are the eigenvectors are found using the
covariance matrix describing the neighbourhood of Py, IN [ip].

This is again used to calculate the covariance matrix

Cp,, = Y (P[P 1P)G (25)
=0

Sz

Fig. 2. An example of a descriptor. The spheres are shown as circles in the
figure to make it easier to view. The blue circle of S; lies on the blue vi-v3
plane, while the green circle of S lies on the green va-v3 plane. Note that
the green sphere does not intersect with the keypoint py,.

which describes the curvature along the direction orthogonal
to that of v;. We can then generate the sphere Sy,, by using
the eigenvector corresponding to the smallest eigenvalue of C.

[Skpz] = V5 (26)

With these two spheres we can define the descriptor for the
keypoint pyp

ka = {Skplv Skpg} 27

An example of such one descriptor can be seen in Fig 2. In
the figure, sphere fitting cases of Fig 4 are used in the two or-
thogonal planes v;-vs and vy-vs. This generates a descriptor
which is unique for each keypoint and can accurately describe
the surrounding surface. It can be seen that the blue sphere has
an almost infinite radius, which is because in that direction the
point cloud is flat as a plane. If the point cloud was a corner,
then both the green and blue spheres would be equal and with
a small radius.

Fig 3 shows a set of examples of different surfaces, and the
estimated spheres that are calculated. The different values of
r and d can be seen in Fig 4.

This process is then repeated on all keypoints in Xieypoints
and K{eypoints-

D. Estimating point correspondences

When all the descriptors are generated, it is possible to
estimate the correspondences between Xyeypoints and Yieypoints-

To find the corresponding point t0 P, € Xieypoints WE Solve
the equation

min E(pkvpl)v v P € }/I(eypoints (28)

(a) A flat shape. S; (blue) and S2 (b) A wedge shape. S1 (blue) has the (c) A corner shape. S (blue) and S2(d) A curved shape. S1 (blue) has the
(green) are both flat and therefore has parameters r ~ d & co. S2 (green) is (green) are both edge shapes and there-parameters r ~ d ~ oo. Sa (green)

d=~r=oo. a edge shape, resulting in d > r.

Fig. 3.
circle for Sa. The spheres are represented by circles to simplify the figure.

where

e(pr,p1) = (rix — 1) + (dgr — dp1)? (29)
+ (rra — 112)* + (di2 — di2)? (30
and

2
Ti1 = Sk1 - Sk

d?, = Si1 - Sp1 — 2851 - P,
;;1 k1 Ski w1 - P 31)
Tho = Ska - Sk
dzy = Ska - Sk2 — 28k2 - P,
i =S - Sn
d* = S; -8 —2S; - P,
121 1n-Sn n-P (32)
Tip = Si2 - Si2
dy = Sia - Si2 — 2812 - P,

where 71, Tr2, 771 and 1y are the radii of Sy, Sk2, S;1 and
Si2 respectively, and dy1, di2, djp and djo are the distances
between the center of Sy; and pg, Sio and pg, S;; and p;
and S}5 and p; respectively. The results from different sphere
estimates and the relationship between r and d can be seen in
Fig 4.

E. Pose estimation

At this stage, all the points x; in Xyeypoints has an estimated
correspondence to a point y; in Yieypoinis- With this correspon-
dence, the pose can be found by minimizing (1) for the point
clouds Xieypoints and Yieypoins defined by the keypoints. This
is straightforward, and can be done in the usual way using
Singular Value Decomposition (SVD) as described in, e.g.,
(2], [37].

In this work, the pose estimation was done in terms of
Conformal Geometric Algebra using the method of [38]. The
reason for this was that the estimation of the spheres of the
descriptors was based on geometric algebra, and it was decided
to use this also for the pose estimation. It turned out the pose
estimation gave as good as identical accuracy with the methods

fore have d > r.

follows the curve along the surface,
resulting in 7 ~ d.

A sample of different types of surfaces, and their corresponding r and d values. The sphere estimates are marked as a blue circle for S; and a green

of [38] and the SVD method of [2], [37], and that the SVD
method had 10 % less computation time.

To proceed, it is necessary to introduce the outer prod-
uct [11], [16]. The outer product of two basis vectors in R*!
satisfies e; Ae; = —ej;Ae;, 4,5 € {1,2,3,00,0}, and it follows
that e; A e; = 0. The outer product of basis vectors is written
e;N\ej = e;;, which is of grade 2, e; AejAey, = €45, which is of
grade 3, and so on. Note that a repeated index means that the
outer product is zero, which follows from e;; = 0. The highest
grade nonzero outer product of basis vectors is ep12300, Which
is of grade 5, and is called the pseudoscalar. The geometric
product of two basis vectors is written e;e; = e; - +¢e; Aej.
Calculation rules for geometric products of more than two
basis elements are found in [11].

The conformal geometric algebra over the space R*! is
G4, = span{l,eq, ez, e3,€0, €00, €23,€31,€12, - -, €012300 }»
which is closed under the geometric product UV of two
elements U,V € Gy ;. It is noted that the basis elements of
Gy, are of grade 0, 1, 2, 3, 4, and 5. An element of Gy
is called a multivector, and is given by U =), ure; where
ur € R are scalar coordinates, and I denotes the indices of the
basis elements of G4 ;. The reverse of a multivector is given
by U =) ,urer € Gy,1, where €; means that the ordering
of the factors in each basis element has been reversed, e.g.,
€;j = €j; and €;;; = ey;;. Then the geometric product of two
multivectors U = >, ure; and V. = >~ ;vsey is given by
UV = %", > ;urvsere;. The scalar part of the geometric
product UV is denoted by (UV).

The pose can described in terms of a screw displacement
defined by a rotation # about a line, and a translation d along
the same line. Let the line be given in Pliicker coordinates by
the direction vector a = aiey + ases + azes and the moment
b = bieq + baes + bzes, where a - b = 0. Then in conformal
geometric algebra the pose can be described by the motor [35]

0 0
M:cosi +sin —A

2
d 0 .0 d . 0
+e (2 cos §A + sin §B —3 sin 2) (33)

D

p R A
]

(a) Sphere estimate of a spherical sur- (b) Sphere estimate of a planar surface. (c) Sphere estimate of an edge. r < d. (d) Sphere estimate of a point. r < d.

face. r = d. rad~ oo.

Fig. 4. A sample of resulting sphere estimates on different surfaces. The different values of r and d indicate what the different shapes are.

where A = ajea3 +azess +aseiz, B = biegs +baesi +bzeqn
and € = €391 1S the dual unit. From this it can be seen that
a motor M is in the 8 dimensional linear space

M = span{l, €23, €31, €12, €100, €2005 €300, €12300 } (34)

Let ¢;, i = 1,...,8 denote the basis elements of M, that is,
c1 = 1,c9 = es3,c3 = €31, Then the motor can be written
M = Zle m;c;. It is seen that the motor M can be described
in terms of the coordinate vector m = [my, ..., mg]T, which
is partitioned as m = [rT tT]T. Here r and ¢ are four-
dimensional coordinate vectors, where r describes the rotation
and ¢ describes the translation of the displacement described
by M. It can be shown that the motor M given by (33) satisfies
MM = 1. Therefore M is a motor if and only if

MeM and MM =1 (35)
The error function ¢, for between the point xj € Xieypoints
and the corresponding point y € Yieypoints» i defined as

) _ —
e = —5di = (MypM) - x; = (MyMxi) (36)

The pose estimation problem can then be formulated as

mA«C}XZ(Mykwa, MM =1 (37)
k=1
where n is the number of points in Xieypoinis- 10 solve this
optimization problem, we use the method in [38]. The operator
L is defined by LM = >"}'_, yiMxy, so that the optimization
problem can be written

mj&x(ﬂﬁM}, MM =1 (38)
It is noted that
s 8 8
(MLM) = Z mim;(€;Le;) = mTQm (39)
i=1 j=1

where Q = {Q;;}, and Q;; = (€;Le;).

Let the subspace M be given by
M = span{1, €23, €31, €12, €10, €20, €30, €3210 } (40)

Let the basis elements of @be denoted ¢, i =1, ... ,8. Then

the basis elements ¢’ of M will be reciprocal to the basis

elements ¢; of M, which means that ¢/ - ¢; = (c/¢;) = §;4

and 6;; is the Kronecker delta. The projection of a multivector

Y € Gy,1 onto M is given by Py;(Y) = Z?:l c{e;Y).
Define the matrix L = {L;;} by

k

Lij =Y (€:iPg(Le;)) 41)

i=1

and let L be partitioned into 4 x 4 submatrices, such that

L, L.
L — rr T 42
[Ltr LtJ “2)
Then the 4 x 4 matrix L’ is defined by
L/ = er - Lrt (L:ZLW) (43)

where L;; denotes the Moore-Penrose pseudoinverse. The
coefficient vector r of the rotation can then be found as the
eigenvector of L’ associated with the largest eigenvalue. This
gives the rotation with the smallest rotation angle. The coeffi-
cient vector t of the translation can be found by computing

t=—(LiLy)r (44)

Then the motor M is given by the coordinate vector m =
[T, ¢T)T.

IV. EXPERIMENTS

The proposed method was compared with a selection of
state-of-the-art methods for initial alignment. These methods
were Fast Point Feature Histograms (FPFH) [28], Point-Pair
Features (PPF) [12], Signature of Histogram of OrienTation
(SHOT) [36], 3D Shape Context (3DSC) [13] and Globally
Aligned Spatial Distribution (GADS) [23].

There were a total of three experiments conducted. The first
was where two instances of the same point cloud had a known

Fig. 5.
views

Multiple point clouds of the same 3D CAD model, from multiple

displacement between each other, and the proposed method
was run several times with different parameters, in order to
analyze what impact each parameter had. In the second ex-
periment, two instances of the same point clouds had a known
displacement between them and one was subjected to different
Gaussian noise. Both the proposed method, FPFH, PPF, SHOT,
3DSC amd GASD were used, and their performance was
evaluated. In the last experiment, the position of a 3D model
in a scene was estimated. Here, each method tried to find the
alignment between two different point clouds, one generated
from a 3D model and the other captured by a 3D camera,
where the displacement was not known. This demonstrates a
real world application where one tries to estimate the position
of an object in a scene with only the use of a 3D model.

A. Setup

1) Hardware: The hardware that was used for the exper-
iments, was the same for all three. The computer that was
used was a desktop computer with an Intel Core i7 7700k
Sky Lake at 4.2 GHz with 32GB 2666 MHz DDR4 and a
EVGA GeForce GTX 1080 Founders Edition graphics card.
The computer was running Ubuntu 16.04 LTS.

The point clouds that were taken with a 3D camera, were
taken using the Zivid 3D camera provided by ZividLabs [33].
The Zivid 3D camera outputs 2.3 Mpixel RGBD image, with
a field of view of 425x267 mm at a distance of 0.6 m with a
depth resolution of 0.1 mm at the same distance.

2) Point Cloud Data: There were a total of 129 point clouds
used in the experiments.

84 of these were generated from two 3D CAD models,
where a simulated 3D camera generated point clouds from 42
different angles around each CAD model. A sample of which
is shown in Fig 5.

10 of the point clouds were taken with the Zivid camera.
The camera captured a total of 4 scenes where a set of objects
were placed on a table. Each object was detected using the
object detection method described in [34], where the proposed
RANSAC method was used to find the table, and the region
growing algorithm was used to separate the objects on the table

(a) 2D image taken with the Zivid
Camera

(b) Point cloud acquired by the
Zivid Camera

Fig. 6. The objects on the table, where the orange and blue objects are
detected and their pose are estimated. The image is taken with the Zivid
Camera.

(b) 3D point cloud
Stanford
Happy Buddha

(a) 3D point cloud of the Stanford
Bunny. of the

(c) 3D point cloud of the Stanford
Dragon

Fig. 7. A sample of the database point clouds used.

from each other. The method for object recognition proposed in
the paper was n