
Master i fysikk og matematikk

Numeriske Løsninger av Stokastiske
Differensialligninger

Erik Nesvold

Norges teknisk-naturvitenskapelige universitet
Institutt for matematiske fag

Oppgaven levert:
Hovedveileder:

Juni 2010
Arvid Næss, MATH

Oppgavetekst
Numeriske løsninger av stokastiske differensialligninger anvendt i fysikk og finans løses med
forskjellige numeriske skjema og sammenlignes, med hovedvekt på Path Integration by FFT.

Oppgaven gitt: 14. desember 2009
Hovedveileder: Arvid Næss, MATH

Preface

This thesis (hopefully) completes the requirements of the course TMA 4905 Statistikk,
Masteroppgave. I would like to thank Dr Carlos Lourenco at CERN for letting me come
as a technical student to the CMS experiment. Even though doing night shifts in the
control room has not always been as fun, it has been a very inspiring stay and I have
met a lot of interesting people and listened to Nobel prize winners and Stephen Hawking
talk about their research. Life in Geneva has also been pleasant, with a very enjoyable
climate and the fantastic Alps just around the corner.

I would also like to thank my supervisor at NTNU, Professor Arvid Naess for pro-
viding a very interesting direction to my thesis. Although I spent most of the time in
Geneva, Arvid and the author of the PI by FFT paper, Eirik Mo, have always answered
my questions online and sent new material.

The following courses at NTNU and UC Berkeley have proved very helpful as a
preparation for the thesis:

• TMA 4215 Numerical Mathematics - NTNU - Professor Brynjulf Owren

• TMA 4165 Differential Equations and Dynamical Systems - NTNU - Professor
Harald Hanche-Olsen

• TMA 4505 Industrial Mathematics Fordypningsemne - NTNU - Associate Profes-
sor Jacob Laading

• STAT 251B Stochastic Analysis with Applications to Mathematical Finance - UC
Berkeley - Professor Steven Evans

• MATH 228B Numerical Solutions of Partial Differential Equations - UC Berkeley
- Professor James Sethian

• MATH 221 Advanced Matrix Computations - UC Berkeley - Professor Ming Gu

Erik Nesvold
Geneva, June 2010

i

ii

Abstract

The PI by FFT algorithm is implemented and compared to other numerical solvers
for two 2D models in accelerator physics. The solution by finite differences requires a
transformation to the Fokker-Planck equation that corresponds to the stochastic differ-
ential equation, which is shown in section 3. It is shown how multiplicative noise can
be transformed to additive noise by the Itô-Doeblin identity and how this permits an
implementation of PI by FFT. It is shown that finite differences is the preferred method
when the Fokker-Planck equation is available and that PI by FFT performs better than
the other SDE solvers for models with noise in multiple dimensions. Models with noise
generated from more general classes of distributions are studied in chapter 4 in the con-
text of option pricing. Finally, limitations of the algorithms and models are discussed
throughout the thesis and in the conclusion. The source code in the appendix that is in
written in C++ requires the ROOT framework from CERN (root.cern.ch) and the fftw
(Fastest Fourier Transform in the West) library from MIT installed.

iii

iv

Contents

1 Introduction 1
1.1 Stochastic Differential Equations . 1
1.2 Theory . 2

1.2.1 Probability Theory . 2
1.2.2 Stochastic Calculus - Itô’s Integral 8
1.2.3 Jump processes . 15

1.3 Numerical Solutions . 17
1.4 The Fast Fourier Transform . 20

2 Path Integration and Path Integration by Fast Fourier Transform 23
2.1 Path Integration by FFT . 29

3 Fokker-Planck Equations in Physics 31
3.1 General Form - Derivation . 35
3.2 Fokker-Planck in Accelerator Physics . 37
3.3 Exact Solutions . 38
3.4 Numerical Solution by Simulation . 41

3.4.1 Harmonic Oscillator . 43
3.4.2 Stochastic Duffing Equation . 44

3.5 Numerical Solution by Path Integration 46
3.5.1 Harmonic Oscillator . 47
3.5.2 Stochastic Duffing Equation . 50
3.5.3 CPU time . 53

3.6 Numerical Solution by Path Integration by FFT 55
3.6.1 Harmonic Oscillator . 55
3.6.2 CPU time . 56

3.7 Numerical Solution by Finite Differences 56
3.7.1 Harmonic Oscillator . 58

3.8 Global Comparison of Accuracy and CPU time 60
3.9 Summary . 61

v

4 Stochastic Differential Equations with Fat Tail Distributions 63
4.1 General Form of Lévy Alpha-Stable Distributions 65
4.2 Generalized Fokker-Planck equation and Exact Solutions 67
4.3 Simulation Scheme and Solution by PI by FFT 69
4.4 The Normal Inverse Gaussian Process . 72
4.5 Real World Application - Option Pricing 74

4.5.1 The Black-Scholes Framework . 74
4.5.2 Pricing a European Call Option 75
4.5.3 Pricing a Barrier Option . 77

4.6 Summary . 78

5 Discussion, Conclusions and Future Work 81
5.1 Discussion . 81
5.2 Conclusions . 82
5.3 Further Research . 83

A Source code 87
A.1 Runge-Kutta 4 . 88
A.2 Exact . 90
A.3 Convolute . 91
A.4 Fokker FFT . 92
A.5 Fokker PI() . 96
A.6 Bilinear() . 100
A.7 Splin2(), Splie2() . 101
A.8 Fokker Finite() . 103
A.9 FFT levy() . 106

vi

List of Figures

1.1 φh(s) with h=0.1 and t =0.2. 7
1.2 An example path of a simple process. 9
1.3 Strong convergence of the Euler-Maruyama scheme in ∆t for equation

1.23 with µ = 2, σ = 1. 19
1.4 Weak convergence of the Euler-Maruyama scheme in ∆t for equation 1.23

with µ = 2, σ = 0.1. 20
1.5 CPU time [s] versus input size for one FFT and one inverse FFT in Matlab

and C++ (FFTW). The lower line has input vector sizes that are powers
of 2, while the upper line has vector sizes that are prime numbers. 22

3.1 Transversal distribution of the first beam entering point 2 of the LHC on
23 October 2009. 34

3.2 Event display from the first collision events at CMS on 23 November 2009. 35
3.3 Phase plot for the dynamical system 3.6 and 3.7 without noise. K = 1

and γ = 2.1 . 38
3.4 Exact solution of the harmonic oscillator at time T = 1 with K = 0.8, γ =

2.4, σ = 0.6 and x0 = 1, v0 = 1. 41
3.5 Error in the sample mean (|x̄ − 1/2|) for the pseudo random number

generators rand and ran2 in C++. 42
3.6 20 million simulated n(0, 1) random variables using the pseudo random

number generator ran2. 42
3.7 Convergence in N and ∆t for the simulated Taylor 2.0 scheme. 43
3.8 Weak convergence in ∆t for the Euler scheme (left) and the Taylor 2.0

scheme (right). 44
3.9 Simulation of the stochastic Duffing equation. To the left, D1 = 0.0, D2 =

0.23 (only additive noise), to the right, D1 = 1.5, D2 = 0.23 (additive and
multiplicative noise). 45

3.10 Normal distribution n(0,
√
dt) for different ∆x and ∆t. 46

3.11 Convergence in ∆x and ∆t for the path integration scheme. The minimum
error for each ∆x or ∆t is encircled in black. 50

3.12 A uniform grid in the variables (f1, f2) and the corresponding grid in
(x, v) after the backward transformation. 52

3.13 Distributions for (f1, f2)-coordinates and the transformed version in (x, v)-
coordinates. 52

vii

3.14 CPU time for the different parts of the algorithm - 2D model with noise in
one dimension. Each line shows the cumulative time of the computation
including the relevant component, i.e. the top line is the total CPU time
for each value of N. 54

3.15 Fraction of CPU time spent on the different components - 2D model with
noise in one dimension. The values stem from figure 3.14. 54

3.16 PI: CPU time and fraction spent on the different components - 2D model
with noise in two dimensions, bilinear interpolation. 55

3.17 PI by FFT: CPU time and fraction spent on the different components -
2D model with noise in two dimensions, bilinear interpolation. 56

3.18 Finite difference scheme versus the exact solution for the harmonic oscil-
lator. K = 1, γ = 2.1, σ = 0.8, T = 3,∆t = .005 59

3.19 Plot of ρnum − ρex for the finite difference scheme using the same param-
eters as in figure 3.18, but a larger time step ∆t = 0.1. The systematic
difference that is seen is caused by numerical diffusion from the implicit
scheme . 59

3.20 Graphical representation of the convergence in ∆x (left) and ∆t (right)
for the finite difference scheme. The values are the ones given in table 3.9 60

3.21 Comparison of the convergence of the different algorithms against CPU
time: A model with noise in one dimension (left) and noise in two dimen-
sions (right). The accuracy for the two-dimensional noise model is not
known and is assumed to be of the same order as with 1-dimensional noise. 61

4.1 Probability distribution of x with volatility as a function of t. 64
4.2 Evolution of option value with time and as a function of S, with a strike

price E = 20. The value is seen to be higher when the time difference is
large. 64

4.3 Changes in the SAS share price, with a normal distribution 65
4.4 Changes in the SAS share price, with a Cauchy distribution 66
4.5 Plots of the stable characteristic function φ(t) = e−|t|

α
with µ = β = 0

and σ = 1 for different values of α. 68
4.6 Probability distributions with µ = β = 0 and σ = 1 for different values of

α. The top left distribution is a Gaussian and in the bottom left corner
is the Cauchy distribution. 68

4.7 Three sample paths for a pure Brownian walk (left) and a pure Levy walk
(right). 71

4.8 Evolution of the SAS share price. 71
4.9 Numerical solution of equation 4.8 by simulation and PI by FFT, T=2 . . 72
4.10 NIG distribution: effect of varying the kurtosis α (left) and the skewness

β (right) factors. µ = 0 and σ = 1 in both cases. 73
4.11 Probability distribution resulting from Brownian and NIG random walks

for two distinct values of σ. 77
4.12 Final distributions with L = e2 = 7.39, U = e3.5 = 33.12 78

viii

List of Tables

3.1 Radiation damping and quantum diffusion factors for three dimensions of
motion in a synchrotron. 33

3.2 Convergence in N and ∆t for Euler-Maruyama scheme. K = 0.9, γ =
2.4, σ = 0.5, T = 2.3 and a grid of 201× 201 points. 44

3.3 Convergence of the max error in N and ∆t for the order 2.0 weak Taylor
scheme. K = 0.9, γ = 2.4, σ = 0.5, T = 2.3 and a grid of 201× 201 points. 45

3.4 Euler-Maruyama scheme, bilinear interpolation: errors for different num-
bers of extra integration points. The parameters are the same as for the
example in table 3.3. 48

3.5 Euler-Maruyama scheme, bicubic splines: errors for different numbers of
extra integration points. The parameters are the same as for the example
in table 3.3. 48

3.6 Error for the PI scheme: Harmonic oscillator with Taylor 2.0 variance in
dimension 2, bilinear interpolation. 49

3.7 Error for the PI scheme: Harmonic oscillator with Taylor 2.0 variance in
dimension 2, bicubic splines. 49

3.8 Error for the PI by FFT scheme: Harmonic oscillator with Taylor 2.0
variance in dimension 2, bilinear interpolation. 55

3.9 Errors for the finite difference scheme for the harmonic oscillator for dif-
ferent grid sizes and time step sizes. The grid step size is equal in the two
dimensions. 58

4.1 Comparison of tail probabilities for different stable distributions. 68
4.2 Price of a European call option with T = 1, r = 0.1, S0 = e3, E = e3.1. . . 77
4.3 Price of an up-and-out down-and-out barrier call option with T = 1,

r = 0.1, S0 = e3, E = e3.1, σ2
normal = 0.22. For the NIG distribution,

α = 1, β = 0, σNIG = 0.1452 and for the Lévy distribution α = 1, β = 0
and σL = 0.1082 . 78

ix

x

Chapter 1

Introduction

1.1 Stochastic Differential Equations

The field of stochastic differential equations (SDEs) is a relatively new one in the world
of mathematics. However, the range of applications is already huge and expanding. In
the real world there hardly exist any differential equations with deterministic solutions
- there is almost always a potential source of noise present in a physical model. Intro-
ducing such a source of noise to a familiar differential equation adds a new dimension
both theoretically and practically, since elementary calculus is no longer valid and the
solution must be considered in terms of a probability density instead of an exact solution.
Theoretically, SDEs have close relations with a range of other mathematical fields, i.e.
probability theory, measure theory, ordinary differential equations, numerics and even
partial differential equations. The applications are numerous, and include interactions in
particle physics, predator-prey models, interest rate and stock price modeling, stochastic
control problems etc. The most well-known result that has been derived is probably the
Black-Scholes-Merton formula [1], which gives the fair price of a European stock option,
subject to a number of simplifying assumptions. Myron Scholes and Robert C. Merton
received the The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel in 1997 for this work in financial mathematics.

Exactly who pioneered the founding theory of SDEs is contested. However, the name
of Brownian motion stems from the Scottish botanist Robert Brown, who in 1828 sup-
posedly studied the motion of pollen particles in water [1]. The random motion of the
pollen grain was later explained by an infinitesimal number of collisions with the sur-
rounding molecules in the liquid. Famously, Albert Einstein and Marian Smoluchowski
independently studied the mathematical properties of Brownian motion and brought it
to the attention of the physics community early in the 20th century. Also, Louis Bache-
lier published a doctoral thesis in 1900 named ’La Théorie de la Spéculation’, which
discussed Brownian motion in order to price stock options. The theoretical framework
was created by Kiyoshi Itô and Ruslan Stratonovich, by extending methods in calculus
to Brownian motion.

1

In physics, the SDE is usually written as a system of first-order Langevin equations

Ẋ(t) = A(X(t), t) + B(X(t), t)ξ(t) (1.1)
X(0) = x0 (1.2)

Heuristically, one may write the white noise as the time derivative of the noise process
(most often a Wiener process/Brownian motion): ξ(t) = dW(t)

dt . However, W (t) is in fact
not differentiable for any time t, and the derivative does not really exist. In probability
theory and finance, the differential form of the equation is usually used:

dX(t) = A(X(t), t) dt+ B(X(t), t) dW(t) (1.3)
X(0) = x0 (1.4)

In other words, X(t) solves the SDE if

X(t) = x0 +
∫ t

0
A(X(s), s) ds+

∫ t

0
B(X(s), s) dW(s) ∀t > 0 (1.5)

1.2 Theory

1.2.1 Probability Theory

Sigma Algebras, Sets and Probability Measures

Although the ideas may seem simple enough, ’white noise’, solutions of 1.19 and the
stochastic integral have a very precise and rigorous theoretical foundation in measure
theory and probability theory. First of all, a σ-algebra is a concept from general proba-
bility theory [1]:

Definition 1. If Ω is a given set, then a σ-algebra F on Ω is a family F of subsets on
Ω with the following properties:

1. ∅ ∈ F

2. F ∈ F → FC ∈ F , where FC is the complement of F in Ω

3. A1, A2, . . . ∈ F → A :=
∞⋃
i=1

Ai ∈ F

The pair (Ω,F) is called a measurable space. A probability measure P on a measurable
space (Ω,F) is a function P : (Ω,F) −→ [0, 1] such that

1. P (∅) = 0, P (Ω) = 1

2. If A1, A2, . . . ∈ F and {A}∞i=1 is disjoint then

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai).

2

The triple (Ω,F , P) is called a probability space. It is called a complete probability
space if F contains all subsets G of Ω with P-outer measure zero, i.e. with

P ∗(G) := inf{P (F);F ∈ F , G ⊂ F} �

The subsets F (or in a probability context; events) of Ω which belong to F are called
F-measurable sets. P (F) is then the probability of the event F , and if it is true except
an event of probability zero, it is said to hold almost surely (a.s.). An event F can consist
of several sample points ω ∈ Ω. Given a family U of subsets of Ω there is a smallest
σ-algebra HU that contains U :

HU =
⋂
{H;H σ − algebra of Ω, U ⊂ H}

HU is called the σ-algebra generated by U . If U is the collection of all open subsets
of a topological space Ω, e.g. Rn, then B = HU is called the Borel σ-algebra on Ω and
the elements B ∈ B are Borel sets. Now, if f is a nonnegative, integrable function, such
that

∫
Rn f dx = 1, one can define

P (B) :=
∫
B
f(x) dx

for each B ∈ B. Then (Rn,B, P) is a probability space, and f is the density of the
probability measure P . Also, given a fixed point z ∈ Rn: if we define for sets B ∈ B

P (B) := 1|z ∈ B P (B) := 0|z /∈ B

Then, (Rn,B, P) is again a probability space, and P is the Dirac mass concentrated
at the point z −→ P = δz. In other words, an appropriate (Ω, F , P) must always be
identified when attempting to solve a problem. It is an essential mathematical construct,
but is however not directly observable.

Sometimes it is necessary to change the probability measure P to another measure
P̃ . This is often the case in financial mathematics, where one has to use the so-called
risk-neutral measure in models of financial markets. This is due to the assumption that
the market is complete, in other words that all participants have access to the same
information and that no single asset has a tendency to appreciate in value faster than
others. This is obviously an idealization, but may anyway give a useful model. Write
Z(ω) as the ratio of the two probability measures:

Z(ω) =
P̃ (ω)
P (ω)

.

This is not really sensible as long as Ω is infinite and P (ω) may be zero, and the equation
Z(ω)P (ω) = P̃ (ω) is not much better, since for P̃ (ω) = P (ω) = 0, Z(ω) can be anything.
The following theorem gives the correct definition [2]:

3

Theorem 1. Let (Ω, F , P) be a probability space and let Z be an almost surely non-
negative random variable with EZ = 1. For A ∈ F , define

P̃ (A) =
∫
A
Z(ω) dP (ω) (1.6)

Then P̃ is a probability measure. Furthermore, if X is a nonnegative random variable,
then Ẽ = E[XZ]. If Z is almost surely strictly positive, we also have EY = Ẽ[YZ] for
every nonnegative random variable Y . �

Under the assumptions in theorem 1, P and P̃ agree on what is possible and what
is not. However, they may not give the same probabilities for different outcomes:

Definition 2. Let Ω be a nonempty set and F a σ-algebra of subsets of Ω. Two
probability measures P and P̃ on (Ω, F) are said to be equivalent if they agree which
sets in F have probability zero. �

Stochastic Processes

When dealing with SDEs, one has to relate to random variables depending upon time.
A stochastic process is defined as [1]:

Definition 3. A stochastic process is a parameterized collection of random variables
{Xt}t∈T defined on a probability space (Ω, F , P) and assuming variables in Rn �

Definition 4. Let W (·) be a 1-dimensional stochastic process defined on some proba-
bility space (Ω,F , P).

1. The σ-algebra W(t) := U(W (s)|0 ≤ s ≤ t) is called the history of the stochastic
process up to and including time t.

2. The σ-algebra W(t)+ := U(W (s) − W (t)|s ≥ t) is the future of the stochastic
process beyond time t. �

This leads to the theoretically important concept of a filtration:

Definition 5. A family F(·) of σ-algebras ⊆ U is called nonanticipating with respect
to W if

1. F(t) ⊇ F(s) for all t ≥ s ≥ 0

2. F(t) ⊇ W(t) for all t ≥ 0

3. F is independent of W+(t) for all t ≥ 0

F is also called a filtration. �

As will be seen later, making assumptions about the future of a stochastic process
X(t) leads to a diverging numerical path from the nonanticipating assumption. The
essence is that the process at time t depends only on the information that is available
in the σ-algebra F(t).

4

Definition 6. A real-valued stochastic process X(·) is called nonanticipating with re-
spect to F if for each time t ≥ 0, G(t) is F(t)-measurable. �

The finite-dimensional distributions of the process {Xt}t∈T are the measures defined
by

µt1,...,tk(F1 × F2 × . . .× Fk) = P (Xt1 ∈ F1, . . . , Xtk ∈ Fk)

where F1, . . . , Fk denote Borel sets in Rn. Given a family {νt1,...,tk ; k ∈ N, ti ∈ T}
of probability measures, it is essential to be able to deduce a stochastic process Y =
{Yt}t∈T having this family as its finite-dimensional distributions. The following theorem
by Kolmogorov [1] states that this can be done subject to two natural conditions on
{νt1,...,tk}:

Theorem 2 (Kolmogorov’s extension theorem). For all t1, . . . , tk ∈ T , k ∈ N let νt1,...,tk
be probability measures on Rnk s.t.

νtσ(1),...,tσ(k)
(F1 × . . .× Fk) = νt1,...,tk(Fσ−1(1) × . . .× Fσ−1(k)) (1.7)

for all permutations σ on {1, 2, ..., k} and

νt1,...,tk(F1 × . . .× Fk) = νt1,...,tk,tk+1,...,tk+m(F1 × . . .× Fk × Rn × . . .Rn) (1.8)

for all m ∈ N, where the set on the right-hand side has a total of k+m factors. Then there
exists a probability space (Ω, F , P) and a stochastic process {Xt} on Ω, Xt : Ω → Rn

s.t.

νt1,...,tk(F1 × . . .× Fk) = P (Xt1 ∈ F1, . . . , Xtk ∈ Fk)

for all ti ∈ T , k ∈ N and all Borel sets Fi. �

Brownian motion is one important example of a stochastic process. Obviously, in an
SDE, the true noise process is not always multinormally distributed, but very often it
will be assumed to be, i.e. it will be a Brownian motion. If {Bt(ω)}t≥0 is the position
of the pollen grain at time t, it is sufficient to specify a family of probability measures
that satisfy 1.7 and 1.8. In n dimensions, let

p(t, x, y) = (2πt)−n/2 · exp
−|x−y|2

2t x, y ∈ Rn, t > 0

With t0 ≤ t1 ≤ . . . ≤ tk, define the following measure on Rnk

νt1,...,tk(F1 × . . .× Fk) =
∫
F1×...×Fk

p(t1 − t0, x, x1) · p(t2 − t1, x, x2) · (1.9)

· · · p(tk − tk−1, xk−1, x) dx1 dx2 · · · dxk (1.10)

Here, dy = dy1 . . . dyk is the Lebesgue measure and limt→0 p(t, x, y) dy = δx(y). Now
1.8 clearly holds, since

∫
Rn p(t, x, y) dy = 1 for all t ≥ 0. The definition in 1.9 can be

extended to any finite sequence of ti’s as in 1.7. Therefore, the Kolmogorov extension
theorem 2 guarantees the existence of a stochastic process with the finite-dimensional
probability distribution 1.9, called Brownian motion starting at x. Brownian motion has
some important properties:

5

1. As mentioned above, Bt is a Gaussian process. In other words, the random variable
Z = (Bt1 , . . . , Btk) ∈ Rnk is multinormally distributed. Hence there exist a vector
M ∈ Rnk and a symmetric, positive-definite matrix C ∈ Rnk×nk such that Ex[Z] =
M and cij = Ex[(Zi−Mi)(Zj−Mj)] when Ex denotes the expectation with respect
to Px. Moreover,

M = (x, x, . . . , x) ∈ Rnk (1.11)

and, with In the identity matrix:

C =

t1In t1In . . . t1In
t2In t2In . . . t2In

...
...

...
t1In t2In . . . tkIn

 ∈ Rnk×nk

2. Bt has independent increments, i.e. Bt1 , Bt2 −Bt1 , ..., Btk −Btk are independent
for all ti. This can be seen directly from C.

3. By Kolmogorov’s continuity theorem 3 [1], Brownian motion can be shown to have
a Hölder continuous version in time t.

Theorem 3 (Kolmogorov’s continuity theorem). Suppose that the process X = {Xt}t≥0

satisfies the following condition: For all T ≥ 0 there exist positive constants α, β,D such
that

E[|Xt −Xs|α] ≤ D · |t− s|1+β 0 ≤ s, t ≤ T

Then for each 0 < γ < β
α , T > 0 and almost every ω, there exists a constant K such that

|X(t, ω)−X(s, ω)| ≤ K|t− s|γ �

The latter is the definition of Hölder continuity [2], and in the special case of γ = 1, it
is Lipschitz continuous. Oksendal does not show explicitly that this applies to Brownian
motion, but the proof is not so difficult:

E[|Xt −Xs|2m] = (2π(t− s))−n/2
∫

Rn
|x|2me−

−|x|2
2(t−s) dx

= (2π)−n/2(t− s)m
∫

Rn
|y|2me−

|y|2
2 dy (y =

x√
t− s

)

= C|t− s|m

Thus this holds for 2m = α and 1+β = m, and the Brownian motion is Hölder continuous
almost surely for exponents 0 < γ < 1

2−
1

2m . For example, the one-dimensional Brownian
motion has

E[|Xt −Xs|2m] =
√

2π√
2π

m∏
i=1

(2i− 1)|t− s|m =
m∏
i=1

(2i− 1)|t− s|m

6

As mentioned earlier, even though the Brownian motion can be shown to be con-
tinuous for certain exponents, it is not differentiable. For a proof of the theorem, see
[2].

Theorem 4. (i) For each 1/2 < γ < 1 and almost every ω, t → W(t, ω) is nowhere
Hölder continuous with exponent γ. (ii) In particular, for almost every ω, the sample path
t → W(t, ω) is nowhere differentiable and is of infinite variation on each subinterval.
�

In other words, the white noise process ξ(t) does not really exist. However, one still
writes heuristically

E[ξ(t)ξ(s)] = δ0(s− t) (1.12)

Suppose h > 0 and fix t > 0, then let

φh(s) = E[
W (t+ h)−W (t)

h

W (s+ h)−W (s)
h

]

=
1
h2

[E[W (t+ h)W (s+ h)]− E[W (t+ h)W (s)]− E[W (t)W (s+ h)] + E[W (s)W (t)]]

=
1
h2

[((t+ h) ∧ (s+ h))− ((t+ h) ∧ s)− (t ∧ (s+ h)) + (t ∧ s)]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

2

4

6

8

10

S

!
h(s

)

Plot of !h(s) with t=0.2 and h=0.1

Figure 1.1: φh(s) with h=0.1 and t =0.2.

where the first equality comes from the independence and covariance of Brownian
motion. Thus, φ(t − h) = 0, φ(t) = h

h2 = 1
h and φ(t + h) = 0 and

∫
φh(s) ds = 1,

so presumably limh→0 φh(s) = δ0(s − t). Now, in time series analysis, for a stochastic
process X(·) r(s, t) = E[X(t)X(s)] is called the autocorrelation function of X(·). If
r(t, s) = c(t − s) for some function c : R → R and if E[X(s)] = E[X(t)] for all s, t ≥ 0,
then X(·) is called stationary in the wide sense. From the reasoning above, ξ(·) is

7

Gaussian and stationary in the wide sense, with c(·) = δ0(·). For a process X(·), the
spectral density is defined as

f(λ) :=
1

2π

∫ ∞
−∞

e−iλtc(t) dt (λ ∈ R).

For white noise,

f(λ) :=
1

2π

∫ ∞
−∞

e−iλtδ0 dt =
1

2π
∀ λ.

The spectral density of ξ(·) is therefore flat - in some sense, all frequencies contribute
equally, just as all color frequencies contribute equally to white light.

1.2.2 Stochastic Calculus - Itô’s Integral

As mentioned above, the problem that made stochastic calculus a necessity was the
second integral in integral equation 1.5 - the Itô integral. W(t) is of infinite variation on
every subinterval and an integral with respect to it cannot be understood as a regular
integral. The discussion on Brownian motion in the previous section has some interesting
consequences when ∆t→ 0 :

E[(W (ti+1)−W (ti))2] = Var[W (ti+1)−W (ti)] = ti+1 − ti (1.13)

Now, if we define the time step as ∆(ti) = ti+1 − ti = T
n and sum the squares of the

increments ∆Wi we obtain the following:

n−1∑
i=0

(W (ti+1)−W (ti))2 =
n−1∑
i=0

∆(ti)
(W (ti+1)−W (ti))2

ti+1 − ti

and if we define the square of the standard normal variable Yi as

Y 2
i =

(W (ti+1)−W (ti))2

ti+1 − ti

we know from eq. 1.13 that as n→∞, by the Law of Large Numbers

E[Y 2
i] = 1 → E

n−1∑
i=0

(W (ti+1)−W (ti))2 = T

This is why one says heuristically that Brownian motion accumulates quadratic variation
at rate one per unit time [2].

Now, going back to definition 5 - a slightly stronger statement about the process
X(t) is that it is progressively measurable. In addition to being nonanticipating, it is
then jointly measurable in the variables t and ω together. The following definitions are
needed later:

8

Definition 7. Denote by L2(0, T) the space of all real-valued, progressively measurable
stochastic processes G(·) such that

E(
∫ T

0
G2 dt) <∞ �

Definition 8. Similarly, denote by L1(0, T) the space of all real-valued, progressively
measurable processes H(·) such that

E(
∫ T

0
|H|dt) <∞ �

If the interval [0, T] is partitioned as before, in 0 = t0 ≤ . . . ≤ tn = T , one can assume
that the process G(Xt, t) ∈ L2(0, T) is constant in t on each subinterval [tj , tj+1), as
shown in figure 1.2. Each G(Xtj , tj) is then nonanticipating by definition 5 and therefore
a F(tj)-measurable random variable. Such a process is called simple [2] or elementary
[1].

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1.2: An example path of a simple process.

I(t) =
∫ T

0
G(Xu, u) dW (u) :=

n∑
j=0

G(Xtj , tj)(Wtj+1 −Wtj) (1.14)

I(t) is the Itô integral of the simple process G(). It can be shown that 1.14 is a martingale
[2]. A martingale is a construct in probability theory that has no tendency to rise or
fall, or more precisely:

Definition 9 (Martingale). A discrete-time martingale is a discrete-time stochastic
process that satisfies for any s, t, i.e. with respect to the filtration Fs

E(|I(t)|) ≤ ∞
E(I(t)|F(s)) = E(I(t)|I(s), I(s−∆t), . . .) = I(s) ∀t ≥ s �

9

Furthermore,

Theorem 5 (Itô isometry). The Itô integral defined in 1.14 satisfies

E(I2(t)) = E
∫ T

0
G2(Xu, u) du �

Sketch of Proof:

I2(t) =
n∑
i=0

n∑
j=0

G(Xti , ti)G(Xtj , tj)(Wti+1 −Wti)(Wtj+1 −Wtj)

The Brownian increment ∆Wj = Wj+1 − Wj is independent of the filtration Fj and
E(∆Wj) = 0. For the cross-terms i < j

E(G(Xti , ti)G(Xtj , tj)∆Wi∆Wj) = E(G(Xti , ti)G(Xtj , tj)∆Wi)E(∆Wj) = 0

Therefore, only the terms i = j are left, and one obtains

EI2(t) =
n−1∑
i=0

E(G2(Xti , ti)∆W
2
i) =

n−1∑
i=0

E(G2(Xti , ti))E(∆W 2
i)

=
n−1∑
i=0

E(G2(Xti , ti))∆ti

Since Gi is constant on the subinterval [ti, ti+1),
∫ ti+1

ti
G2(Xu, u) du = G2(Xti , ti)∆ti,

and

EI2(t) =
n−1∑
i=0

E
∫ ti+1

ti

G2(Xu, u) du

= E
n−1∑
i=0

∫ ti+1

ti

G2(Xu, u) du = E
∫ T

0
G2(Xu, u) du �

In ordinary calculus, for a differentiable function g(t) with g(0) = 0, one has∫ T

0
g(t) dg(t) =

∫ T

0
g(t)g′(t) dt =

1
2
g2(T)

In contrast, denote the Itô integral with W (t) as the integrand by

I(t) =
∫ T

0
W(t) dW(t) dI(t) = W(t) dW(t) (1.15)

in integral and differential form respectively. They mean almost the same thing, but the
second may seem more intuitive. Strictly speaking, however, d and dt mean nothing
on their own - the differential form is simply an abbreviation of the integral form of

10

the equation. Another difference is that integrating the differential version, one has to
specify an initial condition I(0). It is important to emphasize that the Itô integral is
itself a stochastic process with respect to the time parameter, and one can calculate its
moments. Now, for the integral 1.15, a reasonable procedure would be to construct the
Riemann sum approximation and then find the limit of this. For a fixed 0 ≤ λ ≤ 1, set
τk := (1− λ)ti + λti+1. With a partition 0 = t0 < ... < tn = T , define the Riemann sum
approximation to be

R =
n−1∑
i=0

W (τk)(W (ti+1)−Wti) (1.16)

Surprisingly, different λ yield different results: choosing λ = 0, in other words evaluating
the sum at the left-hand side of each interval, gives the rearrangement, with W0 = 0

Rλ=0 =
∫ T

0
W (t) dW (t) = lim

n→∞

n−1∑
i=0

Wi(Wi+1 −Wi)

n−1∑
i=0

Wi(Wi+1 −Wi) = −W 2
0 +W0W1 −W 2

1 + . . .−W 2
n−1 +Wn−1Wn

= −1
2

(2W 2
0 − 2W0W1 + 2W 2

1 − . . .− 2Wn−1Wn +W 2
n) +

1
2
W 2
n

=
1
2
W 2
n − 1

2

n−1∑
i=0

(Wi+1 −Wi)2

Hence one obtains, for λ = 0∫ T

0
W (t) dW (t) =

1
2
W (T)2 − 1

2
T (1.17)

However, choosing λ = 1/2, the midpoint of the interval is chosen, such that

Rλ=1/2 = lim
n→∞

n−1∑
i=0

W (
ti + ti+1

2
)(W (ti+1)−W (ti))

= lim
n→∞

n−1∑
i=0

Wi +Wi+1

2
(Wi+1 −Wi)

=
1
2
W (T)2

These two diverging paths turn out to be the foundation of two versions of stochas-
tic calculus: Itô stochastic calculus and Stratonovich stochastic calculus. The Itô and
Stratonovich integrals are denoted respectively by∫ T

0
W (t) dW (t) =

1
2
W (T)2 − 1

2
T,

∫ T

0
W (t) ◦ dW (t) =

1
2
W (T)2

11

In differential form, this means that

Wt dWt =
1
2

dW 2
t −

1
2

dt Wt dWt =
1
2

dW 2
t (1.18)

According to definition 5 and 6, the Itô integral is nonanticipating, while the Stratonovich
integral is not. In some sense, the Stratonovich definition makes assumptions on the
stochastic process half a time step into the future, while the Itô definition depends only
on the history and the present, in other words it is F-measurable in definition 5. The
Itô definition is therefore most common in for example financial mathematics, since no
assumptions can be made about the future. However, a slightly stronger requirement
is needed: the stochastic process needs to be progressively measurable. This will not be
defined here, but some neat identities can be deduced from these two assumptions on
the stochastic integral. The following identities, in addition to the ones found earlier,
can be shown [2] by rather easy algebraic manipulation

Theorem 6 (Properties of the Itô integral). For all constants a, b ∈ R and for all
G,H ∈ L2(0, T), with W a Brownian motion, we have

1.
∫ T

0 aG+ bH dW = a
∫ T

0 GdW + b
∫ T

0 H dW

2. E(
∫ T

0 G dW) = 0

3. E((
∫ T

0 GdW)(
∫ T

0 H dW)) = E(
∫ T

0 GH dW) �

Using ordinary calculus, the Taylor expansion of a function f(Xt, t) would be

f(Xt + ∆Xt, t+ ∆t)− f(Xt, t) =
∂f(x, t)
∂x

∆x+
∂f(x, t)
∂t

∆t

+
1
2
∂2f(x, t)
∂t2

(∆t)2 +
∂2f(x, t)
∂x∂t

∆x∆t

+
1
2
∂2f(x, t)
∂x2

(∆x)2 + . . .

With the differential dX = Adt+B dW , Itô calculus in one dimension gives;

df(Xt, t) =
∂f(x, t)
∂t

dt+
∂f(x, t)
∂x

dXt +
1
2
∂2f(x, t)
∂x2

dX2
t +R

where

|R| ≤ C(∆t2 + ∆t|∆W |)

Using the results from 1.18 and the definition of the Itô integral 1.14,

f(XT , T) = f(X0, 0) +
∫ T

0

∂f

∂t
dt+

∫ T

0

∂f

∂x
Adt+

∫ T

0

∂f

∂x
B dWu

+
1
2

lim
n→∞

n−1∑
i=0

∂2fti
∂x2

B2
ti∆W

2
ti +

n−1∑
i=0

Ri

12

Since

lim
n→∞

n−1∑
i=0

∂2fti
∂x2

B2
ti∆W

2
ti = lim

n→∞

n−1∑
i=0

∂2fti
∂x2

B2
ti(∆W

2
i −∆ti+∆ti) = lim

n→∞

n−1∑
i=0

∂2fti
∂x2

B2
ti∆ti

, taking the limit ∆ti → 0 and then the limit T → 0

df(Xt, t) =
∂f

∂t
dt+

∂f

∂x
Adt+

∂f

∂x
B dW +

1
2
∂2f

∂x2
B2 dt

Using stochastic calculus, the integral equation 1.5 posited in the introduction is
now possible to solve. If X ∈ Rn is a stochastic process satisfying this equation for some
A ∈ L1(0, T) and B ∈ L2(0, T), the Itô-Doeblin 1 formula [2] generalizes this result to n
dimensions:

Theorem 7 (Itô-Doeblin formula in n dimensions). Let X be defined as above and
f : Rn × [0, T] → Rn be continuous and with continuous partial derivatives ∂f

∂t , ∂f
∂xi

and
∂2f

∂xi∂xj
. Also, A : Rn × [0, T] → Rn and B : Rn×m × [0, T] → Rn×m Then, for every

T ≥ 0,

df(X(t), t) =
∂f

∂t
dt+

n∑
i=1

∂f

∂xi
dXi +

1
2

n∑
i=1

n∑
i=j

∂2f

∂xi∂xj
(
m∑
l=1

BilBjl dt)

=
∂f

∂t
dt+

n∑
i=1

∂f

∂xi
Ai dt+

n∑
i=1

(
∂f

∂xi

m∑
l=1

Bil dWl))

+
1
2

n∑
i=1

n∑
i=j

∂2f

∂xi∂xj
(
m∑
l=1

BilBjl dt) �

By contrast, the Stratonovic interpretation gives

df(X(t), t) =
∂f

∂t
dt+

n∑
i=1

∂f

∂xi
Ai dt+

n∑
i=1

∂f

∂xi

m∑
l=1

Bil ◦ dWl

so the normal chain rule is seen to hold for the Stratonovich stochastic differential
equation. As a consequence, X(t) solves the Itô SDE 1.19 if and only if it solves the
Stratonovich differential equation

dX(t) = (A(X(t), t)−C(X, t)) dt+ B(X(t), t) ◦ dW(t)
X(0) = x0

1Doeblin was a French soldier at the German front during World War II, whose discoveries were sent
in a letter to France. This was not opened until in 2000 - however it was written independently of Itô

13

where Ci(X, t) = 1
2

m∑
l=1

n∑
j=1

∂Bjl

∂xj
Bjk. For example; if m = n = 1, A(X, t) = a(x) and

B(X, t) = b(x),

dX = a(X) dt+ b(X) dW

if and only if

dX = (a(X)− 1
2
b′(X)b(X)) dt+ b(X) ◦ dW

Girsanov’s Theorem

Theorem 1 showed that it is possible to change the probability measure of a single random
variable defined on Ω. However, it is sometimes useful to change the probability measure
of a whole process. Instead of defining Z as the ratio of the probability measures, the
Radon-Nikodym derivative of P̃ with respect to P is

Z =
dP̃
dP

.

and the Radon-Nikodym derivative process is defined as

Z(t) = E[Z|F(t)], 0 ≤ t ≤ T.

It is a martingale (no tendency to rise or fall), since by iterating expectations

E[Z|F(s)] = E[E[Z|F(t)]|F(s)] = Z(s)

It can be shown that Z(t) as defined in Girsanov’s theorem is a Radon-Nikodym deriva-
tive process, and that with Y (t) a F(t)-measurable random variable, ẼY = E[Y Z(t)]
and Ẽ[Y |F(s)] = 1

Z(s)E[Y Z(t)|F(s)] (0 ≤ s ≤ t ≤ T).

Theorem 8 (Girsanov’s theorem in one dimension). Let W(t), 0 ≤ t ≤ T , be a Brownian
motion on a probability space (Ω, F , P), and let F(t) be a filtration for this Brownian
motion. Let A(t) be an adapted process. Define

Z(t) = exp[−
∫ t

0
A(u) dW (u)− 1

2

∫ t

0
A2(u) du]

W̃ (t) = W (t) +
∫ t

0
A(u) du

and assume that

E
∫ t

0
A2(u)Z2(u) du <∞

Set Z = Z(T). Then EZ = 1 and under the probability measure P̃ given by equation
1.6, the process W̃ (t) is a Brownian motion. �

14

The proof of this theorem relies on Levy’s theorem [2], which says that a martingale
starting at zero at time zero with continuous paths and with quadratic variation equal to
t at each time t is a Brownian motion. By using Itô’s product rule, it is straightforward
to show that W̃ is a martingale under P̃ and that W̃Z is a martingale under P̃ . The
probability measures are equivalent, so the set of outcomes that is possible under P
is the same as under P̃ . Girsanov’s theorem often applies when pricing derivatives of
financial assets - the drift of the process must be the risk-neutral one if the market is
assumed to be perfect. This will be elaborated in chapter 4.

1.2.3 Jump processes

Solutions of SDEs with Gaussian white noise can be shown to be continuous. However,
continuity may not be a desired property for the noise process. In many real-life applica-
tions, the time series is necessarily discrete and the measured variable may be subject to
discontinuities in the form of jumps. This is the case in earthquake modeling, financial
modeling, meteorology and other earth and social sciences. The examples will be fur-
ther developed in the section on Lévy noise, but this requires a theoretical framework.
The fundamental jump process, where the jump is always of size one, is the standard
Poisson process. This is a standard, well understood probability distribution, where the
interarrival times of the jumps are exponentially distributed with intensity λ:

f(t) = λe−λt t ≥ 0
f(t) = 0 t < 0

The Poisson process itself is a counting process N(t) defined by the intensity of arrivals
λ [2]:

P(N(t) = k) =
(λt)k

k!
e−λt k = 0, 1, . . . (1.19)

As a consequence, N(t + s) −N(s) is independent of the filtration F(s). A compound
Poisson process C(t) is similar to the Poisson process, with the difference that it may
have jumps of random size. The first jump is of size Y1, the second of size Y2, etc:

C(t) =
N(t)∑
i=1

Yi t ≥ 0

C(t) = 0 t < 0

The problem is now to define the stochastic integral∫ t

o
Φ(s) dX(s)

where the integrator X can have jumps. Furthermore, the problem will typically be to
integrate the sum of a Riemann integral, an Itô integral and a stochastic jump integral,
given an initial condition at time 0:

X(t) = X(0) +R(t) + I(t) + J(t)

15

The continuous part is defined to be

Xc(t) = X(0) +
∫ t

0
A(s) ds+

∫ t

0
B(s) dW (s)

which has the same quadratic variation as the Itô process in the previous sections:

[Xc, Xc](t) =
∫ t

0
B2(s) ds

dXc(t) dXc(t) = B2 dt

J(t) is assumed to be càdlàg (’continue à droite, limitée à gauche’ - continuous to the
right, limited to the left) and a pure jump process, i.e. that J(t) = lims↓t J(s) or that a
jump at time t implies that J(t) is the value immediately after the jump and J(t−) the
value immediately before the jump, thus ∆X(t) = J(t)− J(t−) Since the jump process
is pure, the value does not change between jumps. The number of jumps is also assumed
to be finite for a finite time interval (0, T]. The stochastic jump integral of Φ(t) with
respect to X is defined to be, in integral and differential notation respectively [2]:∫ t

0
Φ(s) dX(s) =

∫ t

0
Φ(s)A(s) ds+

∫ t

0
Φ(s)B(s) dW (s) +

∑
0<s≤t

Φ(s)∆J(s)

Φ(t) dX(t) = Φ(t)A(t) dt+ Φ(t)B(t) dW (t) + Φ(t) dJ(t)

In order to find the Itô-Doeblin formula for the stochastic jump process, one needs to
express the quadratic variation of the terms. Let ∆ti be the same for all i, and

Q∆t(X) =
n−1∑
j=0

(X(tj+1)−X(tj)))2

The quadratic variation of X on T is

[X,X](T) = lim
∆t→0

Q∆t(X)

By regular algebraic expansion one gets the following theorem:

Theorem 9 (Quadratic variation of stochastic jump processes). Let X(t) = X(0) +
R(t)+I(t)+J(t) be a jump process such that Xc(t) = X(0)+

∫ t
0 A(s) ds+

∫ t
0 B(s) dW (s)

and J(t) is a right-continuous pure jump process. Then the quadratic variation of X(T)
is:

[X,X](T) =
∫ T

0
B2(s) ds+

∑
0<s≤T

(∆J(s))2

dX(t) dX(t) = dXc(t) dXc(t) + dJ(t) dJ(t) �

16

For a full proof, see Shreve [2]. It is similar to the one for the Itô process, the key
point being that the cross-term between the continuous part and the discontinuous part
converges to 0 since

|
n−1∑
j=0

(Xc(tj+1)−Xc(tj))(J(tj+1)− J(tj))|

≤ max
j
|Xc(tj+1)−Xc(tj)|

∑
0<s≤T

|∆J(s)|,

where ∆J(s) is a finite number independent of ∆t, while the first factor converges to
0 with decreasing ∆t. The conclusion is that the cross variation between a Brownian
motion and a Poisson process is zero. For it to be nonzero, the two processes must both
contain a dW term or have simultaneous jumps. More precisely, with respect to the
filtration F(t), a Brownian motion and a Poisson process must be independent.

Theorem 10 (Itô-Doeblin formula for one jump process). Let X(t) be a jump process
and f(x) a function for which f ′(x) and f ′′(x) are defined and continuous. Then

f(X(t)) = f(X(0)) +
∫ t

0
f ′(X(s))A(s) ds+

∫ t

0
f ′(X(s))B(s) dW (s) (1.20)

+
1
2

∫ t

0
f ′′(X(s))B2(s) ds+

∑
0<s≤t

(f(X(s))− f(X(s−))) � (1.21)

In general, there is no explicit form for the sum of the jumps.

1.3 Numerical Solutions

Stochastic calculus arises in the limit ∆t → 0, but in general a deterministic solution
is not available for stochastic differential equations. In order to study the equation one
is forced to implement numerical solvers; and there exists a vast collection of different
algorithms. The most commonly used method is probably simulation, because of the
relatively easy and transparent implementation. Reference [3] is entitled ”Numerical
Solution of Stochastic Differential Equations”, and is almost entirely devoted to simu-
lation schemes. Other important numerical strategies include lattices, finite difference
schemes, finite elements, path integration and spectral methods.

Numerical solution implies discretization, and this is where the deterministic analysis
diverges from the numerical analysis. For the classical SDE treated in the introduction,
the simplest scheme is the first-order and intuitively appealing Euler-Maruyama scheme:

Xn+1 = Xn +A∆t+B∆W (1.22)

This scheme is very close to the differential equation itself, but it is only of the order
of strong convergence 0.5 [3]. Including higher-order terms from the stochastic Taylor
expansion will give higher order of convergence. The definition of strong and weak
convergence will be taken from Kloeden and Platen’s book on the subject [3] mentioned
above:

17

Definition 10 (Strong convergence). A time discrete approximation Xδ converges
strongly to Y with order γ at time T if there exists a positive constant C, which does
not depend on δ, and a δ0 such that for each δ ∈ (0, δ0)

ε(δ) = E(|YT −Xγ(T)|) ≤ Cδγ �

Stated in words, strong convergence measures the rate of decay of the mean of the
error as ∆t → 0. Conversely, the weak convergence criterion sets a limit on the rate of
decay of the error of the mean:

Definition 11 (Weak convergence). A time discrete approximationXδ converges weakly
with order β > 0 to Y at time T if there exists a positive constant C, which does not
depend on δ, a finite δ0 > 0 and a 2(β + 1) times continuously differentiable function
g : Rn → R such that for each δ ∈ (0, δ0)

|E(g(YT))− E(g(Xβ(T))| ≤ Cδβ �

Moreover, it can be shown that the Euler-Maruyama scheme is of weak convergence
order 1.0 and of strong convergence order 0.5. The strong convergence is shown in figure
1.3, where for each ∆t, 1000 realizations of the path have been made. The SDE is the
simple

dX = µX dt+ σX dW (1.23)

and the exact solution YT = e(µ− 1
2
σ2)T+σWT . The mean of the absolute difference be-

tween the exact solution and the realized paths 1
1000

1000∑
i=1

|Xi(T) − YT | is plotted against

a reference line with slope 1/2. The inequality involves an expected value, but this has
implications also for single simulation paths: the Markov inequality [4] states that for
any random variable X and a > 0,

P(|X| ≥ a) ≤ E(|X|)
a

(1.24)

Now, if a = ∆t1/4 and the strong convergence of order γ = 0.5 holds,

P(|Xγ
T − YT | ≥ ∆t1/4) ≤

E(|Xγ
T − YT |)

∆t1/4
=
C∆t1/2

∆t1/4
= C∆t1/4

P(|Xγ
T − YT | < ∆t1/4) ≥ 1− C∆t1/4

In other words, the error on each simulation can be made arbitrarily small by decreasing
∆t (but of course at the expense of CPU time!).

However, it is important to keep in mind that the order of the numerical scheme
is not the only factor to take into consideration. When measuring the error here, one
assumes that the following errors are negligible:

18

• The sampling error: the error from the approximation of an expected value by a
sample mean.

• Digital floating point rounding errors

• Errors arising from the random number generator

Among these, the sampling error is clearly the most important, since this error decreases
proportionally to 1√

N
, where N is the number of realizations.

By including another term from the Itô-Taylor expansion, one obtains the Milstein
scheme, which is of strong order 1.0:

Xn+1 = Xn +A∆t+B∆W +
1
2
B
∂B

∂x
(∆W 2 −∆t)

10−3 10−2 10−1
10−2

10−1

100

101

! t

Sa
m

pl
e

av
er

ag
e

of
 |

X(
T)

 −
 X

L |

Mean error
Reference slope of 1/2

Figure 1.3: Strong convergence of the Euler-Maruyama scheme in ∆t for equation 1.23
with µ = 2, σ = 1.

A disadvantage of the strong schemes is that derivatives of the drift and diffusion
factors must be evaluated at each time step. The so-called explicit strong approximations
avoid this by using finite difference approximations. For example, from the Milstein
scheme several explicit strong schemes can be deduced.

Another problem that arises in analysis of systems of ordinary differential equations
is that the system may be stiff, i.e. that λ1 << λn, where λ1 ≤ λ2 ≤ . . . ≤ λn are
the Liapunov exponents for the system. If the deterministic system is stiff, the cor-
responding stochastic system is also said to be stiff [3]. This means that consistency
and convergence are not enough for the scheme to be used effectively, since information
will be lost from error propagation and roundoff errors. There are simulation schemes
that handle stochastic stiffness better, namely implicit schemes. They handle numerical
instability better, at the expense of the computational cost of solving an additional equa-
tion. Many researchers and courses on stochastic differential equations also emphasize
variance reduction methods, which are used to reduce the variance of functionals of weak

19

10−3 10−2 10−1
10−3

10−2

10−1

100

101

! t

| E
(X

(T
))
−

Sa
m

pl
e

av
er

ag
e

of
 X

L |

Error of mean
Reference line of slope 1

Figure 1.4: Weak convergence of the Euler-Maruyama scheme in ∆t for equation 1.23
with µ = 2, σ = 0.1.

approximations of Itô SDEs. However, simulation schemes are not the main topic of this
thesis. Additionally, the convergence rate of simulation methods remains proportional
to 1√

N
, where N is the number of repetitions. weak scheme: The order 2.0 weak Taylor

scheme

L0 =
∂

∂t
+

n∑
i=1

Ai
∂

∂xi
+

1
2

n∑
i=1

n∑
j=1

m∑
l=1

Bi,lBj,l
∂2

∂xi∂xj
(1.25)

Li =
n∑
j=1

Bj,i
∂

∂xj
(1.26)

(1.27)

and the general order 2.0 weak Taylor scheme with m = 1 is [3]

Xn+1
i = Xn

i +Ai∆t+Bi∆W +
1
2
L1Bi[(∆W)2 −∆t]

+
1
2
L0Ai∆t2 +

1
2
L0Bi∆W∆t+

1
2
L1Ai(∆t∆W)

The corresponding scheme for m > 1 involves multiple Itô integrals in different
components of the Wiener process, and will not be stated here.

1.4 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is the name of a collection of algorithms that find
the discrete fourier transform (DFT) of an input vector {xi}N−1

0 in N log(N) time. The

20

DFT is defined as [5]:

Xk =
N−1∑
n=0

xn exp(− i2πkn
N

) k = 1, . . . , N

The inverse discrete Fourier transform is defined as:

xn =
1
N

N−1∑
k=0

Xk exp(
i2πkn
N

) n = 1, . . . , N

The factor N may or may not be included, depending on the software. In this thesis both
Matlab and C++ will be used, where in the former it is standard, whereas in the latter,
where the fft library used is fftw (”Fastest Fourier Transform in the West” [6]), it is
not. Both Matlab and fftw use a combination of Cooley-Tukey and Rader’s algorithms,
which decomposes the input vectors into smaller factors and computes the transform for
these. This is possible because of the inherent periodicity in the DFT. For example, if
the input size has a factor of 2, the first operation would be to split this into two DFTs
of equal size:

Xk =
N−1∑
n=0

xn exp(− i2πkn
N

)

=
N/2−1∑
n=0

x2n exp(− i2πkn
N/2

) + exp(−2πik
N

)
N/2−1∑
n=0

x2n+1 exp(− i2πkn
N/2

)

= Ek + exp(−2πik
N

)Ok

Clearly, since k in this expression is only found in the exponent of the exponentials and
e2πik = e2πi(k+1), Ek+N/2 = Ek and Ok = Ok+N/2. Therefore, Xk+N/2 can be expressed
in terms of Ok and Ek, only manipulating the so-called twiddle factor exp(−2πik

N). This
is the core of the Cooley-Tukey algorithm, and can be applied recursively as a divide and
conquer strategy. For the factor 2, this is called the radix-2 decimation-in-time form of
Cooley-Tukey. Rader’s algorithm handles large prime-number-sized input vectors, and
is typically slower by a factor of 3-10, the worst case being O(N2). This is shown in
figure 1.5, where the prime number-sized input vectors are seen to have computational
complexity proportional to O(N log(N)). With prime-sized input it is also possible to
pad the vector with zeros up to the nearest length that is a power of two.

As shown here, Matlab and C++ are seen to perform at the same speed for vectors
with gaussian, random input. The DFT can easily be generalized to m dimensions, with
the inverse DFT being the corresponding m-dimensional extension of the inverse DFT
in 1 dimension:

Xk1,...,km =
N1∑
n1=0

. . .

Nm∑
nm=0

xn1,...,nm exp(−2πi(
k1n1

N1
+ . . .+

kmnm
Nm

))

21

101 102 103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

INPUT SIZE N

C
PU

 T
IM

E

MATLAB
FFTW

Figure 1.5: CPU time [s] versus input size for one FFT and one inverse FFT in Matlab
and C++ (FFTW). The lower line has input vector sizes that are powers of 2, while the
upper line has vector sizes that are prime numbers.

22

Chapter 2

Path Integration and Path
Integration by Fast Fourier
Transform

The name path integration stems from the famous path integral formulation of quantum
mechanics by Richard Feynman in 1948, in which a particle no longer follows a determin-
istic path, but becomes a random variable and each position is a functional integral over
all possible paths. The concept was not new, since e.g. Paul Dirac had been working on
a similar formulation decades earlier. However, Feynman was the first to describe how
to calculate the sums and relate it to other physics relations such as the Schrödinger
equation. The following three postulates were used to describe the path integral [7]:

1. The probability for an event is given by the squared length of a complex number
called the probability amplitude

2. The probability amplitude is given by adding together all the contributions of all
the histories in the configuration space.

3. The contribution of a history to the amplitude is proportional to eiS/~, where ~ is
the reduced Planck’s constant, while S is the action of the history, given by the
time integral of the Lagrangian along the path.

In order to compute the resulting probability density, a discretization in time and space
is usually necessary. In one dimension the path integral can be approximated by∫

R
. . .

∫
R

exp(
i

~

∫ T

0
L(x, ẋ, t) dt) dx1 . . . dxn (2.1)

For the simplest path integral, without the Planck constant (which is a constant of
proportionality between the energy and the quantum wavelength of a particle) and the
imaginary component (a so-called Wick rotation t → it), the action is the Brownian

23

walk in statistical mechanics, or:

S =
∫

(
ẋ

2

2

) dt

With the i in the exponential, large deviations are suppressed by cancelling oscillations,
whereas without the i it decays exponentially and they are suppressed by small numbers.
By considering time steps ε→ 0, the probability of going from x(0) = x to x(T) = y is

K(x−y, T) =
∫ x(T)=y

x(0)=x
exp(−

∫ T

0
(
ẋ

2

2

) dt)Dx =
∫ x(T)=y

x(0)=x

∏
t

exp(−1
2

(
x(t+ ε)− x(t)

ε
)2ε)Dx

Here, Dx represents a finite number (T/ε) of integrations over R, and the resulting
factors in the integral are Gaussian distributions with variance ε2 and mean x(t). As a
result, the product is a repeated series of convolutions in the variables xti , and one can
take the Fourier transform on both sides:

F(K) = [F(G)]T/ε

whereG(x) = exp(−x2

2ε), so F(G) =
√

2πε exp(−2επ2ξ2) and F(G)T/ε =
√

2πε
T/ε

exp(−2Tπ2ξ2)

K(x, T) ∝ exp(− x
2

2T
)→ K(x− y, T) ∝ exp(−(x− y)2

2T
)

Choosing the normalization constant such that∫
R
K(x− y, T) dy = 1

one obtains a Gaussian probability distribution for y at time T given x. Obviously, in
real applications, the probability distribution of a random variable will not always be a
normal distribution, but it is a good point of departure for further analysis. Sometimes
a random variable can also be transformed so that the transformed random variable
follows a normal distribution, even if the original one does not. For example, this is the
case for the standard Black-Scholes formula in financial mathematics, where the stock
price is assumed to follow a lognormal distribution.

The path integration algorithm uses precisely what has been developed above: define
t′ = t − ∆t and let x′ be the points at t′. For each time step, one uses the transition
probability density (TPD) p(x, t|x′, t′) for each point x to integrate over the entire space
in t′.

p(x, t) =
∫

Rn
p(x, t|x′, t′) · p(x′, t′) dx′ (2.2)

This is what is referred to as the propagator in physics; the probability of a particle
going from x to y in time T . Going back to the point of departure, the Langevin SDE
1.1:

Ẋ(t) = A(X(t), t) + B(X(t), t)ξ(t)
X(0) = x0

24

where

X ∈ Rn

A : Rn × R→ Rn

B : Rn × R→ Rn×m

ξ : R→ Rm

The first k rows of B can be assumed to consist of zeros, so that noise only enters through
the last n− k dimensions. The path integration algorithm proceeds as follows:

1. Choose a grid for the space and time dimensions. It is convenient to choose a
homogeneous time discretization, i.e. such that 0 = t0 < t1 < . . . < tn = T and
∆ti = ti+1 − ti is the same for all i. It is important to make the grid so large
that the probability distribution integrates to as close to 1 as possible. As with
all numerical algorithms, there is a trade-off between accuracy and efficiency, since
the algorithm can be made arbitrarily accurate with a fine enough grid. However,
the computing power available effectively puts a constraint on the accuracy. This
means that xmax and xmin must be such that P(xmax, t) << 1 and P(xmin, t) << 1
for all t. The path of the probability distribution is typically unknown, so it is
possible to make a limited number of simulations first in order to establish sensible
upper and lower bounds on the space grid.

2. Find the transition probability density p(x, t|x′, t′). Sometimes it is possible to
establish an analytical expression, which obviously makes the subsequent solution
easy. More interestingly, when this is not possible a numerical approximation is
necessary. This can be a simple Euler-Maruyama step or preferably a Runge-Kutta
step. Denote by x̃ = r(x′) the numerical step for the deterministic part of equation
1.1. The TPD is the product of Dirac delta functions and a probability distribution
over the number of dimensions where noise enters, and can be approximated by
[8]:

p(x, t|x′, t′) = t(x† − r(x′†)) ·
k∏
j=1

δ(xj − r(x′j))

Here, t() is some probability distribution in n−k variables and x† is the truncated
vector of length n− k. Obviously, if there is no noise, n− k = 0 and the problem
becomes a purely deterministic one. At each time step, one uses the probabil-
ity density at the previous step, such that the variable transformation requires a
multiplication by the Jacobian with respect to the backwards numerical step.

p(x′, t′) dx′ = p(r−1(x), t′) dr−1(x)→ p(x′, t′) = p(r−1(x), t′)|Jr−1 |

3. If the TPD must be estimated numerically, one can use the order 2.0 weak Taylor
scheme 1.28 from Kloeden and Platen [3]. Hence, one must decide how many terms

25

to include. Naess [9] and Mo [8] include the diagonal of the matrix factor in front
of the dW dt term. Including higher-order terms (HOT) may give rise to noise
terms in the dimensions that were originally noise-free. In other words, this is
another choice that must be made during the implementation:

• With very small time steps the extra terms are very small, but the TPD also
becomes very localized and may be difficult to integrate satisfyingly even with
extra interpolation points.

• Including the HOT increases the number of dimensions of the TPD, because
noise arises as a cause of cross-terms in the Itô - Taylor expansion. The ’curse
of dimensionality’ is of course a well-known problem in the field of numerics,
since the number of grid points increases by the exponent n.

• If A and B are independent of x and t, the HOT are all zero. This permits
large time steps without loss of accuracy.

As an example to illustrate this, take the governing equation with noise for the
current in an electric circuit consisting of a source, an inductor, a capacitor and a
resistor:

LI ′′ +RI ′ +
1
C
I = E0ω cos(ωt) + γξ(t)

which gives the 2D system with n = 2 and m = 1:

˙[I1

I2

]
=
[

0 1
−R
L − 1

LC

]
·
[
I1

I2

]
+
[

0
E0ω
L

]
cos(ωt) +

[
0
γ
L

]
ξ(t)

The standard Euler-Maruyama scheme would give:

∆
[
I1

I2

]
i

=
[

0 1
−R
L − 1

LC

]
·
[
I1

I2

]
∆ti +

[
0
E0ω
L

]
cos(ωti)∆ti +

[
0
γ
L

]
∆Wi

while including the dW dt term from the 2.0 weak scheme would give:

∆I1 = A1∆t+B1∆W1 +
1
2

(B1,1
∂A1

∂I1
+B2,1

∂A1

∂I2
)∆W∆t

= I2∆t− 1
2LC

∆t∆W

and

∆I2 = A2∆t+B2∆W +
1
2

(B1,1
∂A2

∂I1
+B2,1

∂A2

∂I2
)∆t∆W

= (−R
L
I1 −

1
LC

I2 +
E0ω

L
cos(ωt))∆t+

γ

L
(1− 1

2LC
∆t)∆W

Clearly, there is now noise in both dimensions, and the TPD must be calculated
over R2 instead of R.

26

4. Whether an exact TPD is available or not, it is an advantage to use temporary
points between the already existing grid points: If the TPD is exact, one may
still interpolate the probability surface at these extra points to obtain a finer
temporary grid. Typically, with small time steps the TPD is very localized and
with a coarse grid only a few points may be non-zero at machine accuracy. In this
case, interpolating the probability distribution in the temporary extra grid points
may improve the accuracy significantly. If no exact TPD is available, one takes
the numerical step backwards from the grid points at time t and generally this
step does not coincide with the grid points at time t′: here interpolation is strictly
necessary. This is illustrated in the figure below. The resulting interpolated value
is then multiplied with the distribution of the noise term; the deterministic term
and the noise term are treated separately. Three choices have to be made regarding
the interpolation:

• Which interpolation method to use?

• How many extra points should be used between the grid points?

• If the TPD is very localized, it may be a waste of time to interpolate over the
whole grid. For example, one can interpolate only within the part of the grid
that is within seven standard deviations of the mean. If the noise term follows
a Gaussian distribution and the standard deviation is 0.1, the contribution of
all grid points outside this domain is then multiplied by a factor inferior to
1 · e−10.

The easiest choice for the interpolation method is obviously linear interpolation in
some form (linear in one dimension, bilinear in 2D, etc.), which uses only the clos-
est grid points, and hence is the least CPU intensive. Both polynomial and spline
interpolation are possible, but they have the disadvantage of not being strictly non-
negative. Also, the probability distribution usually has the shape of an exponential,
and so is not very well described by a polynomial. Polynomial interpolation is also
subject to Runge’s phenomenon [7]; that the error may increase with the degree
of the polynomial. On the other hand, the edges of the grid are more exposed to
rounding errors, and splines can become very oscillating because of the continuity
requirements (twice continuously differentiable for natural cubic splines). An al-
ternative is to use splines with linear interpolation where the distribution is close
to zero. Mo [8] proposes another strategy; to use Bézier splines, which are not
interpolating, but can be adjusted to be so (Bézier-Mo splines). Cubic splines are
computationally expensive, because with Ni grid points in each dimension i, there
are Ni equations in Ni unknowns to be solved for each dimension, and Bézier-Mo
are even more expensive. In higher dimensions, the interpolation routine quickly
becomes the dominant factor in the total CPU time of the algorithm, so either effi-
ciency or accuracy must be prioritized. Rectangular splines can also be considered
instead of cubic splines.

5. In either case, after assigning a numerical value to the probability distribution

27

in n − k dimensions, a numerical integration method is needed. This is another
standard numerical operation, for which there exist multiple good algorithms. In
one dimension, we will use Simpson’s composite method, which is of order 4 [10]:

∫ b

a
f(x) dx ≈ ∆x

3
[f0 + 2

n/2−1∑
j=1

f2j + 4
n/2∑
j=1

f2j−1 + fn]

e ≤ ∆x4

180
(b− a) max

ξ∈[a,b]
|f (4)(ξ)|

This method can easily be extended to higher dimensions. In two dimensions the
coefficients take the following pattern:

1 4 2 . . . 4 1
4 16 8 . . . 16 4
2 8 4 . . . 8 2
...

...
...

. . .
...

1 4 2 . . . 4 1

The normalizing constant is then ∆x∆y

9 and the error term is of the form O(∆x4)+
O(∆y4) [11].

6. The Jacobian is usually relatively easy to calculate: if A is independent of t, it can
be found in the initialization of the algorithm and stored, and if it is time-dependent
it is still inexpensive to estimate it analytically or numerically (depending on A)
at each iteration in time.

7. After having iterated over the whole grid, increase the time by ∆t and return to
the first step until T is reached.

t−∆t t

x′

x̃

(((((((((((((((

28

2.1 Path Integration by FFT

Mo and Naess propose another strategy for path integration in reference [8]. Here, the
equation is treated in two steps: first, solving the deterministic part, then convoluting
the solution according to the noise source in 2.3. This requires the noise term to be
independent of the physical space, since it is treated after the deterministic step has
been completed. An obvious advantage of this algorithm is that it makes use of the FFT
algorithm, which is O(N log(N)) in computational complexity, and implies pointwise
multiplication of two arrays instead of iterating over the full probability density. The
general equation is posited as:

ẋ = A(x, t) + Bξ(t) (2.3)

Here, A ∈ Rn × R → Rn is any deterministic operator, B ∈ Rn×m and ξ ∈ Rm is
usually Gaussian white noise. In this case, B takes the form:

B =

 0 . . . 0
...

. . .
0 Σ

 (2.4)

where Σ is the (n − k) × (n − k) covariance matrix for the noise processes. Thus it is
symmetric and hence positive definite. This means that t() will be:

t(x† − x̃†) =
1

(2π∆t2)(n−k)/2|Σ|1/2
e−

1
2

(x†−x̃†)
TΣ−1(x†−x̃†)

Assuming that all noise processes are uncorrelated, Σ is zero except at the diagonal, and
the PDF at time t′ and the TPD gives a convolution in x̃:

p(x, t|x̃, t′) =
k∏
j=1

δ(xj − x̃j) ·
n∏

j=k+1

1√
2πσ2

j∆t
exp
−(xj − x̃j)2

2σ2∆t

q(x, t′) = p(r−1(x), t′)|Jr−1 |
p(x, t) = p(x, t|x̃, t′) ∗ q(x, t′)

where the convolution theorem comes in handy:

h = f ∗ g → F(h) = F(f) ·F(h)

As a result, the difference from regular PI is just that instead of numerical integration,
one multiplies two n−k-dimensional probability distributions in Fourier space and makes
the inverse transformation. Using an interpolation routine that is O(N log(N)), this
should significantly improve the efficiency of the algorithm.

Furthermore, since the PI by FFT algorithm is devised for SDEs with constant or
time-dependent noise terms, it is useful to be able to transform more general SDEs to
this form. From equation 7, it is known that one can rewrite any SDE with a function

29

f() to obtain another SDE. One can assume that the deterministic part of the equation
can be arbitrary, while the third term in equation 7 must be independent of X. This
implies that

n∑
i=1

(
∂f

∂xi

m∑
l=1

Bil dWl) (2.5)

must be such that

∂f

∂xi
Bil = Cil(t).

In other words, one must solve this differential equation for each dimension. If there
are multiple noise terms, the system is overdetermined, and it may not be possible to
transform the SDE to the desired form. This is the case if one of the noise terms is
multiplied by a factor xi and another is not. This means that PI by FFT usually only
works with multiple additive noise terms or a single multiplicative noise term.

30

Chapter 3

Fokker-Planck Equations in
Physics

The Fokker-Planck (also known as the Kolmogorov forward equation) equation is named
after Adriaan Fokker and Max Planck, respectively Dutch and German physicists. It can
describe a multitude of physical, biological, financial and other phenomena, but one of
the most common usages is the description of the position of a particle in one dimension
or the position and velocity of a particle in two dimensions. In a particle accelerator
such as the Large Hadron Collider (LHC) at the Centre Europeen de Recherche Nucléaire
(CERN) on the border between Switzerland and France, particles travel in bunches, typ-
ically around 1011 per beam bunch (1.15 · 1011 at beam injection for the design energy
level (14 TeV) is the number given by CERN) [12]. The single-particle perspective is
essential in analyzing the scattering and decays of elementary particles resulting from
the collisions, but may be inconvenient for describing the behavior of the beam. The
charged particles in accelerators are subjected to strong external electromagnetic fields,
and in the limit of an infinitesimal number of particles, the Fokker-Planck equation can
be used to describe the beam motion to a high level of accuracy. However, what equation
to use is highly dependent on the specific particle accelerator technology. Accelerators
are either linear (linacs) or cyclic (synchrotrons), and they accelerate charged particles
(electrons, protons or heavy-ions) to relativistic velocity levels. In synchrotrons, particles
are accelerated once or more per revolution by radio frequency cavities. This frequency
and the B field must be synchronized with the particle velocity, hence the name syn-
chrotron. A beam typically makes of the order 105 revolutions before colliding or being
safely stopped in a large block of concrete, known as a collimator.

The largest electron linac in the world, built in 1962, is at Stanford, California, and
measures 3 km [13]. Somewhat surprisingly it has been in use since its construction, and
has produced data for three Nobel Prizes in Physics. However, a common misconception
is the difference between an accelerator and a detector: the linear accelerator at Stanford
has hosted several experiments with different detectors. For example, from 1999 to
2008 it was host to the BaBar experiment, where the goal was to study B mesons, an
elementary particle of the standard model of particle physics[13], from electron-positron

31

collisions. At CERN, there are four different detectors: CMS (Compact Muon Solenoid),
ATLAS, ALICE (A Large Ion Collider Experiment) and LHCb (Large Hadron Collider
beauty). The former two are the largest ones, and are constructed to detect both proton
and heavy-ion collisions. The b in LHCb refers to the bottom quark in the standard
model, and the detector is designed for so-called b-physics; studying bigger particles
(hadrons) that include a b quark. ALICE is dedicated to heavy-ion collisions and the
fourth fundamental force; the strong force. This theoretical field is called quantum
chromodynamics, and describes the interactions of particles that carry color charge,
namely quarks and gluons. This is only possible at extreme energy densities, where a
new phase of matter; quark-gluon plasma, is expected.

The smooth distribution picture described by the Fokker-Planck equation is useful for
the study of collective beam instabilities. Noise usually enters through the momentum
dimensions of the equation, not through the position dimensions. For proton beams,
there are many potential sources of noise ... However, in order to make a system described
by classical statistics valid, one must ensure that the number of quantum states must far
exceed the number of particles in the beam. If not, one enters the field of Fermi-Dirac
statistics, that applies to identical particles with half-integer spin (fermions) in a system
in thermal equilibrium. No two particles can then occupy the same state, a famous
phenomenon called the Pauli Exclusion Principle [13]. This effect has a big influence
on the state of the multi-particle system, and since both quarks (the building blocks
of protons and neutrons) and leptons (e.g. electrons) have half-integer spin, it must be
carefully considered before choosing a model. The number of quantum states available
for protons is [12]:

N =
2V
~3

(3.1)

where V is the volume of the 6-dimensional phase space. For 2D damped harmonic
motion, the system becomes:

q̇ = ωp

ṗ = −ωq − 2αp

Adding a diffusion term gives the Fokker-Planck equation:

∂ρ

∂t
+ ωp

∂ρ

∂q
+ (−ωq − 2αp)

∂ρ

∂p
= 2αρ+D

∂2ρ

∂p2

This form of F-P has an equilibrium solution which is Gaussian (shown in the next
section), and is not unrealistic for beam distributions in electron storage rings. Assuming
that the motion in the three dimensions (x and y are the horizontal and vertical axes
respectively in the transversal plane, while z is tangent to the longitudinal synchrotron
motion) are independent, each 2D system can be modeled separately. For such a model,
Chao [12] gives the following table for α, D and the rms in each dimension:

32

Horizontal betatron (x) Vertical betatron (y) Longitudinal synchrotron (z)
q − c

ωx
x′ y z

p x c
ωy
y′ −αcc

ωs
δ

α U0
2E0T

U0
2E0T

U0
E0T

D R2

E2
0ν

4
x
Du

(c/ωyE0)2

2γ2 Du (αcc
ωsE0

)2Du

rms σx = c
ωx
σx′ = 1

ν2
x

√
Cqγ2R σy = c

ωy
σy′ = 1

νy

√
CqR

2 σδ = ωs
αcc
σz =

√
Cqγ2

2R

Table 3.1: Radiation damping and quantum diffusion factors for three dimensions of
motion in a synchrotron.

The energy loss per revolution for a relativistic electron in a synchrotron is approxi-
mately [13]:

U0 =
4π
3

(
r0

R
)mc2γ4

γ =
1√

1− v2/c2

As can be seen from the formula, this energy loss increases very rapidly with the veloc-
ity v of the particles. The loss is mainly in the form of emission of quantized photons.
This is the reason why the electron linear accelerator at Stanford was built - the syn-
chrotron radiation becomes the limiting factor on the final energy obtained in electron
synchrotrons such as LEP (Large Electron Positron Collider, an electron-positron col-
lider that made necessary the excavation of the 27 km long tunnel now being used by
the LHC) at CERN.

Du =
55

48
√

3
r0~mc4 γ

7

R3

is the photon emission diffusion rate,

Cq = 3.84 · 10−13 m

is a fundamental constant defined for convenience [12]. Furthermore, r0 is the classical
radius of the particle (2.82 · 10−15 m for an electron), m is the rest mass (9.11 · 10−31

kg for an electron), E0 = mc2γ is the energy of the particles and αc is the momentum
compaction factor (particles with different longitudinal momentum have different equi-
librium radii), T is the revolution time and R is the uniform radius of the storage ring.
Finally, particles oscillate around the intended orbit in the transverse x and y directions.
The number of oscillations per orbit is called the betatron tune, and νx,y = ωx,yR

c are
horizontal and vertical betatron tunes respectively. For the x-motion, the synchrotron
radiation noise occurs in x rather than x′, so p and q are inverted for this dimension.

33

Now, returning to the quantum states in equation 3.1, V could be of the order of
[12]:

V = σxσx′σyσy′σzσδP
3
0

The particles under consideration are usually electrons, but take the LHC beam as
an example, which is accelerated to approximately 99.999999 % of the speed of light,
which in turn gives γ = 7.1 · 103. R = 4290 m and other typical parameters would be
αc = 0.0002, νx = νy = 80, ωs = 40 s−1. After reaching the stationary distribution,
inserting these values into table 3.1 gives an Nq of about 1020, which exceeds the number
of protons per bunch by a factor of 109. There is no problem in ignoring the Fermi
statistics in this case.

The Vlasov equation is another dynamical system, without noise, that can also be
used to find a wealth of beam dynamical properties:

∂ρ

∂t
+ ρω

∂ρ

∂v
+ [−ωx+Nω

∫ ∞
v

W (q′ − q) dq′
∫ ∞
−∞

ρ(x′, v′, t) dx′]
∂ρ

∂v
= 0 (3.2)

It is a partial-differential-integral equation, nonlinear in ρ, so exact solutions are not
readily available. The Vlasov equation is most relevant for proton accelerators, where
the synchrotron radiation is negligible. This effect occurs when high-energy particles
travel in a curved path through magnetic fields. However, close to the speed of light it
is 1013 times larger for electrons than for protons.

Figure 3.1: Transversal distribution of the first beam entering point 2 of the LHC on 23
October 2009.

The questions that F-P can help answer are

• The longtime behavior of the beam

• The probability for the particle to hit the vacuum chamber

34

Figure 3.2: Event display from the first collision events at CMS on 23 November 2009.

• Average fluctuations of the particles around the periodic design orbit

• Time evolution of the probability density of the beam

3.1 General Form - Derivation

The Fokker-Planck equation is closely related to the Langevin stochastic differential
equation (1.1), introduced by Langevin in 1908 [14]. The probability distribution of the
solution is usually the statistical property of main interest. When the noise process η(t)
in the Langevin equation is Gaussian white noise, i.e. it can be represented as the time
derivative of a stationary process with independent and normally distributed increments
on non-overlapping intervals [15], it corresponds to the ordinary Fokker-Planck equation.

There are at least two formulations of the Itô SDE, since it is always connected with
at least one partial differential equation. Going back to the formulation in equation 1.19:

dX(t) = A(X(t), t) dt+ B(X(t), t) dW(t)

Let t and x be the backward variables and T and y the forward variables (in time). By
introducing a Borel-measurable, strictly nonnegative function h(y) ∈ R, we have in one

35

dimension:

dh(X) =
∂h

∂x
dX +

1
2
∂2h

∂x2
dX dX

= (A
∂h

∂x
+B2 1

2
∂2h

∂x2
) dt+B

∂h

∂x
dW∫ y(T)

x(t)
dh(z) =

∫ T

t
A(u, y)

∂h

∂y
(y) du+

1
2

∫ T

t
B2(u, y)

∂2h

∂y2
(y) du

+
∫ W (T)

W (t)
B(u, y)

∂h

∂y
(y) dW

By integrating the expression on the left-hand side, taking expectations and using the
fact that X(u) has probability density p(t, u, x, y), the last term on the right-hand side
becomes zero and one obtains∫ +∞

−∞
h(y)p(t, T, x, y) dy = h(x) +

∫ T

t

∫ +∞

−∞

∂h

∂y
(y)A(u, y)p(t, u, x, y) dy du

+
1
2

∫ T

t

∫ +∞

−∞

∂2h

∂y2
(y)B2(u, y)p(t, u, x, y) dy du

Now, by assuming that limy→±∞ h(y) = 0 and limy→±∞ h
′(y) = 0 and integrating the

second integral by parts:∫ ∞
−∞

Ap
∂h

∂y
dy = [Aph]∞−∞ −

∫ ∞
−∞

h
∂

∂y
(Ap) dy = −

∫ ∞
−∞

h
∂

∂y
(Ap) dy∫ ∞

−∞
B2p

∂2h

∂y2
dy = [B2ph′]∞−∞ −

∫ ∞
−∞

∂h

∂y

∂

∂y
[B2p] dy

= −[h
∂

∂y
(B2p)]∞−∞ +

∫ ∞
−∞

h
∂2

∂y2
[B2p] dy

=
∫ ∞
−∞

h
∂2

∂y2
[B2p] dy

Substituting this into the equation and differentiating with respect to T ,∫ ∞
−∞

h(y)
∂p(t, T, x, y)

∂T
dy =

∫ ∞
−∞

(−h(y)
∂

∂y
(A(T, y)p(t, T, x, y))

+
1
2
h(y)

∂2

∂y2
(B2(T, y)p(t, T, x, y))) dy

Since h(y) ≥ 0, we are left with what is known as the forward Kolmogorov equation or
the one-dimensional Fokker-Planck equation.

→ ∂p(t, T, x, y)
∂T

= − ∂

∂y
(A(T, y)p(t, T, x, y)) +

1
2
h(y)

∂2

∂y2
(B2(T, y)p(t, T, x, y))

36

In n dimensions, the Itô SDE 1.19 can be re-written as the following Fokker-Planck
equation:

∂ρ

∂t
= −

n∑
i=1

∂(ρAi)
∂xi

+
1
2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

m∑
k=1

(BilBjlρ) (3.3)

3.2 Fokker-Planck in Accelerator Physics

The typical SDE for accelerator physics looks like:

ẋ = v (3.4)
v̇ = −a1(x)− a2(x, v) +

√
2ση(t) (3.5)

The first, simple example of the SDE for particle oscillations around the periodic design
trajectory of a storage ring is linear in x and v. It is an harmonic oscillator with damping
and additive noise, K > 0, γ > 0:

ẋ = v (3.6)
v̇ = −Kx− γv +

√
2ση(t) (3.7)

According to 3.3, the Fokker-Planck partial differential equation of the harmonic oscil-
lator becomes

∂ρ

∂t
= −∂(ρv)

∂x
+
∂(Kxρ+ γvρ)

∂v
+ σ

∂2

∂v2
ρ (3.8)

This equation has a closed form exact solution, shown in the next section, which is useful
for comparison purposes for the numerical schemes.

Figure 4.1 shows the phase plot of the 2D system 3.6 and 3.7 without noise. For the
system to be Liapunov stable, the eigenvalues need to be strictly negative, or negative
with no repeated zero eigenvalue [16]. Also, solutions of the linear system ẋ = A(t)x+
f(t) have the same stability properties as the regular linear system. This, however, is for
a deterministic function f(). But any system that is unstable without noise would be
of no interest, since stability is essential for a storage ring. For the harmonic oscillator,
the eigenvalues are:

λ1 = −1
2
γ +

√
1
4
γ2 −K

λ2 = −1
2
γ −

√
1
4
γ2 −K

These are both strictly negative for γ2/4 > K.
Another model that incorporates two noise terms, whereof one is dependent on x, is

the stochastic Duffing oscillator:

ẋ = v (3.9)

v̇ = −ω2[(α+
√

2D1η1(t))x+ εx3)]− 2τωv +
√

2D2η2(t) (3.10)

37

−5 −4 −3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

8

X

V

Figure 3.3: Phase plot for the dynamical system 3.6 and 3.7 without noise. K = 1 and
γ = 2.1

This SDE becomes the following FP:

∂ρ

∂t
= −∂(ρv)

∂x
+

∂

∂v
[ω2x(x+ εx2) + 2τωv] +

1
2
∂2

∂v2
(D1ω

4x2 +D2) (3.11)

3.3 Exact Solutions

Subrahmanyan Chandrasekhar, an Indian-American astrophysicist and Nobel prize lau-
reate, in his celebrated 1943 paper ’Stochastic Problems in Physics and Astronomy’
[14], provides a long discussion on Brownian motion and an exact solution for a class of
Fokker-Planck equations. Here, he shows the relation between the Fokker-Planck equa-
tion and the Langevin equation. The Langevin equation, when it takes the form of an
harmonically bound particle with noise as in 3.6 and 3.7 can also be written as

ẍ+ γẋ+Kx =
√

2σξ(t)

The homogeneous differential equation can then be solved by variation of parameters,
and

µ1 =
1
2
γ +

√
1
4
γ2 −K

µ2 =
1
2
γ −

√
1
4
γ2 −K

such that x = a1e
µ1t+a2e

µ2t. Two independent first integrals of the 2D system are then

ξ = (xµ1 − v)e−µ2t

η = (xµ2 − v)e−µ1t

38

It is not explicitly shown in the paper, but in these two variables, the equation 3.8
simplifies and only the terms ∂ρ

∂t , γρ and ∂2ρ
∂v2

are left, and with the variable transformation

the latter term becomes (with ∂ξ
∂v = −e−µ2t, ∂η

∂v = −e−µ1t, ∂2ξ
∂v2

= 0 and ∂2η
∂v2

= 0)

∂2ρ

∂v2
=

∂

∂v
(
∂ρ

∂v
) =

∂

∂v
(
∂ρ

∂ξ

∂ξ

∂v
+
∂ρ

∂η

∂η

∂v
)

=
∂

∂v
(
∂ρ

∂ξ
)
∂ξ

∂v
+
∂ρ

∂ξ

∂2ξ

∂v2
+

∂

∂v
(
∂ρ

∂η
)
∂η

∂v
+
∂ρ

∂η

∂2η

∂v2

= (
∂2ρ

∂ξ2

∂ξ

∂v
+

∂2ρ

∂ξ∂η

∂η

∂v
)
∂ξ

∂v
+ (

∂2ρ

∂η2

∂η

∂v
+

∂2ρ

∂ξ∂η

∂ξ

∂v
)
∂η

∂v

= (
∂ξ

∂v
)2∂

2ρ

∂ξ2
+ 2

∂ξ

∂v

∂η

∂v

∂2ρ

∂ξ∂η
+ (

∂η

∂v
)2 ∂

2ρ

∂η2

= e−2µ2t∂
2ρ

∂ξ2
+ 2e(−µ1−µ2)t ∂

2ρ

∂ξ∂η
+ e−2µ1t ∂

2ρ

∂η2

and equation 3.8 becomes

∂ρ

∂t
= γρ+ σ(e−2µ2t∂

2ρ

∂ξ2
+ 2e(−µ1−µ2)t ∂

2ρ

∂ξ∂η
+ e−2µ1t ∂

2ρ

∂η2
)

and with the further transformation ρ = peγt,

∂p

∂t
= σ(e−2µ2t∂

2p

∂ξ2
+ 2e(−µ1−µ2)t ∂p

∂ξ∂η
+ e−2µ1t ∂

2p

∂η2
)

By Lemma II in Chandrasekhar’s paper [14], an equation of the form

∂f

∂t
= φ2(t)

∂2f

∂x2
+ φ(t)ψ(t)

∂2f

∂x∂y
+ ψ2(t)

∂2f

∂y2
(3.12)

which tends to δ(x− x0, y − y0) as t→ 0 has the exact solution

f(x, y) =
1

2π∆1/2
e−(ax2+2hxy+by2)/2∆ (3.13)

where

a = 2
∫ t

0
ψ2(t) dt h = −2

∫ t

0
φ(t)ψ(t) dt b = 2

∫ t

0
φ2(t) dt

∆ = ab− h2

From this, Zorzano et al. [17] conclude that the exact solution of 3.8 at time t is

ρ =
eγte−[a(ξ−xi0)2+2h(ξ−ξ0)(η−η0)+b(η−η0)2]/2∆

2π∆1/2

39

with

a = 2σ
∫ t

0
e−2µ1t dt =

σ

µ1
[1− e−2µ1t]

b = 2σ
∫ t

0
e−2µ2t dt =

σ

µ2
[1− e−2µ2t]

h = −2σ
∫ t

0
e−(µ2+µ1)t dt =

−2σ
µ1 + µ2

[1− e−(µ1+µ2)t]

However, this probability distribution does not integrate to 1. This can easily be verified
as follows: the variable transformation can be written as

[
ξ
η

]
=
[
e−µ2t 0

0 e−µ1t

]
·
[
µ1 −1
µ2 −1

]
·
[
x
y

]
Now, ρ̃ = eξ

TAξ/2∆, with

A =
[
a h
h b

]
which has det(A) = ∆ = ab − h2 and det(A/2∆) = 1

4∆ . Since A is symmetric and
positive definite, one can diagonalize it by an orthogonal matrix Q: QTAQ = Λ. Thus,
with Qxi = yi, ∫ ∫

R2

ex
TAx dx1 dx2 =

∫ ∫
R2

ey
TΛy dy1 dy2

=
∫

R
e−λ1y21 dy1

∫
R
e−λ2y22 dy2 =

√
π

λ1

√
π

λ2
=

π√
det(A)

so ∫ ∫
R2

ρ̃dξ dη = 2π
√

∆

Now, in terms of (x, v) the Jacobi determinant of the variable transformation is

J = e−(µ1+µ2)t(µ2 − µ1) = eγt
√
γ2 − 4K

and inserted in the integral above, this gives∫ ∫
R2

ρ̃|J |−1 dx dv = 2π
√

∆|J |−1 =
2π
√

∆

eγt
√
γ2 − 4K

This is constant for a fixed time t, so the exact probability density for (x, y) is

ρ(x, y) =
eγt
√
γ2 − 4K

2π
√

∆
ρ̃

Thus the difference from what is stated in Zorzano’s paper is the factor
√
γ2 − 4K. The

result was also verified numerically. An example plot of the exact distribution is shown
in figure 3.4.

40

X

-4
-2

0
2

4

V

-4
-2

0
2

4
0

0.2
0.4
0.6
0.8

1
1.2
1.4

exactdistr
Entries 22500
Mean x 1.138
Mean y -0.2659
RMS x 0.2872
RMS y 0.4771

exactdistr
Entries 22500
Mean x 1.138
Mean y -0.2659
RMS x 0.2872
RMS y 0.4771

Exact solution

Figure 3.4: Exact solution of the harmonic oscillator at time T = 1 with K = 0.8, γ =
2.4, σ = 0.6 and x0 = 1, v0 = 1.

3.4 Numerical Solution by Simulation

Kloeden and Platen’s book [3] ”Numerical Solutions of Stochastic Differential Equations”
is entirely dedicated to simulation schemes. Usually, ’numerical solutions’ of equations
with noise in the literature implies solution by simulation. However, even though there
are vast amounts of different simulation schemes and variance reduction methods, even
the simple Euler-Maruyama scheme usually gives good results with small ∆t. Since the
convergence is proportional to 1/

√
N realizations, this is usually the limiting factor.

The pseudo random number generator used to sample the Brownian motion path will
be ’ran2’ from Numerical Recipes in C++ [11]. This routine returns uniform random
deviates between 0 and 1, has a period of more than 1018 and supposedly provides
’perfect’ (to machine precision) random numbers. The standard library generator in
C++ is called ’rand’, and is a so-called linear congruential generator, which generates a
sequence of integers based on the recurrence relation

Ij+1 = aIj + c mod(m). (3.14)

This type of generators is usually not very reliable, since m can be as low as 32767,
which would introduce a high level of periodicity in the output. On the machine used
for all simulations in this thesis, m > 2 · 109. The mean and standard deviation of a
uniform distribution on (0, 1) are 1

2 and 1
2
√

3
respectively. The error in the sample mean

as a function of the number of generated random variables is shown in figure 3.5. The
author of this thesis is not quite sure what to conclude from these results - but based
on the continuously decreasing error for the ’ran2’ routine and recommendations in the
literature [11] [18], this number generator will be used. The pseudo uniform random

41

variable is then used in an analytical transformation to get a normal random variable
n(0, 1) - shown in figure 3.6.

104 105 106 107 108 109
10−6

10−5

10−4

10−3

10−2

REALIZATIONS

ER
RO

R
O

N
M

EA
N

standard rand()
NR ran2

Figure 3.5: Error in the sample mean (|x̄− 1/2|) for the pseudo random number gener-
ators rand and ran2 in C++.

norm
Entries 2e+07
Mean 0.0001536
RMS 0.9998

-5 -4 -3 -2 -1 0 1 2 3 4 50

10000

20000

30000

40000

50000

60000

70000

80000

norm
Entries 2e+07
Mean 0.0001536
RMS 0.9998

normal

Figure 3.6: 20 million simulated n(0, 1) random variables using the pseudo random
number generator ran2.

The numerical schemes used for all simulations in this thesis are the order 2.0 weak
Itô-Taylor scheme and the Euler-Maruyama scheme.

42

3.4.1 Harmonic Oscillator

The error will be measured as

||e||∞ = ||ρsim − ρex||∞ = max
i,j
{ρsim(i, j)− ρex(i, j)}. (3.15)

Although Zorzano et al. [17] use the RMS error averaged over the whole grid, this will
not be used here, since the distribution is usually relatively concentrated and the average
RMS does not reflect the true error in the probability distribution. By increasing the
size of the grid one would reduce the RMS error, while the max error would remain the
same. Other possible benchmarks of the accuracy could be the first and second order
moments, which are often of interest. First, convergence will be tested in N and ∆t for
an example with K = 0.9, γ = 2.4, σ = 0.5 and T = 2.3. The errors measured against
the exact solution with the Euler-Maruyama scheme are shown in table 3.2 and with the
Taylor 2.0 scheme in table 3.3. The order 2.0 weak Taylor scheme becomes

xn+1 = xn + vn∆t+
1
2

(−Kxn − γvn)∆t2 +
√
σ

2
∆W∆t

vn+1 = vn + (−Kxn − γvn)∆t+
1
2

(−Kvn + γ(Kxn + γvn))∆t2 + (
√

2σ −
√
σ

2
γ∆t)∆W

103 104 105 106 107 108
10−3

10−2

10−1

100

101

Repetitions N

M
ax

 e
rro

r

dt = 0.1
dt = 0.01
dt = 0.001
dt = 0.0001

10−4 10−3 10−2 10−1
10−3

10−2

10−1

100

time step dt

M
ax

 e
rro

r

N = 105

N = 106

N = 107

N = 108

Figure 3.7: Convergence in N and ∆t for the simulated Taylor 2.0 scheme.

The results from table 3.3 are the best and show that

• In order to get good results, the number of realizations N must be much larger
than the grid size of the histogram that is used. For example, with only 1000
realized paths and a grid of 2012 = 40401 bins, each bin will either not be filled or
only incremented a few times.

43

Number of realizations 103 104 105 106 107

||e||∞, ∆t = 10−1 1.70 0.403 0.218 0.129 0.109
||e||∞, ∆t = 10−2 1.84 0.463 0.156 0.052 0.032
||e||∞, ∆t = 10−3 1.75 0.499 0.161 0.059 0.023
||e||∞, ∆t = 10−4 1.65 0.485 0.169 0.055 0.028

Table 3.2: Convergence in N and ∆t for Euler-Maruyama scheme. K = 0.9, γ = 2.4, σ =
0.5, T = 2.3 and a grid of 201× 201 points.

• If the grid size is in proportion with N and N is large enough, numerical solution
by simulation does not converge significantly in ∆t for ∆t < 0.01. The resulting
stagnation of the curve is encircled in black in figure 3.7. Theoretically, it is the
expected value of the distribution that converges O(∆t2) (weakly). This is shown
in figure 3.8, with a reference line of slope 1. However, the Euler scheme is seen
to converge faster than Taylor 2.0, which, surprisingly, does not exhibit order 2.0
convergence. It may be that N must be even larger before the convergence in ∆t
is seen.

• If the grid size is in proportion with N and ∆t is small enough, numerical solution
by simulation converges by order 0.5 in increasing N .

10−3 10−2 10−1
10−4

10−3

10−2

10−1

Time step dt

Er
ro

r o
f m

ea
n

Euler scheme

N=105

N=106

N=107

Reference slope 1

10−3 10−2 10−1
10−4

10−3

10−2

10−1

Time step dt

Er
ro

r o
f m

ea
n

Taylor 2.0

N = 105

N = 106

N = 107

Rerference slope 1

Figure 3.8: Weak convergence in ∆t for the Euler scheme (left) and the Taylor 2.0 scheme
(right).

3.4.2 Stochastic Duffing Equation

Since there is no closed form solution for the damped stochastic Duffing equation, it
is unfortunately not possible to find the errors for different step sizes. Of course, it

44

Number of realizations 103 104 105 106 107 108

Error, ∆t = 10−1 2.36 0.554 0.178 0.070 0.051 0.047
Error, ∆t = 10−2 1.55 0.455 0.155 0.049 0.023 0.012
Error, ∆t = 10−3 1.76 0.459 0.169 0.057 0.022 0.011
Error, ∆t = 10−4 1.65 0.485 0.169 0.055 0.019 0.009

Table 3.3: Convergence of the max error in N and ∆t for the order 2.0 weak Taylor
scheme. K = 0.9, γ = 2.4, σ = 0.5, T = 2.3 and a grid of 201× 201 points.

would be possible to compare with a simulated result using a very large N and a small
∆t, but the convergence was seen not to be very impressive for the harmonic oscilla-
tor: the combination of N = 108 and ∆t = 0.0001 took close to 70 hours of CPU time
and still gave a max error of 0.009 - far from machine precision. As the convergence
of the solution is O(

√
N), it would take too long to obtain a highly accurate distribu-

tion by simulation. However, one can at least get an impression of the effect of the
multiplicative noise: figure 3.9 shows how the distribution becomes more smeared out
further away from the origin. Physically, this means that there is increased noise on
the particles in the periphery of the beam axis - and there is a higher probability of
loosing them. Effects such as these must be carefully considered and modeled prior
to the construction of particle accelerators. For example, the x3 term in the equation
can be due to the interaction between the circulating beams in the storage ring or an
octupole, which are both proportional to the third power of the distance from the origin.

X
-4 -2 0 2 4

V

-4

-2

0

2

4

simu
Entries 1040401
Mean x 0.4293
Mean y -0.04425
RMS x 0.3679
RMS y 0.3021

0

0.2

0.4

0.6

0.8

1

1.2

1.4

simu
Entries 1040401
Mean x 0.4293
Mean y -0.04425
RMS x 0.3679
RMS y 0.3021

Simulation - T=3.000000

X
-4 -2 0 2 4

V

-4

-2

0

2

4

simu
Entries 1040401
Mean x 0.3982
Mean y -0.06518
RMS x 0.4917
RMS y 0.4388

0

0.2

0.4

0.6

0.8

1

simu
Entries 1040401
Mean x 0.3982
Mean y -0.06518
RMS x 0.4917
RMS y 0.4388

Simulation - T=3.000000

Figure 3.9: Simulation of the stochastic Duffing equation. To the left, D1 = 0.0, D2 =
0.23 (only additive noise), to the right, D1 = 1.5, D2 = 0.23 (additive and multiplicative
noise).

45

3.5 Numerical Solution by Path Integration

The PI algorithm is implemented as follows:

1. The grid size is specified in the results that are given. However, ∆x and ∆t must
be in reasonable proportion: Figure 3.10 demonstrates how the convoluting normal
distribution can become too localized for the grid. That is, ∆t must not be too
small, since information is lost, but it must certainly not be too large either, since
the theoretical framework is based on the limit ∆t→ 0.

−1 −0.5 0 0.5 1
0

5

10

15
dX = 0.1

dt = 0.1
dt = 0.01
dt = 0.001

−1 −0.5 0 0.5 1
0

5

10

15
dX = 0.01

dt = 0.1
dt = 0.01
dt = 0.001

Figure 3.10: Normal distribution n(0,
√
dt) for different ∆x and ∆t.

2. The harmonic oscillator has an exact solution for the deterministic part of the
equation: with λ1, λ2 as the eigenvalues and v1, v2 as the eigenvectors of the system,
the exact solution is[

x
v

]
(t) = C1v1e

λ1t + C2v2e
λ2t

The exact solution is used to compare with the Runge-Kutta solver. For the
Duffing equation, no exact solution is easily available, so only the latter will be
used.

3. Both the Euler-Maruyama scheme and the weak Taylor 2.0 scheme are used.

4. Both the relevant systems are two-dimensional. Thus, the linear interpolation
method includes a cross-term such that the interpolating function passes through
all four points on a square in the grid:

f(x, y) = ax+ by + cxy + d

This is bilinear interpolation, and is very fast since the interpolating function on
each square is independent of the neighboring functions. The coefficients a, b, c, d

46

can be easily determined given the point coordinates that are to be interpolated
and the values at the grid points. On the other hand, this is not very accurate
for large grid squares, and the gradient is not continuous at the boundaries of
each grid square. In the same spirit, one can also use birectangular or bicubic
splines. These methods are first- and second-order continuous respectively at the
boundaries. Constructing bicubic splines in one dimension implies iterating four
times over the given values at the grid points to ensure second-order continuity.
To interpolate one value in two dimensions, N one-dimensional splines are created
across the rows of the table, before one spline is made down the column at the
intersection at the relevant point. Since one needs to make N ·N evaluations, it
is advantageous to pre-compute and store derivative information in one direction
so that only one spline construction, which is O(N2), and one evaluation, which
is O(1), are needed per point. However, this means that at each time step, bicu-
bic splines are of computational cost O(N2(N2 + 1)) = O(N4) instead of O(N2)
for bilinear interpolation. The spline scheme is implemented as in reference [11].
Birectangular splines may be an alternative if CPU time is an important constraint.

5. Simpson’s method is used for the numerical integration. The integration will only
be performed within the limits of the normal distribution that are superior to
10−10.

6. The jacobi determinant of the backwards step is calculated by finite differences.
For both the relevant systems it is independent of time, so it can be set in the
variable initialization part of the algorithm.

3.5.1 Harmonic Oscillator

Using the same example parameters as for the simulation schemes, the results in table
3.4 are obtained. They suggest that with linear interpolation, adding the extra inter-
gridpoints may ’save’ the numerical solution from exploding, but no extra precision is
gained by adding more points than necessary. For example, the results in the second
column (M = 2) (in bold font) show that the results are better with a time step of
0.1 than a time step of 0.01. Also, with ∆x = 0.025 and ∆t = 0.002, the error is
seen to increase with the number of extra points M. However, decreasing ∆x and ∆t
simultaneously increases the accuracy significantly. This is a reasonable result, since
the extra points only add information from linear interpolation, which has an error that
is O(∆x2), while composite Simpson’s numerical integration has error O(∆x4). It is
therefore no surprise that the error is not reduced by the extra points with bilinear
interpolation.

Table 3.5, however, is obtained using cubic splines. Here, one sees that for e.g.
∆x = 0.1,∆t = 0.01, the algorithm does not work: the backward probability distri-
bution becomes too localized. A maximum error of 0.32 is clearly unacceptable for a
probability distribution. Moreover, in this case the final distribution integrates to 1.4,
a clear sign that something is wrong. Adding two extra inter-gridpoints on the V -axis

47

Extra integration points M 0 2 5 10
||e||∞, ∆x = 0.1, ∆t = 0.1 0.146 0.146 0.146 0.146
||e||∞, ∆x = 0.1, ∆t = 0.01 0.322 0.187 0.204 0.205
||e||∞, ∆x = 0.025, ∆t = 0.01 0.035 0.042 0.042 0.043
||e||∞, ∆x = 0.025, ∆t = 0.002 0.031 0.060 0.069 0.075

Table 3.4: Euler-Maruyama scheme, bilinear interpolation: errors for different numbers
of extra integration points. The parameters are the same as for the example in table
3.3.

Extra integration points M 0 2 5 10
||e||∞, ∆x = 0.1, ∆t = 0.1 0.091 0.091 0.091 0.091
||e||∞, ∆x = 0.1, ∆t = 0.01 0.316 9.89e-3 9.90e-3 9.90e− 3
||e||∞, ∆x = 0.1, ∆t = 0.001 N/A 4.52 1.01e− 3 1.01e− 3
||e||∞, ∆x = 0.1, ∆t = 0.0001 N/A N/A N/A 4.3

Table 3.5: Euler-Maruyama scheme, bicubic splines: errors for different numbers of extra
integration points. The parameters are the same as for the example in table 3.3.

solves the problem and the solution becomes highly accurate. In other words, the ex-
tra integration points permit a smaller time step than the grid usually allows, which
in turn gives higher total accuracy with a high-order interpolation procedure. On the
other hand, cubic interpolation quickly becomes very time consuming - integration with
∆x = 0.02,∆t = 0.002 and M = 2 took 48 hours on the computer used in this thesis,
while the corresponding solution with bilinear interpolation took only a few minutes.
Some of the combinations of step sizes were not possible to run due to lack of CPU
power, even on the centralized batch job server of CERN, which has a maximum time
limit of one week.

Now, trying the same procedure with the weak Taylor 2.0 scheme, the path integra-
tion becomes slightly more complicated since noise now enters through two dimensions.
The deterministic part of the equation is still solved using RK4, so the only difference
is the scale of the Brownian motion. It becomes, with ∆W a n(0, 1) random variable:[√

σ
2 ∆t√

2σ −
√

σ
2γ∆t

]√
∆t∆W

Now, it is seen that the scale of the noise in dimension 1 will be very small compared to
the noise in dimension 2. For instance, with σ = 0.5, γ = 2.2 and ∆t = 0.1, one gets[

0.0158
0.3023

]
∆W

This gives rise to two new potential problems - first of all, the numerical integration must
be carried out over two dimensions instead of only one, which increases the CPU time

48

∆t 0.1 0.02 0.01 0.005 0.001
∆x = 0.2, ||e||∞ 0.098 0.315 0.390 0.484 0.658
∆x = 0.1, ||e||∞ 0.032 0.075 0.175 0.262 0.514
∆x = 0.04, ||e||∞ 0.090 0.030 0.022 0.042 0.192
∆x = 0.02, ||e||∞ 0.101 6.45e− 3 0.016 0.011 0.029
∆x = 0.01, ||e||∞ 0.101 0.014 3.24e− 3 7.96e− 3 0.012
∆x = 0.005, ||e||∞ 0.104 0.016 6.76e− 3 1.63e− 3 3.63e− 3
∆x = 0.002, ||e||∞ 0.105 0.017 8.29e-3 N/A N/A

Table 3.6: Error for the PI scheme: Harmonic oscillator with Taylor 2.0 variance in
dimension 2, bilinear interpolation.

∆t 0.1 0.01 0.005 0.001 0.0001
∆x = 0.2, ||e||∞ 0.161 0.081 0.084 0.087 X
∆x = 0.1, ||e||∞ 0.104 8.57e− 3 4.23e− 3 1.01e− 3 1.81e− 3
∆x = 0.04, ||e||∞ 0.104 8.57e− 3 4.23e− 3 8.11e− 4 N/A
∆x = 0.02, ||e||∞ 0.104 8.58e− 3 (M=1) 4.24e− 3 N/A N/A

Table 3.7: Error for the PI scheme: Harmonic oscillator with Taylor 2.0 variance in
dimension 2, bicubic splines.

significantly (by a factor O(N), if N is the number of points in this dimension). Second,
there is now the same problem as above: a very localized transition distribution, only in
two dimensions. Trying an example with these input parameters confirms that the solu-
tion ’explodes’, i.e. it does not yield a solution, and that the algorithm is much slower.
However, if one disregards the added noise term in x that causes these annoyances, and
only adds the extra term in v, the scheme should still be improved. Comparing tables
3.6 and 3.7 with 3.4 and 3.5 show that using the Taylor 2.0 variance scheme improves
the solution by a factor of between 1 and 10 for both bilinear interpolation and bicubic
splines. These values are plotted in figure 3.13, and there are two noticeable effects:

• For a given ∆x, ∆t must be of the same order as ∆x or larger. If ∆t is smaller,
the problem shown in figure 3.10 comes into effect and the error increases.

• For a given ∆t, ∆x can be decreased indefinitely. However, there is a minimum
error that is reached for every ∆t, so no extra accuracy will be obtained once the
numerical solution has stabilized. A small cusp appears as the global minimum on
each curve (marked with a circle on the figure) - the reason for this is unknown,
but there seems to be an optimal ∆x for each ∆t.

49

10−3 10−2 10−1 100
10−3

10−2

10−1

100

Grid step size dx

M
ax

 e
rro

r

dt = 0.1
dt = 0.02
dt = 0.01
dt = 0.001

10−3 10−2 10−1
10−3

10−2

10−1

100

dt

M
ax

 E
rro

r

dx=0.2
dx = 0.04
dx = 0.01
dx = 0.005

Figure 3.11: Convergence in ∆x and ∆t for the path integration scheme. The minimum
error for each ∆x or ∆t is encircled in black.

3.5.2 Stochastic Duffing Equation

The stochastic harmonic oscillator is a simple model for beam dynamics. Slightly more
advanced is the stochastic Duffing equation. In the 2D SDE system 3.9, 3.10, one
incorporates two noise terms, whereof one is multiplicative. The PI technique only
permits multiple noise terms when the factors x and y in front of them are the same, so
the Duffing equation can only be solved if it is either of the purely additive form with
uncorrelated noise:

ẋ = v

v̇ = −ω2[αx+ εx3]− 2τωv − ω2
√

2D1η1(t) +
√

2D2η2(t)

or for example with one multiplicative noise term in x:

ẋ = v

v̇ = −ω2[αx+ εx3]− 2τωv − ω2x
√

2D1η1(t))

Now, the former version is only an extension of the harmonic oscillator to two noise
sources instead of one, and is easy to solve using any of the algorithms introduced
earlier, since it is a double convolution in two Gaussians in one dimension. Here, the
main objective is to test the performance of the PI algorithm, so by introducing the first
noise term in the position dimension instead, one obtains:

ẋ = v +
√

2D1η1(t) (3.16)

v̇ = −ω2[αx+ εx3]− 2τωv +
√

2D2η2(t) (3.17)

50

This would correspond to the position of the particle beam having noise. Obviously,
this SDE no longer corresponds to the Fokker-Planck equation that was the point of
departure, but when one models the full six-dimensional phase space, noise typically
enters in the last three dimensions, while the first three are deterministic. It is therefore
highly relevant to test the efficiency of the algorithm with noise in multiple dimensions,
although the physical implications of this two-dimensional equation might be unrealistic.

However, this last version must be transformed to one where the noise distribution
is not skewed - it must be symmetric. Theorem 7 stated that if one transforms the
stochastic system to one in the variables (f1, f2), for df1 and df2

dfi =
∂fi
∂x

A1 dt+
∂fi
∂v

A2 dt+
∂fi
∂x

B1 dW +
∂fi
∂v

B2 dW

+
1
2

(
∂2fi
∂x2

B2
1 + 2

∂2fi
∂x∂v

B1B2 +
∂2fi
∂v2

B2
2) dt

Now, f1 and f2 can be any analytic functions, but in this case one simply wants con-
stant or time-dependent coefficients in the stochastic term. In the first dimension, the
coefficient is already zero, so f1(x, v) = x for simplicity. Since B1 = 0, one must have
∂f2
∂v ω

2
√

2D1x = C in the equation for f2. Setting C = ω2
√

2D1, f2(x, v) = v
x . The SDE

for the function f(x, v) =
[
x
v/x

]
takes the form

df1 = f1f2 dt
df2 = (−f2

2 − ω2(α+ εf2
1)− 2τωf2) dt− ω2

√
2D1 dW1

The weak Taylor 2.0 scheme for the transformed stochastic Duffing equation with
multiplicative noise becomes:

∆f1 = f1f2∆t+
1
2

(f1f
2
2 + f2

1 f2)∆t2 − 1
2
ω2
√

2D1f1∆t∆W

∆f2 = (−f2
2 − ω2α− ω2εf2

1 − 2τωf2)(1− (f2 + τω)∆t)∆t− ω2(εf2
1 f2 +D1)∆t2

− ω2
√

2D1(1− (f1 + τω)∆t)∆W

This numerical scheme has the same disadvantage as discussed earlier - the distribution
becomes very localized in one dimension. Hence it is only advantageous to include all
terms if the space grid has a very high resolution. The Euler-Maruyama scheme is
easier to implement and will be used here, since the numerical solution of this problem
is for illustration purposes - not to test the accuracy. Because f2 = v/x, the equation
will be solved in the half-plane x ∈ (0,∞). After solving by PI in the (f1, f2) space,
the final distribution must be transformed back to the original coordinates (x, v), so a
multiplication by the Jacobi determinant is required. In this case, this becomes

J = det(

[
∂x
∂f1

∂x
∂f2

∂v
∂f1

∂v
∂f2

]
) = det(

[
1 0
f2 f1

]
) = f1

51

so that∫ ∫
p(x, v) dx dv =

∫ ∫
p(f1, f2) · J · df1 df2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

4

F1

F2

TRANSFORMED GRID

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

15

X

V

ORIGINAL DOMAIN (X,V)

Figure 3.12: A uniform grid in the variables (f1, f2) and the corresponding grid in (x, v)
after the backward transformation.

As seen in figure 3.12, a disadvantage of transforming the coordinates is that the
grid generally will not be uniform and equidistant in both sets of variables. In this case,
it is difficult to treat distributions close to the origin.

F1
1 2 3 4 5 6

F2

-4

-2

0

2

4

sol
Entries 440401
Mean x 2.637
Mean y 0.5452
RMS x 0.06173
RMS y 0.1341

0

10

20

30

40

50

sol
Entries 440401
Mean x 2.637
Mean y 0.5452
RMS x 0.06173
RMS y 0.1341

(F1,F2), T=0.300000

X
1 2 3 4 5 6

V

-4

-2

0

2

4

sol
Entries 440401
Mean x 2.411
Mean y 0.09567
RMS x 0.04474
RMS y 0.2468

0

5

10

15

20

25

30

sol
Entries 440401
Mean x 2.411
Mean y 0.09567
RMS x 0.04474
RMS y 0.2468

(X,V), T=0.300000

Figure 3.13: Distributions for (f1, f2)-coordinates and the transformed version in (x, v)-
coordinates.

52

3.5.3 CPU time

Although the precision of the numerical solutions is of great importance, the CPU time
is almost as important. For the PI algorithm, it is obvious that it increases linearly with
the number of time steps (or inversely with the size of the time step). It is less clear
how it evolves with the step size of the grid. The total computational complexity of PI
depends on the choices that are made - for simplicity, assume that there are N points in
each of the two dimensions. The additive terms of the CPU time will then be:

1. Initialization of variables is O(N2).

2. If cubic splines are chosen, the construction of the derivative table in one dimension
is O(4N2 + 1)

3. For each point on the grid, one must make one backwards RK4 time step and
interpolate. This gives O(N2 · (N2 + 2N + 1)) with cubic splines or O(N2 · 1) with
linear interpolation.

4. With noise in 1 dimension the integration takes O(N3) time, with noise in two
dimensions it becomes O(N4).

5. Points 2-4 are repeated T/∆t times.

This means that with noise in one dimension and bilinear interpolation PI has O(N3)
CPU time, with bicubic splines it is O(N4). However, this is a worst-case scenario for
the bilinear case, since one only integrates within a subset of the grid. For the bicubic
case, O(N4) is not a worst-case scenario, since the spline construction phase includes
iterations over the entire array of length N. Finally, with two-dimensional noise, PI
becomes O(N4) (worst-case) because of the numerical integration, independently of the
interpolation routine. However, the asymptotic behavior of the algorithm cannot be read
too literally, since the technical specifications of the computer are highly relevant. With
limited random-access memory available, reading and writing to the two-dimensional
arrays can become very slow once they grow past a certain critical level, up to the fatal
level where one gets a segmentation fault.

Figure 3.14 displays the results for the 2D harmonic oscillator with noise in 1 di-
mension. It is seen that with linear interpolation, the proportions of CPU time for the
different components of the PI algorithm remain about the same when the grid size
increases. However, the CPU time required by the bicubic splines explodes as the size of
the grid grows, as seen in figure 3.15. Running the PI algorithm on the centralized batch
job server at CERN with a grid of 1001 × 1001 points and a time step of ∆t = 0.001
was infeasible, as the submitted job did not finish in one week, which is the maximum
time allowed for this type of jobs. Since part of the objective with path integration is
computational efficiency, one must resort to other methods, e.g. rectangular splines.

Although the numerical integration only represents a modest proportion of the total
CPU time for the harmonic oscillator with noise in one dimension, figure 3.16 shows that
it becomes completely dominant with linear interpolation and a model with noise in two

53

0 100 200 300 400 500 600
0

20

40

60
LINEAR INTERPOLATION

N

CP
U

TI
M

E
[S

]

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

N

CP
U

TI
M

E
[S

]
CUBIC INTERPOLATION

Interpolation
RK4
Integration
Rest

Figure 3.14: CPU time for the different parts of the algorithm - 2D model with noise in
one dimension. Each line shows the cumulative time of the computation including the
relevant component, i.e. the top line is the total CPU time for each value of N.

1 2 3 4 5
0

0.5

1

N = 50−500

LINEAR INTERPOLATION

1 2 3 4 5
0

0.5

1
CUBIC INTERPOLATION

N = 50 − 500

Rest
Integration
RK4
Interpolation

Figure 3.15: Fraction of CPU time spent on the different components - 2D model with
noise in one dimension. The values stem from figure 3.14.

54

∆t 0.1 0.01 0.005 0.001
∆x = 0.2, ||e||∞ 0.103 0.367 0.453 0.647
∆x = 0.1, ||e||∞ 0.032 0.117 0.166 0.464
∆x = 0.04, ||e||∞ 0.090 0.022 0.042 0.070
∆x = 0.02, ||e||∞ 0.101 0.016 0.011 0.028
∆x = 0.01, ||e||∞ 0.101 3.24e− 3 7.96e− 3 0.012
∆x = 0.005, ||e||∞ 0.103 6.76e− 3 1.63e− 3 3.63e− 3

Table 3.8: Error for the PI by FFT scheme: Harmonic oscillator with Taylor 2.0 variance
in dimension 2, bilinear interpolation.

dimensions. The next section will therefore treat the implementation of path integration
by FFT, where the FFT algorithm in lieu of the integration should save considerable
amounts of CPU time.

0 100 200 300 400 500 600
0

2

4

6

8
x 104

N

CP
UT

 T
IM

E
[s

]

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N = 50 − 500

FR
AC

TI
O

N

Total time

Rest
Integration
RK4
Interpolation

Figure 3.16: PI: CPU time and fraction spent on the different components - 2D model
with noise in two dimensions, bilinear interpolation.

3.6 Numerical Solution by Path Integration by FFT

As discussed previously, the implementation of PI by FFT is very similar to regular PI
with the exception that a convolution by multiplication in frequency space is performed
instead of an integration over the whole subspace.

3.6.1 Harmonic Oscillator

As seen in table 3.8, the numerical solution with PI by FFT is almost identical to the
one obtained with regular PI in table 3.6. Obviously, the most important aspect of the
algorithm is the computational efficiency, which will be treated in the following section.

55

3.6.2 CPU time

The FFT algorithm in two dimensions is O(N2 log(N)), which is better than integrating
over a large subset of the grid for every single point, as with regular PI. Convoluting with
the gaussian by a pointwise multiplication in Fourier space and choosing an interpolation
method that is O(N2 log(N)), the algorithm becomes much more efficient than PI. Figure
3.17 shows the results with bilinear interpolation - for a grid of 500 × 500 points, the
solution takes about 6.5 minutes, whereas for PI the corresponding time is approximately
22 hours. The FFT routine is seen to dominate the total CPU time as the grid grows.
However, since the difference from the other components of the algorithm is only a factor
of log(N), the proportion does not explode as in the previous cases.

50 100 150 200 250 300 350 400 450 500 550
0

100

200

300

400

N

PI by FFT, LINEAR INTERPOLATION

CP
U

TI
M

E
[S

]

Rest
FFT
RK4
Interpolation

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Rest
FFT
RK4
Interpolation

Figure 3.17: PI by FFT: CPU time and fraction spent on the different components - 2D
model with noise in two dimensions, bilinear interpolation.

3.7 Numerical Solution by Finite Differences

Writing the SDE in its other form, the two-dimensional Fokker-Planck equation, permits
a more common type of numerical solution: A finite difference scheme is presented in
reference [17]. This equation can be written in the form of one flux in x and one in v,
which permits the use of an operator splitting method [11].

∂ρ

∂t
=
∂(F1)
∂x

+
∂(F2)
∂v

(3.18)

A tridiagonal scheme is proposed by Zorzano et al. [17]: The first step evaluates the
x derivative implicitly and the second step evaluates the v derivative, also implicitly:

56

(1)
ρ
n+1/2
i,j − ρni,j

∆t
=
F
n+1/2
i,j+1/2 − F

n+1/2
i,j−1/2

∆v
(3.19)

(2) Fi,j+1/2 = D
ρi,j+1 − ρi,j

∆v
+ (a1(x) + a2(x, v + ∆v))

ρi,j+1 + ρi,j
2

(3.20)

(3)
ρ
n+1/2
i,j − ρn+1/2

i,j

∆t
= −v

ρn+1
i+1,j − ρ

n+1
i−1,j

2∆x
(3.21)

Using classical von Neumann stability analysis, one assumes the difference equations
are all of the form ρnj = ξneikj∆x [11]. In [17], the amplification factors are given directly,
but the steps will be shown below. Substituting 3.20 into 3.19, one obtains for the first
step

ρ
n+1/2
i,j = ρni,j +

∆t
∆v

(D
ρ
n+1/2
i,j+1 − 2ρn+1/2

i,j + ρ
n+1/2
i,j−1

∆v
+ ax,v+∆v/2

ρ
n+1/2
i,j+1 − ρ

n+1/2
i,j−1

2
)

1 = ξ1/2(1− D∆t
∆v2

(eik∆v − 2 + e−ik∆v)− ∆t
2∆v

ax,v+∆v/2(eik∆v − e−ik∆v))

1 = ξ1/2(1 +
2D∆t
∆v2

(1− cos k∆v)− i∆t
∆v

ax,v+∆v/2 sin k∆v)

ξ1/2 =
1

1 + 4D∆t
∆v2

sin2 k∆v
2 − i

∆t
∆vax,v+∆v/2 sin k∆v

Thus the amplification factor found here differs slightly from what is found in [17] (by
a factor of 4 in the second term of the denominator). However the first step is still
unconditionally stable, since |ξ| ≤ 1 for all k and ∆v. For the second step,

ρn+1 = ρn+1/2 − ∆t · v
2∆x

(ρn+1
i+1,j − ρ

n+1
i−1,j)

ξ1/2 = 1− ∆t · v
2∆x

(eik∆x − e−ik∆x)

ξ1/2 =
1

1 + iv∆t
∆x sin k∆x

Hence |ξ| ≤ 1 for all k and ∆x, and the second step is unconditionally stable.

g1 =
1

1 +A sin2 k∆v
2 − iax,v+∆v/2

∆t
∆v sin k∆v

(3.22)

and

g2 =
1

1 + iv∆t
∆v sin k∆x

(3.23)

with A = (4∆t/∆v)2D and ax,v−∆v/2 ≈ ax,v+∆v/2. Therefore, |gi| ≤ 1 for i = 1, 2
and the scheme is unconditionally stable.

57

∆t 10−1 10−2 10−3

||e||∞, ∆x = 0.5 0.333 0.318 0.316
||e||∞, ∆x = 0.1 0.077 0.018 0.023
||e||∞, ∆x = 0.05 0.078 9.1e− 3 4.9e− 3
||e||∞, ∆x = 0.01 0.078 8.9e− 3 8.66e− 4

Table 3.9: Errors for the finite difference scheme for the harmonic oscillator for different
grid sizes and time step sizes. The grid step size is equal in the two dimensions.

The implementation is done in Matlab, because of the built-in linear algebra packages
that let the user handle sparse matrices and vectors with ease. Comparisons of the CPU
time with other schemes implemented in C++ should be realistic, since Matlab is highly
optimized as long as one uses the built-in functions such as A\b, which solves the matrix
equation Ax = b, and avoids iteration loops as much as possible. In contrast with the
PI algorithms and the simulation schemes, the implementation of the finite difference
scheme is rather straightforward since the linear algebra library is readily available.

3.7.1 Harmonic Oscillator

The boundary condition for the probability distribution is simply set to zero outside the
grid points. Generally, it is impossible to start from a Dirac delta initial distribution,
so one must resort to other solutions. Two possibilities are to either use a normal
distribution centered on the initial space point or to make a large number of simulations
for a reasonable number of the earliest time steps. Since the exact solution is available
for the harmonic oscillator, this will be used in order to obtain a benchmark for the
accuracy of the algorithm. Zorzano et al take the exact distribution at time t = 0.95 for
a strongly damped oscillator with high diffusion; K = 1, γ = 2.1, σ = 0.8. They use as
error norm

||e|| =
√

1
N

∑∑
(ρnum(i, j)− ρex(i, j))2

where N is the total number of grid points. For the example with these parameters, a
grid of 80 × 80 points, ∆t = π/1000 and T = 3, they report an error norm of 5.3e − 4.
However, this error norm is an average over the whole grid, where it is mostly very
close to zero, and does not take into consideration the shape of the numerical solution
compared to the exact one. Using the same parameters, but a grid size of 101 × 101
and ∆t = 0.005, the distribution in figure 3.18 is obtained on a 2.4 GHz Intel processor
with 2 GB RAM. This gives ||e|| = 2.9e − 4 and ||e||∞ = 0.0030. Figure 3.19 shows
the difference between the numerical solution and the exact solution using a time step
∆t = 0.1. The finite difference scheme is seen to introduce extra numerical diffusion,
which becomes too dominant for time steps of this size. With ∆t = 0.1, ||e||∞ = 0.036,
which is clearly unacceptable for a probability density. However, ||e|| = 0.0036, which is
not really informative. In the following, only the max error norm will be used.

58

−5 0 5
−5

0
5
0

0.2

0.4

0.6

0.8

EXACT

−5
0

5
−5

0
5
0

0.2

0.4

0.6

FINITE DIFFERENCE SCHEME

−5 0 5
−5

0

5

−5 0 5
−5

0

5

Figure 3.18: Finite difference scheme versus the exact solution for the harmonic oscilla-
tor. K = 1, γ = 2.1, σ = 0.8, T = 3,∆t = .005

−5
0

5

−5

0

5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

X
V

Figure 3.19: Plot of ρnum−ρex for the finite difference scheme using the same parameters
as in figure 3.18, but a larger time step ∆t = 0.1. The systematic difference that is seen
is caused by numerical diffusion from the implicit scheme

59

Table 3.9 shows how the finite difference scheme converges for grid size and time
steps. The CPU time grows linearly with decreasing ∆t, but as in the previous sections,
the behaviour for smaller ∆x depends on the technical specifications of the machine.
The numerical results are represented in figure 3.20, which appear to demonstrate:

• Order 1.0 convergence in ∆t as long as ∆x is sufficiently small. For a given ∆x,
there is a minimum error level - reducing ∆t below this does not give any extra
accuracy, but does not cause any harm either, as was the case for PI.

• Order 2.0 convergence in ∆x as long as ∆t is sufficiently small, until the error
reaches the minimum level.

The finite difference scheme is not implemented here for the stochastic Duffing equa-
tion, since the physical results have already been illustrated by simulation, and there is
no exact solution available. Instead, a comparison of the efficiency of all four algorithms
would be of interest.

10−2 10−1 100
10−4

10−3

10−2

10−1

100

Grid step size dX

M
ax

 E
rro

r

Reference slope dx2

dt = 0.001
dt = 0.01
dt = 0.1

10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

Time step size dt

M
ax

 E
rro

r

Reference slope dt=dt
dx = 0.01
dx = 0.05
dx = 0.1
dx = 0.5

Figure 3.20: Graphical representation of the convergence in ∆x (left) and ∆t (right) for
the finite difference scheme. The values are the ones given in table 3.9

.

3.8 Global Comparison of Accuracy and CPU time

In figure 3.21, an attempt has been made to plot the best accuracy available at a given
CPU time T for each of the four algorithms described previously. Since there are many
possible choices of step sizes and subcomponents in the algorithms, the results are not
perfectly straight lines but rather a picture of the efficiency of the respective numerical
solvers. For the model with two-dimensional noise, the accuracy at every combination
(∆x,∆t) has been assumed to be the same as with one-dimensional noise, and only the
CPU time has been measured. It is seen that the finite difference scheme provides the

60

best results, but PI with bicubic splines is close for the one-dimensional noise model.
PI by FFT with bicubic splines is not plotted since the results are almost exactly the
same as with PI - anyway the interpolation routine is by far the most CPU intensive
part of the algorithm, as seen in figure 3.15. With noise in two dimensions, the PI by
FFT algorithm is clearly a better choice than regular PI, and this effect will become
even more pronounced with more dimensions with noise.

10−4 10−2 100 102 104 106
10−4

10−3

10−2

10−1

100

CPU TIME [S]

M
AX

 E
RR

O
R

1D noise

Simulation, Taylor 2.0
PI, bilinear ip
PI, bicubic ip
PI by FFT, bilinear ip
Finite differences

10−1 100 101 102 103 104 105 106
10−4

10−3

10−2

10−1

100

CPU TIME [S]

M
AX

 E
RR

O
R

2D noise

Simulation, Taylor 2.0
PI, bilinear ip
PI by FFT, bilinear ip
Finite differences

Figure 3.21: Comparison of the convergence of the different algorithms against CPU
time: A model with noise in one dimension (left) and noise in two dimensions (right).
The accuracy for the two-dimensional noise model is not known and is assumed to be of
the same order as with 1-dimensional noise.

3.9 Summary

The Fokker-Planck equation provides an opportunity for benchmarking the path inte-
gration algorithms against more traditional numerical solutions, thanks to the exact
solution of a class of equations in Chandrasekhars paper [14]. The source of this exact
solution had to be consulted since there was shown to be a factor missing in Zorzano’s
paper. The finite difference scheme with operator splitting described by Zorzano et al.
[17] is an example of a classical way to solve the Langevin equation in physics - but this
specific scheme only works with SDEs that fit into the format described in their paper.
They also tested a finite element based numerical solution, which gave results almost
identical (a bit slower) to the finite difference scheme. Path integration proves to be a
relatively efficient numerical solution of the SDE, despite some inherent difficulties in
the implementation. With splines or interpolation methods that are O(N logN) in one
dimension, PI by FFT is a very efficient algorithm for models that incorporate multiple
sources of noise. Simulation has the competitive advantage of being easy to implement,
but the O(

√
Nrep) convergence in the number of path realizations proves to be a major

61

obstacle in obtaining highly accurate solutions.

62

Chapter 4

Stochastic Differential Equations
with Fat Tail Distributions

In the previous sections, all noise terms in the equations have been assumed to be
Gaussian. Unfortunately, not all physical or social phenomena are well described by
normal distributions. Although this simplifying assumption gives the relevant equations
nice properties, e.g. the sum of normal distributions is also a normal distribution, it
may create models with serious flaws. At least part of the cause of the worldwide
financial crisis of 2008 was the introduction and reliance on equations from physics
into mathematical finance, a field that has been developed very fast during the last
decades. Especially correlations between financial assets and the tails of the probability
distributions have been seen to be unrealistic in most models during periods of high
fluctuations, although they may work well in ’normal’ circumstances. Since Fischer
Black and Myron Scholes published their famous 1973 paper ’The Pricing of Options
and Corporate Liabilities’, which was further developed by Robert Merton, stochastic
differential equations have received a lot of attention. In this model, the share price
evolves as in equation 1.19: it follows a geometric Brownian motion, where the variance
is proportional to the share price S:[19]:

dS = µS dt+ σS dW (4.1)

By using Itô’s lemma, one gets a partial differential equation for the value of a portfolio
Π = V − ∆S, where V is the value of the option and ∆ is the number of shares that
is held. By assuming that trading can be done in continuous time, it can be shown
that ∆ can be modified at each time step so that the value of the portfolio does not
change. Since the value of the option is given at the boundary by V (T) = max(0, S−E),
where E is the strike price of the option, the value can be determined by solution of the
partial differential equation. The Black-Scholes option pricing model implies that only
the volatility σ and the time determines the correct price of the derivative. This is
illustrated respectively in figure 4.1 and 4.2: since the possible loss is limited for the
buyer of an option, the broader the probability distribution the higher the price will
be. For the same reason, with time the chance of big movements upwards increases.

63

Therefore, higher volatilities and more time until the strike date increase the option
price. Although the framework was originally intended for option prices, it will work
for any derivative that depends only on time and the price of an underlying commodity
that is subject to the same assumptions as the share price S. For example, options on
electricity prices (traded on the Nordpool exchange in Scandinavia) or the oil spot price
can be priced using the same methods. A large proportion of the financial mathematics
literature since 1973 are variations over this theme: modeling the volatility implicitly as
SDEs, pricing exotic derivatives such as Asian options, including transaction costs etc.

Figure 4.1: Probability distribution of x with volatility as a function of t.

0 5 10 15 20 25 30
0

5

10

15

Stock price S

C
al

l v
al

ue
 C

T−t = 0
T−t = 1/10
T−t = 1/2
T−t = 1/50

Figure 4.2: Evolution of option value with time and as a function of S, with a strike
price E = 20. The value is seen to be higher when the time difference is large.

However, there are additional assumptions that must be satisfied: for example, the
relevant interest rate must be a known function of time and the random movements

64

must follow a Brownian motion. There is broad agreement that especially the latter is
an unreasonable assumption [19]. In his book ’The Black Swan’ [20], Nassim Taleb, an
influential risk manager and former trader on Wall Street, gives the normal distribution
much of the blame for the financial turmoil of 2008-2009. The main argument is that the
models are often used where they should not be: for instance, it is well known that stock
markets regularly exhibit large jumps, for which the normal distribution gives a much
too low probability. Figure 4.3 shows the distribution of the daily fractional increments
of the share price of SAS, a Scandinavian aviation company, over the last 5 years. The
normal distribution curve seemingly describes the data well, but there are some outliers
that should only occur a few times in the lifetime of the universe: the probability of a
daily increase of more than 40 %, which has occured once during the last five years, is
much smaller than machine precision on a laptop computer. From his empirical evidence,
Taleb draws the conclusion that stock market movements are of a fractal nature, similarly
to many other social phenomena. For example, sizes of cities and human wealth can
be described by a fractal geometry. Benoit Mandelbrot, in his 1983 book The Fractal
Geometry of Nature, describes the Levy flight as a better model of financial and economic
time series. The same histogram described by a Cauchy distribution is shown in figure
4.4. The latter belongs to another family of probability distributions that has ’fatter
tails’ than the normal distribution. This motivates a discussion on SDEs with Lévy
alpha-stable noise.

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16

18

20

22

SAS
n(−.006,.025)

Figure 4.3: Changes in the SAS share price, with a normal distribution

4.1 General Form of Lévy Alpha-Stable Distributions

The characteristic function is an alternative way of describing a random variable. It
also completely determines the properties of the probability distribution of the random
variable X. Given a density function f(), the characteristic function can be found from

65

−0.2 −0.1 0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

16

18

20

22

SAS
c(−.006,.015)

Figure 4.4: Changes in the SAS share price, with a Cauchy distribution

the relation:

φX(t) = E[eitX]

and as long as φX is integrable, the probability density can be found by an inverse
Fourier transform of the characteristic function:

fX(x) =
1

2π

∫ ∞
−∞

e−itxφX(t) dt

It also has some neat properties: If X1, . . . , Xn are independent random variables and
a1, . . . , an are some arbitrary constants, then the characteristic function for the linear
combination of Xi’s is [21]

φa1X1+...+anXn(t) = φX1(a1t) · . . . ·φXn(ant)

A random variable is said to belong to a stable distribution if a linear combination of two
independent copies X1 and X2 of the random variable X have the same distribution as
cX + d, where c and d are some scale parameters. Stated in terms of the characteristic
function, this is a four-parameter family described by µ (location), σ (scale), α (tail
heaviness) and β (skewness/asymmetry) ∈ [−1, 1]:

φ(t) = eiµt−σ
α|t|(1−iβsgn(t) tan(πα/2)) ∀ α 6= 1

φ(t) = eiµt−σ
α|t|(1+i 2

π
βsgn(t) log(t)) ∀ α = 1

For β = 0, the distribution is symmetric, and it is referred to as a Lévy symmetric
α-stable distribution. In general, the probability density function is not analytic, and
the normal definition of skewness,

β = E(
(X − µ)3

σ
)

66

does not apply for α < 2 because the distribution does not have second order moments.
The characteristic function of the generic normal distribution is

φX(t) = eiµt−
1
2
σ2t2

so it is easily seen that with α = 2, the Lévy symmetric α-stable distribution has
characteristic function

φX(t) = eiµt−σ
2t2

i.e. a normal distribution with variance 2σ2. With α < 2 and µ = 0, there is only
one trivial class of distributions, namely the Cauchy (or usually Lorentz in physics)
distribution, with α = 1. With β = 1, α = 1, one obtains a Landau distribution, which
is another important distribution in physics. Since a nonzero µ can be incorporated in
the drift term of the SDE and a skewed noise distribution can usually be transformed to
a symmetric one, a zero-mean, symmetric, α-stable distribution is general enough for the
purposes in this thesis. It can be shown that any stable distribution has a continuous
and smooth probability density function [21], but for α 6= 1, it must be obtained by
simulation [22]. These distributions are also scalable, so any distribution characterized
by σ, µ can be transformed to a normalized one with σ = 1, µ = 0. Naess and Skaug
adopt the notation X ∼ Sα(σ, β, µ) and this will be put to use here as well. Plots of the
characteristic function for different values of α are shown in figure 4.5. As α →∞, the
characteristic function approaches the following box function:

1 ∀ |t| < 1
0 ∀ |t| > 1

However, the inverse Fourier transform of this function is sin(x)
x , which is not nonnegative,

and thus cannot be a probability density. In fact, for all α > 2 the inverse Fourier
transform assumes negative values, so it is confined to the interval (0, 2] for the class of
stable distributions.

The Cauchy distribution with µ = 0 has the following analytic expression:

f(x) =
1
πσ

1
1 + x2

σ2

(4.2)

Although the notations α and β are used for the same parameters almost everywhere in
the literature, µ and σ are different almost everywhere. This may be due to the fact that
they should not be misinterpreted as the mean and the standard deviation respectively.
The Cauchy distribution does not have a finite mean or variance, a fact that can be
directly inferred from the probability density function or from the characteristic function.

4.2 Generalized Fokker-Planck equation and Exact Solu-
tions

The Langevin equation driven by Lévy noise yields the so-called fractional Fokker-Planck
equation. Denisov et al. show in a 2009 paper [15] how to derive this equation when the

67

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

!
(t)

" = 1
" = 0.3
" =2
" =10

Figure 4.5: Plots of the stable characteristic function φ(t) = e−|t|
α

with µ = β = 0 and
σ = 1 for different values of α.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4
! = 2

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4
! = 1.5

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4
! = 1

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8
! = 0.5

Figure 4.6: Probability distributions with µ = β = 0 and σ = 1 for different values of
α. The top left distribution is a Gaussian and in the bottom left corner is the Cauchy
distribution.

P(X > x) 1 3 10
α = 2 0.159 0.0013 0.000
α = 1.5 0.243 0.052 0.007
α = 1 0.250 0.102 0.032
α = 0.5 0.249 0.161 0.089

Table 4.1: Comparison of tail probabilities for different stable distributions.

68

Langevin equation is driven by multiplicative alpha-stable Lévy noise, and how the exact
solution can be expressed in terms of the inverse Fourier transform of the characteristic
function. The SDE is still in familiar form:

dXt = a(x, t) dt+ b(x, t) dη(t)

However here, dη(t) is no longer necessarily a Brownian motion, but follows the more
general alpha-stable Lévy distribution. When b(x, t) = 1 and the noise is purely additive,
the generalized Fokker-Planck equation becomes:

∂

∂t
P (x, t) = − ∂

∂x
a(x, t)P (x, t) + F−1[F(P (x, t) log(Sk)]

where the characteristic function of the noise generating process at dimensionless time
t = 1 is

Sk = E[e−ikη(1)]

η(1) = lim
τ→0

1/τ−1∑
j=0

∆η(j∆t).

For example for a Gaussian transition probability density, one has Sk = e−Dk
2

and hence
F−1[F(P (x, t))Dk2] = −D ∂2P (x,t)

∂x2 , which clearly gives the same Fokker-Planck equation
that was derived in the previous chapter. For Lévy stable noise, the characteristic
function was given in equations 4.2 and 4.2. In terms of the Riesz derivative, defined as

∂α

∂|x|α
h(x) = −F−1[|k|αhk]

the fractional Fokker-Planck equation that corresponds to all forms of Lévy stable noise
becomes [15]

∂

∂t
P (x, t) = − ∂

∂x
a(x, t)P (x, t)+σ

∂α

∂|x|α
bα(x, t)P (x, t)+σβ tan

πα

2
∂α−1

∂|x|α−1
bα(x, t)P (x, t)

(4.3)

With α = 2, which corresponds to Gaussian noise, the equation becomes the ordinary
Fokker-Planck equation in one dimension. For α < 2, there are only some special cases
that can be given in closed form. Exact solutions exist for simple examples such as the
harmonic oscillator, but they are rather involved and not in explicit form.

4.3 Simulation Scheme and Solution by PI by FFT

Now, write the general form of the stochastic jump process as

dXt = a(Xt) dt+ b(Xt) dLαt (4.4)

69

where Xt is the n-dimensional state space process and Lαt is an α-stable Sα(1, 0, 0)
process with α ∈ (0, 2]. In analogy with Gaussian white noise, the time derivative of the
Lévy process will be referred to as Lévy white noise. Interestingly, it can be shown that
the sum of a compound Poisson process and a Brownian motion with or without drift
[23] [24] is a good approximation of a Lévy process. The compound Poisson process C
is defined as

C(t) =
N(t)∑
k=1

Yk (4.5)

where N(t) is a Poisson process with intensity λ and Yi are independent and identically
distributed (iid) random variables. A random walk sequence approximating Lα is then

Lα,a(t) = γ(α, a)B(t) + Cα,a(t) (4.6)

where γ(α, a)B(t) is a scaled Brownian motion, with the scale given by [23]

γ2(α, a) =
∫ a

−a
y2λL dy =

α

2− α
cαa

2−α

cα =
1− α

Γ(2− α) cos(πα/2)
, ∀ α 6= 1

cα =
2
π
, if α = 1

The intensity of the Poisson process is λα,a = cα/a
α. This also explains why models

with Levy noise are often referred to as jump-diffusion models - the noise consists of one
continuous diffusion component and one pure jump component. Using some identities
on probability measures and the Chebyshev inequality, it can be shown that this scheme
converges weakly to the exact solution X(t), so that statistics of functionals of X can be
approximated by functionals of the numerical solution. For further details, see reference
[23]. Using this simulation scheme with α = 1 (Cauchy noise), three sample paths are
generated for the two SDEs

dXt = 10 dWt (4.7)
dXt = dLαt (4.8)

respectively in figure 4.7. If one compares these example paths with the time series of
almost any financial asset, it is quite clear that the Lévy noise more closely resembles
its actual behaviour. Figure 4.8 shows the evolution of the share price of SAS AB over
a time span of one week. Discontinuous jumps are an intrinsic property of share prices,
since they are traded in discrete time and in discrete batches. This effect is not included
in a model that incorporates only Brownian motion.

70

0 2 4 6 8 10
4

6

8

10

12

14

16
BROWNIAN

0 2 4 6 8 10
6

8

10

12

14

16

18

20

22
LEVY

Figure 4.7: Three sample paths for a pure Brownian walk (left) and a pure Levy walk
(right).

Figure 4.8: Evolution of the SAS share price.

Implementing numerical PI or PI by FFT with Lévy noise is not problematic as
long as the noise distribution can be generated analytically or by simulation. Using the
Cauchy distribution, the probability distribution is given explicitly, and the algorithm is
the same as described in the previous chapter. However, since the Cauchy distribution
does not decay as fast as the normal distribution in the tails, the range of the grid
must be much larger. Since the FFT is being used, the distribution must be very close
to zero in the tails. The convolution is implemented with zero padding of the signal
(to get a vector of length 2N) in order to avoid numerical instabilities. Also, if the
probability distribution does not integrate to 1 after each time iteration, the numerical
solution decays to 0 very fast. This must be avoided by including as much as possible
of the probability distribution where the value exceeds machine precision. Integrating
the two SDEs 4.7 and 4.8 up to T = 2, a grid from -10 to 10 is typically sufficient

71

for the Brownian motion, while for the Levy noise one needs grid points in the range
[−1000, 1000]. Figure 4.9 displays the numerical simulation and PI by FFT results of
solving equation 4.8 up to time 2. Superposing the two curves made it impossible to
distinguish them, so they were plotted separately - this seems to confirm that the two
methods yield the same results for all practical purposes.

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
SIMULATION

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
PI BY FFT

Figure 4.9: Numerical solution of equation 4.8 by simulation and PI by FFT, T=2

4.4 The Normal Inverse Gaussian Process

Another continuous probability distribution that has recently gained popularity in the
financial mathematics literature is the Normal Inverse Gaussian (NIG). An inverse Gaus-
sian distribution follows the distribution of the time a Brownian motion with positive
drift takes to reach a certain level - it is not in any way the inverse of a Gaussian distribu-
tion, so the name can cause some confusion. It has an analytic probability distribution
with support on (0,∞) that takes the form

f(x, ν, λ) =

√
λ

2πx3
e−λ(x−ν)2/2µ2x

where ν is the mean and λ is the scale parameter. The relation with the Normal Inverse
Gaussian is

Y = δ + γV + τ
√
V X

where X follows a standard normal distribution n(0, 1) and V is an inverse Gaussian
random variable, independent from X. The resulting distribution Y is a normal distri-
bution with mean δ + γV and variance τ2V . This is called a variance-mean mixture,
where the inverse Gaussian is the mixing distribution [25]. Similarly to the alpha-stable

72

Lévy distributions, this class of probability distributions is described by four parameters
- µ, σ, α and β. As before, µ and σ are the location and scale parameters respectively,
while α and β describe the tail heaviness and asymmetry of the distribution. The effects
of varying the latter two are shown in figure 4.10. The NIG probability distribution
becomes

f(x, µ, σ, α, β) =
ασ

π
eσ
√
α2−β2+β(x−µ) ·

K1(α
√
σ2 − (x− µ)2)√

σ2 + (x− µ)2

where K1 is the modified Bessel function of the second kind, and in contrast with the
alpha-stable distributions, the NIG distribution has finite mean and variance;

E(Y) = µ+ σ
β

γ
, γ =

√
α2 − β2

Var(Y) = σ
α2

γ3

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
KURTOSIS ! WITH "=0

X

P(
X)

!=0.2
!=0.5
!=1
!=3

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X

P(
X)

SKEWNESS ! WITH "=2

!=0
!=−1.3
!=1.7
!=1.9

Figure 4.10: NIG distribution: effect of varying the kurtosis α (left) and the skewness β
(right) factors. µ = 0 and σ = 1 in both cases.

It is in fact a subclass of generalized hyperbolic distributions, which include the
Student’s t-distribution and the hyperbolic distribution. The most common applications
cited in the literature are for financial markets. Obviously, the motivation is the greater
freedom in fitting the distributions to historical data that the free parameters allow.
In reference [26], the four parameters are fitted to the historical data of S&P 500 and
OSEBX, the stock market indexes of the New York and Oslo exchanges respectively.
Testing the fits with a Pearson χ2-test yielded a P-value of 0.39 for S&P and 0.64 for
OSEBX. The corresponding fits and following tests with a normal distribution both gave
P-values inferior to 10−10. Since this test takes into account all given data, the P-value

73

is significantly affected by outliers such as the 40 % increase of the SAS stock price
and in this case, the 1987 stock market crash. A normal distribution gives very low
probabilities that such events will occur.

Simulation of a NIG process is straightforward, and the PI by FFT algorithm can
be implemented as for an equation driven by Lévy noise. In order to further test the
practical aspects of these noise distributions, some examples of options pricing will be
implemented in the following section.

4.5 Real World Application - Option Pricing

4.5.1 The Black-Scholes Framework

Since PI by FFT is seen to work for more general types of noise than just Brownian mo-
tion, it is of interest to study how this fits into the Black-Scholes framework. Estimating
the correct price of a stock option is a challenging task, since it involves predictions.
However, a good model helps. As stated earlier, the value of the option varies only with
time and the price of the underlying asset. At the expiry date, the boundary condition
for a European option is given by

V (S, T) = max(0, S − E)

where S is the stock price and E is the exercise price. If S is assumed to follow equation
4.1, from the Itô-Doeblin formula 7, the equation for V becomes

dV = σS
∂V

∂S
dW + (µS

∂V

∂S
+

1
2
σ2S2∂

2V

∂S2
+
∂V

∂t
) dt.

With the portfolio Π given in the introduction to this chapter, the infinitesimal change
in one time step is

dΠ = dV −∆ dS

where the number of stocks ∆ is held fixed in this time interval. The resulting equation
for Π becomes

dΠ = σS(
∂V

∂S
−∆) dW + (µS

∂V

∂S
+

1
2
σ2S2∂

2V

∂S2
+
∂V

∂t
− µ∆S) dt.

Since ∆ is the number of stocks that are held, the random component can be eliminated
by choosing ∆ = ∂V

∂S . In other words, if the drift of the process is different from the
risk-neutral one (usually denoted by r), one can buy or sell the call option (depending
on whether it is smaller or larger than r) and hedge the portfolio until the expiry date.
Furthermore, by assuming a perfect market with a fixed interest rate r, where no ’free
money’ is available, the evolution of the portfolio must be equal to the return in the
bank and one gets a partial differential equation for V :

r∆Π dt = (
∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
) dt →

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

74

This is the so-called Black-Scholes partial differential equation, which yields an exact
solution, plotted in figure 4.2. An important feature is that the equation is independent
of µ, only the volatility parameter σ matters in determining the option price. It is
important to realize that the probability density one obtains for the stock price when
using the interest rate as the drift is not the one of the real world stock price, but
of the risk-neutral one. For a model like 4.1 it is simple enough to model the risk-
neutral price - simply replace µ by r. However, for more complicated models it is not as
straightforward, and one must resort to theorem 1.2.2. A drawback of the jump-diffusion
and NIG models is that under the Girsanov measure transformation all the parameters
change. For Brownian motion the volatility is unchanged under this transformation -
which makes it much more convenient.

The Black-Scholes model relies on seven assumptions, whereof four of the most im-
portant are:

• The stock price follows the Brownian walk model in equation 4.1.

• There are no transaction costs involved with continuously adjusting ∆.

• Trading takes place continuously.

• The risk-free interest rate curve is known and the same for deposits and loans.

All the assumptions are to some extent unrealistic, but the four that are mentioned
here are maybe the least plausible. First, if S does not follow the lognormal random
walk, but has jumps, it is the Itô-Doeblin formula 1.21 that is relevant. Since there is
generally no explicit solution for the sum of the jumps in this equation and the path is
no longer continuous, delta hedging is not possible. This means that the NIG and Lévy
markets are incomplete - there are many possible pricing formulas. Second, even for an
investor with a big portfolio, transaction costs are not negligible, and delta hedging is
only possible in a discrete time series. This means that there is some elasticity in the
arbitrage argument. Finally, a bank might be able to borrow and lend money at almost
the same interest rate, but the curve is certainly not known and is subject to random
shocks such as in 2008.

Another strategy for determining the fair derivative price is of course to find the
probability distribution of S at the expiry date. This is clearly the easiest way once a
model with a numerical solution has been established, such as above.

4.5.2 Pricing a European Call Option

Pricing a plain vanilla option such as a European call is of interest in this context to see

1. how the NIG market model compares to the standard Brownian walk for derivative
pricing.

2. how the PI by FFT algorithm performs for both the Brownian walk and for the
NIG model.

75

The Lévy walk has another disadvantage in that the first-order moment and upwards are
not finite. This means the price of the derivative would theoretically not be finite. The
numerical implementation is on a finite grid so the mean and variance would necessarily
be finite here, but it would not make sense to get a numerical value from this. The exact
solution of the Black-Scholes partial differential equation with constant drift µ = r and
volatility σ is:

V (S, t) = S ·N(d1)− E · e−µ(T−t) ·N(d2) (4.9)

where N(·) is the standard normal cumulative distribution function, and d1 and d2 are:

d1 =
log(S/E) + (µ+ 1

2σ
2)(T − t)

σ
√
T − t

d2 =
log(S/E) + (µ− 1

2σ
2)(T − t)

σ
√
T − t

In evaluating the option price from the probability distributions, we want to find the
value of the following integral, discounted using the constant interest rate r

V = e−r · (T−t)
∫ ∞
E

p(S)(S − E) dS

Since the noise is multiplicative, for the PI by FFT algorithm one must make the trans-
formation f(S) = log(S). From the Itô-Doeblin identity one gets:

df = (µ− 1
2
σ2) dt+ σ dW.

In this form, the implementation is straightforward. In order to compare the two dis-
tributions, choose a symmetrical NIG distribution (β = 0) with α = 1 and the same
variance as a corresponding normal distribution. This implies σNIG = σ2

normal. Once
the distribution p at time T = 1 is found, the numerical integration above with varying
step sizes is performed as follows:

V ≈ e−rT
∑
j

pj · (exj − eE)(exj+∆x/2 − exj−∆x/2)

The results are shown in table 4.2 and figure 4.11. The NIG walk tends to give a slightly
higher price per stock even though the distribution is more acute than the Gaussian
version. This is of course due to the heavier tails.

76

σNIG = σ2
N Exact PI by FFT with Gaussian PI by FFT with NIG

0.12 0.801 0.801 0.906
0.22 1.600 1.600 2.635
0.32 2.395 2.395 4.760

Table 4.2: Price of a European call option with T = 1, r = 0.1, S0 = e3, E = e3.1.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

PRICE S

PR
O

BA
BI

LI
TY

 P

! = 0.12

NIG
STRIKE PRICE
GAUSSIAN

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

PRICE S

PR
O

BA
BI

LI
TY

 P

! = 0.22

NIG
STRIKE PRICE
GAUSSIAN

Figure 4.11: Probability distribution resulting from Brownian and NIG random walks
for two distinct values of σ.

4.5.3 Pricing a Barrier Option

Although the models with Lévy noise are not always useful, they can be used to price
exotic derivatives such as barrier options. Although European and American options are
the most common in the financial world, there exist a plethora of variations on option
payouts. American options can be exercised by the buyer at any time until the expiry
date, and for example Bermuda options (the intermediate of Europe and America!) can
be exercised at a predetermined set of discrete times until the expiry date. This means
that the fair value of the option depends on the path of the asset price, not only the
final price. An up-and-out down-and-out barrier option is a path-dependent derivative of
which the value is nulled if the the asset price crosses a predetermined level at any time
in the interval [0, T]. These so-called barrier events are not necessarily straightforward
to agree upon, since a single trade can be enough to cross the level. In theory, it could be
traded in any batch size and in private. Here, it will be assumed that the asset is traded
on a public exchange where trades are of standardized sizes and that the prices cannot
be manipulated to cross the relevant level. Buying a barrier call option is sensible if one
believes a certain asset price, say that of SAS, will rise, but not above an upper level U.

77

Barriers Simulation PI by FFT, Gaussian PI by FFT, NIG PI by FFT, Lévy
L = 0, U =∞ 1.588 1.600 1.619 1.591
L = e1, U = e4 1.609 1.600 1.131 0.811
L = e2, U = e3.5 1.336 1.347 0.755 0.551

Table 4.3: Price of an up-and-out down-and-out barrier call option with T = 1, r = 0.1,
S0 = e3, E = e3.1, σ2

normal = 0.22. For the NIG distribution, α = 1, β = 0, σNIG = 0.1452

and for the Lévy distribution α = 1, β = 0 and σL = 0.1082

This gives the buyer a discount on the call option compared to a standard European one.
On the other hand, if one expects a period of high volatility or several high impact-events
for the relevant asset, it makes sense to sell the call option.

An example is shown below with the same parameters as for the European option
in the previous section, except the upper and lower barriers. It is seen that the heavy
tail distributions give a much bigger discount per stock when the upper and lower limits
approach the strike price - even though the distributions are more concentrated around
the mean they give higher probabilities for big fluctuations such that the option price is
set to zero.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

ASSET PRICE X

PR
O

BA
BI

LI
TY

 P

LEVY
STRIKE PRICE
NIG
NORMAL

Upper limitLower limit

Figure 4.12: Final distributions with L = e2 = 7.39, U = e3.5 = 33.12

4.6 Summary

It has been shown in this section that PI by FFT can be implemented with more gen-
eral types of noise than just Brownian motion. Specifically, Lévy and Normal Inverse
Gaussian processes stem from families of distributions that have more freedom in shap-
ing the curve than just the standard deviation. These stochastic processes were studied
in the context of the Black-Scholes option pricing framework. There are several draw-
backs with using other noise sources - generally, there is a nonzero probability that the

78

random variable S takes negative values for a random walk like 4.1. This is not the
case with Gaussian noise. Also, with Lévy noise the mean and variance are generally
not finite. This is a severe drawback for a standard option pricing model, but it may
anyway be useful for stress testing and pricing exotics such as barrier options. In the
Black-Scholes framework, the market becomes incomplete, since there are many possible
pricing formulas. Usually, the volatility in the random walk is implied by the current
option price

However, it seems to be straightforward to implement the models, and the results in
reference [26] show that the NIG distribution describes historical data from the OSEBX
and Standard and Poor’s 500 indexes much better than a normal distribution. The
results are much more precise than simulation and since these models are usually one-
dimensional they can be run very fast (typically less than one second).

79

80

Chapter 5

Discussion, Conclusions and
Future Work

5.1 Discussion

It was the great Russian mathematician A. N. Kolmogorov who laid the foundations
of probability on measure theory in the 1930s. This provided the tools for studying
stochastic processes, the interaction of probability with time. Ω is the set of possible
outcomes, F is a σ-algebra of subsets of Ω and P is a positive measure of total mass
1 on (Ω, F). In many cases, the relevant state space of the stochastic process X(t) is
Euclidean; Rd with d = 1 or d = 2. Despite this, there is significant interest in infinite
dimensional Hilbert or Banach spaces [24].

Stochastic processes have an extensive range of applications in physics, engineering
and economics. However, it is a big family of processes that include the familiar Markov
chains and random walks as well as semimartingales and measure-valued diffusions. The
1930s and 1940s were the ’heroic age’ of probability, when mathematicians such as Lévy,
Itô, Kolmogorov and Khintchine made great contributions to the field. Since the 1970s,
there has been a revived interest in stochastic processes, much of it due to the develop-
ments in financial mathematics, especially option pricing. In this thesis, the examples
are taken from physics and finance, where the examples of uses abound. Analytic solu-
tions exist but usually only for simple cases. It is therefore of great interest to develop
efficient and precise numerical strategies. The most common way by far is by simula-
tion, and books that treat numerical solutions of stochastic differential equations’ are
usually only about simulation. Path integration, lattices, finite differences and spectral
methods are other methods that have been shown to work. Path integration by FFT is
a relatively recent development that has not received a lot of attention in the literature.

The author of this thesis looked at the possibility of studying lattice QCD, which
is a numerical strategy to solve the quantum chromodynamics theory of quarks and
gluons in quantum physics. The goal of this theory is to make predictions about the
deconfinement of quarks and resulting formation of quark-gluon plasma at high energies.
Analytic solutions are usually not available because of the highly nonlinear nature of the

81

strong nuclear force, but by discretizing the domain and reducing the spacing between
the lattice points it approaches continuum lattice QCD. However, the theory proved
much too comprehensive for the master’s thesis of a non-physicist!

The engineering challenges in constructing a particle accelerator provides another
stochastic model that is slightly more down-to-earth than lattice QCD, as seen in chapter
three. Implementing models with more general types of noise is of interest both in the
context of the numerical solution and of the financial mathematics. The goal of the
thesis was to study the performance of PI by FFT in the context of applications in
physics and finance and to compare the results with other numerical approaches. Some
developments have been made and conclusions can be drawn from the results above.

5.2 Conclusions

Most algorithms have drawbacks or disadvantages and are not practical in every case.
PI by FFT is only valid for random walks with additive noise, which is a limitation. It
has been shown here that by solving an ordinary differential equation one can find the
necessary transformation in stochastic calculus to get the model in the desired form.
However, as seen in figure 3.12, the resulting transformed grid is not always convenient
- it may only be possible to study the evolution in one part of the original grid (in this
case, not close to the origin), or the number of grid points required may be exceedingly
large after the transformation.

It is also shown that PI by FFT works well with Lévy and NIG processes, which gives
many interesting possibilities. A drawback is that the grid must be extended to allow for
the heavier tails of these distributions, but in one dimension this is not problematic. For
higher dimensional models, it makes the solution more CPU expensive. In the context
of option pricing, these processes consist of continuous motion interspersed with jump
discontinuities of random size appearing at random times, as seen in figure 4.7. In
general, this seems to result in a higher option price because of the higher probability
that is allocated to large movements in the path of the underlying asset. One problem
of standard financial models is certainly that they do not allow for such jumps.

The two-dimensional model in section 3 provides a way of comparing the performance
of PI by FFT against regular PI, simulation and finite differences, thanks to the exact
solution of the harmonic oscillator. Surprisingly, it is also shown that a factor is missing
in the exact solution in the article by Zorzano et al. [17]. The results shown in figure 3.21
indicate that PI by FFT becomes truly advantageous only in multidimensional models
with noise entering in more than one dimension. Also, the finite difference scheme is
seen to be the most effective one. It has a great advantage with respect to PI and PI by
FFT since the size of the time step can be decreased indefinitely without causing any
numerical instabilities. Zorzano et al also obtain approximately the same results with
a finite element scheme for the same equation [17]. However, it is not always trivial to
transform an SDE to the Fokker-Planck equation, and finite difference schemes are not
always available for these, e.g. equation 4.3. In this case, PI by FFT is an excellent
candidate for a numerical solution, certainly better than simulation.

82

A lot of care must be taken in the implementation of both PI and PI by FFT, since
the interpolation routine or the numerical integration can claim large amounts of CPU
power if the grid is too big. Also, the step sizes must be of corresponding sizes, preferably
with more than small enough grid step sizes before one decreases ∆t.

5.3 Further Research

The Fokker-Planck equation in section 3 is in two dimensions, whereas the full phase
picture is in six. While it is possible to model each of the three physical directions
independently in two dimensions each, it may in some cases be too simplistic. An
implementation of the six-dimensional model would be of interest both in the numerics
and the physics context. However, in order to get a highly accurate solution this would
require a bigger machine with a faster processor than what is available for batch jobs
at CERN. Access to a supercomputer or a scientific computing grid would allow such
computations.

In all the models in this thesis the factors in front of the terms have been independent
of time. A further development could be the implementation of time-varying volatility,
which is often used in the finance literature. It is argued that the volatility of financial
assets changes with time, or that it is even a stochastic process in itself.

Another numerical approach that has received a lot of attention in recent years is a
class of spectral methods called the Wiener Chaos Expansion. It can be shown that the
Hermite polyonomials

hn(x, t) =
(−t)n

n!
ex

2/2t dn

dxn
e−x

2/2t n = 0, 1, 2, . . .

in Itô calculus play the role of tn

n! in ordinary calculus [1]. Wuan Luo in his Phd thesis
[18] shows how the Fourier-Hermite expansion in combination with a tensor product
called a Wick polynomial can be applied to solve ordinary SDEs as well as stochastic
partial differential equations of the form

ut = L(u) + σẆ (t),

where L is a linear or nonlinear differential operator in the variables. He applies this
strategy to the stochastic Burgers equation and stochastic Navier-Stokes equations. It
would be of great interest to see if the ideas behind the PI by FFT algorithm could be
applied to stochastic PDEs as well.

83

84

Bibliography

[1] Bernt Oksendal. Stochastic Differential Equations. Springer, 2000.

[2] Steven Shreve. Stochastic Calculus for Finance - Continuous-Time Models. Springer
Finance, 2004.

[3] Eckhard Platen Peter E. Kloeden. Numerical Solution of Stochastic Differential
Equations. Springer, 1992.

[4] Desmond J. Higham. An algorithmic introduction to numerical simulation of
stochastic differential equations. SIAM Review, 43(3):525–546, 2001.

[5] Harald Krogstad. The 1d fft. How to use the MATLAB FFT2-routines, 2004.

[6] Steven G. Johnson Matteo Frigo. Fftw for version 3.3.2. FFTW, 2009.

[7] Incnis Mrsi. Path integral formulation. Path Integrals.

[8] Eirik Mo and Arvid Naess. Efficient path integration by FFT. In Applications of
Statistics and Probability in Civil Engineering, 2007.

[9] Christian Skaug and Arvid Naess. Fast and accurate pricing of discretely mon-
itored barrier options by numerical path integration. Computational Economics,
30(2):143–151, 2007.

[10] J. Douglas Faires Richard L. Burden. Numerical Analysis. Thomson Brooks/Cole,
8 edition, 2005.

[11] William Vetterling William Press, Saul Teukolsky. Numerical Recipes in C++.
Cambridge University Press, 2002.

[12] Alexander W. Chao. Lecture Notes in Physics. Springer Berlin / Heidelberg, 1988.

[13] Donald Perkins. Introduction to High Energy Physics. Cambridge University Press,
2000.

[14] S. Chandrasekhar. Stochastic problems in physics and astronomy. Reviews of
Modern Physics, 1943.

85

[15] P. Hanggi S.I. Denisov, W. Horsthemke. Generalized fokker-planck equation:
Derivation and exact solutions. The European Physical Journal B, 2009.

[16] D.W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations. Oxford
University Press, 2006.

[17] L. Vazquez M.P. Zorzano, H. Mais. Numerical solution of two-dimensional fokker-
planck equations. Applied Mathematics and Computation, 1999.

[18] Wuan Luo. Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial
Differential Equations. PhD thesis, California Institute of Technology, 2006.

[19] Jeff Dewynne Paul Wilmott, Sam Howison. The Mathematics of Financial
Derivatives. Press Syndicate of the University of Cambridge, 1996.

[20] Nassim Nicholas Taleb. The Black Swan: The Impact of the Highly Improbable.
Random House, 2007.

[21] Hans L. Pecseli. Fluctuations in Physical Systems. Cambridge University Press,
2000.

[22] Christian Skaug and Arvid Naess. Path integration methods for calculating response
statistics of nonlinear oscillators driven by α-stable lévy noise. IUTAM Symposium
on Nonlinearity and Stochastic Structural Dynamics, 2001.

[23] M Grigoriu. Numerical solution of stochastic differential equations with poisson
and lévy white noise. Physical Review E, 80, 2009.

[24] David Applebaum. Lévy processes - from probability to finance and quantum
groups. Notices of the American Mathematical Society, 51(11):1336–1347, 2009.

[25] M. Sorensen O. Barndorff-Nielsen, J. Kent. Normal variance-mean mixtures and z
distributions. International Statistical Review, 50(2):145–159, 1982.

[26] Sjur Westgaard Arvid Naess, Eivind G. Aukrust. Pricing of barrier options under
a nig market model using numerical path integration. Working paper, 2010.

86

Appendix A

Source code

All the source code will not be included, since it is mostly variations on the same frame-
work. Most of it is written in C++ with the exception of the last two, which are in
Matlab.

1. RK4() :

Runge Kutta 4 in two dimensions

2. Exact() :

The exact solution of the harmonic oscillator.

3. Convolute() :

Convolutes two input vectors using the FFT.

4. Fokker FFT() :

Numerical solution of the harmonic oscillator by PI by FFT.

5. Fokker PI() :

Numerical solution of the harmonic oscillator by PI.

6. Bilinear() :

Bilinear interpolation.

7. Splie2(), Splin2() :

Bicubic splines.

8. Fokker Finite() :

Numerical solution of the Fokker-Planck equation in Matlab.

9. FFT Levy() :

Option pricing with Levy / NIG noise in Matlab.

87

A.1 Runge-Kutta 4

// ALL THESE LIBRARIES ARE INCLUDED IN THE REST OF THE SOURCE CODE AS WELL
#include "TH1F.h"
#include "TH2F.h"
#include "THStack.h"
#include "TProfile.h"
#include "stdio.h"
#include "TCanvas.h"
#include "TGraphErrors.h"
#include "TVirtualFFT.h"
#include "TMatrixD.h"
#include "TVectorD.h"
#include "TRandom.h"
#include "TBenchmark.h"
#include "TMath.h"
#include "TFile.h"
#include <iostream>
#include <string.h>
#include <math.h>
#include <time.h>
#include <fcntl.h>
#include <vector>
#include <iostream>
#include "Real.h"
#include "Ran2.h"

using namespace std;

double PI = TMath::Pi();
const int N = 201; // NUMBER OF GRID POINTS

const int M = 0; // NUMBER OF INTERMEDIATE GRID POINTS
const Int_t NM = N+(N-1)*M;

// GLOBAL VARIABLES
bool ip_scheme = 1;
bool num_scheme = 1;
const int fft_n2 = 2*NM;
Int_t fft_n = fft_n2;
const double T = 2.3;
double dt = 0.1;
const double v0 = 1.0;

88

const double x0 = 1.0;
double Xmin = -5;
double Ymin = -5;
double Xmax = 5;
double Ymax = 5;
TVirtualFFT *fft = TVirtualFFT::FFT(1,&fft_n, "R2C");
TVirtualFFT *fft2 = TVirtualFFT::FFT(1,&fft_n, "R2C");
TVirtualFFT *fft_b;

// GLOBAL ARRAYS
double temp1[fft_n2];
double temp2[fft_n2];
double re[fft_n2];
double im[fft_n2];
double re2[fft_n2];
double im2[fft_n2];

// TAKE ONE RK4 STEP OF TIME LENGTH h FROM y[2]
void RK4step(double y[2], double tm[4], double, double h, double yy[2]){
int size = 2;
double k1 [size];
double k2 [size];
double k3 [size];
double k4 [size];
for (int i=0; i<size; i++){

k1[i] = 0.0;
k2[i] = 0.0;
k3[i] = 0.0;
k4[i] = 0.0;

}

for (int i=0; i<size; i++){
for(int j=0; j<size; j++){
k1[i] += tm[i*size+j]*y[j];

}
}

for (int i=0; i<size; i++){
for (int j=0; j<size; j++){
k2[i] += tm[i*size+j]*(y[j] + h/2*k1[j]);

}
}
for (int i=0; i<size; i++){

89

for (int j=0; j<size; j++){
k3[i] += tm[i*size+j]*(y[j] + h/2*k2[j]);

}
}
for (int i=0; i<size; i++){

for (int j=0; j<size; j++){
k4[i] += tm[i*size+j]*(y[j] + h*k3[j]);

}
}

for (int i=0; i<size; i++){
yy[i] = y[i] + h/6*(k1[i] + 2*k2[i] + 2*k3[i] + k4[i]);

}
}

A.2 Exact

// RETURNS THE EXACT SOLUTION IN A 2D HISTOGRAM
TH2F* exact(double K, double gamma, double sigma, double t){
double x[N];
double y[N];

double dx = (Xmax-Xmin)/(N-1);

for (int i=0; i<N; i++){
x[i] = Xmin + i*dx;
y[i] = Ymin + i*dx;

}

//EXACT SOLUTION
double p_ex[N][N];
TH2F *exactdistr = new TH2F("exactdistr","exactdistr",N, Xmin-dx/2,
Xmax+dx/2, N, Ymin-dx/2, Ymax+dx/2);
const double mu1 = -gamma/2 + sqrt(gamma*gamma/4 - K);
const double mu2 = -gamma/2 - sqrt(gamma*gamma/4 - K);
const double a = sigma/mu1*(1 - exp(-2*mu1*t));
const double b = sigma/mu2*(1 - exp(-2*mu2*t));
const double h = -2*sigma/(mu1+mu2)*(1 - exp(-(mu1+mu2)*t));
const double delta = a*b - h*h;
double xi,eta;
const double xi0 = (x0*mu1 - v0);

90

const double eta0 = (x0*mu2 - v0);

double sum = 0;
for (int i=0; i<N; i++){
for(int j=0; j<N; j++){

xi = (x[i]*mu1 - y[j])*exp(-mu2*t);
eta = (x[i]*mu2 - y[j])*exp(-mu1*t);
double F1 = TMath::Sqrt(gamma*gamma-4*K)*TMath::Exp(gamma*t)/(2*PI*sqrt(delta));
double F2 = TMath::Exp((-a*(xi-xi0)*(xi-xi0)-2*h*(xi-xi0)*
(eta-eta0)-b*(eta-eta0)*(eta-eta0))/(2*delta));

p_ex[i][j] =F1*F2;

sum += p_ex[i][j]*dx*dx;
exactdistr->SetBinContent(i+1,j+1,p_ex[i][j]);

}
}
exactdistr->GetXaxis()->SetTitle("X");
exactdistr->GetYaxis()->SetTitle("V");
exactdistr->SetTitle("Exact solution");

return exactdistr;
};

A.3 Convolute

// CONVOLUTES THE VECTORS a AND b OF LENGTH NM
void convolute(double a[NM], double b[NM]){

Int_t NM2 = 2*NM;

TVirtualFFT::SetTransform(0);

for(int i=0; i<NM2; i++){
if(i<NM){
temp1[i] = a[i];
temp2[i] = b[i];
}else{
temp1[i] = 0.0;
temp2[i] = 0.0;
}
}

91

fft->SetPoints(temp2);
fft->Transform();
fft->GetPointsComplex(re,im);

TVirtualFFT::SetTransform(0);

fft2->SetPoints(temp1);
fft2->Transform();
fft2->GetPointsComplex(re2,im2);

// MULTIPLY THE TWO TRANSFORMS
for (int j=0; j<NM2; j++){
double R = re[j]*re2[j] -im[j]*im2[j];
double I = re[j]*im2[j] +im[j]*re2[j];
re[j]=R;
im[j]=I;
}

TVirtualFFT *fft_b = TVirtualFFT::FFT(1,&fft_n, "C2R");

fft_b->SetPointsComplex(re,im);
fft_b->Transform();
fft_b->GetPoints(temp1);

// PUT THE RESULT IN THE VECTOR a
double factor = (Ymax-Ymin)/(NM2*(NM-1));
for(int i=(NM-1)/2; i<3*(NM-1)/2+1;i++){
a[i-(NM-1)/2] = temp1[i]*factor;

}

delete fft_b;

};

A.4 Fokker FFT

// RETURNS A 2D HISTOGRAM
TH2F* fokker_FFT(double K, double gamma, double sigma){
gBenchmark->Start("FFT");
// INITIALIZING MATRIX AND ROOT FILE ------------------------
double *tm = new double[4];

92

tm[0] = 0;
tm[1] = 1;
tm[2] = -K;
tm[3] = -gamma;

// INITIAL VALUES --------------------------------------

double x[N];
double y[N];
double y_mn[NM];
double dx = (Xmax-Xmin)/(N-1);
double dy_m = (Ymax-Ymin)/(NM -1);
for (int i=0; i<N; i++){
x[i] = Xmin + i*dx;
y[i] = Ymin + i*dx;

}
for(int i=0; i<N+(N-1)*M; i++){
y_mn[i] = Ymin + i*dy_m;

}

//HISTOGRAMS ---

TH2F *enddistr = new TH2F("enddistr", "enddistr", N,
Xmin-dx/2 , Xmax+dx/2, N, Ymin-dx/2, Ymax+dx/2);

//INITIAL PROBABILITY DENSITY
double p[N][N];
double p_new[N][N];

//normaldistr2D(p,x,y,x0,v0,.25,.25);
TH2F *initialdistr = exact(K,gamma,sigma,0.5);

//SET THE TH2F
double sum=0.0;
double dxdx = dx*dx;
for(int i=0; i<N; i++){
for(int j=0; j<N; j++){

p[i][j] = initialdistr->GetBinContent(i+1,j+1);
sum+=p[i][j]*dxdx;
}

}

93

delete initialdistr;

//temporary probability density
double p2[NM];

//the normal distribution vector
double q[NM];

// factor
double fac = (sqrt(2*sigma)-sqrt(sigma/2)*gamma*dt)*sqrt(dt);

normaldistr(y_mn,0,fac,q,NM);

//JACOBIAN --
double det1p[2] = {0,0};
double det1m[2] = {0,0};
double det2p[2] = {0,0};
double det2m[2] = {0,0};
double xJ = 1.0;
double yJ = 1.0;
const double eps = 0.000001;
double jac1p[2] ={xJ +eps,yJ};
double jac1m[2] ={xJ-eps,yJ};
double jac2p[2] ={xJ,yJ+eps};
double jac2m[2] ={xJ,yJ-eps};
RK4step(jac1p,tm,0.0,-dt,det1p);
RK4step(jac1m,tm,0.0,-dt,det1m);
RK4step(jac2p,tm,0.0,-dt,det2p);
RK4step(jac2m,tm,0.0,-dt,det2m);

double J_mat[4] = {(det1p[0]-det1m[0])/(2*eps), (det2p[0] - det2m[0])/(2*eps),
(det1p[1] - det1m[1])/(2*eps), (det2p[1] - det2m[1])/(2*eps)};

double J = J_mat[0]*J_mat[3] - J_mat[1]*J_mat[2];
printf("Jacobian is %f \n \n",J);

// initial

printf("Time step %f, sum %f \n",0.5,sum);

// START THE LOOP ---

94

for (double t=.5; t < T-.00001 ; t+=dt){
sum= 0.0;

// 2nd derivative table for cubic splines
//double y2a[N][N];
//splie2(x,y,p,y2a);
// STEP BACK
for(int i=0; i<N; i++){

for(int j=0; j<NM; j++){
double yy[2]={x[i], y_mn[j]};
double yy_t[2]={0,0};
RK4step(yy, tm, t, -dt, yy_t);

// bilinear interpolation
p2[j] = bilinear(p,x,y,yy_t[0],yy_t[1])*J;

//p2[j]=splin2(x,y,p,y2a,yy_t[0],yy_t[1])*J;
//if (p2[j]<0){

//p2[j] = bilinear(p,x,y,yy_t[0],yy_t[1])*J;
//}

}
// convolute p2 and the normal distr. convolute() returns a length NM vector

convolute(p2,q);

for(int j=0; j<NM; j++){
if(j%(M+1)==0){
if(p2[j]>0 && p2[j]<100){
p_new[i][j/(M+1)] = p2[j];
sum+=p_new[i][j]*dx*dx;

}else{
p_new[i][j/(M+1)] = 0;
}
}
}

}

95

for(int i=0; i<N; i++){
for(int j=0; j<N; j++){

p[i][j] = p_new[i][j];
//sum+=p[i][j]*dx*dx;

}
}

printf("Time step %f, sum %f \n",t+dt,sum);

}

for(int i=0; i<N; i++){
for(int j=0; j<N; j++){

enddistr->SetBinContent(i+1,j+1,p[i][j]);

}
}

gBenchmark->Show("FFT");
return enddistr;

};

A.5 Fokker PI()

// 2D FOKKER-PLANCK : HARMONIC OSCILLATOR WITH DAMPING AND NOISE
TH2F* fokker_PI(double K, double gamma, double sigma){

// INITIALIZING MATRIX ------------------------

//gBenchmark->Start("PI");

double *tm = new double[4];
tm[0] = 0;
tm[1] = 1;
tm[2] = -K;
tm[3] = -gamma;

96

// INITIAL VALUES --------------------------------------

double x[N];
double y[N];

double y_mn[NM];

double dx = (Xmax-Xmin)/(N-1);

double dy_m = (Ymax-Ymin)/(NM -1);
for (int i=0; i<N; i++){
x[i] = Xmin + i*dx;
y[i] = Ymin + i*dx;

}
for(int i=0; i<NM; i++){
y_mn[i] = Ymin + i*dy_m;

}

//HISTOGRAMS ---

TH2F *enddistr = new TH2F("enddistr", "enddistr", N,
Xmin-dx/2 , Xmax+dx/2, N, Ymin-dx/2, Ymax+dx/2);

//INITIAL PROBABILITY DENSITY
double p[N][N];
TH2F *initialdistr = exact(K,gamma,sigma,0.5);

//SET THE TH2F
for(int i=0; i<N; i++){
for(int j=0; j<N; j++){

p[i][j] = initialdistr->GetBinContent(i+1,j+1);
}

}

delete initialdistr;

//temporary probability density
double p2[N][NM];

97

//the normal distribution vector for Euler and matrix for Taylor 2.0
double q[NM];
//double q2[N][N];

//JACOBIAN --
double det1p[2] = {0,0};
double det1m[2] = {0,0};
double det2p[2] = {0,0};
double det2m[2] = {0,0};
double xJ = 1.0;
double yJ = 1.0;
const double eps = 0.0000001;
double jac1p[2] ={xJ +eps,yJ};
double jac1m[2] ={xJ-eps,yJ};
double jac2p[2] ={xJ,yJ+eps};
double jac2m[2] ={xJ,yJ-eps};
RK4step(jac1p,tm,0.0,-dt,det1p);
RK4step(jac1m,tm,0.0,-dt,det1m);
RK4step(jac2p,tm,0.0,-dt,det2p);
RK4step(jac2m,tm,0.0,-dt,det2m);

double J_mat[4] = {(det1p[0]-det1m[0])/(2*eps), (det2p[0] - det2m[0])/(2*eps), (det1p[1] - det1m[1])/(2*eps), (det2p[1] - det2m[1])/(2*eps)};

double J = J_mat[0]*J_mat[3] - J_mat[1]*J_mat[2];
printf("Jacobian is %f \n \n",J);

double fac;
if (num_scheme) fac = (sqrt(2*sigma)-sqrt(sigma/2)*gamma*dt)*sqrt(dt);
else fac = sqrt((2*sigma)*dt);

double min = pow(10,-9);

// START THE LOOP ---

for (double t=.5; t<T-.00001; t+=dt){
double sum= 0;

// 2nd derivative table for cubic interpolation

// IF THE CUBIC SPLINE SCHEME IS CHOSEN, CALCULATE
// THE AUXILIARY 2ND DERIVATIVE TABLE HERE

98

double y2a[N][N];
if (ip_scheme){
splie2(x,y,p,y2a);

}

// STEP BACK
for(int i=0; i<N; i++){

for(int j=0; j<NM; j++){

double yy[2]={x[i], y_mn[j]};
double yy_t[2]={0,0};
RK4step(yy, tm, t, -dt, yy_t);

// BILINEAR INTERPOLATION
if (!ip_scheme){
p2[i][j] = bilinear(p,x,y,yy_t[0],yy_t[1])*J;

}
if (ip_scheme){

p2[i][j]=splin2(x,y,p,y2a,yy_t[0],yy_t[1])*J;
if (p2[i][j]<0){

p2[i][j] = bilinear(p,x,y,yy_t[0],yy_t[1])*J;
}

}
}
}

// INTEGRATE WITH SIMPSONS COMPOSITE METHOD

for(int j=0; j<N; j++){
normaldistr(y_mn,y[j],fac,q,NM);
for(int i=0; i<N; i++){

p[i][j]=q[0]*p2[i][0]+q[NM-1]*p2[i][NM-1];
for(int k=0; k<NM; k++){
if (q[k]>min){
if(k%2==0)p[i][j]+=2*q[k]*p2[i][k];
if(k%2==1)p[i][j]+=4*q[k]*p2[i][k];
}
}
p[i][j] = p[i][j]*dy_m/3;

99

if (p[i][j]<0){
p[i][j] = 0;
printf("Zero! Zero! \n");
}
sum+=p[i][j]*dx*dx;
}
}

printf("Time step %f, sum %f \n",t+dt,sum);
}

for(int i=0; i<N; i++){
for(int j=0; j<N; j++){
enddistr->SetBinContent(i+1,j+1,p[i][j]);
}
}

return enddistr;
};

A.6 Bilinear()

// BILINEAR INTERPOLATION
double bilinear(double p[N][N], double x[N], double y[N], double xx, double yy){
int x1 = N;
int x2 = N;
for (int i=0; i<N; i++){
if (x[i]>xx){
x1 = i-1;
break;

}
}
if (x1==-1 || x1>=N-1){

return 0;
}
for(int i=0; i<N; i++){

if(y[i]>yy){
x2 = i-1;
break;

}
}
if(x2==-1 || x2>=N-1){

100

return 0;
}
double t = (xx-x[x1])/(x[1]-x[0]);
double u = (yy-y[x2])/(y[1]-y[0]);

return ((1-t)*(1-u)*p[x1][x2] + t*(1-u)*p[x1+1][x2] +
t*u*p[x1+1][x2+1] + (1-t)*u*p[x1][x2+1]);

};

A.7 Splin2(), Splie2()

// CONSTRUCT THE AUXILIARY SECOND-DERIVATIVE TABLE y2a
void splie2(double [], double x2a[N], double ya[N][N], double y2a[N][N]){

double ya_t[N];
double y2a_t[N];
for(int j=0; j<N; j++){

// fill a vector ya_t from ya[j][:]
for(int k=0; k<N; k++) ya_t[k] = ya[j][k];

// CALLS THE FUNCTION SPLINE BELOW
spline(x2a,ya_t,1.0e30, 1.0e30, y2a_t);
// put them back in the second derivative matrix
for(int k=0; k<N; k++) y2a[j][k] = y2a_t[k];

}
};

//EVALUATE THE POINT x1, x2
double splin2(double x1a[N], double x2a[N], double ya[N][N], double y2a[N][N],
const double x1, const double x2){
double ya_t[N];
double y2a_t[N];
double yytmp[N];
double ytmp[N];
for(int j=0; j<N; j++){

for(int k=0; k<N; k++){
ya_t[k]=ya[j][k];
y2a_t[k]=y2a[j][k];

}
// CALLS THE FUNCTION SPLINT BELOW
yytmp[j]=splint(x2a,ya_t,y2a_t,x2);

101

}
spline(x1a, yytmp, 1.0e30, 1.0e30,ytmp);
return splint(x1a, yytmp, ytmp, x1);

};

// COMPUTES SECOND DERIVATIVES IN GRID POINTS IN X-DIRECTION
void spline(double x[N], double y[N], const double yp1,
const double ypn, double y2[N]){
double p,qn,sig,un;
double u[N-1];
if(yp1>0.99e30){
y2[0] = u[0] = 0;

}else{
y2[0] = -0.5;
u[0] = (3.0/(x[1]-x[0]))*((y[1]-y[0])/(x[1]-x[0])-yp1);

}

for(int i=1; i<N-1; i++){
sig = (x[i]-x[i-1])/(x[i+1]-x[i-1]);
p=sig*y2[i-1]+2.0;
y2[i]=(sig-1.0)/p;
u[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]);
u[i]=(6.0*u[i]/(x[i+1]-x[i-1])-sig*u[i-1])/p;

}
if(ypn>0.99e30){

qn=un=0;
}else{

qn=0.5;
un = (3.0/(x[N-1]-x[N-2]))*(ypn-(y[N-1]-y[N-2])/(x[N-1]-x[N-2]));

}
y2[N-1] = (un-qn*u[N-2])/(qn*y2[N-2]+1.0);
for(int k=N-2; k>=0; k--){

y2[k] = y2[k]*y2[k+1]+u[k];
}

}

// SPLINE INTERPOLATION
double splint(double xa[N], double ya[N], double y2a[N], const double x){
int k;
double h,b,a;

int klo=0;

102

int khi=N-1;
while(khi-klo>1){

k = (khi+klo) >> 1;
if(xa[k]>x) khi =k;
else klo = k;

}
h = xa[khi] - xa[klo];
if(h==0) exit(1);
a = (xa[khi]-x)/h;
b = (x - xa[klo])/h;
return a*ya[klo] + b*ya[khi] + ((a*a*a -a)*y2a[klo] + (b*b*b-b)*y2a[khi])*(h*h)/6.0 ;

}

A.8 Fokker Finite()

// RETURNS THE DISTRIBUTION P WITH INPUT PARAMETERS K, GAMMA, SIGMA
function P = fokker_finite (K, gamma,sigma)

Xmin = -5;
Xmax = 5;
Ymin = -5;
Ymax = 5;

hh = .1;
dt = 0.01;
T = 2.3;

x0 = 1;
y0 = 1;

X = Xmin:hh:Xmax;
Y = Ymin:hh:Ymax;

// INITIAL CONDITION
P = fokker_exact(K,gamma,sigma,hh,.5);

INT = sum(sum(P))*hh^2*100
size(P);
%P ((x0-Xmin)/h+1, (y0-Ymin)/h+1) = 1/h^2;
plothandle = surf(X,Y,P);
axis([Xmin Xmax Ymin Ymax 0 2]);
%title([’TIME = ’, num2str(0)]);

103

m = length(X);
n = length(Y);

D = sigma;

XX = zeros(1,n*m);
YY = kron(ones(1,m),Y);
for i =1:n*m

XX(i) = Xmin + hh*(ceil(i/(n))-1);
end

e = ones(n,1);
I_n = spdiags(e,0,n,n);
e_m = ones(m,1);
I_m = spdiags(e,0,m, m);

// SPARSE MATRICES INITIALIZATION -----------------

A = spdiags([e -2*e e], -1:1, n,n);
%A(1,1) = 0;
%A(1,2) = 0;
%A(n,n) =0;
%A(n,n-1)=0;

B = spdiags([-e 0*e e], -1:1, n, n);
%B(1,1) = -2;
%B(1,2) = 2;
%B(n,n) = 2;
%B(n,n-1) = -2;
%B2 = spdiags([YY’ YY’],[-1 1],n*m,n*m).*kron(I_m,B);
%B = spdiags([XX’ XX’],[-1 1],n*m,n*m).*kron(I_m,B);
B = spdiags(XX’,0,n*m,n*m)*kron(I_m,B);

C = spdiags([e e], 0:1, n, n);
%C(n,n) =3;
%C(n,n-1) = -1;

%C = kron(I_m,spdiags([YY’ YY’],0:1,n,n).*C);
C = kron(I_m,spdiags(YY’+hh/2,0,n,n)*C);

E = spdiags([e e], -1:0, n, n);
%E(1,1) = 3;

104

%E(1,2) = -1;
E = kron(I_m,spdiags(YY’-hh/2,0,n,n)*E);

YY = zeros(1,m*n);

for i =1:m*n

YY(i) = Ymin + hh*(ceil(i/m)-1);

end

F = spdiags([-e_m e_m], [-1 1], m, m);
F(1,1) = -2; F(1,2) = 2; F(m,m) = 2; F(m,m-1) =-2;
F=spdiags([YY’ YY’],[-1 1],m*n,m*n).*kron(I_n,F);

tic

for t=.5:dt:T
%% STEP 1----------------------------------

p = P;
p = reshape(p,n*m,1);

p = (kron(I_m,I_n) - D*dt/(hh^2)*kron(I_m,A) - dt/(2*hh)*K*B -dt/(2*hh)*gamma*C
+ dt/(2*hh) *gamma*E)\p ;

p = reshape(p,n,m);

%% STEP 2 ----------------------------------
p = reshape(p’,m*n,1);

p = (kron(I_n,I_m) + dt/(2*hh)*F) \ p;

p = reshape(p,m,n)’;

P = p;

set(plothandle,’zdata’,P);
title([’TIME = ’, num2str(t)]);

105

drawnow;

end

INT = sum(sum(P))

t = toc

end

A.9 FFT levy()

// RANDOM WALK WITH NIG, NORMAL OR LEVY PROCESS
function [x y] = fft_levy()

Xmax = 6;
S0 = 3;
E = 3.1;
U = 3.5;
L = 2;
dx = 0.001;
x = 0:dx:Xmax;
r = 0.1;
T=1;
sig = 0.2;

N = length(x)-1;
dt = 0.1;
y = zeros(1,length(x));

// DELTA INITIAL CONDITION
y(S0/dx+1) = 1/dx;

// CHOOSE ONE OF THESE
%q = nig(x,Xmax/2,sig^2*sqrt(dt),1,0);
%q = cauchydistr(x,Xmax/2,sig^2*sqrt(dt));
q = normaldistr(x,Xmax/2,sig*sqrt(dt));

qfft = fft ([q zeros(1,length(q))]);

106

size(qfft)
x2 = x - (r-1/2*sig*sig)*dt;
for t = dt:dt:T
// BUILT-IN INTERPOLATION ROUTINE

y = interp1(x,y,x2,’splines’);
y = ifft(qfft.*fft([y zeros(1,length(q))]));
y = y(N/2+1:end-N/2-1)*dx;
y(1:L/dx+1) = 0;
y(U/dx+1:end) = 0;

end

x2 = x(E/dx+1:end);
y2 = y(E/dx+1:end);
y3 = exp(x2)-exp(E);
p = y2./exp(x2);
P = y3.*p.*(exp(x2+dx/2)-exp(x2-dx/2));
V = exp(-r*T)*sum(P)

plot(exp(x),y./exp(x),’black’)
axis([0 60 0 0.3])

end

107

	Tittelside
	Oppgavetekst
	masteroppgave.pdf

