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Abstract

In this paper, we present and evaluate three long-term wave models for application in simulation-based design of ships and marine

structures. Designers and researchers often rely on historical weather data as a source for ocean area characteristics based on

hindcast datasets or in-situ measurements. The limited access and size of historical datasets reduces repeatability of simulations

and analyses, making it difficult to assess the sampling variability of performance and loads on marine vessels and structures.

Markov, VAR and VARMA wave models, producing independent long-term time series of significant wave height (Hs) and

spectral peak period (Tp), is presented as possible solutions to this problem. The models are tested and compared by addressing

how the models affect interpretation of design concepts and the ability to replicate statistical and physical characteristics of the

wave process. Our results show that the VAR and VARMA models perform sufficiently in describing design performance, but

does not capture the physical process fully. The Markov model is found to perform worst of the tested models in the applied

tests, especially for measures covering several consecutive sea states.
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1. Introduction1

Exposure to weather is a key challenge for engineers and designers working on marine technology projects and activities. Waves,2

wind and current affect the ability to perform marine operations and increases required propulsion power of ships, the extent of3

which is valuable knowledge during design. Virtual testing procedures, incorporating the effects of the surrounding environment,4

has in recent years been developed to improve our understanding of the scenarios ships and ocean structures are likely to face5

and the corresponding performance. The present work addresses the long-term modelling of waves and the impact alternative6

formulations has on our interpretation of ship added resistance and operability.7

Simulation-based approaches for studying maritime systems and entities has existed for some time. In the IDEAS project8

benchmarking of ship design concepts using hindcast weather data and discrete-event simulation (DES) is performed to en-9

hance power requirement estimates [13]. HOLISHIP is an international research project working towards the development of a10

simulation-based integrated decision support system to cover all aspects of ship design [21]. The ViProMa project (Vitrual Pro-11

totyping of Maritime Systems and Operations) is a knowledge-building project using co-simulation for prototyping in the design12

process [29]. Bergström et al. [3] presents a simulation-based approach for assessing Arctic transport systems and ships in ice13

infested waters, providing a discussion on model fidelity and sources of uncertainty in [4]. Vernengo and Rizzuto [37] presents14

a ship synthesis model for exploration of the design space for compressed natural gas carriers, and illustrates its applicability for15
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power and capacity variations in [36]. Design and planning of operations and fleet sizing problems often apply stochastic models16

for representation of weather-induced delays, see e.g. [28] and [19].17

For many years, Global Wave Statistics was the primary source of wave data for design of ships [17]. The data was collected18

by visual observations from ships in service all over the world since 1949, and is presented as scatter diagrams of significant19

wave height (Hs) and mean zero-crossing period (Tz) sorted according to propagation direction and season. Alternative sources20

of data has been established based on in-situ measurements, numerical wave prediction models and satellite data. Instrumentally21

recorded wave measurements is considered superior to model derived data, but is expensive and time consuming to collect.22

Hence, the availability of sufficiently long in-situ time series is limited. Hindcast numerical models has been applied to assess23

and estimate the global metocean wave climate. The WAM model is applied by many commercial wave databases and has been24

subject to extensive testing and improvement in recent years [38] [20]. Bitner-Gregersen and Guedes Soares [6] addresses the25

uncertainty of the average wave steepness by comparing three hindcast wave databases and data given in Global Wave Statistics.26

Campos and Guedes Soares [8] compares and assess three wave hindcasts in the North Atlantic Ocean. These studies revealed27

important differences in terms of extreme conditions, and that the magnitude of the differences is site-specific. For non-extreme28

conditions, the hindcasts produce very similar values overall. Vanem [35] presents an extensive review of stochastic long-term29

wave models, focussing primarily on estimation of extreme sea states but also covering literature on modelling of time and space30

dependent variables in general. Monbet et al. [22] provides a review over stochastic time series models for wind and sea states,31

stating that the context of use is important for determining whether a model is suitable.32

The scope of this article is to present and compare stochastic bivariate wave models for producing synthetic long-term time33

series for application in simulation-based design of marine systems. Previous research has to a large extent focused on the34

fundamental statistical properties of models, as well as for prediction and filling missing time series values. The present paper35

contributes by testing and comparing the models in view of their effect on important marine engineering parameters in a design36

context. We have two main objectives in this paper: First, to present three long-term wave models by which bivariate synthetic37

time series of Hs and Tp can be generated. Second, present a comparison to hindcast data for relevant measures in simulation-38

based design to demonstrate the practical implications of their formulation.39

The paper is structured in seven sections. In the following section, we illustrate the steps of stochastic wave model devel-40

opment and the connection to simulation and design theory. Next, we present three candidate wave models in terms of their41

mathematical formulation and assumptions. In Section 4, a presentation of the testing and benchmarking scheme for assessing42

wave model application in simulation-based design is given. Sections 5 and 6 presents the results from the study and gives a43

discussion of the practical implications, respectively. Finally, the last section lists the main findings and conclusions.44

2. Wave models and impact on design interpretation45

2.1. Simulation in marine design46

Design of ships and marine structures includes analyses to determine the influence of ocean environment on safety and perfor-47

mance. Loads and motions excited by the occurring waves, wind, and current must be considered to ensure safety of personnel48

and the asset as well as profitability margins. In a design context, simulation is applied as a tool for mapping between the design49

space and performance space. This mapping relies on what is referred to as interpretive knowledge, meaning the knowledge of50

how a given set of design variables materialize to a set of performance quantities. Figure 1 shows how our interpretation of a ship51

design concept is linked to the assumptions and modelling approach for long-term wave models. Based on the system theories52

of the long-term wave process, a conceptual model is formulated in the form of a mathematical/logical/graphical representation53
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of the system, represented here as a decomposition of the yearly season variation and the stochastic process of wave formation54

in the short-term horizon. Specifying further, we assume that the seasonal effects can be obtained using Fourier and statistical55

analysis, and the short-term contribution can be modelled as a Markov process. Statistical analysis is then performed using the56

long-term dataset of real waves, giving us the complete model.57

The model can then be applied in a simulation framework where we replicate the environmental impact on ships during58

operation. This process allow us to observe how the ship behave in terms of relevant measures for e.g. safety, operational59

performance, fuel consumption. As mentioned above, simulation is applied for mapping between the design and performance60

space. We convert our representation of form (synthesis) to a measure of function (semantics). Figure 1 shows how the modelling61

choices we make during model development affect this relation.62
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Figure 1: The stages of wave modelling and its connection to ship performance evaluation during design, exemplified by Markov model. (Top part of figure

adapted and modified from [27])

The interpretation of a ship design concept should not be a function of the chosen wave model formulation, but rather the63

characteristics of the actual wave environment occurring at the site or route of operation. However, differences may develop as64

a consequence of model abstraction and simulation model specification. The corresponding impact on the design parameters65

varies with the parameter dependency towards the simulated wave environment. For example, marine operations require weather66

windows of a sufficient length and sea state intensity, implying sensitivity towards the occurring sea state levels and persistence.67
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Fuel consumption for a ship in a seaway, as a function of wave added resistance, is dependent on the occurring sea state pa-68

rameters, permitting evaluation using wave parameter distributions. These differences in dependencies towards the generated69

synthetic time series is the reason for choosing the test scheme presented in Section 4, and forms the basis for discussing model70

applicability in Section 6.71

2.2. The stochastic process of waves72

The wave generation process and the dynamics of water surface behaviour follows the laws of physics and is generally well73

understood. However, waves and sea systems are influenced by countless factors and parameters, making deterministic analysis74

impossible due to the system complexity. Hence, waves are modelled using probabilistic models [35]. This implies that design75

parameters dependent on wave intensity and occurrence are subject to uncertainty. Bitner-Gregersen et al. [5] addresses uncer-76

tainties in wind and wave description in the context of engineering applications, dividing this uncertainty in two groups: aleatory77

and epistemic uncertainty. Aleatory uncertainty is the inherent variability of a given parameter due to the process of which it78

is generated. Epistemic uncertainty is related to the lack of knowledge for describing the parameter, and can subsequently be79

reduced by acquiring more data. For design of ships and marine structures, we are interested in the variability of our estimates80

occurring as a consequence of the environment of which it operates, i.e. aleatory uncertainty. Efforts are generally made to re-81

duce epistemic uncertainty to a minimum, as it obscures the vision of how a system performs. Variability of design performance82

using simulation is normally assessed by repeating simulations. This process provides confidence bounds for the performance83

resulting from the inherent variability of the system environment. However, especially considering long-term simulations, such84

analyses require large sets of accessible data for constructing equivalent simulation scenarios. This necessitates synthetic time85

series from a scenario generator, which is the role of the stochastic wave models in the present work.86

3. Bivariate long-term wave models87

3.1. Hindcast data88

In the present work we apply hindcast data from a single location in the North Sea positioned 56◦31’N, 3◦14’E shown in Figure 2.89

The dataset is provided by the Norwegian Meteorological Institute from the hindcast archive NORA10 (NOrwegian ReAnalysis90

10 km), see [26]. Time series of Hs and Tp with a temporal resolution of 3 h between 1958 and 2016 is provided.

Figure 2: Location for wave data in the North Sea

91
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3.2. Data transformation92

Transformation of the hindcast data is applied to produce a stationary set of residuals W for which the models can be fitted.93

The VAR and VARMA models (see Section 3.4) both assume stationary time series behaviour. The hindcast data have a yearly94

statistical periodicity due to the meteorological annual cycle, which must be removed before the models can be fitted.95

3.2.1. Rosenblatt transform96

The common method for creating approximately Gaussian time series is to apply a from of logarithmic transformation, e.g. the97

Box-Cox transformation [7]. In the present work, we apply a log-normal Rosenblatt transformation to model the joint behaviour98

of Hs and Tp (see [24]). It is based on the Conditional Modelling Approach (CMA) given in DNV GL [11]. The joint density99

function fHsTp (h, t) is described using a marginal distribution of Hs and a conditional distribution of Tp|Hs. Therefore, the100

marginal distribution of Hs is assumed to follow a lognormal distribution given by101

fHs (h) =
1

σhh
√

2π
exp

− (ln h − µh)
2σ2

h

 (1)

where µh and σh are distribution parameters estimated from the hindcast data. The conditional distribution of Tp|Hs is estimated102

as103

fTp |Hs (t|h) =
1

σt|ht
√

2π
exp

{
−

(ln t − µt|h)
2σ2

}
(2)

where µt|h and σt|h are represented by functions104

µt|h = E
[
ln Tp

]
= a0 + a1ha2

σt|h = std
[
ln Tp

]
= b0 + b1 exp (b2h)

(3)

a0−2 and b0−2 are curve fitting coefficients. Transformation to Gaussian U-space is then given by105

uh = Φ−1 (
FHs (h)

)
ut = Φ−1

(
FTp |Hs (t)

) (4)

DNV GL [11] recommends fitting a 3-parameter Weibull distribution to the marginal distribution of Hs. Figure 3 shows the com-106

parison of 3-parameter Weibull and lognormal fit for the Hs marginal distribution. Both show a reasonable fit to the hindcast data.107

The 3-parameter Weibull distribution is recognized by its location parameter which introduces a lower limit for the distribution108

(0.422 in this case). The benefit of the location parameter is that a better fit can be achieved for the distribution tail, i.e. the high109

Hs range. The lognormal distribution is defined for all positive Hs values, but gives a wider tail than the Weibull distribution.110

This difference implies that the lognormal distribution is more susceptible for generating extreme sea state events. However, as111

seen in the residual distribution plot in Figure 3, the lognormal distribution residuals has a more symmetric distribution. Hence,112

it is more suited for implementation in the VAR and VARMA models which utilizes a white noise error component, see Section113

3.4.1. The Box-Cox log-transformation results in an equally symmetric residual distribution, but is rejected in the present work114

as the corresponding joint distribution of Hs and Tp is found to be poorly replicated.115
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Figure 3: Distribution fit for hindcast wave data (left) and residual distribution plot (right)

3.2.2. Multivariate seasonal transform116

To remove the yearly meteorological periodicity of uh and ut, the seasonal transformation given in [32] is applied. First, it is117

assumed that the uh and ut series can be decomposed as118

Yt = Mt + ΣtWt (5)

where Yt is a vector of the bivariate uh and ut data, Mt is the mean vector and Σt the standard deviation matrix. Σt is taken as the119

square root of the covariance matrix. Mt and Σt are deterministic periodic functions with period equal to one year. The seasonal120

pattern coefficients in Σt and Mt is estimated by first sorting the terms of Yt according to the triple notation Yn( j, k, τk). The121

indexes are given by the number of years J such that j = 1, . . . , J, m specifies the month m = 1, . . . , 12, and k = 1, . . . , km, where122

km is the number of observations in month m. The time series of monthly mean and covariance can then be approximated as123

Mn( j,m) =
1
km

km∑
k=1

Yn( j,m, τk) n = 1, . . . ,N (6)

S nl( j,m) =
1
km

km∑
k=1

{
[
Yn( j,m, τk) − M3,n( j,m)

]
×

[
Yl( j,m, τk) − M3,n( j,m)

]
}

(7)

where τk is the observation index of sample points in month m in year j. The mean and covariance of the seasonal patterns can124

then be estimated as125

M̃n(m) =
1
J

J∑
j=1

Mvn( j,m) (8)

S̃ nl(m) =
1
J

J∑
j=1

S vnl( j,m) (9)

Stefanakos and Athanassoulis [31, 30] states that the periodic extensions of M̃n(m) and S̃ nl(m) are good estimates for Mnt and126

Σnlt respectively. Fourier series were fitted to M̃n(m) and S̃ nl(m) to obtain Mnt and Σnlt estimates. The residual component Wt is127

then found as128
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Wt =
Yt − Mt

Σt
(10)

As an alternative, Guedes Soares and Cunha [15] states that transformation which disregards variance yields better results for129

some metocean series130

Wt = Yt − Mt (11)

The Markov and VAR model were fitted to data transformed using the transform in Equation 11. For the VARMA model, full131

seasonal transform, i.e. including both mean and standard deviation as given in Equation 10 was applied.132

3.2.3. Seasonal transform for Markov model133

The Markov model does not need data that fulfil the Gaussian assumption, but require stationary distributions to generate the134

transition matrix P . In addition, the bivariate behaviour is modelled using a coupling matrix (see Section 3.3) which does not135

require stationarity nor Gaussian behaviour of Tp. Hence, Hs was subject to seasonal transform to obtain stationarity.136

3.3. Markov chains137

Finite-state space Markov chains are discrete stochastic processes which satisfies the Markov property. This property, often138

referred to as the memoryless property, is the assumption that the future variable state is only dependent on the current state. The139

discrete state space is given by Ω = {1, 2, 3, . . . , n}. Assuming that Ht is a random variable representing the state of Hs at time t,140

the Markov property then allow us to formulate the transition probability between state i and j as141

pi j = P(Ht+1 = j|Ht = i) (12)

The transition between states is governed by a transition matrix P stating the probabilities of transition between the current and142

all other states contained in the finite-state set.143

P =



p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn


(13)

To compute the transition probabilities, Anastasiou and Tsekos [2] applies a maximum likelihood estimator for the expressed as144

p̂i j =
Nh

i j

Nh
i

(14)

Where Nh
i j is the number of observed transitions from state i to state j, and Nh

i is the total number of occurrences of state i in the145

sequence. To obtain a bivariate model of Hs and Tp, we need to couple the occurrence of Hs and Tp states. There are several146

possible approaches to achieve this coupling, see [16]. For this model, we formulated a coupling matrix C given by147

C =



c11 c12 . . . c1Ntp

c21 c22 . . . c2Ntp

...
...

. . .
...

cNhs 1 cNhs 2 . . . cNhs Ntp


(15)
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where Nhs and Ntp are the number of unique values in the model model for Hs and Tp, respectively. ci j states the probability of148

Tp being in state j while Hs is in state i. The maximum likelihood estimator for ci j is given by [2].149

ĉi j =
N t,h

i j

Nh
i

(16)

The initiation of the model is done by sampling an initial condition W0 from the Wt distribution. Calculation of of the succeeding150

values is done by151

Wt = P(Wt−1) (17)

Utilizing Equation 11, the back-transform to retrieve the corresponding Hs,t value is expressed as152

Hs,t = Mt + Wt (18)

Finally, the corresponding Tp value is obtained using the the coupling matrix in Equation 15153

Tp,t = C(Hs,t) (19)

3.4. Autoregressive and moving-average models154

3.4.1. Univariate AR, MA and ARMA models155

The univariate AR(p) model assumes that the next step is linearly dependent on the past p values and a random term. This is156

expressed on the form157

Wt = c +

p∑
i=1

φiWt−i + εt (20)

where φi are the AR parameters, c is a constant εt is white noise. The univariate moving average model MA(q) is expressed as158

Wt = εt +

q∑
i=1

θiεt−i (21)

where q is the number of lags, θi are the MA parameters and εt is white noise. Univariate ARMA(p, q) model is simply the159

composition of AR(p) and MA(q) models, expressed as:160

Wt = c + εt +

p∑
i=1

φiWt−i +

q∑
i=1

θiεt−i (22)

3.5. Bivariate VAR and VARMA models161

Extension of AR to the multivariate case is often referred to as vector AR or VAR. For the bivariate case, considering evolution162

of residuals WH
t and WT

t , we express the VAR model as163

WH
t

WT
t

 =

cH

cT

 +

p∑
i=1

φHH
i φHT

i

φT H
i φTT

i


WH

t−i

WT
t−1

 +

εH
t

εT
t

 (23)

Extension of ARMA to the multivariate case is performed in the same manner as for the VAR model. For the bivariate case,164

considering evolution of residual components WH
t and WT

t , we express the VARMA model as165
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WH
t

WT
t

 =

cH + εH
t

cT + εT
t

 +

p∑
i=1

φHH
i φHT

i

φT H
i φTT

i


WH

t−i

WH
t−i


+

q∑
i=1

θHH
i θHT

i

θT H
i θTT

i


εH

t−i

εT
t−i


(24)

Utilizing equation 10, the reverse seasonal transformation of the residuals WH
t and WT

t for the VAR and VARMA model is166

expressed as167

uH
t

uT
t

 =

MH
t

MT
t

 +

 σuH σuHuT

σuT uH σuT


WH

t

WT
t

 (25)

Finally, reverse Rosenblatt transformation is applied to obtain corresponding Hs and Tp values. This is done by reversing168

Equation 4169

Hs,t = F−1
Hs

(
Φ(uH

t )
)

Tp,t = F−1
Tp |Hs

(
Φ(uT

t )
) (26)

3.6. Parameter fitting170

For the Markov chain model, the finite-state space size, i.e. the dimensions of matrices P and C, is important as it describes171

both the range and discretization of occurring values. The adopted approach in the present work was to maximize the number172

of states in P without causing absorbing states, resulting in a 24 × 24 matrix. For the coupling matrix C, the dimensions were173

set to 111 × 23, giving 111 and 23 unique values for Hs and Tp respectively. This is equal to the number of unique values in the174

hindcast dataset which has a resolution of 0.1 for Hs and logarithmic spacing between sampled Tp levels.175

The VAR model coefficients was fitted using maximum likelihood estimation (MLE) [39] followed by assessment using the176

Akaike information criterion (AIC) as presented in [1]. The best fit was obtained by including the past seven values for estimating177

the next, i.e. p =7.178

For the VARMA model another approach was chosen. AIC is applied to complete models, requiring extensive computational179

effort for coefficient fitting of Φ and Θ for a large set of combinations of p and q in the VARMA model. Therefore, considering180

the practical time constraint of design processes, the approach described given by Tiao and Tsay [33] was applied. The two-way181

tables of the P-values of extended cross-correlation matrices are first computed using multivariate Ljung-Box statistics of the182

series [34]. The selection of p and q is then taken as the combination which give the lowest P-value at a 5% significance level,183

MLE analysis to determine Θ and Φ. The optimal combination of p and q was found to be 2 and 3 respectively.184

4. Wave model testing and benchmarking185

This section presents the methodology for testing and comparing the models described in section 3.186

4.1. Ship added resistance due to waves187

Vessels in a seaway experience higher levels of resistance than in calm water conditions due to the exposure to waves, wind and188

current. These effects cause an increase in propulsion power and fuel consumption required to maintain speed. If the long-term189

weather models are to be applied for simulation-based design of ships, it is important that the resulting values of added resistance190
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is representative in terms of resistance level and variation. To test these criteria, a case study is performed where we assume the191

following:192

• Head seas193

Since the models do not consider wave propagation direction, constant head seas are assumed.194

• Frequency domain pressure integration195

Added resistance levels are estimated using the pressure integration method [12].196

• Wave added resistance197

Only the wave added resistance component is considered. This is expressed as a percentage of the calm water resistance,198

estimated using Holtrop’s method [18].199

(Hs; Tp)1; (Hs; Tp)2; : : : (Hs; Tp)n;

Vs = Va(Hs; Tp)Raw(Vs; Hs; Tp)

Figure 4: Added resistance analysis assumptions

Figure 4 illustrates the assumptions of the case study. The case vessel is the S175 hull, of which estimates of calm water and200

added wave resistance is performed in ShipX. The stochastic wave model time series is given as input, and equivalent time series201

of resistance is computed. To avoid unrealistic speed-sea state combinations, the attainable speed is computed as outlined in the202

following section.203

The S-175 containership is adopted as a case vessel for the added resistance calculations. The same hull is used to obtain204

limiting sea state curves applied in the operability studies in Section 4.3. Vessel particulars are listed in table 1.205

Table 1: Case vessel particulars S-175 containership

Parameter Value

Lpp 175 m

Beam 25.4 m

Draft 9.5 m

GMt 2 m

r44 35 %B

r55 25 %Lpp
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4.1.1. Voluntary speed loss206

In harsh conditions, the ship master may opt for reducing speed in order to save fuel and avoid large motions and loads on207

equipment and cargo. Finding the correct relationship between occurring sea state conditions and voluntary speed loss is difficult,208

as the choice and level the of speed reduction is to some extent subjective in terms of the ship master’s opinion. In addition,209

factors like vessel and delivery schedule, as part of a larger logistical system, is likely to influence the decision. In most cases, the210

speed is adjusted to avoid slamming, excessive accelerations and propeller racing [25]. The vessel speed is adjusted according to211

the probability of these events within each occurring sea state, calculated using frequency domain short-term statistics.212

Table 2: Voluntary speed loss criterion (Prpić-Oršić and Faltinsen [25])

Criterion Probability Limit Location

Slamming 0.01 - Bow

Deck wetness 0.05 - Bow

Propeller emergence 0.1 - Propeller

Vertical acceleration - 0.215 g RMS COG

A target transit speed of 20 knots and a lower speed threshold of 15 knots is assumed. Sea states that do not allow sailing213

above the lower speed threshold in compliance with the criteria in Table 2 are discarded.214

4.2. Transition characteristics of Hs215

Sea states develop due to two physical factors: wind and swell. Wind is caused by differences in atmospheric pressure, causing a216

flow of air from high-pressure to low-pressure areas. Boundary layer interaction between the air and sea surface produce waves217

with temporal characteristics depending on duration and wind intensity. In addition to locally wind-generated waves, waves218

generated elsewhere may propagate into the area, giving rise to swell. The analysis procedure presented in this section targets219

the periods of Hs increase and decrease with the intention of determining whether the physical process of sea state development220

is captured in the stochastic models.221

Hf
s

Hf
sH t

s

H t
s

T+ T
−

Hs

Time

∆Hs

Figure 5: Analysis procedure for determination of transition periods of Hs

Figure 5 illustrates the procedure for sea state transition assessment. We define first an Hs interval of N values with constant222

increment λ on the form Hi=1..N
s such that223

λ = Hi
s − Hi−1

s , i = 2 . . .N

N =
Hmax

s − Hmin
s

λ

(27)

Since we are interested in evaluating the transition period between Hs levels, we define variables H f
s and Ht

s corresponding to224

the initial and final Hs value, respectively. The corresponding difference, ∆Hs, is therefore225
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∆Hs = Ht
s − H f

s (28)

A positive ∆Hs indicates an increase in sea state energy and wave amplitudes. An observation of the period between Hs level i226

and j is denoted T i j
+ if i > j and T i j

− if i < j. Figure 6 outlines the relationship between the variables and the methodology of227

sorting and comparing sea state development periods.228

H
f
i

Ht
j

i = 1

j = 1

i = 2

j = 2

i = N

j = N

Decreasing sea state energy

Increasing sea state energy

∆Hs > 0

∆Hs < 0

T
1;2
−

T
2;1
+

T
N;1
+

T
1;N
−

Figure 6: Relation between variables and structure of sorted transition periods

Ti j
+ and Ti j

− are vectors containing all observations of periods for increasing and decreasing Hs levels from index i to j,229

respectively. In the present work we examine the periods of sea state development ∆Hs. H f
s and Ht

s combinations resulting in the230

same ∆Hs are therefore collected in the same set of observations. Equations 29 and 30 expresses the mean increase and decrease231

periods for a given ∆Hs-level, denoted T̄ +
∆Hs

and T̄−
∆Hs

respectively.232

T̄ +
∆Hs

=
1

n+
∆Hs

n+
∆Hs∑

k=1

T k
+, Ht

j − H f
i = ∆Hs > 0 (29)

T̄−∆Hs
=

1
n−

∆Hs

n−
∆Hs∑

k=1

T k
−, Ht

j − H f
i = ∆Hs < 0 (30)

We assess the occurrence of transition on the interval given in Table 3. The interval is chosen to avoid too few observations233

of transition between the highest and lowest Hs values. We narrow our search to only cover cases where the sea state is either234

decreasing or increasing throughout the period, i.e. the derivative or the Hs curve is either strictly positive or negative.235

Table 3: Hs transition interval

Hmin
s 2.0 m

Hmax
s 5.5 m

λ 0.5 m

4.3. Operability236

The long-term ability to perform weather restricted marine operations and offshore activities is commonly quantified by the oper-237

ability measure. To assess the operability, operable weather window persistence is examined based on the sea state characteristics238
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at site and operational limits. Hence, the measure is dependent on the ratio between calm water and storm state durations. Hagen239

et al. [16] and De Masi et al. [9] investigated the quality of Markov sea state generators for application in marine operations240

studies, showing good agreement for Hs persistence compared to hindcast data. In the present work, we define the operational241

limit as a function of Hs and Tp, assessing operability for the bivariate case.242

H
s
;l
im

Tp

Wave breaking limit

Limiting sea state curve

for response based criteria

Figure 7: Limiting Hs as a function of Tp for response based criteria

Operability studies is formed around a limiting criterion which defines the border between operable and non-operable states.243

Response based criteria are applied as defined in [23]. Figure 7 illustrates the limiting sea state curve, which is obtained by244

considering the deterministic vessel response and short-term statistics using the ShipX plug-in VERES developed by SINTEF245

Ocean (former MARINTEK), see [14]. We assume that the operations is limited by the root-mean-square (RMS) roll response α246

degrees. Hα
s,lim is the corresponding limiting significant wave height as a function of Tp according to the curve in Figure 7.247

Time

H t
s

H
α;t
s;lim

WWα

Figure 8: Weather window analysis

The bivariate time series are investigated by identifying the number and duration of operable weather windows. As illustrated in248

Figure 8, Hα,t
s,lim is computed based on the occurring T t

p in the time series. If Hα,t
s,lim > Ht

s, the current sea state permits operation.249

For operation completion, we demand a sequence of sea states to be operable. The sequence length criterion WWα,lim is varied250

in order to investigate the occurrence of operable windows corresponding to different operational scenarios in the models. The251

operability is computed for each season s, roll limit angle α and weather window duration criterion d.252

OPsdα =
nsdα

bτ/dc
× 100 (31)

In Equation 31, OPsdα is the percentage operability, nsdα is the observed number of weather windows and τ is the time series253

length. If a weather window appears with a duration WWα longer than the required weather window length d, the number of254

weather windows inside the sequence is taken as bWWα/dc.255
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5. Results256

This section presents the results from the time series testing procedure given in Section 4. 10 time series spanning 25 years for257

each model are used in the comparison.258

5.1. Sea state parameter distributions and time series correlation259

The quickest and most straightforward assessment of stochastic models is done by comparing marginal distributions. Since all260

three models are fitted to the same hindcast dataset, one would expect the resulting output time series to be similar. Figure 9261

shows the marginal distributions for the applied hindcast data, the Markov model, VAR model and VARMA model, computed262

using a kernel density function for each season. The irregular shape of the Markov model distribution stands out from the rest,263

which is caused by the finite state space assumption, see Section 3.3. The largest deviations from the hindcast distribution is also264

found in the Markov model, especially during winter and fall for both Hs and Tp. VAR and VARMA coincides quite well with265

the hindcast distributions. The largest deviations for these models are observed for the summer season for Tp.266

Figure 9: Marginal distributions of Hs and Tp in the hindcast and model data

Figure 10 shows scatter diagrams for the hindcast and model time series. Considering scatter shape, the Markov chain series267

seems to be most comparable. This is again due to the finite state space formulation, which defines clear boundaries for Hs268

and Tp. This assumption is not implemented in the VAR or VARMA model, which occasionally produce higher Hs values than269

is found in the hindcast time series. The overall scatter shape is determined by the Rosenblatt transform (see Section 3.2.1),270

and gives similar shape for the Markov model. Low lognormal standard deviation values for the conditional distribution of Tp271

produce a narrow distribution of Tp for high Hs values, clearly visible for the VAR and VARMA results.272

Figure 11 shows the autocorrelation and cross-correlation functions of Hs and Tp for the hindcast dataset and models. The273

Markov model curves deviates significantly from the others, which can be explained by the memoryless assumption. The VAR274
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Figure 10: Scatter of hindcast and model Hs and Tp occurrences. Black areas indicate sea states with a higher number of occurrences than the average number

of occurrences for all observed sea states for the given model and season.

and VARMA models agree well with the hindcast data in general, giving only minor differences in the autocorrelation function275

results. For the cross-correlation results the VAR model is found to overestimate slightly.276

5.2. Added resistance277

The added resistance results, computed using the procedure presented in Section 4.1, is given in Figure 12. Each set of time278

series is represented by a boxplot showing the distribution estimated added resistance fraction. In addition, an operability value279

is plotted showing the percentage of time the vessel was able to maintain an operable speed on the range 15-20 knots limited by280

the criteria in Table 2.281

The distribution of added resistance is linked to the marginal distributions presented in Figure 9. However, not all sea states282

are included in the added resistance calculations as a result of the limiting criteria in Table 2, and the mapping from sea state283

intensity to added resistance is not linear. The results show that the distribution of added resistance is similar for the hindcast284

data and model results. Maximum observed added resistance is 60 to 75 % of the calm water resistance levels for all datasets.285
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Figure 11: Autocorrelation function (ACF) and cross-correlation function (CCF) for hindcast and model Hs and Tp time series

Figure 12: Added resistance estimates for speeds 15-20 knots according to attainable speed curve.

The seasonal variation does however vary significantly depending on model formulation. The top whiskers indicate that Markov286

results gives the highest added resistance levels for all seasons. It also produces higher estimates during fall season than the287

VAR and VARMA models do for winter season, which according the hindcast data is incorrect. The VAR and VARMA models288

are very similar, differences occur mainly in the outliers. Model seasonal percentage operability show a similar curve shape as289

for the hindcast data. However, the Markov model obtains a more invariable curve with respect to seasonal variation than the290

hindcast data. For the VAR and VARMA models the opposite is observed, underestimating the operability for the winter and fall291

season.292

5.3. Transition characteristics293

The marginal distributions and added resistance results shown in the previous sections addresses the occurrence of single, inde-294

pendent sea states. The current and following section presents results where the temporal characteristics and persistence is vital.295
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Figure 13: Transition times between sea state levels sorted according to season and model.

296

Figure 13 shows the results from the sea state intensity transition analysis presented in Section 4.2. Hindcast and model297

results is compared in each plot sorted according to model formulation and season. The hindcast data shows a gradual increase298

in average period from 0 to ± 3.5 m Hs. Decrease periods are slightly larger than the corresponding increase periods, which299

is explained by the physical process of wave excitation and dissipation. The VAR and VARMA models do not show a similar300

behaviour. These transition periods are more symmetrical, closely matching the increase periods of the hindcast data.301

The Markov model deviates from the other results. In the winter season, the transition periods are significantly larger for both302

sea state energy increase and decrease compared to the other time series. The summer season is similar to the hindcast results,303

especially for increase periods. Spring and fall season results show a definite asymmetric behaviour with respect to increase vs.304

decrease periods. The spring season results indicate that an increase in Hs occurs more rapidly than the corresponding decrease305

of the same magnitude. The opposite is found for the fall season. This occurs as a consequence of the finite state assumption of306

the Markov model and the seasonal transform. As time progresses, the state levels update according to the continuous seasonal307

transformation presented in Section 3.2.3. During spring season, the seasonal average decreases from the harsh winter to the308

calm summer. This implies that for cases where the model maintains a constant state over time, a slight decrease in significant309

wave height is detected using the analysis procedure given in Section 4.2. Since we limit our analysis to period intervals where310

Hs is strictly increasing or decreasing, these small decreases affects the number and duration of observed periods. The same311

effect occurs during the fall season, though with an increase in seasonal average from summer to winter. Summer and winter312

season represents the minima and maxima in seasonal average respectively, thereby limiting this effect by consisting of both an313
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increasing and decreasing interval of seasonal average.314

Table 4: Increase and decrease period ratio. Ratios larger than 1 indicate longer increase than decrease periods.

Season Hindcast Markov VAR VARMA

Winter 0.68 0.98 1.04 0.98

Spring 0.75 0.50 0.97 0.99

Summer 0.99 0.80 0.91 0.96

Fall 0.61 2.51 1.00 1.02

To assess the symmetry of characteristic transition periods for the time series, a linear curve was fitted to the averages315

presented in Figure 13. The slope of the fitted curves was then taken as a basis for quantifying symmetry, noted τi and τd for316

increase and decrease respectively. Table 4 lists the computed curve slope ratios τi/τd. VAR and VARMA results show very317

symmetrical behaviour in terms of Hs increase and decrease periods, which is not consistent with the hindcast data. The effect318

of seasonal average on the Markov model results, as mentioned above, is visible also in the period ratios. Spring and fall season319

obtains a value of 0.50 and 2.51 respectively, outside the range of the other case results.320

5.4. Operability321

As stated in Section 4.3, the formulation of operability in this paper is dependent on the occurrence of operable weather window,322

defined by a limiting sea state curve and operational duration. Figure 14 shows a comparison of hindcast and model operability323

estimates for varying operational limit and weather window length criterion sorted according to season. The plots show constant324

operability lines, i.e. the contours of the operability surface, expressing how the long-term wave model formulation has affected325

our understanding of the vessel’s capability to perform operations.326

It is apparent that the Markov model performs poorly in terms of replicating weather windows. The Markov property,327

often referred to as the memoryless property, is evidently not suited for studies addressing events stretching over multiple time328

steps. Figure 11 shows that the auto- and cross-correlation is poorly replicated by the Markov model, which clearly affects the329

operability estimates significantly. The constant-operability curves obtain a similar shape as for the hindcast data, but the values330

suggests an underestimation of weather window occurrence.331

The VAR and VARMA models produce similar curves in terms of curve shape and value. The difference from the hindcast332

data results are found to depend on season, with reasonably low differences during winter and spring, and larger differences333

during summer and fall.334

6. Discussion335

We have now covered the modelling assumptions, assessment methods and the corresponding results. This section discusses the336

quality of the models in the context of simulation-based design application.337

6.1. Comparison methodology338

In the present work, we have assessed three formulations for long-term modelling of sea states. The models produce bivariate339

synthetic time series of standardised wave spectrum parameters Hs and Tp. Even though the presented models are formed340

around statistical analyses of hindcast data, by means of correlation mapping and curve fitting, the models have been assessed341
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Figure 14: Operability results sorted according to model and season

in terms of the physical interpretation the output time series represents. This choice of methodology follows from our interest342

in the application of the models; simulation-based design of ships and ocean structures. The chosen basis of comparison,343

added resistance, operability and Hs transition characteristics, represents important factors in this context which incorporates the344

physical wave generation process and the performance of ships and marine structures.345

6.2. Model abstraction346

Vanem [35] provides good arguments for why waves should be modelled as a stochastic process, especially pointing towards the347

system complexity and infinite number of interrelated parameters needed to provide an exact description. The dataset used to348

construct the presented models is WAM10 results (see [20] and [26]), a physical model for wave-atmospheric coupling frequently349

used to establish wave hindcasts and forecasts. This implies that our foundation for constructing the stochastic models is resting350

on the modelling assumptions and uncertainties present in the WAM10 implementation. Reistad et al. [26] shows that the WAM10351

results are improved compared to the frequently applied ERA-40 reanalysis. Comparison with wave buoy measurements show352

that Hs and mean zero upcrossing period, Tz, estimates has improved significantly with the main deviations occurring at the353

upper levels. Work towards improving forecasting accuracy and hindcast database quality is performed continuously. However,354
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awareness of the fact that hindcast data is a representation of real waves, and not direct observation of the phenomenon itself,355

should be kept clear in mind during model development.356

Assuming that the data used for model fitting is a sufficient representation of real waves, our choice of modelling formulations357

introduce further abstractions of the real system. This process is outlined in Figure 1, and described in detail in Section 2. The358

choice of time series models was Markov chains, VAR and VARMA, representing alternative specifications of the conceptual359

model. In addition, a seasonal transformation method is applied to model the variation of statistical parameters through the year.360

These assumptions is formed from wave system theories developed over years of ocean research and modelling attempts.361

6.3. Application in simulation-based design362

According to Monbet et al. [22], the definition of a good model involves its intended application. In the present work, we363

consider wave models in the context of simulation-based design, with the intention of using the models for replicating the364

operational environment of ships and marine structures. We have addressed three parameters which, depending on design object365

type and operational description, is of interest during design. Three alternative model formulations has been presented and366

tested with varying assumptions and fidelity levels. If we follow Bergström et al. [4], assessing fidelity level and sources of367

uncertainty for different models applied in simulation-based design of Arctic transport systems, the required model fidelity for368

application in design is that which further increase of fidelity will not influence design decisions. The results presented in the369

present work appears to be fall into two groups. The Markov model results does not provide a sufficient replication of Hs and Tp370

marginal distributions, affecting the added resistance distribution significantly. Further, the estimated operability and Hs transition371

characteristics, depending on the temporal development, deviates to a large degree from hindcast levels. These findings therefore372

disagree with the conclusions of Hagen et al. [16] and De Masi et al. [9], stating that Markov models produce similar results in373

terms of persistence and weather windows as for hindcast data. However, the definition of weather windows and Markov model374

formulation is different in the present work to that in [16] and [9]. As mentioned in Section 4.3, our study considers weather375

windows with an Hs threshold as a function of Tp, defined by the limiting sea state curve for the vessel. This procedure is chosen376

with the intention of incorporating the inherent operational limits of the vessel design, expressed using response-based criteria.377

In [16] and [9], the Markov model is developed with the intention of studying challenges related to marine operations, where a378

constant Hs limit is commonly applied [10]. Differences in state space formulation, seasonal transformation and hindcast data379

intensity and volatility may also affect the quality of the Markov model in terms of replicating weather windows.380

The VAR and VARMA model performs more similarly. Both models coincide well with the hindcast marginal and added381

resistance distributions. Hs transition characteristics are found to be too symmetrical compared to hindcast data, meaning that382

the physical process of wave excitation and dissipation is not well represented. Weather windows are well represented during383

winter and spring. During summer and fall, we observe an underestimation of operability, most prominent during long weather384

window requirements. The testing methodology in the present work revealed only minor differences in the VAR and VARMA385

models. Hence, we see little benefit in constructing a VARMA model to improve the estimates of the VAR model.386

A variety of model schemes and data transformations exists for stochastic time series models. In the present work, our387

approach is to construct models that produce the overall best results for the intended purpose, i.e. application in simulation-based388

design with focus on added resistance, operability and transition characteristics. This approach resulted in a different formulation389

for the seasonal transform for the three tested models, where the Markov and VAR model was constructed using the transform390

given in Equation 11 and the VARMA model using Equation 10. It should be noted that different options may produce better391

results in other contexts. In our opinion, a complete model follows a testing procedure with clear objectives and applicability392

thresholds.393
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The chosen wave model testing approach in the present work targets the generation of low to medium harsh sea states. We394

have applied a set of voluntary speed loss criteria for the added resistance analysis, and the operating limits in the operability395

study does not permit harsh conditions. In the scatter plot of Figure 10, it is shown that the VAR and VARMA models produce396

extreme sea states far outside the interval of the hindcast data. The importance and relevance for these values are however397

questionable for the presented application. There is no doubt that extreme sea states are of great importance for the development398

and operation of ships and marine structures, especially for ultimate and accidental limit state design. However, it can be argued399

that the design point for a ship travelling in waves in terms of e.g. installed power and hull design is well below these sea state,400

and that their appearance in the data has little impact on these design parameters. In a simulation model, as well as for real ships,401

a weather routing system will keep the ship clear of the worst storm events. Marine operations are also planned according to402

weather forecast to minimise the probability for harsh conditions. Extreme sea states must be taken into consideration during403

design of scantlings and global strength, but this subject is covered by the classification societies and government regulators404

during the detailed engineering phase.405

Conclusion406

This paper presents three bivariate stochastic long-term wave models for the North Sea as candidates for application in simulation-407

based design. The models are tested by analysing their effect on estimated added resistance and operability for a case vessel, and408

wave growth and decay periods is calculated to assess the replication of the physical wave process. Each test is performed using409

10 synthetic time series of 25 years, and the results are compared towards hindcast data from 1958-2016.410

The Markov model performs worst in the applied tests. Our conclusion is that the memoryless property and finite state-space411

formulation is not suited for constructing synthetic time series for applications covered by the presented tests.412

Only small differences are detected in the test results of the VAR and VARMA models. Hence, we conclude that the VAR413

model gives a sufficient description of Hs and Tp in a context where extending to VARMA is a viable option. However, our results414

indicate that all three stochastic models produce time series where the physical wave process is not fully captured, especially for415

parameters stretching over multiple sea states. Application of the models should therefore follow a validity check based on the416

parameter of interest.417
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