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Abstract 10 

Development of time-efficient and reliable methods for estimating the aeroelastic properties of bridge decks is of major 11 

importance for bridge engineers to make wind tunnel testing more productive and less expensive. This paper presents an 12 

enhanced and more efficient procedure to identify rational functions and aerodynamic derivatives from wind tunnel tests of 13 

section models. The accuracy of the proposed method was investigated for a wedged shaped box section, a rectangular 14 

section with B/D 1:10 aspect ratio and a twin deck section. In comparison with the data from standard forced vibration tests, 15 

the proposed procedure obtained nearly identical results for the eight most influential aerodynamic derivatives. In the case of 16 

the twin deck section, the experimental results show that the aerodynamic derivatives are very sensitive to the motion applied 17 

and that a linear model therefore cannot uniquely define the self-excited forces for the particular twin deck section tested. The 18 

identified results were used to predict the self-excited forces induced under various motion and wind conditions to verify the 19 

accuracy of the identified models. Some comments are also given regarding the observed nonlinear effects in the recorded 20 

self-excited forces.  21 

 22 
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1 Introduction 24 

Self-excited forces are some of the most important environmental loads for slender, long-span bridges and must be treated 25 

carefully to ensure a safe design. Self-excited forces, or aeroelastic forces, are wind-induced, motion-dependent forces that 26 

can significantly modify the stiffness and damping properties of the combined structure and flow system. This may lead to 27 

the occurrence of destructive aeroelastic phenomena, such as flutter or galloping, that can be responsible for the collapse of a 28 

bridge (Fuller et al., 2000). The self-excited forces are commonly described in the frequency domain by aerodynamic 29 

derivatives that are functions of reduced velocity and depend on the geometry of the bridge deck (Scanlan and Tomko, 1971). 30 



The aerodynamic derivatives can be identified by means of wind tunnel tests of section models of bridge decks. Compared to 31 

the full (Wardlaw, 1980) and taut strip (Scanlan et al., 1997) testing techniques, section model tests has advantages in terms 32 

of the scale of the model (Matsuda et al., 2001; Zasso et al., 2014), which implies that the tests can be conducted in wind 33 

tunnels of a reasonable size and with lower costs. Therefore, the section model testing technique is an ideal tool for early 34 

design. However, the standard methods for estimating aerodynamic derivatives with a use of forced or free vibration setups 35 

require testing the section model under several configurations. Each of the state-of-the-art tests provide experimental results 36 

for a single reduced velocity, and since it is important to obtain data at a wide range of reduced velocities, several tests at 37 

different motion frequencies and velocities are necessary. Moreover, in the past, Pi
* 

derivatives describing the self-excited 38 

drag, lift and pitching moment due to lateral bridge deck motion were often approximated by applying quasi-steady theory 39 

(Boonyapiny et al., 1999; Chen and Kareem, 2003; Jain et al., 1996; Katsuchi et al., 1999; Øiseth et al., 2010). In contrast, the 40 

current trend is to also identify these aerodynamic derivatives, since they can play an important role in the estimation of the 41 

flutter speed for some cross sections, as shown in several studies (Sarkar et al., 2004; Singh et al. 1996; Zhang and 42 

Brownjohn, 2005). At present, section models are commonly tested with three degrees-of-freedom (DoFs), at several motion 43 

frequencies and wind velocities. Furthermore, many experiments need to be performed to obtain the full set of aerodynamic 44 

derivatives, increasing the overall time spent in the wind tunnel. This is contradictory to the idea that the section model 45 

testing technique should be fast and easy to perform, to investigate several possible bridge deck designs. Therefore, the 46 

development of time-efficient and reliable methods for estimating the aerodynamic derivatives and of more productive and 47 

less expensive wind tunnel tests for section models is of high interest.  48 

Currently, assessment of bridge deck aerodynamics can be examined in a relatively short time using free vibration setups that 49 

allow the overall performance of the section model and its critical velocity to be directly observed in the wind tunnel. 50 

Although it is difficult to consider more than two vibration modes with free vibration setups, this method usually provides 51 

realistic estimates of the complex flutter phenomenon. However, it is sometimes challenging to define the wind speed at 52 

which a bridge deck becomes unstable (Andersen et al., 2016). Moreover, aerodynamic derivatives are not extracted from 53 

these tests, precluding the possibility to perform more complex multimode flutter or buffeting analyses. Standard forced 54 

vibration tests can usually be performed faster, since the frequency of motion can be altered with use of a control system 55 

(Diana et al., 2004), while in the free vibration setup, the frequency of motion must be modified manually by changing the 56 

mass or stiffness of the section model (Andersen et al., 2015). Moreover, it is known that the forced vibration technique 57 

performs more accurately at higher reduced velocities, higher motion amplitudes, increased turbulence intensities, and for 58 

cross sections sensitive to vortex shedding (Cao and Sarkar, 2012; Sarkar et al., 2009). Due to repeatability and 59 



straightforward identification procedures, the forced vibration method is also considered to provide more reliable data (Diana, 60 

et al., 2015).  61 

In 2005, Chowdhury and Sarkar (2005) introduced the methodology for experimental identification of rational function 62 

coefficients from free vibration tests. Seven years later, Cao and Sarkar (2012) presented an algorithm that can be applied 63 

when using data from forced vibration experiments. The rational functions are usually indirectly obtained by curve fitting of 64 

the real and the imaginary parts of the transfer function expressed in terms of the rational functions to the experimental data 65 

of aerodynamic derivatives (Neuhaus et al., 2009). Compared to the more common approach, the methodology proposed by 66 

Chowdhury and Sarkar and Cao and Sarkar has the clear advantage that it is not necessary to identify the aerodynamic 67 

derivatives before obtaining the rational functions. This is because the methodology directly use the measured time series of 68 

the decaying motion when considering free vibration or time series of the measured self-excited forces during forced 69 

vibration tests. These identification techniques thus require testing of the section model at fewer wind speeds. However, that 70 

methodology still relies on data from rather simple tests with nearly harmonic oscillations. Therefore, the accuracy of the 71 

obtained rational functions increases with the number of performed tests.  72 

This paper presents an enhanced identification procedure, based on the work by Chowdhury and Sarkar (2005) and Cao and 73 

Sarkar (2012). In the proposed enhanced procedure a more general motion of the section model is used, while the rational 74 

functions coefficients are obtained by solving differential equation. The motion applied is a more general three degrees of 75 

freedom random motion generated from a rectangular auto-spectral density. This motion makes it possible to study the self-76 

excited forces for a wider range of reduced velocities and thus in principle, to obtain the full set of rational function 77 

coefficients by testing a single motion history at only one wind velocity. It is however important to use validation data to 78 

verify the identified coefficients. The procedure will anyway further reduce the number of wind tunnel experiments required. 79 

The efficacy and accuracy of the proposed identification technique was studied considering three different section models: 80 

wedge, rectangular and twin deck. The range of tested reduced frequencies and nondimensional time for these 3 sections were 81 

equal to respectively 1.7-14.5 and 2732 for wedge, 1.0-8.5 and 1600 for rectangular, 1.4-11.6 and 2185 for twin deck section 82 

models. The identified rational functions are transformed into aerodynamic derivatives and compared with experimental 83 

results from the standard forced vibration procedure (Siedziako et al., 2017a). Furthermore, the identified rational functions 84 

are used to reproduce the measured aeroelastic loads induced under random motions at several wind velocities to examine the 85 

accuracy of the proposed identification method. 86 



2 Identification procedure 87 

The load model proposed by Scanlan and Tomko (1971) is still the most commonly applied method to define aeroelastic 88 

forces in bridge aerodynamics 89 
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Here, V is the mean wind velocity, ρ represents the air density, B denotes the width of the cross section, K=Bω/V is the 91 

reduced frequency of motion, and rx, rz, and rθ are the horizontal, vertical and torsional displacements, respectively. The 92 

dimensionless aerodynamic derivatives are depicted by Pn
*
, Hn

*
, and An

*
, where n{1, 2,…6}. The positive directions of the 93 

displacements and forces are displayed in Fig. 2. 94 

 95 

To describe the self-excited forces in the time domain, the aerodynamic derivatives that are known only at discrete reduced 96 

frequencies must be replaced with continuous functions that are suitable for inverse Fourier transforming (Øiseth et al., 97 

2012). In this study, the rational function approximation that originates from the field of aeronautics is used (Karpel, 1981; 98 

Roger, 1977). Eq (2) shows the transfer function for the self-excited forces expressed by means of the rational functions with 99 

one lag term to calculate the self-excited forces. One lag term is considered in this study, since is considered to be sufficient 100 

for many cross sections , see for instance (Chowdhury and Sarkar, 2005; Neuhaus et al., 2009; Siedziako and Øiseth, 2017). 101 

Using more lag terms makes the expression more flexible. However, it increases also a risk that the obtained results perform 102 

poor outside the tested range of reduced velocities. It is therefore recommended to use as few lag terms as possible to avoid 103 

overfitting. One lag term is often sufficient (Chowdhury and Sarkar, 2005; Neuhaus et al., 2009; Siedziako and Øiseth, 2017) 104 

and adding more terms does not improve the results presented in this paper significantly either. It is however, worth to 105 

mention that more lag terms can be necessary if one needs to cover a wider reduced velocity range.  For the sake of 106 

simplicity, this derivation concerns only the lift force; however, similar formulas can be analogously derived for the drag 107 

force and pitching moment. The transfer function of the lift force due to vertical motion reads. 108 
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Here, the one by three vectors ak k{1…4} contain rational function coefficient, while dz comprises the lag coefficient 110 

related to the lift force. The matrix a3 is associated with the aerodynamic mass that is commonly neglected in bridge 111 

aerodynamics and therefore not considered further. By taking the inverse Fourier transform of the transfer function given by 112 

Eq. (2), the following time domain expressions for the self-excited lift force can be obtained: 113 
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It can be seen that the time domain representation of self-excited drag contains convolution integrals and it is convenient to 115 

define the following variable Z(t): 116 
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This variable can be evaluated with first-order differential equations, obtained by taking the derivative of Eq. (4) as shown by 118 

several authors (Chen et al., 2000b; Høgsberg et. al., 2000; Mishra et. al., 2008; Øiseth et al. 2012):  119 
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d V

t t t
B

 Z r Z   (5) 120 

The Eq. (3) can be simplified by introducing Z(t):  121 
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Then, by differentiating Eq. (6) and replacing ( )tZ term with Eq. (5), the following expression can be obtained: 123 
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Rewriting Eq. (6), the variable Z(t) can be expressed as:  125 
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Inserting Eq. (8) into Eq. (7) yields an expression that can be used to fit rational function coefficients to experimental data.  127 
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The same expression has been obtained by Cao and Sarkar (2012) who determined the rational function coefficients by using 129 

linear regression. The regression problem was expressed as 130 



 z q ψX   (10) 131 

Here the vector 
z

q  contains the observed values of the derivative of vertical self-excited force; the matrix X contains the 132 

values of the independent variables, namely scaled displacements, velocities and accelerations of the section model. The time 133 

histories of the latter ones were obtained with a finite difference method. The vector ψ contains the unknown coefficients.   134 
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Then to find vector ψ  an algorithm that minimizes the sum of squares between measured and predicted values of 
z

q  was 136 

applied.  137 
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The methodology outlined above has been applied successfully for harmonic motions by Cao and Sarkar (2012). However, 139 

we encountered some challenges for the cases we considered, because measurement noise and higher order effects are 140 

amplified when taking the derivative of the measured self-excited forces. Filtering the time series after taking the derivative 141 

solves this problem when considering single harmonic motion, but it is more challenging to deal with when considering a 142 

more general motion. The main reason for the problems observed is the fact that Eq.(9) does not fully hold when the 143 

measured self-excited forces depends on the independent variables in a way that cannot be explained by the applied model. In 144 

other words the vector 
z

q  in matrix X , used as an input should contain the values of predicted (based on obtained ψ vector) 145 

lift force rather than values measured during experiments. This creates a problem since the predictions are unknown prior to 146 

applying Eq. (12) The least squares method applied in Eq. (12) yields therefore accurate results only, when corresponding 147 

values of ψ reproduce measured during wind tunnel tests values of the lift force exactly, which is not the case in this study.  148 

We suggest therefore to slightly improving this identification technique by making sure that the input lift force correspond to 149 

predicted values of this force component. To ensure this Eq. (9) can be modelled as an ordinary differential equation or 150 

rewritten into state space form. Then ψ vector can be obtained by fitting coefficients to first order differential equation or 151 

through identification of the state space model. Those are demanding computational tasks that are subjects of extensive 152 

studies resulting in sophisticated methods for parameter estimation of dynamic systems; see for example (Keesma, 2011; Lim 153 



and Longman, 1998; Ljung, 1987; Schön et. al., 2011). In this study a differential equation solver implemented in MATLAB 154 

as one of its built-in functions was used to identify state space model following example given in (“Estimation, Represent 155 

Nonlinear Dynamics Using MATLAB File for Grey-Box,” 2017). As an initial estimate of ψ  the results from the linear 156 

regression applying were used. More on identification state space model for the purpose of bridge aerodynamics can be found 157 

in (Øiseth, 2015). 158 

Having final estimate of ψ the rational function coefficients can be estimated solving simple system of equations based on 159 

Eq. (11). To validate the identification procedure described above, the identified rational functions were converted to 160 

aerodynamic derivatives based on transfer function in Eq. (2). The aerodynamic derivatives defining the lift force can be 161 

expressed as: 162 
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The framework presented above was first validated by performing numerical wind tunnel tests of sections with known 164 

aerodynamic derivatives and rational function coefficients. Random motion histories was first generated from assumed 165 

spectral densities and the self-excited forces was calculated using the known rational functions. The results showed that it 166 

was possible to identify the rational coefficients from the simulated time series if the frequency content of the applied motion 167 

covered the reduced frequency range and thus the reduced velocity range of interest.      168 

3 Experimental procedure  169 

3.1 Forced vibration mechanism 170 

A recently developed forced vibration setup (Siedziako et al., 2017a) that is simultaneously capable of measuring the self-171 

excited forces and moving the section model arbitrarily in heaving, swaying and torsional directions is used in this study. The 172 

forced vibration rig is situated in the wind tunnel located in the Fluid Mechanics Laboratory at Norwegian University of 173 

Science and Technology. It is the largest wind tunnel in Norway, with an 11 m long, 2 m high, 2.7 m wide test section. Fig. 1 174 

shows a picture from the inside of the wind tunnel during testing.  175 



 176 

Fig. 1. Experimental setup at NTNU (Siedziako et al., 2017a). The Hardanger Bridge section model mounted between two 177 

actuators (photograph by NTNU/K.A. Kvåle). 178 

Two 3-DoFs actuators are the key components of the forced vibration rig. They support the section model at both ends and 179 

are mounted on a steel frame outside the wind. The internally connected actuators can to reproduce any uploaded motion of 180 

the bridge deck section model in the range ± 10 cm for vertical and horizontal vibrations and ± 90° for rotation. As seen from 181 

Fig. 1, the section model is the only component inside the wind tunnel during the experiments. 182 

3.2 Displacement, wind speed and force measurements 183 

The horizontal, vertical and torsional positions of the section model during the experiments are acquired from the encoders on 184 

the servomotors. The two 6-DoF’s Gamma (by ATI Industrial Automation) load cells measure the forces acting on the bridge 185 

deck section models during the wind tunnel experiments. The load cells are located at each side of the wind tunnel and 186 

support the section model. Therefore, to find the self-excited forces, the inertia and static contributions need to be separated 187 

from the total recorded loads by repeating each test in still-air conditions (Siedziako et al., 2017a). A pitot-static probe placed 188 

at the inlet of the wind tunnel was used to measure the mean wind velocity. In this study, all the experiments were conducted 189 

in a smooth air flow (Adaramola and Krogstad, 2009). Additionally, recordings from the thermometer inside the wind tunnel 190 

allowed the monitoring of the air density due to the change in the temperature during the tests. The sampling rate for the 191 

acquired voltage signals was set to 2 kHz, downsampled to 250 Hz when storing the data. More details on the data acquisition 192 

and control systems can be found in (Siedziako and Øiseth, 2017b; Siedziako et al., 2017a).   193 



3.3 Section models 194 

Three cross-sectional geometries shown in Fig. 2 were examined in the series of wind tunnel tests with random motion. 195 

 196 

Fig. 2. Cross-sectional dimensions of the bridge deck section model section models used in this study: a) B/D=10 rectangular 197 

section, b) detailed Hardanger Bridge section, and c) twin deck section. 198 

A simple rectangular section model with a ratio of B/D=10, a Hardanger Bridge (Fenerci and Øiseth, 2015, 2017; Fenerci et. 199 

al., 2017) section model with railings and guide vanes, and a model of a twin box girder were used in this study. An increase 200 

in research on twin box girders in recent years motivated the authors of this paper to include this model in the testing 201 

program. Although the twin deck section is known to be more resistant to flutter (Andersen et al., 2015, 2016; Yang et al., 202 

2015), the flow pattern around it is somewhat more complex than that of the bluff or streamlined sections. Moreover, a recent 203 

study by Skyvulstad et al. (2017) showed that the concept of motion-independent aerodynamic derivatives, which assumes 204 

that they are functions of reduced velocity only, might be invalid for some twin deck type geometries. Therefore, it was 205 

interesting to examine whether this study would confirm that the aerodynamic derivatives of the chosen twin deck section are 206 

sensitive to the motion applied. The aeroelastic properties of the Hardanger Bridge, the longest suspension bridge in Norway, 207 

and the twin deck section model used herein had already been evaluated in previous studies conducted at NTNU in 208 

(Siedziako and Øiseth, 2017b) and (Skyvulstad et al., 2017), respectively. In this study, in the case of the rectangular section, 209 

the aerodynamic derivatives were first identified in the series of single-DoF harmonic forced vibration tests, and then were 210 

later compared with the obtained rational functions. The experimental procedure used in this study to extract the aerodynamic 211 

derivatives from the standard forced vibration tests can be found in (Siedziako et al., 2017a; Siedziako et. al., 2016). 212 



3.4 Bridge deck motions 213 

The time histories used in this study were generated by Monte Carlo simulations, as described in (Siedziako et al., 2017a). 214 

Herein, the designed spectra of the horizontal, vertical and torsional vibrations are rectangular, starting at 0.3 Hz and ending 215 

at 2.5 Hz. This ensures that the self-excited forces can be obtained over a wide range of reduced velocities, which is of crucial 216 

importance since results obtained outside the covered range might be unreliable.  Since the amplitude of the vibrations might 217 

have an influence on the identified aerodynamic derivatives, as shown by Chen et al. (2005), three different response 218 

magnitudes were considered in this study. The standard deviations of the vertical, horizontal and torsional displacements 219 

considered in these tests are shown in Table 1. The length of the time series was 100 seconds, and Fig. 3 shows the first 20 220 

seconds of them. 221 

Test 

number 

Standard deviation of the vibrations 

rx [cm] rz [cm] rθ [] 

1  0.510 0.483 0.938 

2  0.350 0.332 0.570 

3  0.659 0.639 1.396 

Table 1. Standard deviations of the horizontal, vertical and torsional vibrations considered in the wind tunnel tests. 222 

 223 
Fig. 3. Part of the time series forced on the section models and used in the identification process. 224 



4 Experimental results and discussion 225 

In order to show the influence of suggested herein enhancement to identification procedure proposed by Cao and Sarkar 226 

(2012), standard – Eq. (12) and enhanced identification procedures were used to obtain rational function coefficients. Table 2 227 

compares the fits between measured and predicted self-excited forces, when using linear regression and differential equation 228 

solver to find vector ψ  containing rational function coefficients. The self-excited forces for this example were recorded, 229 

when the twin deck section model was subjected to random vibrations (Test 2) at the mean wind velocity of 4 m/s. It can be 230 

seen that predictions of all three self-excited force components have been improved when using suggested herein approach to 231 

find rational function coefficients. A distinct increase in the prediction accuracy is observed for the self-excited drag, while 232 

only a minor one in case of lift and pitch components.  This was expected, since the drag force is usually influenced to a 233 

larger extend by the noise due to its low magnitude as well as nonlinear contributions (Chen et al., 2005; Siedziako and 234 

Øiseth, 2017b; Xu et al., 2016) that cannot be predicted with a use of applied herein load model. This example demonstrates 235 

the efficacy of proposed enhanced identification procedure, although it must be noticed that the improvements in force 236 

predictions were less distinct than showed herein in most cases.  237 

Identification method 
Drag Lift Pitch 

ρxy R
2
 ρxy R

2
 ρxy R

2
 

Least squares – Eq. (12)   0.789 0.489 0.962 0.971 0.919 0.846 

Differential equation solver 0.875 0.765 0.980 0.985 0.931 0.868 

Table 2. Correlation coefficient (pxy) and coefficient of determination (R
2
) between measured and predicted self-excited 238 

forces, calculated using rational functions obtained applying different identification techniques.  239 

 240 

The correlation coefficient and coefficient of determination between the measured (xi) and predicted (yi) n-long signals were 241 

calculated using Eq. (14) and (15)  242 
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4.1 Aerodynamic derivatives 245 

The results presented in this paper have been obtained from the wind tunnel tests at 8 and 10 m/s since we consider these tests 246 

to be of highest quality because the self-excited forces are large compared to inertia forces. The velocities are perhaps a bit 247 



large if one is interested in the self-excited forces at low mean wind velocities in full scale. The natural frequencies of the 248 

first vertical and torsional modes of the Hardanger Bridge are 1 and 2.2 rad/s respectively while the reduced critical flutter 249 

velocity is 2.6. The wind tunnel test thus cover the range relevant for buffeting response and flutter analysis in strong winds 250 

where the self-excited forces are most relevant. The aerodynamic derivatives obtained using Eq. (13) for the Hardanger 251 

Bridge and BD10 section models are presented in Fig. 4 to Fig. 7.  The convention proposed by Zasso (1996), where the 252 

aerodynamic derivatives related to the velocities and displacements are multiplied by the reduced frequency and reduced 253 

frequency squared, respectively is used since it allows a quantitative evaluation of the performance of the proposed 254 

identification method.  255 

 256 

Fig. 4. Aerodynamic derivatives, of the Hardanger Bridge section model, related to the velocities or angular velocities. 257 



 258 

Fig. 5. Aerodynamic derivatives, of the Hardanger Bridge section model, related to the displacements and rotation. 259 

 260 



Fig. 6. Aerodynamic derivatives, of the rectangular BD10 section model, related to the velocities or angular velocities. 261 

 262 

Fig. 7. Aerodynamic derivatives, of the rectangular BD10 section model, related to the displacements and rotation. 263 

For the Hardanger and the rectangular BD10 section models, the obtained aerodynamic derivatives show a very good match 264 

with the data obtained in the standard forced vibration tests. Especially for the 8 aerodynamic derivatives considered to be the 265 

most influential, namely, A1
*
–A4

*
 and H1

*
–H4

*
, the identified results are consistent and nearly identical to the results from the 266 

standard tests with 1-DoF harmonic oscillations, represented by the blue dots in Fig. 4 to Fig. 7. Generally, greater 267 

discrepancies between the standard forced vibration data and the identified results are observed at higher reduced velocities. 268 

This can be attributed to the design of the spectra, uniformly distributed along the frequencies ranging from 0.3 to 2.5 Hz, 269 

used to generate the motion histories; this design emphasizes the importance of the self-excited forces induced at the lower 270 

reduced velocities, since reduced velocity is inversely proportional to frequency. It is also interesting to study the results in 271 

the reduced velocity range not directly covered by the frequency range of the applied motions, which are below 1.45 and 272 

below 0.85 for the Hardanger and BD10 sections respectively. The results show that the identified models preforms well for 273 

the most important aerodynamic derivatives also in this range.  This can partly be attributed to the fact that only one lag term 274 

is sued such that abrupt changes in the curves outside the range covered by the applied motion do not occur. The difficulties 275 

in finding the aerodynamic derivatives that define the self-excited drag has already been emphasized in a previous study that 276 

used the same experimental setup as herein (Siedziako et al., 2017a). Considering the low value of the self-excited drag force 277 



and highly nonlinear behavior of this force component, the results presented here are considered acceptable. Nevertheless, as 278 

in the previous studies (Siedziako et al., 2017a; Xu et al., 2016), the results strongly indicate that the load model based on the 279 

aerodynamic derivatives is not able to reproduce this force component. P2
*
, P3

*
, P5

*
, and P6

*
, that define the self-excited pitch 280 

and lift induced by horizontal motion are also more scattered. However, the forces induced by this motion component are 281 

smaller than those generated by the heave or rotation by roughly an order of magnitude, and therefore, are of minor 282 

importance.  283 

The aerodynamic derivatives identified for the twin deck section are displayed in Fig. 8 and Fig. 9. Although the results are 284 

mostly within range of the results obtained through the standard forced vibration tests, different trends and a large scatter 285 

between the separate tests are observed, especially in comparison with the results presented in Fig. 4 to Fig. 7. It is also 286 

observed that the results from the standard forced vibration tests do not form consistent trends indicating that a linear model 287 

for the self-excited forces is insufficient. The static force coefficients displayed in Fig 10 supports this statement since 288 

significant nonlinearities are clearly present.   289 

 290 

Fig. 8. Aerodynamic derivatives, of the twin deck section model, related to the velocities or angular velocities. 291 



 292 

Fig. 9. Aerodynamic derivatives, of the twin deck section model, related to the displacements and rotation. 293 

It is therefore important to emphasize that the differences in the obtained rational function coefficients, and consequently the 294 

aerodynamic derivatives, do not result from errors in the identification algorithm described in this paper but it rather indicates 295 

that more advanced nonlinear models needs to be applied. There exists several nonlinear models that it is worth to consider, 296 

for instance (Diana et. al., 2008; Wu and Kareem, 2014), but this is considered to be out of the scope of this paper and the 297 

twin deck section is therefore not discussed further in this paper.  298 

 299 

Fig 10. Static load coefficients of the twin deck section model. 300 



4.2 Validation of the rational function coefficients 301 

It is important to ensure that the identified model describes the self-excited forces well for all of the time series and not just 302 

the particular time series used to identify the coefficients. It is therefore necessary to validate the model using validation data 303 

that have not been used to determine the coefficients. New sets of motion histories, Test 1
*
, Test 2

*
, and Test 3

*
, were 304 

therefore obtained assuming the same spectra as in Tests 1, 2 and 3, respectively. The measured aeroelastic forces induced on 305 

the Hardanger Bridge and rectangular BD10 section models were compared with the predicted aeroelastic forces, calculated 306 

using the identified rational function coefficients, shown in Table 3 and Table 4. Fig. 11 and Fig. 12 display selected time 307 

series of the measured and predicted self-excited forces induced during execution of the random motion series for the chosen 308 

tests , corresponding to the tabularized data with bold font in Table 3 and Table 4. The self-excited forces were calculated by 309 

constructing a state space model from the rational function coefficients and utilizing Eq. (5), for example, similarly to (Bera 310 

and Chandiramani, 2016; Chen et al., 2000a, 2000c; Siedziako and Øiseth, 2017a; Øiseth et al., 2012). 311 

Test V [m/s] 
Drag Lift Pitch 

ρxy /x y   ρxy /x y   ρxy /x y   

Test 1 10 0.769 0.835 0.997 1.003 1.00 1.006 

Test 2 8 0.588 0.639 0.994 1.001 0.999 1.007 

Test 3 10 0.788 0.793 0.997 1.003 0.999 1.007 

Test 1
*
 10 

0.654 

(0.811) 

0.701 

(0.817) 

0.994 

(0.995) 

1.001 

(0.996) 

0.999 

(0.999) 

1.004 

(1.004) 

Test 3
*
 10 

0.663 

(0.807) 

0.586 

(0.804) 

0.991 

(0.996) 

0.985 

(0.997) 

0.999 

(0.999) 

1.007 

(1.005) 

Test 1
*
 8 

0.542 

(0.615) 

0.998 

(0.614) 

0.997 

(0.997) 

0.976 

(0.997) 

1.00    

(1.00) 

1.004 

(1.003) 

Test 3
*
 8 

0.586 

(0.886) 

0.510 

(0.899) 

0.995 

(0.997) 

0.953 

(1.002) 

0.999  

(1.00) 

1.008 

(1.007) 

Test 1
*
 4 

0.165 

(0.444) 

0.622 

(0.449) 

0.916 

(0.929) 

0.830 

(0.925) 

0.981 

(0.991) 

1.016 

(0.992) 

Test 3
*
 4 

0.287 

(0.352) 

0.319 

(0.355) 

0.922 

(0.926) 

0.819 

(0.923) 

0.996 

(0.996) 

1.034 

(0.999) 

Table 3. Correlation coefficient and standard deviation ratio between the measured self-excited forces induced on the 312 

Hardanger Bridge section model and those predicted with the identified rational function coefficients. The values in the 313 

brackets show the possible best fit obtained, when applying the identification algorithm directly to the considered time series. 314 

 315 

Test V [m/s] 
Drag Lift Pitch 

ρxy /x y   ρxy /x y   ρxy /x y   

Test 1 8 0.490 0.508 0.999 1.004 0.999 1.010 

Test 2 8 0.419 0.423 0.998 1.005 0.999 1.011 

Test 3 8 0.356 0.353 0.999 1.005 0.999 1.010 

Test 1
*
 10 

0.530 

(0.540) 

0.378 

(0.538) 

0.999 

(0.999) 

1.001 

(1.008) 

0.999 

(0.999) 

1.016 

(0.996) 

Test 2
*
 10 0.136 0.363 0.999 1.009 0.999 1.018 



(0.343) (0.344) (0.999) (1.009) (0.999) (0.995) 

Test 3
*
 10 

0.132 

(0.179) 

0.603 

(0.178) 

0.998 

(0.998) 

1.001 

(1.007) 

0.998 

(0.998) 

1.016 

(0.994) 

Test 1
*
 4 

0.844 

(0.899) 

0.578 

(0.894) 

0.987 

(0.995) 

1.007 

(0.989) 

0.993 

(0.997) 

0.978 

(1.001) 

Test 2
*
 4 

0.902 

(0.936) 

0.231 

(0.935) 

0.992 

(0.997) 

1.025 

(1.004) 

0.984 

(0.997) 

0.988 

(1.005) 

Test 3
*
 4 

-0.350 

(0.772) 

0.304 

(0.765) 

0.984 

(0.996) 

1.068 

(0.991) 

0.995 

(0.998) 

0.993 

(1.001) 

Table 4. Correlation coefficient and standard deviation ratio between the measured self-excited forces induced on the 316 

rectangular BD10 section model and those predicted with the identified rational function coefficients. The values given in the 317 

brackets show the possible best fit obtained, when applying the identification algorithm directly to the considered time series 318 

 319 

 320 

Fig. 11. Comparison of the measured and predicted self-excited forces for Test 3
*
 of the Hardanger Bridge section model, 321 

with velocity V=8 m/s. Forces were predicted with the rational function coefficient identified based on Test 3 with velocity 322 

10 m/s (red) and obtained by applying the identification procedure to the data measured in this test (green). 323 



 324 

Fig. 12. Comparison of the measured and predicted self-excited forces for Test 2
*
 of the rectangular BD10 section model, 325 

with velocity V=4 m/s. Forces were predicted with a use of the rational function coefficient identified based on Test 2 with 326 

velocity 8 m/s (red) and obtained by applying the identification procedure to the data measured in this test (green). 327 

 328 

The data presented in Table 3 and Table 4, show that the self-excited lift and pitch can be closely reproduced using the 329 

identified rational function coefficients by applying random motions, when considering different motion histories and 330 

different wind conditions. In all performed tests, the correlation coefficient between the measured and predicted aeroelastic 331 

lift and pitch is greater than 0.91 and 0.97 for the Hardanger Bridge and rectangular section models, respectively, proving that 332 

the identification results are accurate. Achieving so high accuracy for the test at 4 m/s illustrate that the identified  models are 333 

very robust since this reduced velocity range was not covered by the applied motion and the mean wind velocities in the tests 334 

used to determine the coefficients. For the self-excited drag, however, the predictions do not closely match the measurements 335 

in most of the performed tests. This can be attributed, in part, to the presence of nonlinear effects, which can dominate the 336 

signal, as shown in (Siedziako and Øiseth, 2017b; Xu et al., 2016), especially when considering the large motion amplitudes 337 

such as those forced in Test 3 and Test 3
*
. Moreover, the aeroelastic properties that determine the magnitude of the self-338 

excited drag are motion-dependent for both the Hardanger Bridge and rectangular section models. It has been shown that by 339 



applying the identification algorithm directly on the considered time series, the predictions of the drag force can drastically 340 

improve. This improvement is especially clear during the tests at higher wind speeds in the case of the Hardanger Bridge 341 

section model (Fig. 11) and lower wind speeds in the case of the rectangular BD10 section (Fig. 12), when the self-excited 342 

drag behaves mostly linear. However, the self-excited drag is often considered to be of low importance. The aerodynamic 343 

derivatives defining this force component are rarely obtained through the wind tunnel tests and are more frequently 344 

determined by applying the quasi-steady theory and static load coefficients. Therefore, it is difficult to assess how the 345 

nonlinearities of the drag force observed in this study influence the overall behavior of the bridge. 346 

5 Conclusion  347 

A new approach for the identification of rational functions and aerodynamic derivatives of bridge deck section models have 348 

been presented in this paper. It has been shown that a full set of aerodynamic derivatives, covered in a wide range of reduced 349 

velocities, can be extracted by only a few wind tunnel tests in which the section model is subjected to random vibrations. The 350 

proposed method has been applied to 3 different section models: a section corresponding to Hardanger Bridge, a rectangular 351 

and a twin box girder. The induced self-excited forces were measured during a series of wind tunnel tests, where all the 352 

models were forced into 3-DoF’s random motions, considering different vibration amplitudes and wind velocities. The 353 

identified aerodynamic derivatives were compared with the data obtained by performing standard forced vibration tests. The 354 

following conclusions were deduced from the results: 355 

 It has been shown that the identification procedure described in this paper provides very accurate results, if the 356 

aerodynamic derivatives of the tested section model can be considered functions of reduced velocity only. For the 8 most 357 

influential aerodynamic derivatives for the Hardanger Bridge rectangular section models, nearly an exact match with the 358 

data obtained by applying the standard forced vibration tests is observed. 359 

 The approach presented in this study leads to a substantial reduction of the time, resources and in turn costs associated 360 

with extracting aerodynamic derivatives and rational functions from wind tunnel test on section models. It should 361 

however be noted that an advanced forced vibration setup is required. 362 

 The identified rational function coefficients were successfully used to predict the self-excited lift and pitch induced during 363 

random motions at different wind speeds. However, the self-excited drag was underestimated due to its nonlinear 364 

behavior and motion dependency. 365 

 Nonlinearities in the recorded self-excited forces were observed for all of the examined section models. The drag 366 

component experiences significant higher-order contributions that become stronger at lower and higher wind velocities in 367 



the case of the Hardanger Bridge and rectangular sections, respectively. For the twin box girder, not only the drag but also 368 

the pitch is prone to nonlinear effects. 369 

 In this study, the aerodynamic derivatives related to the horizontal motion were captured with lower accuracy, since the 370 

forces induced by the horizontal motion herein were of 1 to 2 orders of magnitude smaller than the forces induced by the 371 

vertical or torsional vibrations, and therefore their importance was marginal. It is expected, however, that choosing a 372 

proper scaling between the horizontal, vertical and torsional vibrations or that testing each of the DoF’s separately will 373 

provide a significant improvement in the estimation of the aerodynamic derivatives related to horizontal motion. 374 

 The assumptions that aerodynamic derivatives are functions of only the reduced velocity and uniquely define the 375 

aeroelastic properties of the section model is not valid for the twin deck type geometry tested here, since the aerodynamic 376 

derivatives identified for the twin deck section model are clearly motion-dependent. 377 

 378 
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