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Abstract. The paper proposes the kernel probability density function approach to estimate the distribution of 

measurements on a part which is measured in a coordinate measuring machine (CMM). The study is based on the 

experimental data derived from internal cylinder measurements. The distribution free model suggested by Wilks was 

used as a reference for the selection of the sample size. Three cross sections of a cylinder were measured regarding to 

this reference. The work defines the minimum required sample size for obtaining at least 0.95 proportion of radius 

variation for particular studied cylindrical part with 95% confidence level.  

1 Introduction  
The main goal of Geometric Dimensioning and 

Tolerancing (GD&T) inspection of a part is to assess if 

the geometry and dimensions of the part are inside of the 

specified tolerance limits to verify that an assembly fits, 

or that the intended functionality of the part is guaranteed. 

This paper deals with verification of radius size variation 

of internal cylinder.  

Coordinate measuring machines (CMMs) are 

universal and widely employed automated measuring 

systems in industry [1]. One of the most critical 

parameter of measuring strategy with CMM is the 

number of measuring points that is used to extract data 

from the part features. Obviously, a greater number of 

measuring points provides a better accuracy, however it 

leads to higher time consumption and costs. Since the 

accuracy requirement in a design specification is defined 

by the tolerance interval, within which the part dimension 

or geometry may vary, then evidently, it should exist a 

certain number of points sufficient enough to confirm 

with some given probability if the size is inside of the 

tolerance limits or not. 

The influence of sample size on the measurement 

result has been widely discussed, and several different 

approaches has been used to estimate the contribution to 

the measurement uncertainty. Approaches such as 

statistical methods [2,3] (for normal distribution), fuzzy 

logic [4], genetic algorithm [5], extended zone model 

optimization [6], adaptive sample strategy with use of 

Kriging models [7] and analytical methods with 

implementation uncertainty simulations [8, 9] have been 

suggested. However, a standard guide or criterion for 

sample strategy with CMM GD&T inspection has not 

been established yet. 

According to [10] “a statistical tolerance interval is 
an estimated interval, based on a sample, which can be 
asserted with confidence level 1 ��  to contain at least a 
specified proportion p of the items in the population. The 
limits of a statistical tolerance interval are called 
statistical tolerance limits.” Theoretically, the statistical 
tolerance interval for the case of normal distributed data 

set is the most well developed method [11, 12]. There are 

tabulated data in international standard ISO16269-6 for 

calculating both one-side and two-sided statistical 

tolerance intervals for sample size 2n �  and the at least 

population proportion p  for such confidence levels 

100(1 )%��  as 90%, 95%, 99%, 99.9%. However, if 

other tolerance intervals (in form of k�� ) need to be 

found, which are not provided by the standard, for 

example other p  and/or not typical 1 ��  value, or other 

sample size, then the K.factor function from the  

“tolerance” package in R programming language may be 

employed to calculate the factor k . 

This paper provides an approach for estimation of an 

optimal number of the measuring points for a two-sided 

statistical tolerance interval based on a distribution-free 

model. A continuous probability density function (pdf) 

from measurements from a workpiece was approximated 

by kernel density estimator (KDE). The estimated 

continuous pdf was further used to simulate different 

sample strategies and evaluation of the confidence level 

for detecting at least 0.95 content of total radius variation 

range.  

2 Data and experimental study 
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An internal cylindrical hole of an aluminum workpiece 
produced by a turning operation with nominal diameter 
60 mm and length 130 mm was inspected in a CMM 
(Leitz PMM-C-600) with an analogue probe to detect a 
largest possible deviation of radius variable. The cylinder 
axis was aligned with the vertical axis (z axis) of the 
CMM. Three cross sections of the cylinder are measured: 
the first close to the top (Section A), the second in the 
middle (Section B), and the third on the bottom (Section 

C).  

Table 1. Shapiro-Wilk normality test for 473 points sample 

Sections Section A Section B Section C 
P-value 5.392e-07 0.007842 0.01435 

 

There are uniformly distributed 473 points coordinates 

( , )i ix y  measured around the circle in each section, and a 

least squares circle (LSC) method was utilized to 

calculate the circle centre. The radius variable ir , for 

each measured point was calculated by: 

 2 2( ) ( )i i c i cr x x y y� � � �                      (1) 

The uncertainty of the CMM itself is about 10 times 

less than inspected radius variance range, and thus it is 

not considered in the analysis of sample size.  
Intuitively it is clear that less number of points may 

provide lower measurement accuracy due to the 
probability that extreme points on the feature are missing 
in the extracted data set. We have used MATLAB source 
for our simulation approach to investigate the degree of 
influence of sample size on the inspection confidence 
level and the detected radius variation range. 

It is always advisable to evaluate the normality of a 
distribution of the original data set in the very beginning. 
The Shapiro-Wilk normality test [13] was applied to the 
measured data sets by use of the shapiro.test function in 
the R programming language. The results are shown in 
Table 1. The extremely lower p-value (especially Section 
A and Section B) yields us a reason to reject the 
assumption about normal distribution of the 
measurements. 

2.1 Distribution-free model 

The distribution of the radius variable of the part is not 
known before we start the measurements. We will 
therefore suggest to use the Wilks criterion [14, 15] to 
define the minimum sample size. The criterion is based 
on the order statistic. It postulates the following: if an 
investigated random characteristic belongs to a 
population of any unknown continuous distribution 
function, then at least a content p  of the population 
included between the smallest observation minr  and the 
largest observation maxr  of the data sample with 
confidence level (1 )�� , and a required minimum sample 
size minn . For the two-sided tolerance interval with the 

conditions determined above, can be expressed by 
following [10]: 

	 
1
1min minn n

min minn p n p ��� � � � � .     (2) 

Results computed by (2) of minimal sample size for 
the two-sided statistical tolerance limits (between the first 
and n-th order of sample order statistic) with unknown 

continuous distribution, and predefined (1 )��  and p , 

are shown in Table 2. As long as the number of 
measuring points supposed to be the natural numbers 

( minn ¥ ), negative solutions were not considered, and 

all results of Table 2 were rounded to the nearest upper 
integer. This particular fact together with the distribution 
independency of (2) provides a robust property of the 
method, which is further going to be confirmed by the 
expirement data and a simulation model. 

Table 2. Minimal sample size  minn   for proportion p  and 
confidence level 1 ��  

Confidence 
level , 

100(1 )%��  

Proportion of population, p 

0.500 0.750 0.900 0.950 0.990 

50 3 7 17 34 168 

75 5 10 27 53 269 

90 7 15 38 77 388 

95 8 18 46 93 473 

99 11 24 64 130 662 

 

 

Figure 1. A histogram and kernel density estmate of f(r) for 

Section A with sample size 473 points 
 
Regarding to the above description for the two-sided 

statistical tolerance interval with 0.99p �  and 

100 (1 )% 95 %�� � �  (the actual confidence level is 

95.02%), the minimum sample size is 473 (Table 2). That 

is the total number of measuring points we used in our 

inspection of the cylinder sections. 

2.2 Kernel density estimation  

In practice, the data distribution is often unknown and/or 

may contain outliers. Hence, it is reasonable to estimate 

the tolerance intervals based on more general 

assumptions when it is impossible to describe sample 

data with any known standard distribution functions. A 

possible solution in such case is an estimation of the pdf 

directly from the measured data sample. A non-

parametric statistic may be used in this way. One 

possibility to do that is the well-known histogram 

technique. However, the histogram suggests a distribution 
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interpretation only in form of bins and it is less useful for 

further appliance due to lack of continuity. Meanwhile a 

limited number of known pdf ( )f r  are available to 

describe a continuous-valued random variable 

(logarithmic, exponential and so on). To avoid such 

restrictive assumptions about the form of ( )f r  the KDE 

may be applied [16]. Further, using the kernel estimator 

based on original measured data, an opportunity appears 

to generate any different random data samples regarding 

to the initial data distribution. 

2.3 Kernels and weighting function   

Similar to the histogram we need an estimator of ( )f r . 

The probability that random variable is within of the 

interval r b�  can be written as following: 

( ) ( ) 2 ( )

r b

r b

P r b R r b f d bf r� �
�

�

� � � � � �� ,  (3) 

and hence  

1
( ) ( )

2
f r P r b R r b

b
� � � � � .   (4) 

Alternatively, the frequency for the given interval 
could be estimated by the equation: 

 

1

1ˆ ( ) ( , ),

n

i
i

f r w r r b r
n �

� � �� � � ��  (5) 

where the estimator ˆ ( )f r  has the properties of a pdf, i.e. 

positive for any r  and an integral area equal to 1. Then a 

weighting function ( , )w b� can be generalized in this way: 

1
( , )w b K

b b
�� � �� � �
� �

,   (6) 

where b is the bandwidth or smoothing constant of 

weighting function and K  is the standardized weighting 

function (with 1b � ), which is the kernel. 

2.4 Kernels’ parameters  

The degree of smoothing of ˆ ( )f r  depends on parameters 

of ( , )w b� such as the kernel K and the bandwidth b, 

which determine a shape and a width of the weighting 
function respectively. The proper choice of K and b is a 
subject of an optimization problem. 

The accuracy of the kernel density estimator can be 
evaluated by mean squared error (MSE), mean integrated 
squared error (MISE) and asymptotic mean integrated 
squared error (AMISE). 
According to previous research [17] Epanechnikov 

function was defined as the optimal kernel in respect to 

ˆ( )MISE f : 

2

3
1

( ) (1 )4 5
5

0

K � �
�
�� ��
��

   
5

.

for
otherwise

� �
  (7) 

The bandwidth b depends on different factors e.g. 

unknown pdf ( )f r , kernel type, number of observations 

in the sample and so on. There are a number of methods 
available to optimize the bandwidth parameter such like 

bias cross-validation (BCV), unbiased cross-validation 
(UCV), direct plug-in rule (DPI) and others. The methods 
can have a different performance dependently on the 

estimation function ˆ ( )f r used and the pdf ( )f r estimated. 

Thus, we use Epanechnikov kernel and default MATLAB 

bandwidth estimation in this study. 

2.5 Date estimation by kernel function 

The radius variable ir  used in simulation was computed 

by (1) with assumption of a unique circle centre, which 
was obtained from LSC based on 473 measurements 
points. The rounding of the values by one decimal place 

( 4 11 10� ��  mm), on the one hand allows considering the 

cylinder form tendency and possible outliers, and on the 
other hand do not take into account unnecessary accuracy 
requirements to the data estimated circle centre 
coordinates. 

 

Figure 2. Kernel estimates ˆ ˆ ˆ( ), ( ), ( )A B Cf r f r f r  for three 

sections based on 473 points sample size machine. 

Estimates of pdf ( )f r  for the three cylinder sections 

based on Epanechnikov kernel and the sample size 473 
measuring points are shown on Fig. 2. Observing the 
curves one can notice a distinction of the distribution 
parameters such as the mean values, the variations and 
the data spread for the cross-sections, which belong to the 
same cylinder. 

All these mentioned facts together with rounding of 
the sample point numbers give us the reason to presume 
that the small centre coordinate offsets can be neglected. 
The robustness of the simulation model is discussed in 
the next sections. 

2.6 Estimation of an optimal sample size 

In order to discover an optimal sample strategy for the 
inspection of the part, a statistical simulation was carried 
out in MATLAB, by using the KDE 

ˆ ˆ ˆ( ), ( ), ( ) ,A B Cf r f r f r  estimated from the CMM 

measurements of workpiece, see Fig. 2.  
The eight initially predefined different sample sizes   

{5; 10; 15; 30; 60; 90; 93; 95}n � were simulated with 

510 iterations for each sample size in . The maximum 

maxr  and the minimum minr values were detected for 

every new generated sample. The population content p  

for the each iteration was evaluated as a difference of the  

3

 
   

 
 

, 04001 (2018)MATEC Web of Conferences matecconf/201220 82200

ICMSC 2018

https://doi.org/10.1051/ 4001



 

 

Table 3. The statistical test simulation with 510 iterations for each in sample size  

Section A 

Sample size n 5 10 15 30 60 90 93 95 

Probability P%, (p≥0.95)a 2.2 8.5 16.8 44.9 81.2 94.5 95.3 95.5 

Section B 
Sample size n 5 10 15 30 60 90 93 95 

Probability P%, (p≥0.95) 2.1 8.5 16.4 44.3 80.9 94 95 95.4 

Section C 

Sample size n 5 10 15 30 60 90 93 95 

Probability P%, (p≥0.95) 1.9 8.5 18 45.1 81.3 93.6 94.9 95.5 

a. Probability P of covering a range with population content p 

cumulative distribution functions (cdf) of maximum and 

minimum random variable ir , based on KDE. Then 

conditions of equality/exciding 0.95 of total radius 
variation range was tested by: 

min max max min( ) ( ) ( ) 0.95R Rp r r r F r F r� � � � �  ,      (8) 

 where ( )RF r  is cdf of a real-valued (either maximum or 

minimum) random variable ir  , calculated with the kernel 

pdf estimator ˆ ( )f r . The number of successful iterations 

was assigned as 1 (or 0 – otherwise) and summed up as 

NSum . The final probability %P  for each sample size 

in  was calculated as a rate of /NSum M , where M  is 

the total iteration number.  

In spite of the predefined initial sample size (473 
points) taken from the Table 2 with given 0.99p �  and 

100(1 )% 95%�� � , the total area under the estimated 

kernel function is equal to 1 (from pdf properties). That 
gives as an opportunity to generate any size of data 
sample even larger than the initial sample size. This in 
turn leads to independency of our simulated results 
presented in Table 3 on the initial parameters of the 
model (2). 

3 Discussion of results 

Analysis of measurements obtained from cylinder 
sections shows that parts produced by a turning operation 
has unknown non-normal distribution of radius variables. 
The parameters (e.g. mean, variance, skewness) of the 
distributions in difference sections of the cylinder are 
apart from each other. However, the sample strategy 
according to table 3 for the sections is finally the same. 
Thus, the applied simulation model based on the 
experimental data confirms the robustness property of the 
method proposed by (2) in section 1. For example, Table 
3 shows that the optimal sample size is about 93 points 
for all sections, which agrees with the data in Table 2 (for 

100(1 )% 95%�� � , 0.950p � ). Thereby the simulation 

based on distributions estimated by kernel function 
confirms Wilks model given by equation (2). We can also 
notice that the probability to estimate at least 0.95 

fraction of radius variation range is only about 2% in the 
case of 5 points sample. 

This fact gives us the reason to expect that further 
research of cylindrical parts with larger radius values, 
from other machine operations and different materials of 
workpiece, most likely will provide the similar results. 

In the simulated model, the circle centre is assumed 
the same for any data samples. For different sample 
points the centre point would vary, but maximum 

possible range between minr  and maxr  remains a similar. 

In addition, the minimum number of points minn  (Table 2) 

was rounded to the nearest upper integer, thus it makes 
negligible the influence of the centre coordinates. Again, 
a good compliance of the simulation results with the 
distribution free model given in formula (2) demonstrate 
the insignificant influence of the assumptions about the 
centre of coordinates. That also confirm that the 
simulation model itself employs a robust principle. 
Namely, the identical optimal number of points (Table 3) 
for different sections with observably diverse 
distributions improves this statement. 

4 Conclusion 
The innovation of this work is to show the possibility to 
use the distribution free model (2) to predict the sample 
size, its least content and confidence level for GD&T 
inspection with CMM before any measurements are 
performed.  

In addition, the simulation model for robust 

estimation of the optimal sample size based on the 

experimental measuring date has been developed. The 

provided simulation procedure allows evaluating the 

sample sizes and their confidence levels for real 

cylindrical components in industry independently of their 

dimensions and machining process accuracy. Moreover, 

the finite sample sizes, which often used in industry, were 

evaluated. The obtained results demonstrate the particular 

low confidence level especially for the sample sizes from 

5 to 30 measuring points.  

The inspection sample size in production is often 

defined with cost and time-consumption in mind, and 

thereby it could be too small. The applied technique 

provide the demanded guidance criteria based on the 

confidence level and the real data distribution for 
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choosing the proper measuring sample strategy for 

GD&T inspection with CMM in manufacture. 
In solving of a practical problem, it is recommended 

to evaluate the distribution of the initial data in the very 
beginning. If the data distribution is close to the normal 
distribution then the standardized procedure (ISO16269-6) 
can be used to estimate the tolerance interval limits. 
Otherwise, the original distribution based on the CMM 
measurements with predefined confidence level 1 �� , 

the variation proportion p  and the minimum sample size 

minn  should be estimated by (2). Then the smallest and 

the largest order statistics of the sample should be used as 
the tolerance limits. 
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