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Abstract. The paper analyses methods for outlier detection in dimensional measurement. The cross sections of an 

internal cylinder were inspected by CMM (coordinate measuring machine), and received data sets were employed for 

further investigation. The efficiency of Rosner’s and Grubbs’ methods for excluding outliers from the measuring data 

had been estimated. The method of Rosner had been defined as the most effective for this case study. The simulation 

results were confirmed by experimental verification.  

1 Introduction 
The purpose of this work is to analyze the efficiency of 

outlier test procedures for particular type of data sets 

received from inspection with CMM (coordinate 

measuring machine). The following inspection conditions 

are considered: 

� Varying sample size of measurements; 

� Unknown number of outliers presented in the 
sample; 

� A spectrum of different distributions of original 
data sets with unknown dispersion. 

In the CMM inspection of the geometrical 

characteristics of components, the outliers are not 

necessarily incorrect measurements. The existence of an 

outlier could indicate that a further investigation of 

manufacturing processes, measurements procedure, or 

data analysis methods themselves is required. 

The estimation of different statistical parameters (e.g. 

sample standard deviation, sample mean and so on) may 

be affected by outlier presence in the measuring data. As 

a result, it can lead to the invalid estimation of a 

confidence interval and inflate the random uncertainty 

estimates as well, thus a good component may be 

erroneously rejected. That especially yields the particular 

case, when contact fit methods such as MIC (maximum 

inscribed circle) or MZ (minimum-zone) are utilized, 

which are based on the most extreme points and hence 

very sensitive to outliers.  

Outliers are extreme observations, which stay apart 

from the majority of other measurements. In a simple 

case, when only one outlier is presented, its inconsistence 

can be easily observed with respect to the rest of the data. 

However, when a group of outliers is present, it is 

difficult to detect them because of the masking effect, 

which will be described below. At the same time, an 

incorrect assumption about the original data distribution 

may lead to confusion of valid observations with outliers. 

According to ISO 16269-4 [1], the main causes for 

outliers are the following: 

� a measurement or recording error (imprecise 
or/and incorrect);  

� a distribution contamination (one or more 
contaminating distributions); 

� an incorrect distributional assumption;  

� rare observations (extreme observations from 
heavy-tailed original distribution). 

In the particular case of measuring in manufacturing 

conditions, a contamination of a part surface is a frequent 

cause of outliers, even after attempt of surface cleaning. 

In addition, a masking and a swamping effect can 

occur during the data analysis with parametric statistical 

test. The masking effect can happen when too few 

outliers are specified in the outlier detection procedure. 

Then the test performance can be influenced by the other 

outliers and as result, no outliers will be detected. On the 

other hand, if too many outliers are specified in the 

parameters of outlier test, then some valid observations 

can be incorrectly labeled as outliers, which is the so-

called swamping effect. Therefore, to make a correct 

decision whether suspected observations are outliers or 

not can be a complicated task.  

2 Methods 

2.1 Graphical methods 

The first step, before any analytical outlier detection 

algorithms are applied it is a visual analysis of 

measurement data. There are a number of graphical 

methods available such as histogram, scatter diagram, dot 
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plot and so on [2]. The pox plot become a very popular 

descriptive tool to reveal the most suspected 

measurements [3]. In fact, the box plot is a hybrid based 

on both a model and the graphical method. The graphical 

interpretation of data helps to choose the most 

appropriate analytical algorithm i.e. identify whether a 

single outlier or a group of outliers are present in order to 

prevent an influence of the masking or swamping effects, 

as described in previous section. 

There are six data sets (with 475 observations in each) 

comparing with each other on Fig.1. The data sets 

denoted by A1, B1, C1 represent the first measurement 

results with outliers. After the contamination was 

physically removed from the workpiece surface, the 

measurements at the same sections and with the same 

point distribution were repeated with CMM. These data 

sets are denoted as A2, B2, C2 on Fig.1. The box plot 

gives a good demonstration of the influence on statistical 

parameters such as the sample mean, median, skewness, 

data spread, IQR (interquartile range). The relative 

displacement of these parameters can be easily observed. 

The lower and upper fences (lower and upper outlier 

cut-off) is expressed by following: 

( )
1 3 1

LF q w q q� � �                         (1.1) 

3 3 1( )UF q w q q� � � ,                        (1.2) 

where 1 3,q q  are the first (lower) and the second (upper) 

quartiles of data sample, and w is the significant factor [4]. 

The extreme points, which are outside of these fences, are 

indicated by red dots. For example, with significant factor 

1.5w �  red dots can be classified as suspected outliers 

(Fig.1, left), with 3w �  as extreme outliers (Fig.1, right) 

[5]. The vertical box represents IQR of the data, the 

different between the lower and upper quartiles. Thus, we 

do not have extreme outliers in the studied case (Fig. 1, 

right), but there are some suspected observations in all 

sections. The section A represents the case with multiple 

potential outliers, section B with two, and section C with 

a single potential outlier (Fig.1, left). From now on, we 

can precede with selection of the most suitable outlier 

detection analytical algorithm for our particular problem. 

2.2 Analytical algorithms 

There are many outlier methods proposed in the last 

decade [6]. The difference between them can shortly 

formulated by following. 

� What a sample size can method be applied for 
(only for small, only for large, or both)? 

� How strict is a requirement to the distribution of 
data set? 

� Can method be exploited whether for a single or 
multiple outliers? 

� In a case of multiple outliers method, it is either 
necessary to provide exact number of outliers or 
only an upper amount. 

Two suitable outlier methods according to these 

conditions are considered in this research. These methods 

are Grubbs and Rosner/GESD (Generalized Extreme 

Studentized Deviate) tests, which are recommended by 

ISO [1, 7]. Both methods are based on an estimation of a 

distance deviation from the sample mean with 

assumption about an approximately normal distribution. 

The strictness of this normality assumption is examined 

in this paper. 

 
Figure 1. Boxplot of CMM measurements with and without 

suspected observations. 

2.2.1 Grubbs method 

The Grubbs method is used to determine a single outlier 

in a normally distributed data set and can be utilized as 

sequentially outlier detection procedure for multiple 

outliers [7, 8]. It tests two types of hypothesis: null 

hypothesis 0H   – no outliers in the sample, alternative 

1H   – the sample has a one outlier. The test statistic for 

two-sided case computed by (2): 

max iG
s
� ��

�     (2) 

where �  is the sample mean and s is the sample 

standard deviation. The G statistic shows how many 

standard deviations are in an absolute distance of an 

individual observation from the sample mean. The null 

hypothesis must be rejected with a significance level� , 

if the following condition is met: 
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where 
, 2

2
n

n

t �� 	�
 �
� 

  - the Student’s quantile given at 

probability 
2n
�

and 2n�  degrees of freedom in the data 

set with number of observations n . One of the 

weaknesses of the method is the influence by the masking 

effect. 
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Figure 2. Kernel estimates 1 1 1
ˆ ˆ ˆ( ), ( ), ( )A B Cf f f� � �  based on 475 

measuring points with outliers. 

 
Figure 3. Kernel estimates of 2 2 2

ˆ ˆ ˆ( ), ( ), ( )A B Cf f f� � �  based on 

the repeated 475 measuring points after surface cleaning. 

2.2.2 Rosner method 

The Rosner (GESD) method is exploiting for detection of 

single and multiple outliers in nearly normal distributed 

data, when exact number of outliers are unknown. The 

only upper limit m  of expecting outliers is required to 

indicate.  

In order to avoid the masking effect m  should not be 

chosen too small. There are two hypothesis types: null 

hypothesis 0H  – no outliers in the sample, alternative 

hypothesis 1H  – the sample has up tom  outliers. For two 

sided case, the ESD test statistic is computed as a 

following [9]: 

max ii
i s
R

� ��
� ,   (4) 

where �  and s  are the sample mean and the standard 

deviation, respectively. Excluding one observation, which 

maximized i� �� , the test statistic in (4) is 

recalculated again for 1n�  data sample. This procedure 

repeats m  times until all extreme measurements are 

removed from the data set. The output of this 

computation will be the array of 1 2, , ... mR R R . Then the 

critical value ik  for each single element of the vector iR  

is calculated: 

� � � �
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, 1,2,...i m�  (5) 

where � �,pt �  is quantile of Student’s distribution with 

degrees � of freedom and probability / 2
1

1
p

n i
�

� �
� �

. 

Thus the total number of outliers is the largest i  such 

that i iR k� . Opposite to Grubbs test, GESD can be 

influenced by the swamping effect (described above), but 

the influence of the masking effect is relatively neglected. 

Table 1. Efficiency rate of outlier detection (randomly located 
outliers, medium values, 100 observations) 

Number 
of 

outliers 
Method 

Section A 

4.49
A
m� �

 

Section B 

6.00
B
m� �

 

Section C 

4.94
C
m� �

 

1 

Grubbs 0.66 0.65 0.67 

Rosner 0.66 0.65 0.67 

2 
Grubbs 0.36 0.33 0.34 

Rosner 0.60 0.58 0.61 

3 
Grubbs 0.12 0.09 0.09 

Rosner 0.58 0.57 0.58 

4 
Grubbs 0.02 0.01 0.01 

Rosner 0.57 0.55 0.57 

Table 2. Efficiency rate of outlier detection (randomly located 
outliers, large values, 100 observations) 

Number 
of 

outliers 
Method 

Section A 

5.2
A
l� �  

Section B 

6.9
B
l� �  

Section C 

5.7
C
l� �  

1 

Grubbs 0.99 0.99 1.00 

Rosner 0.99 0.99 1.00 

2 
Grubbs 0.95 0.94 0.96 

Rosner 0.99 0.99 1.00 

3 
Grubbs 0.77 0.72 0.76 

Rosner 0.99 0.99 0.99 

4 
Grubbs 0.37 0.32 0.34 

Rosner 0.99 0.99 0.99 

3 Data simulation and case study 
The data sets used in this study were derived from CMM 

(Leitz PMM-C-600) measurements ( , )i ix y taken from 

three cross-sections (A, B, C) of an internal cylindrical 

surface. The cylinder axis was aligned with z axis. The 

circle center coordinates ( , )c cx y for each section were 

estimated with LSC (least squired circle) method by PC-

DMIS software based on 475 measured points. Then the 

radius variable for each measured point ir was calculated 

by: 

2 2( ) ( )i i c i cr x x y y� � � �   .   (6) 

For practical convenience, the result data arrays of 
ir were standardized by ( ) 1000i ir r� � � �  , where r  is 
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the average radius in the cross section. The standardized 
radius variable i�  were further used in simulation tests. 

The data sets of repeated measurements A2, B2, and 

C2 were tested for normality distribution with Anderson-

Darling method [10]. This method is more sensitive to 

outliers and especially effective for detecting any 

departure in the tails of data distribution. Only one of 

three data sets (p-values: 0.001, 0.138, 0.001 for A2, B2, 

C2 correspondently) had p-value over specified 

significance level 0.05, thus the data are quite unlikely 

from a population with normal distribution.  

In order to obtain a form distribution of ( )f � for 

standardized variable i� , the kernel density estimator 

ˆ ( )f �   was applied [11]: 

1

1ˆ ( )

n
i

i

f K
bn b

� �
�

�

�� 	
� 
 �

� 
� ,  ��� � ��        (7) 

where K is the kernel smoothing function, b  is a 

bandwidth and n  is the sample size. Epanechnikov 

kernel was used as the smoothing function K with default 

MATLAB bandwidth b and the sample size n with 475 

observations. The estimates of pdf (probability density 

function) for sections A1, B1, and C1 with outliers are 

illustrated on Fig. 3, and Fig. 4 for repeated 

measurements of the same sections A2, B2, and C2, after 

the outlier issue was physically eliminated (no analytical 

algorithm were used so far). 

The estimated pdf objects 
2 2 2

ˆ ˆ ˆ( ), ( ), ( )A B Cf f f� � � were 

further used to generate random data samples to simulate 

workpiece measurements without outliers (Fig. 4). In 

addition, some of the data points were replaced by 

simulated outliers. The simulation of outliers was based 

on a uniform distribution around a specified deviation 

from the mean value of the random data sample. The 

effectiveness of outlier detection of the Grubbs and 

Rosner methods with different combination of correlated 

factors were estimated from 510  iterations with summing 

two possible results: 0 – failure; 1 – success. In order to 

meet success requirements the same number of outliers 

with identical indexes must be detected (e.g. if only three 

outliers from four detected correctly then result is 

considered as a failure). The efficiencies ,G Re e  (Grubbs 

and Rosner method, respectively) were estimated 

simultaneously as a rate of number of success iteration 

,G RSum Sum to total iteration number ,M then 

/G Ge Sum M� and /R Re Sum M� . 

The following factors were considered in the test of 

the efficiency of outlier detection procedures: 

� non-normal distribution of random data samples; 

� size variation of the random data samples; 

� outliers randomly distributed around a mean value 
of the random data sample with specified 
deviation values; 

� a defined number of outliers in each data set (from 
1 to 4); 

� outliers as randomly distributed data points or as a 
block of data points. 

The more detail description of these factors is given in 

the next section. 

Table 3. Efficiency rate of outlier detection (located as a block, 
large values, 100 observations) 

Number 
of 

outliers 
Method 

Section A 

5.2
A
l� �  

Section B 

6.9
B
l� �  

Section C 

5.7
C
l� �  

2 
Grubbs 0.95 0.92 0.96 

Rosner 1.00 1 1 

3 
Grubbs 0.6 0.52 0.55 

Rosner 1.00 0.99 1 

4 
Grubbs 0.07 0.07 0.06 

Rosner 1.00 0.99 1 

Table 4. Efficiency Rate of Outlier Detection for Various 
Sample Sizes (2 Outliers with Random Locations, Large Values) 

Sample 
size Method 

Section A 

5.2
A
l� �  

Section B 

6.9
B
l� �  

Section C 

5.7
C
l� �  

15 

Grubbs 0.07 0.06 0.06 

Rosner 0.75 0.74 0.76 

30 
Grubbs 0.44 0.42 0.42 

Rosner 0.92 0.92 0.94 

60 
Grubbs 0.84 0.83 0.85 

Rosner 0.98 0.98 0.99 

100 
Grubbs 0.95 0.94 0.96 

Rosner 0.99 0.99 1.00 

4 Simulation and experiment results  
The distribution of outliers in the simulations was based 

on a medium and a large deviation from the mean value 

of the simulated measurements. The medium value for 

the outliers are generated in the interval 

3.90 0.01m s� � �  (Table 1) and the large value of the 

outliers from an interval 4.5 0.1l s� � � (Table 2, 3), 

where s is the estimated standard deviation of the 

simulated measurements ( 1.15As � , 1.54Bs � , 1.27Cs �  

for measurement sets A2, B2, and C2, correspondingly). 

There are different numbers of outliers tested both with 

randomly distributed locations (Table 1, 2) and with 

location as a block (Table 3). For the random location, 

two discrete values, m��  and l�� , were used, while for 

the block location only negative l��  values were 

integrated to meet the most typical conditions (associated 

with contamination). Due to low skewness, the 

simulation results for l��  were very similar thus, they 

are not shown here. The simulation results of the 

influence of the sample size on an outlier detection 

performance were specified in Table 4. The significance 

level 0.05� �  was applied in all tests. All simulation 

tests were carried out in MATLAB and results are 

tabulated in Table 1, 2, 3, and 4. The simulation results 

were rounded up to the second digit from decimal point. 

Both methods were also applied with the experimental 

measurements. The detected outliers were tabulated in 

Table 5. The comparing boxplot of data set after 

removing of outliers (A1*, B1*, C1*) with data samples 

of repeated measurements (A2, B2, C2) are illustrated on 

Fig. 4. There are two large outliers were removed in  
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Table 5. Appliance of the outlier methods with real measurement data (475 observations) 

Outliers 
no 

Outlier 
parameters 

Section A1* Section B1* Section C1* 
Rosner Grubbs Rosner Grubbs Rosner Grubbs 

1 

Index 60 60 459 459 2 2 

Values [mm] 29.9881 29.9881 29.9829 29.9829 29.9835 29.9835 

2 
Index 61 61 - - - - 

Values [mm] 29.9876 29.9876 - - - - 
 

 
Figure 4. Boxplot of the measuring data: A1*, B1*, C1* - after removing of outliers; the repeated measurements A2, B2, C2 – after 

cleaning of workpiece. 
 

section A1 with both Rosner and Grubbs tests and by one 

outlier in section B1 and C1. There were number of 

medium outliers which not detected by any of the 

methods (Sections: A1* and B1*) though some of these 

suspected points disappeared after measurement were 

repeated (Section A2). This fact confirm the simulation 

results, which were obtained in Table 1, for medium 

values of outliers. 

5 Discussion  
In the case of a single outlier, the Grubbs and Rosner 
tests have similar performance. For more than two 
outliers cases there was significant difference in the 
outlier detection efficiency. Both procedure had a lower 
efficiency rate for the medium outlier values (Table 1). 
Therefore, the parametric outlier tests must be used very 
carefully when small value of outliers are presented. 
However, Rosner method had at least 0.98 efficiency in 
whole range 1 – 4 of outliers in case of large outlier value, 
while the Grubbs method has 0.95 efficiency for two 
outliers, but even lower for larger number of outliers 
(Table 2). This is a good demonstration of the influence 
of the masking effect on the Grubbs procedure and the 
very low influence on Rosner method. 

According to the Table 3, the additional simulation 

test showed that outliers distribution either as the block or 

random had no notable influence on Rosner method 

performance what is opposite to the Grubbs method, 

which efficiency was fairly lower for the block location 

of outliers than for random distributed among the sample 

set. Meanwhile, there was a great influence of the sample 

size on efficiency rate observed for both of the methods 

as shown in Table 4. The consecutive outlier detection 

procedure (Grubbs) had efficiency below 0.5 for sample 

size with 30 observations or lower, while Rosner’s test 
could provide at least 0.75 efficiency rate even for 15 

observations sample. In spite of some differences in 

distribution, form and variation range between all three 

data sets the test performance did not distinguished so 

much within each individual method. That leads us to a 

conclusion that both methods have no any strict 

requirements to the normal distribution. 

There were no additional tests of masking or 

swamping effects presented for Rosner method in this 

paper. It is, however, a well-known fact that too small 

number of outliers initially applied in the Rosner test 

(relatively to the actual number of outliers in the sample) 

can lead to the masking effect. However, when the extra 

two outliers had been initialized with Rosner test 

(additionally to the actual number of outliers) during of 

simulation the swamping effect was not observed. 

6 Conclusion 
There are many different outlier procedures available for 

data analysis, but it is a difficult task for an 

unexperienced operator to choose the most suitable test 

for a particular problem. The following specific 

conditions were met for this study with considered 

methods: 

� the ability of the methods work with various 
sample sizes; 
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� the ability to detect multi outliers when maximum 
outlier number is unknown; 

� the stable efficiency (over 0.9) to detect the large 
outliers, which bring the most significant 
influence; 

� the applicability for data from unknown non-
normal distributions; 

� the stability to the masking and swamping effects. 
The outlier detection procedures such as Grubbs and 

Rosner can be successfully applied even with real 

workpiece measurements, which are difference from the 

normal distribution. However, the Rosner method is more 

reliable and hence preferable. Meanwhile the medium 

outliers should be double-checked before 

removing/accepting for further analysis. It is not 

recommended to use samples below 30 measuring points 

to avoid the low efficiency outlier detection procedure. 

The measurement tests conducted with CMM confirm the 

simulation results and all conclusions above. The 

research of experimental measurements also revealed that 

multiple outliers groups can be expected with CMM 

measurements. Therefore, the automated outlier detection 

procedure based on the Rosner / GESD method can be 

effectively applied with a geometry inspection routine. 
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