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ABSTRACT: Consumption-based carbon accounts (CBCAs)
track how final demand in a region causes carbon emissions
elsewhere due to supply chains in the global economic
network, taking into account international trade. Despite the
importance of CBCAs as an approach for understanding and
quantifying responsibilities in climate mitigation efforts, very
little is known of their uncertainties. Here we use five global
multiregional input-output (MRIO) databases to empirically
calibrate a stochastic multivariate model of the global economy
and its GHG emissions in order to identify the main drivers of uncertainty in global CBCAs. We find that the uncertainty of
country CBCAs varies between 2 and 16% and that the uncertainty of emissions does not decrease significantly with their size.
We find that the bias of ignoring correlations in the data (that is, independent sampling) is significant, with uncertainties being
systematically underestimated. We find that both CBCAs and source MRIO tables exhibit strong correlations between the sector-
level data of different countries. Finally, we find that the largest contributors to global CBCA uncertainty are the electricity sector
data globally and Chinese national data in particular. We anticipate that this work will provide practitioners an approach to
understand CBCA uncertainties and researchers compiling MRIOs a guide to prioritize uncertainty reduction efforts.

■ INTRODUCTION

International approaches to climate change have relied upon
assigning responsibility for emissions worldwide such that
nations face a common but differentiated responsibility in
climate change mitigation. This is commonly referred to as
carbon accounting and can vary nation by nation depending on
the methodologies used.1 Recent attention has been placed on
computing the amount of greenhouse gases emitted along
international supply chains to satisfy the demand for goods and
services,2−7 having implications for where climate mitigation
burdens should lie. At a macro level, such consumption-based
carbon accounts (CBCA)8 are calculated using global multire-
gional input-output (MRIO) databases,9 whose compilation
involves the collection and processing of large amounts of
source data.10−14 Such databases typically report only a point
estimate for each source datum (for example, emissions from
coal-generated electricity in China), with only one existing
database currently reporting uncertainty estimates.11 We
consider it is important to better understand the uncertainty
of CBCAs, in order to ensure the robustness of CBCA in policy
applications.15 Note that since more data transformations are
involved in their calculation, CBCAs are expected to exhibit
higher uncertainty than the corresponding production-based
metrics.16

At an empirical level Sato15 and Owen17 provide an overview
of environmental and economic data sources of CBCA, each
subject to uncertainty. Environmental data includes the
estimation of GHG emissions, their allocation to economic

activities, and, for the purpose of calculating climate change
contributions, weighting based on global warming potential.
The uncertainty of GHG emission data itself can be quite high.
Liu et al.18 found that estimates of total CO2 emissions for
China in 2008 vary by 15%, in large part due to problems
involving measuring coal consumption.19 Yoshida et al.20 found
that the coefficient of variation (or CV, the standard deviation
divided by the mean) of the emissions of carbon per unit of
output of different firms within a manufacturing sector in Japan
in 1990 was larger than one for 17 out of 23 sectors. More
generally, and still only looking at data only on GHG emissions,
Ballantyne et al.21 provide a review of different sources of error
in the global carbon budget and find, among other things, that
in 2010 30% of the uncertainty in global carbon accumulation is
due to errors in data on fossil fuel use. Within IO tables
themselves, economic data includes national accounts on final
and intermediate demand of various goods and services and
international trade, and these can also hold uncertainties.
Manski22 provides an overview of the sources of uncertainty in
official national statistics, and Helbling and Terrones23 find that
the discrepancy between global imports and exports is now on
the order of 1%. International trade data is not usually available
with the same level of detail as domestic data, and therefore
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additional estimation procedures are often necessary,24 with
different MRIO databases resorting to different methodological
options (see Chapter 2 of Owen17 for a review of how MRIO
databases differ in source data and construction). In short, this
means that MRIO tables suffer more uncertainty than single
region IO tables.
The current consensus is that the major source of uncertainty

affecting CBCA results is the GHG emission data and not the
economic data. In support of this hypothesis Owen et al.16

found that national CBCAs have uncertainties in the same
range as production-based ones. Karstensen et al.25 furthermore
point to the relatively large influence of emission coverage and
choice of global warming or temperature response metric
according to different time horizons. Finally, Moran and
Wood26 found that there is a general agreement in the CBCA
results from different global MRIOs, again with the largest
discrepancies being found in the GHG emission extensions.
However, due to limitations of data availability and

computational power, the reporting of uncertainty in CBCA
is still rare. Further, when uncertainty is estimated, a key
simplification is performed whereby the underlying calculations
assume the data to be independent, that is, correlations
between different elements in the data set are not considered.
Correlation is a metric of association between different data
elements, which measures the strength of the linear relationship
between the data. Examples are the relationship between
energy recorded in the intermediate transaction matrix and fuel
combustion emissions in the GHG account or the level of
demand for a product to the output of the product. While there
is a large tradition in the study of the uncertainty of IO
models,27−35 recently reviewed in Temurshoev,36 this literature
does not usually take into account correlations and thus how
uncertainty varies jointly between data elements. A few
exceptions include37−39 those reviewed by Ten Raa and
Steel40 and, more recently, studied by Rodrigues.41

In investigating CBCA uncertainty, a few studies explicitly
mention the role of correlations or data dependence. Hertwich
and Peters42 divide the source data by blocks, present estimates
of uncertainty for each, and argue that the relative uncertainty
of country CBCAs is lower than that of product-level CBCA
because errors cancel out, thus assuming independence. Lenzen
et al.,43 the only dedicated study of uncertainty in MRIO
analysis that we are aware of, argue that due to the lack of
available data, source data should be assumed to be
uncorrelated. Furthermore, relative errors of the data in their
study decrease with the magnitude of a value. More recently, as
arguments in favor of assuming zero correlations between
MRIO coefficients, Karstensen et al.25 argue that besides the
absence of underlying information, filling in the correlation
matrix of an MRIO model would be computationally
prohibitive.
In this study we investigate the uncertainty of CBCAs,

focusing on what both users and producers of CBCA can learn
when using dependent sampling (i.e., taking correlations into
account). No existing database reports metrics of association or
dependence between data, so we use the set of the five most
common global MRIO tables as a sample. After characterizing
the uncertainty and correlation structure of global CBCAs we
examine how approximations with independent sampling
perform. We then search for patterns in the source MRIO
data and examine the impact of reducing the uncertainty of
particular source elements on the global CBCA uncertainty. We
conclude the paper by comparing our results with the literature,

suggesting directions of future research and summarizing the
implications of our findings.

■ DATA AND METHODS

Data Sources and Basic Concepts. An environmentally
extended global MRIO model is a description of the world
economy, linking consumption in a given region through
international supply chains to environmental pressures any-
where in the world. Different approaches have been used earlier
to inform the error distribution of the source data: for example,
Lenzen et al.43 use a range of auxiliary statistics on relative
standard errors of similar data, Lenzen et al.11 use the degree of
adjustment during the balancing procedure, and Yamakawa and
Peters34 use time-series variation. However, to the best of our
knowledge these approaches do not allow quantifying the
dependencies between different components of the data set,
which is a crucial aspect of the research we wish to undertake.
We therefore use a harmonized set of global MRIOs which we
will use to calculate the uncertainty of CBCA using dependent
sampling.
The main data source of this study is a set of five global

product-by-product44 MRIO databases that were harmonized
and tailored to calculate country/region-level global carbon
footprints in the year 2007. These five MRIOs are constructed
from the Exiobase45 (http://exiobase.eu), WIOD12 (http://
www.wiod.org/), EORA11 (http://worldmrio.com/, OECD14

( h t t p : / / w w w . o e c d . o r g / s t i / i n d / i n p u t -
outputtablesedition2015accesstodata.htm), and GTAP10

(https://www.gtap.agecon.purdue.edu/ databases. Each
MRIO database was harmonized to nR = 22 regions, nS = 17
sectors per region and a single category of final demand per
country, primary inputs, and carbon emission types. The
regional classification consists of 20 countries covering 78% of
global CO2 emissions and two aggregate regions. The list of
regions and sectors can be found as Supporting Information
(SI) S1, and the concordance with the original MRIOs can be
found in Owen et al.16 and Steen-Olsen et al.46

The CBCA of region k is obtained as

= ′ − +− hb I A yCBCA ( )k k k
1

(1)

where yk is the k-th column of Y, the matrix of final demand, I is
the identity matrix, A is the matrix of technical coefficients,
expressing how much a unit of demand for a product leads to
increased output in a sector, b is the vector of environmental
stressors, or carbon direct emissions, indicating how much
emissions result from a unit of production of every sector, and
hk is the k-th element of h, the vector of household carbon
emissions. We assume that vectors are in column format by
default and prime, ′, denotes transpose. The number of rows in
Y and the number of both rows and columns in A is nR × nS.
Coefficients A and b are calibrated on the basis of flows as A

= Zx−̂1 and b = rx−̂1, where Z, x, and r are, respectively, the
matrix of interindustry transactions, the vector of total sales,
and the vector of direct carbon emissions of industries, and ̂
represents diagonal matrix.

Data Compression. The number of points in an MRIO
model can be very large (for reference EXIOBASE consists of
over 96 million data points). This raises computational
problems when analyzing covariances (explained in the
following subsection) and makes the interpretation of the
results more difficult. Hence, in this subsection we explain how
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it is possible to reduce the data volume while minimizing the
loss of relevant information.
According to Rodrigues et al.47 the elements of A and Y are

not obtained from source data, because use of imported
products by industries is not generally known. Instead,
algorithms are applied to import use tables that specify use of
products by industries (but not source country) and interna-
tional trade data that specifies bilateral trade in products (but
not destination industry). The values reported in the MRIOs
may differ from the pure application of the algorithms, due to
the use of balancing48 and other processing procedures47 along
the MRIO construction pipeline. We make this assumption
explicit by replacing the original A and Y by alternatives which
explicitly separate international trade from use of products,
whose elements are defined as

=A R Tij
ab

i
ab

ij
b

(2)

=Y F C si
ab

i
ab

i
b b

(3)

where subscript(s) and superscript(s) explicitly indicate the
sector(s), i and j, and region(s), a and b. The sum of
international trade coefficients, Ri

ab (for intermediate use) and
Fi
ab (for final use), over import region a equals one. The sum of

intermediate use coefficients, Tij
b, over product i is less than one

(to account for primary inputs). The sum of demand
composition coefficients, Ci

b, over product i is one. This
formulation of eq 3 splits absolute total country final demand,
the scale factor sb, from the relative composition and trade
coefficients. The new quantities defined in eqs 2 and 3 are
obtained by aggregating the elements of A and Y over the
appropriate dimensions. This formulation is very similar to the
one illustrated in Tables 1−3 of Rodrigues et al.,47 with the
difference that their separate domestic and import use matrices
are considered. Eq 3 is also related to the way Owen et al.16

split final demand into volume, region share, and product share.
When undertaking this reformulation of the MRIO data, for

country-level footprints, the average and maximum discrepancy
between the original and transformed MRIOs (for the trade/
use split described above) is less than 0.6 and 2.5%,
respectively, for every region and MRIO. Additional consid-
erations about the data compression and resulting discrepancies
can be found in SI S2. Even in MRIOs in which the
transformation defined by eqs 2 and 3 is not an approximation
but is exact (i.e., they were constructed using the trade-share
assumption, such as EXIOBASE), there is still a discrepancy
because those databases were constructed with more regional
and sectoral detail. Since we performed aggregation to
harmonize the different MRIOs, such discrepancies are
expected.
Under the above transformation there are three equivalent

formats to represent an MRIO, all of which yield exactly the
same CBCA results. These are the f low format: Z, Y, r, and h;
the coef f icient format: A, W, b, and d, where W = Ydiag(s)−1

and d = hdiag(s)−1; and the modular format: T (technology); R
(trade in intermediate goods); C (demand composition); F
(trade in consumer goods); s (scale); b (industry emissions),
and d (household emissions). Scale factors have monetary
units, both emission coefficient blocks have units of GHG
emissions per monetary unit, and the other blocks are
adimensional.
We use these three different formats to show the bias in

results when undertaking the assessment of uncertainty on the

three formats when assuming independent sampling, while the
modular format will be used in all other analyses reported in the
Results where correlations are taken into account.
Finally, SI S2 shows that the modular format provides

significant advantages in terms of data storage. The modular
format also makes the interpretation of results clearer by
reducing the number of elements in a data block and thus
facilitating the identification of patterns.

Modeling Uncertainty. The goal of this paper is to study
the uncertainty of CBCAs and, in particular, to capture the
effect of dependencies among MRIO data elements. In this
subsection we describe how we do it: we first discuss and
formalize the concept of uncertainty and then clarify the
distinction between dependent and independent sampling.
There are many potential sources of uncertainty49 which,

according to the Bayesian paradigm, can be formalized through
a probability distribution, in which the probability of an
outcome expresses the degree of belief that an observer has in
that particular outcome.50,51 In practice it is often difficult to
assign a specific value to each and every possible outcome, so
we resort to aggregate metrics. In this paper we follow the
Bayesian approach of Weise and Woger52 and interpret the
mean of a probability distribution as the best guess and the
standard deviation or SD as the uncertainty.
Mathematically, if p(t) is the probability density function,

and t is a non-negative real number, then the mean, μ, and
standard deviation, σ, are

∫μ =
∞

p t t t( ) d
0 (4)

∫σ μ= −
∞

p t t t( )( ) d
0

2

(5)

If more than one variable is being considered, then a further
metric for characterizing the dependency between them is
necessary. The most common metric, which we use in this
study, is the Pearson correlation coefficient or simply
correlation, ρ. If the variables are t1 and t2, then the correlation
is

∫ ∫
ρ

μ μ

σ σ
=

− −
∞ ∞

t p t t t t td ( , )( )( ) d
0 1 0 1 2 1 1 2 2 2

1 2 (6)

where p(t1,t2) is the joint probability density function, and μ1,
μ2, σ1, and σ2 are the means and standard deviations of variables
t1 and t2. Correlations measure the strength of association
between two variables, expressing how close they are to
exhibiting a linear relation, taking value 1 if it is strictly linear
with positive slope, − 1 if strictly linear with negative slope, and
0 if no linearity is apparent.
If a multivariate probability distribution function character-

izing the MRIO is known, it is in principle possible to use eq 1
to derive analytical expressions of the stochastic properties
(mean, standard deviation, and correlations) of the CBCA.
However, as far as we are aware such a formula is not available,
so the typical way to calculate CBCA uncertainty is through
Monte Carlo sampling.
In Monte Carlo sampling a large sample of n realizations of

the source data are generated, and for each realization the
desired CBCA is calculated. These n CBCA realizations are
then used to obtain aggregate metrics of the underlying
probability distribution as
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∑=m
n

t k
1

( )
k (7)

∑= −s
n

t k m
1

( ( ) )
k

2

(8)

=
∑ − −

r
n

t k m t k m

s s
1 ( ( ) )( ( ) )k 1 1 2 2

1 2 (9)

where we used t, t1, and t2 as arbitrary variables, and k is the
iterator in the sample set. Variables m, s, and r are the
empirically calculated mean, standard deviation, and correla-
tion; and m1, m2, s1, and s2 are the means and standard
deviations of variables t1 and t2.
A distinction should be made about the way the sample of

MRIOs is extracted from the probability distribution. With
dependent sampling all dimensions that compose the MRIO are
obtained at the same time. Thus, if eq 9 is applied to the MRIO
sample, the same values are obtained as those from eq 6. If
independent sampling is performed, then each dimension of the
MRIO is sampled in isolation, and application of eq 9 to the
MRIO sample will consistently yield a zero correlation
coefficient (given a sample size large enough).
Note that a linear combination of MRIO systems that are

balanced (row and column sums match) is itself balanced.
Hence, every realization obtained through dependent sampling
is balanced since it will be a weighted sum of the original
MRIOs. A realization obtained from independent sampling,
however, is not necessarily balanced, since the dependencies
among row and column values of the original tables are not
captured.
Dependent sampling respects the dependencies in the source

data, while independent sampling does not. Then why do all
past studies of CBCA uncertainty use independent sampling, as
reviewed in the Introduction? Because collecting data to
calibrate the uncertainty of individual dimensions of an MRIO
is already difficult enough, and no one has so far been able to
calibrate correlations in the source data.
In order to make this problem tractable, in the present study

we interpret the population of five available MRIOs as a (very
small) sample from the probability distribution of a true but
unknown ’meta’-MRIO. We can then characterize both the
meta-MRIO and the meta-CBCA distribution.
Note that it is conventional to start with a known theoretical

distribution (e.g., normal or log-normal) from which a (large)
sample is extracted. We did attempt to characterize a
conventional multivariate distribution based on the 5 MRIO
sample but were unsuccessful. In the Discussion we present
more details on the probability distributions we explored.
To perform dependent sampling each individual MRIO is

used to calculate a separate CBCA estimate, and eqs 7−9 are
applied to the n = 5 resulting CBCAs to characterize the
stochastic properties (mean, standard deviation, and correla-
tions) of a meta-CBCA. Unless stated otherwise all of the
material reported in the Results section is calculated this way.
The properties of the source data, which are examined in later
subsections of the Results are characterized by applying the
same set of equations to the n = 5 population of MRIOs
(interpreted as a sample of the unknown true meta-MRIO).
It is important to contrast the results using dependent and

independent sampling, to assess how much they differ. Hence,
in subsection Bias of Independent Sampling in the Results

section we make calculations with independent sampling. We
obtain these by resampling the five MRIO set a large number of
times, such that at every time a particular element of the MRIO
is extracted with equal probability from each of the original five
MRIOs. Mathematically, this procedure can be represented as
follows. Let t(k) be the vector representation of the k-th MRIO
obtained from independent sampling, with k = 1,...,n with n
large. This means that ti(k) is a particular MRIO entry (e.g.,
some technical coefficient). Under independent sampling every
ti(k) is set equal to the corresponding entry i of one of the
original 5 MRIOs with the same probability.

■ RESULTS
Uncertainties of Country CBCAs. The distribution of

country CBCAs is heterogeneous and dominated by a small set
of data elements (a small number of regions, sectors,
extensions, inputs, etc.). The USA and China each represent
more than 16.3% of global emissions (as does the composite
region Rest of the World), with the next largest emitting
country (Japan) representing less than 5.1% (see Table 1).

There is no clear trend in the relation between the coefficient of
variation of regions and their respective size. In SI S3 we show
the CV of all country CBCAs, where we see the lowest value is
for Indonesia, at 2.2%, and the highest value is for The
Netherlands at 16.0%, with a median of 7.5%.
Table 1 also shows that the CV of the world (calculated with

dependent sampling) is 5.74%. If this value would have been
obtained by summing over country CBCAs while assuming
country CBCAs to be independent it would be 2.8%. That is, if

the standard deviation of the world is obtained as σ σ= ∑i i
2 ,

where σi is the standard deviation of a country. Hence,
assuming independence among country CBCAs underestimates
the world CBCA by half. This is because the distribution of
correlations among country CBCAs strongly deviates from
zero, as shown in Figure 1. Country CBCA correlations have a
mean ± standard deviation (SD) of 0.63 ± 0.36, with a median
of 0.76. This means that a practitioner, when faced with two
countries and no additional information, should assume their
CBCA to exhibit a strong positive correlation. Only Taiwan and
the Rest of the World exhibit strong negative correlations with
some other regions. It would be interesting to explore which
characteristics the Taiwanese data shares with the Rest-of-the-
World data, but this question falls outside the scope of the
present study as it requires an in-depth study of those two
particular regions.

Uncertainties of Product CBCAs. If we now look into the
contribution of different product categories to a country CBCA
we find that, in total, over 80% of emissions come from just five
product categories: electricity, transport, household direct
emissions, fuel and trade (a composite product category), and

Table 1. Expected Value and Coefficient of Variation of the
CBCA of Selected Countries and the World

country mean (%) mean (GtCO2) CV (%)

USA 23.07 6.50 5.53
RoWorld 16.72 4.71 10.72
China 16.28 4.59 9.07
Japan 5.08 1.43 8.51
India 4.61 1.30 3.77
World 100.00 28.18 5.74
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oil. Figure 2 shows the relation between the CV and expected
value of product-level CBCAs, with power-law regression lines

for those top-5 product categories. The power-law regression
lines take the form y = axb, where y is the CV of product
CBCA, x is the mean of product CBCA, and a and b are fitted
parameters. Figure 2 is represented in a loglog scale due to the
large scatter in the data, which covers several orders of
magnitude in both axes. The points underlying each regression
line are the 22 regions.
SI Section S3 reports the numerical values underlying the

figure. We can see that the slope of those curves is not strong:
indicating that relative uncertainty does not decrease with size
(with the exception of the oil product category). Note also, that
when comparing across consumption categories some of those
top-5 product categories have the highest CV. Thus, our results

do not support the observation that, in general, errors decrease
with size.
We have also examined the correlation between the

uncertainty of aggregate consumption categories, as shown in
Figure 3 and 4. That is, we have plotted the two-way correlation

coefficients between emissions for the same products in
different regions and for the two-way correlation coefficients
between product pairs within regions. We find that correlations
are strongly positive for the same product category across
regions. For ease of visualization, when comparing correlations
of product category pairs within a region we have shown only
the top-5. Here we find that the variation is low, and the
medians span the whole range of possible uncertainties. The
correlation of product-category pairs across regions, shown in
SI Section S4, is somewhere in between, exhibiting larger
dispersion and generally more positive values.

Bias of Independent Sampling. Analyses of CBCA
uncertainty are usually performed using independent sampling

Figure 1. Correlation between country CBCAs. See SI Table S2 for
the meaning of country codes.

Figure 2. Coefficient of variation (CV) vs mean of CBCAs of product
categories. On the x axis, products with greater emission contributions
appear to the right of the plot. On the y axis, products with larger
variations appear at the top of the plot. A perfectly horizontal line
would imply that uncertainty does not vary at all with the size of
emissions from that product (as approximately the case in Electricity
and Transport). Only regressions for the top 5 contributing product
categories are shown.

Figure 3. Correlation of same product across regions. Red horizontal
line is median; box is 50%-confidence interval (interquartile range);
the maximum length of whiskers is 1.5 times the interquartile range,
and red circles are outliers.

Figure 4. Correlations between products within a region. Elec =
Electricity; FT = Fuel/trade; Trans = Transport; HH = households.
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or, equivalently, by explicitly assuming source data to be
uncorrelated. That is, it is assumed that data from different
sources for different nations or product categories can vary
independently, e.g., emissions from electricity in China going
up while emissions from electricity in the USA go down. We
now compare the performance of such approximations with the
actual results from dependent sampling.
Note that even if one decides to ignore correlations in CBCA

calculations, source data in MRIO databases is reported in
absolute terms, while the use of MRIO data in CBCA
calculations requires the conversion of intermediate inputs to
coefficients. Dietzenbacher,53 building upon the work of
Roland-Holst,54 finds that applying uncertainty estimates to
the data pre- or postcalculation of coefficients yields similar
results, as the bias (i.e., over- or underestimation of true results)
is small.
We consider three approximations, corresponding to the

assumption of zero correlations on the flow, coefficient, and
modular version of the MRIO (see Methods for details). We
performed Monte Carlo sampling with 10000 simulations of
which we report the bias (i.e., the distance between the
approximation and the true value) for the mean and CV of
CBCAs at different levels of aggregation.
We report values for the relative bias of the mean, defined as

(y−x)/x, where x is the actual value and y is the approximation;
and for the absolute bias of the CV, y−x, where x and y hold
the same meaning. For the world as a whole, the bias in the
mean value is +5% for both the modular and coefficient formats
and +0.06% for the flow format, while corresponding
percentages for CV are in the range of 4 to 6%, as shown in
Table 2. That is, in all cases, by assuming independent sampling
as in conventional approaches, total emissions are over-
estimated when compared to dependent sampling, and only
the bias of the mean from the flow format is negligible. Average
country-level biases are much lower than on the global
aggregate but with a large variation across countries, with the
flow format still exhibiting a noticeably smaller bias, and with a
smaller standard deviation than the other formats. Product-level
biases in CBCAs for the flow format are clustered around zero,
with a small but positive average. The product-level biases of
the other two formats have a large variation, with a standard
deviation five times larger than that of the flow format. The
majority of product CBCA CV biases are in the negative range,
and the flow format values are especially so, with a smaller SD
than the other two formats.
Thus, our analysis does not support the claim found in the

literature, obtained with independent sampling calculations,
that biases are positive but negligible. We find them to be
substantial and, in the case of uncertainty, systematically
negative, meaning that uncertainty is underestimated by
independent sampling. In SI Section S5 we report the values
of biases for countries and products for the different formats.

Patterns in Source Data Uncertainty. It is conventional
in IO studies to use a downward-sloping relation between
uncertainty (CV) and size (expectation). For example, if a
country has a larger electricity sector, then the relative
uncertainty of its emissions should be lower. This is on the
basis of either statistics or the assumption that each value in the
IO data set is actually the result of summing over smaller values,
and errors therein cancel out. In our data set, however, the
relation between CV and mean is mostly flat and with a large
variance for most data blocks, as exemplified in Figure 5 for

industry emission coefficients and in SI Section S6 for other
data blocks. Figure 5 is represented in a loglog scale due to the
large scatter in the data, which covers several orders of
magnitude in both axes.
Following this, to better understand the relation between the

expected value (magnitude) of a data point and the uncertainty
of that data point, we calculated power-law regressions of the
form y = axb, where y is the CV, x is the expected value, and a
and b are fitted parameters. We performed this for all blocks in
the MRIO data set. When a single regression is performed per
data block, the coefficient of determination R2 is weak, as seen
in column ’single’ of Table 3 and the red line in Figure 5. That
is, the coefficients for each sector and region in a given data
block are not well correlated with one another. We additionally
performed similar regressions for every sector-region combina-

Table 2. Bias of the Mean and CV of Aggregate CBCAsa

modular coefficient flow

world mean 4.96 5.06 0.06
CV 5.91 5.72 4.35

countries mean 0.88 ± 4.93 0.44 ± 4.84 0.17 ± 2.25
CV 17.27 ± 6.00 15.57 ± 6.19 11.44 ± 6.40

products mean 4.00 ± 24.02 3.50 ± 25.69 0.59 ± 5.03
CV −8.82 ± 23.95 −11.6 ± 24.09 −17.97 ± 16.32

aFor countries and products values reported are expected value ± standard deviation. All figures are in percentage.

Figure 5. Uncertainty of production emission coefficients. On the x
axis, the mean emission coefficients, carbon intensities, are plotted,
with higher carbon intensities toward the right-hand side. The y axis
shows the coefficients of variation in those product emission
coefficients, with higher variations at the top of the plot. Estimations
for each sector are fitted with a regression line and show that there is
no systematic reduction in uncertainty (CV) as the sector emission
coefficient increases.
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tion (depending on the data block) that would still leave n = 22
regions for the regression. The black lines of Figure 5 illustrate
the result of this exercise for industry emission coefficients, and
column ’sector’ of Table 3 shows the R2 values. The R2 values
of column ’sector’ are obtained by squaring the correlation
between the set of true values and set of values obtained from
the separate n sector-level regressions in each data block, where
the number n is indicated in the last column of Table 3.
What we can learn from Figure 5 is that at the level of the

data block as a whole there is a flat trend connecting
uncertainty and magnitude (even if with a large variation).
That is, on the level of the data block, uncertainties do not
decrease with the size of the data block but remain fairly stable.
However, when examined at the level of specific sectors (the
black lines, mostly with a positive gradient), there is actually an
increase of uncertainty with the size of that sector. The overall
flat pattern (the almost horizontal red line) emerges only when
different sectors are bundled together. Similar plots to Figure 5
for every data block are reported in SI S6, for which the same
reasoning applies, although the results are not so extreme: the

relation between uncertainty and size at the block level is
downward-trending, but at the sector-level data this pattern
becomes sometimes reversed, with the block-level pattern
emerging from the juxtaposition of sector data.
Separate plots in SI Section S6 and separate summary

statistics in Table 3 are reported for international trade
coefficients with the same country (self) and with other
countries (other) as the former coefficients are generally high
and the former are generally low, so we found patterns were
clearer if they were examined separately.
We conclude that practitioners should not expect, a priori,

that the slope of CV vs mean be downward sloping at the level
of sectoral data, even if it is so for a data block as a whole. In
fact, in many cases, the uncertainty may actually increase with
increasing size.

Uncertainty Reduction. Next, we determine which factors
dominate the uncertainty of the global CBCA. We do this by
exploring the effect of reducing the uncertainty of specific
source data elements or blocks. By doing this we can prioritize
efforts in improving data collection for IO tables. We can also
develop a further understanding about the interaction between
uncertainty and different components in IO tables.
We explore this uncertainty by an iterative, stepwise

reduction of uncertainty in the source data and comparing
the resulting CBCA uncertainty after each step. At each step,
we find the data point in the IO tables for which setting that
data point to the average of the separate MRIO values would
give the greatest reduction in the overall uncertainty of the
world CBCA. We find that 20 elements account for 99.9% of
the uncertainty of global CBCA, listed in Table 4 (The key of
data block acronyms is reported in Table 5.). Since this process
is path dependent, to assess the robustness of the result we
repeated the calculations with alternative settings: setting the
value not to the average but either to the minimum or to the
maximum of the five MRIOs and not setting the value of all
MRIOs exactly to the average but moving in that direction, by a

Table 3. R2 Coefficient of Power-Law Regressions between
Mean and CV of Different Source Data Blocksa

block single (%) sector (%) n (−)

scale 3.98 3.98 1
household emissions 8.55 8.55 1
composition 14.26 70.93 17
industry emissions 0.07 70.16 17
technology 15.5 55.82 289
trade in final products (self) 52.28 70.90 17
trade in intermediate products (self) 41.08 62.43 17
trade in final products (other) 9.88 66.71 357
trade in intermediate products (other) 9.49 62.77 357

aSingle = one regression per block; sector = one regression per sector;
n = number of regressions per block.

Table 4. Reduction on Global CBCA When the Uncertainty of Top 20 Data Elements Is Eliminated, Assuming the Mean Is the
True Valuea

rank block source region source sector destination region destination sector Ind. (%) Cum. (%)

1 IndEm RoWorld Electricity 19.95 80.05
2 IndEm Russia Electricity 9.04 71.01
3 IndEm China Electric eq. 9.13 61.87
4 Scale USA 6.83 55.05
5 Techn. China Electricity Electricity 8.25 46.80
6 Comp. China Electricity 8.03 38.76
7 IntTrade RoWorld RoWorld Transport 5.34 33.42
8 IndEm Russia Oil 5.18 28.24
9 Techn. India Electricity Transport 4.71 23.53
10 IntTrade China China Electric eq. 4.23 19.30
11 Techn. RoWorld Transport Transport 3.22 16.08
12 IndEm China Construction 3.41 12.67
13 Comp. RoWorld Other serv. 2.90 9.77
14 IntTrade China China Mining 2.65 7.12
15 Techn. USA Electricity Fuel/trade 2.40 4.72
16 IndEm RoWorld Construction 2.81 1.91
17 IndEm Canada Oil 1.31 0.61
18 Techn. Russia Transport Oil 0.42 0.19
19 Techn. USA Oil Communicat. 0.14 0.05
20 IntTrade France RoWorld Transport eq. 0.04 0.01

aThe key of data block acronyms is reported in Table 5. Ind = individual; Cum = cumulative.
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factor of 10 and 50%. In all cases convergence is fast, and most
of the same data elements reappear, although the exact data
elements in each top-20 set are not always the same, as shown
in SI S7. In future studies this path dependence might be
avoidable if a linear approximation is performed.55−57

Table 4 supports the idea that to understand uncertainty
domestic data is more important than international trade data.
China is by a large margin the most frequent country, followed
by the rest of the world and other large economies. Among data
blocks industry emissions stand out. Finally, electricity is the
most frequent sector in this list, followed by transport, with
other sectors appearing with much less frequency (oil, transport
equipment, metals, construction and mining, among others).
These findings reflect the underlying choices made in MRIO
data construction−whether it be choice of data (geographical
specificity, timeliness, based on physical or monetary relation-
ships) or conceptual approaches to construction (prioritization
of different data, level of balancing allowed, etc.). Other studies
have found similar relationships and provide some reflection:
Wieland et al.58 also discovered that Chinese domestic data is
an issue; Tukker et al.59 found that the highest uncertainty in
footprint analyses is caused by the environmental data; and
Owen et al.60 found that structural paths involving the
electricity sector contribute significantly to model differences,
because of the way electricity is treated in different databases.
In summary, the examination of embodied emissions and the

elimination of uncertainty in inputs yield a consistent
perspective, with a small number of blocks, sectors, and regions
accounting for the bulk of uncertainty.

■ DISCUSSION
Empirical Estimates. Hertwich and Peters42 reported

uncertainty estimates for several data blocks, which can be
compared with our own results. The ranges for the coefficient
of variation (CV) of product CBCAs is in the range 50−200%,
and country CBCAs is in the range 5−15%. These numbers
agree well with our results, in which the CV of the product
CBCAs ranged from 10 to 200%, and country CBCAs ranged
from 2 to 16%.
Concerning source data, the same reference42 reports that

the CV of emission coefficients is 5−10% for OECD and 10−
20% for non-OECD countries; consumption coefficients are
10%; technical coefficients are 1−50%; and trade coefficients
have 20% uncertainty concerning country of origin and 10%
concerning trade volumes. By contrast, in our study industry
emission coefficient CVs ranged from 10 to 200% and
household emissions ranged from 10 to 50%; consumption
ranged from 2 to 200%; technical coefficients ranged from 1 to
200%; trade coefficients with other countries ranged from 5 to
200% and self-trade coefficients ranged from 0.2 to 50%
(ignoring outliers); and scale coefficients ranged from 1 to 15%.

Although not all values show strong agreement, we can say
that our results concerning CBCAs are in line with the
literature, but they do differ strongly concerning the source
data, with our results suggesting a wider uncertainty range in all
data blocks.

Data and Method Considerations. The conventional
procedure in IO independent Monte Carlo integration is to
assume a normal26,35 or log-normal25,43 distribution, although
others have also been used, in particular the beta distribution40

(for a review see Kop Jansen61 and Temurshoev36). Due to
several technical reasons, we could not use these multivariate
approaches. The normal distribution was ruled out because
uncertainties are too high, leading to an unacceptably large
proportion of negatives. The log-normal distribution cannot
handle the large span of strong negative covariances observed in
the data set. We could not find in the literature a natural
multivariate version of another distribution that would
accommodate arbitrary covariances as required to calibrate
our model, although we explored variants of the beta,62

gamma,63 and folded normal64 distributions.
We also tried to use a formal sensitivity method to quantify

how much a particular source data point contributes to the
resulting uncertainty. As recently reviewed by Borgonovo and
Plischke,65 there are two main types of sensitivity analysis: local
and global. Local sensitivity analysis examines the effect on
model output of a change in a single parameter at a time and is
employed in a deterministic framework, e.g., to identify the
parameters that most strongly affect key sectors.66 Global
sensitivity analysis (GSA) breaks down the variation in model
response among its multiple inputs at the same time. The most
popular GSA method is the variance decomposition of Sobol,67

in which the variance of output is split among additive terms
that reflect the contribution of input variance, although
distribution-based GSA methods68 are gaining popularity.
In the end, given the small sample size of the source data we

chose not to use these methods and, instead, perform the
heuristic analysis reported in this paper. As more MRIOs
become available, or future revisions of existing MRIOs
converge, it may become possible to use these more
sophisticated techniques. Our present results are an important
step forward and a benchmark against which to compare those
future studies.
Besides the analysis focusing on correlations performed here,

in the future it might also be interesting to explore the role of
partial correlations in MRIO and CBCA uncertainty.

Final Remarks. For CBCA practitioners our results suggest
caution about the extrapolation of uncertainty when aggregat-
ing results over both spatial and sectoral scales. Contrary to the
established literature we do not recommend assuming that
errors cancel out and that independence can be safely assumed.
We found that the CBCA of whole countries is strongly
correlated and that, in general, the uncertainty of product
CBCAs is not reduced as the size of that product CBCA
increases. We also found that independent sampling (i.e.,
ignoring correlations in the source data) leads to the
underestimation of uncertainty.
For MRIO developers, our results point out the elements of

the data landscape in which refinement efforts should be
prioritized, if the goal is to reduce the uncertainty of CBCAs.
These are primarily the following: the environmental
extensions, among data blocks; data related to the electricity
supply chain, from a sectoral point of view; and to China, from
a geographic point of view. More generally, we provide a

Table 5. List of Acronyms of Data Blocks

short long

1 Scale scale
2 Comp composition
3 Tech technology
5 FinTr trade in final goods
6 IntTr trade in intermediate goods
7 HHEm household emissions
8 IndEm industry emissions
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methodology for the prioritization of data refinements even if
other criteria besides global CBCA are considered. Although
the analysis reported here focused on CBCAs, a similar study
could be performed for other environmental or economic
extensions, provided they are reported by all MRIOs present in
the sample.
Finally, since part of the data used here is the same data used

to calculate production-based and income-based carbon
accounts,1 all the results presented here are also transferable,
within the scope of the relevant data block. More specifically,
income-based carbon accounts69,70 require all of the data used
here, with value added coefficients replacing the role of
consumption coefficients. In the case of production-based
accounts it is direct emissions (from industry and households)
and total (intermediate and final) consumption that are
relevant.
CBCA is seen as a prominent alternative to traditional,

production-based approaches, and it could open up new
opportunities for climate policy innovation.8 However, the
understanding of uncertainties in the data used for CBCA has
been a key limiting factor.71 The work outlined here represents
a step toward understanding uncertainties and provides a basis
for developing a standardized procedure for CBCA uncertainty
estimation.
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