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Abstract

A strain gradient elasticity model for shells of arbitrary geometry is derived
for the first time. The Kirchhoff–Love shell kinematics is employed in the
context of a one-parameter modification of Mindlin’s strain gradient elasticity
theory. The weak form of the static boundary value problem of the general-
ized shell model is formulated within an H3 Sobolev space setting incorporat-
ing first-, second- and third-order derivatives of the displacement variables.
The strong form governing equations with a complete set of boundary con-
ditions are derived via the principle of virtual work. A detailed description
focusing on the non-standard features of the implementation of the corre-
sponding Galerkin discretizations is provided. The numerical computations
are accomplished with a conforming isogeometric method by adopting Cp−1-
continuous NURBS basis functions of order p ≥ 3. Convergence studies and
comparisons to the corresponding three-dimensional solid element simulation
verify the shell element implementation. Numerical results demonstrate the
crucial capabilities of the non-standard shell model: capturing size effects
and smoothening stress singularities.
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1. Introduction

The theories of classical continuum mechanics, relying on the principles
of Cauchy’s continuum from the early 19th century, have dominated the
modelling of solids and structures in various fields of science and engineering
during the past century [1]. During the past decades, in turn, computer meth-
ods relying on classical continuum mechanics (primarily the Finite Element
Method starting from its first open-source implementations in the 1960s) have
become almost omnipotent for a diverse set of complex problems of applied
mechanics and engineering. Although the conventional theories of continuum
mechanics have proven to be applicable for a wide range of real-life applica-
tions, they are very limited, nevertheless, in describing multi-scale phenom-
ena which become apparent for small scale structures with dimensions com-
parable to material microstructure [2], architectured materials, (mechanical)
metamaterials [3, 4, 5] and for the homogenization of structures of any scale
with (hierarchical) substructures [6]. Moreover, it should be pointed out that
the achievements of materials science and the rapid improvement of manu-
facturing technologies have made the production of micro- and substructures
technologically and economically viable even at micro- and nano-scales (see
the examples given in [5] and the references therein). According to this
background, it is undeniable that the future directions of materials design
and engineering applications involve materials, metamaterials and structures
with manipulated or artificial micro- and substructures of different length
scales.

The endeavours to extend classical continuum theories towards captur-
ing multi-scale phenomena can be distinguished into two families of gener-
alized theories [1]: higher-order continua such as the Cosserat continuum
[7] and Mindlin’s micromorphic elasticity [8]; higher-grade continua such as
Mindlin’s first and second strain gradient elasticity [8, 9]. In the present
contribution, we concentrate on Mindlin’s first strain gradient elasticity the-
ory of Form II and, in particular, on its widely adopted single-parameter
simplification having roots in [10, 11]. In general, strain gradient elasticity
theories incorporating length scale parameters associated to strain gradi-
ents have shown to be capable of capturing size effects of different scales
[12, 13, 14, 15, 16], smoothening nonphysical macro-scale singularities in
crack tips [17, 18] or point loadings [19].

In literature, one can find a plethora of strain gradient elasticity models
for bars, beams, membranes and plates, whereas regarding gradient-elastic
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shell models the literature is very limited (although for higher-order (Cosserat
type) shells literature is quite wide [20]). A gradient-elastic shallow shell
model has been studied in [21] and governing equations of another shell
model can be found in [22], whereas other studies focus on cylindrical shells:
stability issues have been studied by analytical means in [23], torsional prob-
lems in [24] and wave propagation in [25]. Concerning general gradient-elastic
shells of arbitrary geometry, there are no publications – neither for theoreti-
cal formulations nor for numerical methods – to our best knowledge. In fact,
literature on numerical methods and analysis for gradient-elastic structural
models is generally very limited, as reviewed in [26]:

”...most of existing size-dependent models focused on analytical solutions...
limited to beam and plate structures subjected to certain loading and bound-
ary conditions and geometries... Therefore, further efforts should be devoted
to developing finite element models of size-dependent theories, especially the
strain gradient-based models.”

A few computational contributions for beams and plates already exist (see
[27, 28, 15, 29, 30] utilizing Isogeometric Analysis and the references therein),
while with the present work our particular aim is to liquidate the lack con-
cerning shells: we derive the governing equations and boundary conditions
as well as a variational formulation with an efficient and reliable, general-
purpose numerical method for a gradient-elastic Kirchhoff–Love shell model.
The variational formulation of the problem leads to an H3 Sobolev space
framework requiring C2-continuity from the corresponding Galerkin meth-
ods. This requirement is met by adopting an isogeometric finite element
approach [31] (shell approximations based on subdivision surfaces had been
developed earlier in [32], in particular) with NURBS (Non-Uniform Ratio-
nal B-Splines) shape functions of degree p ≥ 3 providing Cp−1-continuity
inside patches. The original feature of Isogeometric Analysis, performing
approximate Galerkin analyses on exact NURBS-based CAD-geometries, is
crucial for shape-sensitive structures such as shells. As a result, isogeometric
methods for shells, particularly Kirchhoff–Love shell elements, have been a
very popular research topic for almost ten years now (see [33, 34, 35, 36, 37],
for instance). In the present work, the chosen method is implemented as a
gradient-elastic shell user element within a commercial finite element soft-
ware (Abaqus®) by utilizing the techniques developed and described in [38]
for H3-conforming plane problems of second strain gradient elasticity.

The paper is organized as follows. In section 2, we present the basics of
differential geometry, classical Kirchhoff–Love shell model and general three-
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dimensional theory of strain gradient elasticity. Section 3 is devoted to the
derivation of the gradient-elastic Kirchhoff–Love shell model with weak and
strong formulations. The corresponding numerical implementation is detailed
in Section 4. Section 5 presents a set of numerical benchmark examples.
Finally, in Section 6, some conclusions are drawn for future steps.

2. Preliminaries

2.1. Differential geometry of surfaces

In this subsection, we briefly recall the notations and basic definitions
of differential geometry which are used in the further derivations. For more
details, one is referred to [39] and [40].

We consider a curvilinear shell structure of arbitrary geometry with con-
stant thickness h. The shell midsurface is denoted by A, with its boundary
∂A = Γ. Any point on the midsurface can be described by the radius vector
r = r(θ1, θ2) with (θ1, θ2) denoting the natural curvilinear surface coordi-
nates. We also introduce coordinate θ3 indicating the thickness direction. In
what follows, we use Greek letters for indices taking values from set {1, 2}
and Latin letters for {1, 2, 3}. Einstein summation convention on repeated
indices is also utilized. Herewith, a covariant basis is formed by the tangent
vectors

aα = r,α, (2.1)

where (.),i = ∂(.)/∂θi denote the partial derivative with respect to the natural
coordinate, and the unit normal vector

a3 =
a1 × a2

|a1 × a2|
. (2.2)

Contravariant basis vectors aj are defined by the following convention

ai · aj = δji , (2.3)

with δji standing for the Kronecker delta.
Tensors of orders up to six, appearing in the present contribution, are

defined as
Φ = Φijk...aiajak..., (2.4)

with Φijk... being contravariant tensor components in the covariant basis ai.
The components can also be represented in the contravariant or mixed bases.
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In (2.4) and in what follows, we use the sequential form of writing vectors
omitting the symbol of tensor multiplication ⊗.

Components of the covariant and contravariant metric tensors (metric
coefficients) are defined, accordingly, as

aαβ = aα · aβ; aαβ = aα · aβ. (2.5)

Co- and contravariant metric coefficients can be used for raising and lowering
indices of the basis vectors as well as components of vectors and tensors in
accordance with identities

aαβa
β = aα; aαβaβ = aα (2.6)

or
aαγΦ

γβ = Φβ
α; aαγΦγβ = Φα

β . (2.7)

It should be mentioned that a3 = a3.
Along with the metric coefficients which are also called as the first fun-

damental form of a surface, we define the second form, namely, curvature
coefficients

bαβ = aα,β · a3 = −aα · a3,β = −aβ · a3,α, (2.8)

with their contravariant and mixed counterparts which can be calculated
with the aid of (2.7):

bαβ = aαγaβλbγλ; b
α
β = aαγbγβ. (2.9)

For the purpose of taking derivatives of vectors and tensors, it is con-
venient to introduce the so-called covariant derivative (.)|α which includes
the derivatives of the basis vectors. With this, the partial derivative of an
arbitrary vector lying in the tangent plane v = vαaα = vαa

α is defined as

v,i = (vαa
α),i = vα|ia

α, vα|i = vα,i − Γβαivβ, (2.10)

where Γkji denotes the Christoffel symbols of the second kind:

Γkji = Γkij = ak · aj,i, (2.11)

and with definition (2.2) Γαβ3 = −bαβ , Γαβγ = aα ·aβ,γ. Similarly to (2.10), the
covariant derivative for the contravariant vector component takes the form

vα |i = vα ,i + Γαγiv
γ. (2.12)
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For further derivations, we define the covariant derivatives of the second-
order tensor components:

Φαβ|i = Φαβ,i − ΓλαiΦλβ − ΓλβiΦαλ;

Φα
β|i = Φα

β|,i + ΓαiλΦ
λ
β − ΓλβiΦ

α
λ ;

Φαβ
|i = Φαβ

,i + ΓαiλΦ
λβ + ΓβiλΦ

αλ.

(2.13)

Note that by using formula (2.7) of rising and lowering indices and the fact
that the covariant derivatives of metric coefficients vanish, aαβ|i = aαβ |i = 0,
we can calculate the derivatives of contravariant components, for instance,
through the derivatives of covariant components (and vice versa):

Φαβ
|i = aαγaβλΦαβ|i, (2.14)

which is very useful in our derivations. Utilized below notation Φαβ|γ stands
for the following:

Φαβ|γ = Φαβ
|λa

λγ. (2.15)

The covariant derivative of a third-order tensor is defined as

Φαβγ
|λ = Φαβγ

,λ + ΓαρλΦ
ρβγ + ΓβρλΦ

αργ + ΓγρλΦ
αβρ, (2.16)

and the second covariant derivative of a second-order tensor as

Φαβ
|γλ = Φαβ

,γλ + ΓαγρΦ
ρβ

,λ + Γαγρ,λΦ
ρβ + ΓβγλΦ

αλ
,λ + Γβγλ,λΦ

αλ

+ ΓαλρΦ
ρβ
|γ + ΓβλρΦ

ρα
|γ + ΓρλγΦ

αβ
|ρ.

(2.17)

Note that the covariant derivative for a scalar is equal to its partial derivative:

u|α = u,α, (2.18)

and the second covariant derivative is equal to

u|αβ = u,αβ − u,λΓλαβ. (2.19)

Instead of the midsurface description of a shell structure used above, we
can represent it as a three-dimensional solid body of volume V = (−h/2, h/2)×
A. Position vector to a body point is denoted by x:

x = x(θ1, θ2, θ3) = r(θ1, θ2) + θ3a3, −h/2 ≤ θ3 ≤ h/2, (2.20)
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whence it follows that the midsurface is equal to r(θ1, θ2) = x(θ1, θ2, 0).
Basis vectors are defined as

gi = x,i. (2.21)

Similarly to (2.5), the metric coefficients of covariant basis (2.21) are equal
to gij = gi · gj. For the contravariant basis defined by an analogy with (2.3),
the metric coefficients are equal to gij = gi · gj.

A combination of (2.20) and (2.21) allows us to establish the following
relation between the metric coefficients of the ”solid” and ”midsurface” bases
(neglecting the quadratic term with respect to θ3):

gαβ = aαβ − 2θ3bαβ. (2.22)

Two vector differential operators are introduced, namely a 3D gradient
∇ = gi∂/∂θi and surface gradient ∇S = aα∂/∂θα.

2.2. Shell model in classic elasticity

The deformation of a shell is described by a displacement vector u of the
midsurface:

u = uαa
α + u3a

3. (2.23)

Regarding the strain tensor components, the assumption that the cross sec-
tions remain normal to the midsurface allows us to neglect the transverse
shear strains. The assumption of straight cross sections allows to separate
the strain tensor components into two parts as

εαβ = ααβ + θ3βαβ, (2.24)

where ααβ and βαβ stand for the components of the first (membrane or
stretching) and second (bending) strain tensors α and β, accordingly. With-
out going into details concerning the derivation, we introduce the kinematical
assumptions in full accordance with [39]:

ααβ =
1

2
(uα|β + uβ|α − 2bαβu3), (2.25)

βαβ = −(u3|αβ + bγαuγ|β + bγβuγ|α + bγα|βuγ − b
γ
αbγβu3). (2.26)

We assume that the transverse normal stress component σ33 is equal to
zero, and the transverse shear stresses σα3 do not need to be taken into ac-
count since they do not contribute into the strain energy. Therefore, here and
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in what follows, we use the commonly accepted, although not fully correct,
term plane stress state. Hooke’s law (see (2.31) below) can be reduced to its
plane-stress version:

σαβ = Ĉαβγρεγρ. (2.27)

It should be noted that the strain component ε33 is not equal to zero but
does not contribute into the strain energy explicitly. With the aid of the
plane stress assumption, ε33 is expressed through the other strain components
and taken into account in constitutive relation (2.27) with the plane-stress

counterparts Ĉαβγρ of the elastic tensor components Cαβγρ.
Analogously to strains, we introduce two stress resultants, membrane

forces n and bending moments m. The constitutive relations between the
stress resultants and strains read as follows (based on (2.27)):

n = nαβaαaβ = h Ĉαβγραγρaαaβ = h Ĉ : α,

m = mαβaαaβ =
h3

12
Ĉαβγρβγρaαaβ =

h3

12
Ĉ : β.

(2.28)

With (2.24), (2.27), and (2.28), we can write the classical part of the
strain energy variation as follows:

δWC =

∫
V

σ : δε dV =

∫
A

(n : δα+m : δβ) dA. (2.29)

2.3. 3D strain gradient elasticity

In the linear theory of strain gradient elasticity [8, 41], strain energy
Wint = Wint(ε,µ) is enriched by introducing the higher-order state variable
µ = ∇ε being the gradient of the classical strain tensor ε = (∇u + u∇)/2
where the displacement vector u contains three translational degrees of free-
dom (DOFs) as within the classical elasticity theory. The variation of the
strain energy in volume V , with an arbitrary variation of u, takes the form

δWint = δWC + δW∇ =

∫
V

σ : δε dV +

∫
V

τ
... δµ dV, (2.30)

where the second order Cauchy-like stress tensor, the work conjugate of the
strain tensor ε, is denoted by σ, whilst τ stands for the third order double
stress tensor being the work conjugate of the strain gradient tensor µ.

For the ordinary and double stress tensors, we adopt constitutive laws
corresponding to the linearly elastic centrosymmetric material model (cf. [8,
17]):

σ = σijgigj = Cijklεklgigj = C : ε, (2.31)
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standing for the generalized Hooke’s law of classical elasticity and

τ = τ ijkgigjgk = Aijklmnµlmn gigjgk = A
... µ (2.32)

being the higher-order analogue of the Hooke’s law with respect to the dou-
ble stress and strain gradient tensors. For a fully anisotropic case, the
fourth-order elastic tensor C and sixth order gradient-elastic tensor A con-
tain 21 and 171 independent moduli [42], accordingly. For practical appli-
cations, we follow Mindlin’s strain gradient elasticity with separable weak
non-locality [43] reducing the number of independent gradient-elastic pa-
rameters to 6. With this, the sixth-order gradient-elastic tensor A can be
represented as a product of C and a second-order tensor G of length scale
moduli with units of squared length, which in the index notation takes the
form Aijklmn = GilCjkmn.

For an isotropic case, the components of the tensor C are explicitly de-
fined as

Cijkl = λgijgkl + µ(gikgjl + gilgjk) (2.33)

bringing two independent classical elastic moduli represented by Lamé pa-
rameters µ and λ. In Cartesian coordinates, the metric coefficients coin-
cide with the Kronecker deltas, i.e., gij ↪→ δij. For isotropic materials, the
second-order tensor G degenerates into a spherical tensor with the compo-
nents represented by Gij = l2gij introducing a single material length scale
parameter l with unit of length, which corresponds to the so-called simplified
strain gradient elasticity model [11, 44]. For the components of A, we can
introduce the compact form

Aijklmn = l2gil
[
λgjkgmn + µ(gjmgkn + gjngkm)

]
= l2gilCjkmn, (2.34)

which allows us to represent the double stress tensor in terms of the Cauchy-
like stress tensor as

τ = l2∇σ = l2σij|kgkgigj, (2.35)

which holds true only for the constant elastic moduli µ, λ. In what follows,
the length scale parameter l is assumed to be constant as well. It should
be mentioned that the theoretical results presented in this contribution for
the one-parameter model can be extended to more general multi-parameter
strain gradient elasticity theory modifications in a natural way.
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3. Gradient-elastic Kirchhoff–Love shell model

3.1. Gradient-elastic shell model

Let us turn our attention to the additional term δW∇ in the strain energy
variation (2.30). The assumptions considered in Subsection 2.2 imply that
the strain gradient tensor µ = ∇ε = εij|k g

kgigj for the Kirchhoff–Love shell
model contains three sets of non-zero components µγαβ, µ3αβ and µi33. The
first one can be expressed, with the aid of (2.13) and (2.11), in the form

µγαβ = εαβ|γ = εαβ,γ − Γλαγελβ − Γλβγεαλ, (3.1)

or with (2.24) as
µγαβ = ααβ|γ + θ3βαβ|γ. (3.2)

The second one is written as

µ3αβ = εαβ|3 = εαβ,3 + bλαελβ + bλβεαλ = εαβ,3 + εαβ;3, (3.3)

where εαβ;3 denotes the difference between the covariant and partial deriva-
tives:

εαβ;3 = εαβ|3 − εαβ,3. (3.4)

In view of (2.24), it can be shown that εαβ,3 = βαβ and µ3αβ can be rewritten
as:

µ3αβ = βαβ + ααβ;3 + θ3βαβ;3. (3.5)

Likewise the classical strain component ε33, the strain gradient components
µi33 = ε33|i contribute to the strain energy implicitly.

The plane stress assumption and expression (2.35) imply the existence
of 12 (9 independent) non-zero components in the double stress tensor. For
them, we can write, in accordance with (2.32), a higher-order analogue of
the plane-stress Hooke’s law in the form

τ iαβ = Âiαβjλρµjλρ = l2aijĈαβλρµjλρ = l2Ĉαβλρελρ|i = l2σαβ|i. (3.6)

In view of (2.24), (2.28), (3.5) and (3.6), let us accomplish the following
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derivation:∫ h/2

−h/2
τ

... µ dθ3 =

∫ h/2

−h/2
τ iαβµiαβ dθ3

= l2
∫ h/2

−h/2

(
Ĉαβλρ(αλρ + θ3βλρ)

)|i (
ααβ + θ3βαβ

)
|i dθ3

= l2nαβ|γααβ|γ + l2mαβ|γβαβ|γ

+ l2
∫ h/2

−h/2

(
(Ĉαβλραλρ);3 + Ĉαβλρβλρ + θ3(Ĉαβλρβλρ);3

) (
βαβ + ααβ;3 + θ3βαβ;3

)
dθ3

= l2
(
nαβ|γααβ|γ +mαβ|γβαβ|γ +mαβ

;3βαβ;3

)
+ l2

(
nαβ ;3 + (12/h2)mαβ

;3

)
(βαβ + ααβ;3) ,

(3.7)

which can be rewritten in tensor notation and inserted into the expression
for the gradient-elastic part of the strain energy variation:

δW∇ =

∫
V

τ
... δµ dV =

∫
A

∫ h/2

−h/2
τ

... δµ dθ3 dA

= l2
∫
A

(
∇Sn

... δ(∇Sα) +∇Sm
... δ(∇Sβ)

)
dA

+ l2
∫
A

(
12

h2
m+ n;3

)
: δ (β +α;3) dA

+ l2
∫
A

(
m;3 : δ(β;3)

)
dA,

(3.8)

where we introduce the notation Φ;3 for the tensor analogue of (3.4):

Φ;3 = Φαβ;3a
αaβ. (3.9)

Remark 1. From expression (3.8), we can see that in contrast to the clas-
sical shell theory, the strain energy is not fully decoupled into the membrane
and bending parts due to the terms containing the derivative with respect to
θ3. The importance of taking into account these terms has been shown in
contributions devoted to gradient-elastic Euler–Bernoulli beam models [15]
and Kirchhoff plates [27, 45].
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In what follows, we use notations t = tαaα and ν = ναaα standing,
accordingly, for unit vectors tangential and normal to a boundary curve Γ
of the shell midsurface and lying in a plane formed by the tangential vectors
a1,a2 in a certain point of the boundary.

In addition to four independent boundary variables ut, uν , u3, and u3,ν of
the conventional Kirchhoff–Love shell model, we introduce three higher-order
independent variables ut,ν , uν,ν , and u3,νν , similar to what has been done for
the gradient-elastic 2D plane (membrane) [28] and Kirchhoff plate problems
[27] as well as the second strain gradient elasticity theory [9]. Here we use
the following notations:

ut = u · t, uν = u · ν,
u∗,ν = ν · ∇u∗ = ναu∗,α, u3,νν = νν : ∇∇u3 = νβναu3,αβ,

(3.10)

where the symbol ∗ takes values from the set {3, ν, t}. Note that the non-
standard boundary variables ut,ν , uν,ν along with the standard ones ut, uν
associate with the membrane type boundary conditions, whereas u3,νν being
the curvature-related boundary variable together with the rotation-related
u3,ν and deflection u3 associate with the boundary conditions of bending
type.

With these notations, we can construct the following expression for the
variation of the virtual work performed by external forces along the variations
of displacements and independent boundary variables:

δWext =

∫
A

p · δu dA+

∫
Γ

P · δu dΓ +

∫
Γ

R · (ν · ∇δu) dΓ

+

∫
Γ

M(ν · ∇δu3) dΓ +

∫
Γ

M(νν : ∇∇δu3) dΓ.

(3.11)

The acting external loads are the distributed force per unit area p = p1a1 +
p2a2 + p3a3, traction force per unit length P = P tt + P νν + P 3a3, double
traction force R = Rtt + Rνν, twisting moment per unit length M , and
double twisting moment M. We assume that there are no loads applied at
sharp corners.

Substituting the expressions for strain energy variations (2.29), (3.8) and
variation of the work done by external forces (3.11) into the principle of
virtual work

δW = δ(Wext −Wint) = 0 (3.12)
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and using constitutive expressions (2.28), we can write the weak form of the
gradient-elastic Kirchhoff–Love shell problem:

Problem 1. For p ∈ [L2(A)]3, find u = (u1, u2, u3), (u1, u2) ∈ U ⊂
[H2(A)]2, u3 ∈ V ⊂ H3(A) such that

a(u,v) = l(v) ∀v = (v1, v2, v3), (v1, v2) ∈ U ⊂ [H2(A)]2, v3 ∈ V ⊂ H3(A),
(3.13)

where the bilinear form a : (U × V ) × (U × V) → R, a(u,v) = ac(u,v) +
a∇(u,v), and load functional l : U × V → R are defined as

ac(u,v) =

∫
A

(
hα(u) : Ĉ : α(v) +

h3

12
β(u) : Ĉ : β(v)

)
dA, (3.14)

a∇(u,v) =

∫
A

(
h∇Sα(u)

... Â
... ∇Sα(v) +

h3

12
∇Sβ(u)

... Â
... ∇Sβ(v)

)
dA

+ l2
∫
A

(
h
(
β(u) +α;3(u)

)
: Ĉ :

(
β(v) +α;3(v)

)
+
h3

12
β;3(u) : Ĉ : β;3(v)

)
dA,

(3.15)

l(v) =

∫
A

p · v dA. (3.16)

Trial function spaces U ⊂ [H2(A)]2 and V ⊂ H3(A) should contain functions
satisfying the essential boundary conditions of the problem under consider-
ation. Accordingly, functions from test function spaces U ⊂ [H2(A)]2 and
V ⊂ H3(A) satisfy the corresponding homogeneous essential boundary condi-
tions.

In the foregoing, we use notation Hs(A) for a real Sobolev space of order s
consisting of square integrable functions defined on A with square-integrable
weak derivatives up to order s (note that L2 = H0). Components of the

tensor Â can be found in accordance with (3.6).

3.2. Strong form

In order to derive the strong form of Problem 1, we rewrite the sum
of energy expressions (2.29) and (3.8) in a form similar to the one for the
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classical elastic shell model:

δWint =

∫
A

(ñ : δα+ m̃ : δβ) dA+ l2
∫

Γ

ν · (∇Sn : δα+∇Sm : δβ) dΓ,

(3.17)

where tensors ñ and m̃ are defined as follows:

ñ =
(
nαβ − l2nαβ|γγ + 24

l2

h2
mγβbαγ − 2l2(nλβbγλ + nγλbβλ)bαγ

)
aαaβ, (3.18)

m̃ =
(

(1 + 12
l2

h2
)mαβ − l2mαβ|γγ − 2l2nγβbαγ − 2l2(mλβbγλ +mγλbβλ)bαγ

)
aαaβ.

(3.19)
Due to the symmetry of the strain tensors α and β, the first integral

in (3.17) can be rewritten in the following form (with the use of (2.25) and
(2.26)):∫

A

(ñ : δα+ m̃ : δβ) dA =

∫
A

(
(ñsym)αβ(δuα|β − bαβδu3)

−(m̃sym)αβ(δu3|αβ + 2bγαδuγ|β + bγα|βδuγ − b
γ
αbγβδu3)

)
dA,

(3.20)

where

ñsym =
(
nαβ − l2nαβ|γγ + 12

l2

h2
(mγβbαγ +mγαbβγ)

−l2(nλβbαγ + nλαbβγ)bγλ − 2l2nγλbβλb
α
γ

)
aαaβ,

(3.21)

m̃sym =
(

(1 + 12
l2

h2
)mαβ − l2mαβ|γγ − l2(nγβbαγ + nγαbβγ)

−l2(mλβbαγ +mλαbβγ)bγλ − 2l2mγλbβλb
α
γ

)
aαaβ.

(3.22)

By substituting (3.20) into (3.17) and accomplishing integration by parts,
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the variation of the internal energy takes the form

δWint =

∫
A

(
−(ñsym)αβ |β + 2(m̃sym)γβ |β b

α
γ + (m̃sym)γβ bαγ|β

)
δuα dA

+

∫
A

(
−(ñsym)αβbαβ − (m̃sym)αβ |βα + (m̃sym)αβbγαbγβ

)
δu3 dA

+

∫
Γ

(
(ñsym)αβνβ − 2(m̃sym)γβνβb

α
γ

)
δuα dΓ

−
∫

Γ

(
(m̃sym)αβ νβδu3|α

)
dΓ +

∫
Γ

(
(m̃sym)αβ |β ναδu3

)
dΓ

+ l2
∫

Γ

(
ναn

βγ|α(δuγ|β − bβγδu3)
)

dΓ

− l2
∫

Γ

(
ναm

βγ|α(δu3|γβ + 2bλβδuλ|γ + bλβ|γδuλ − bλβbλγδu3)
)

dΓ.

(3.23)

With (3.23) and (3.11), the principle of virtual work (3.12) results in the
strong form governing equations of the Kirchhoff–Love shell problem in the
framework of the strain gradient elasticity theory:

(ñsym)αβ |β − 2(m̃sym)γβ |β b
α
γ − (m̃sym)γβ bαγ|β + pα = 0, (3.24a)

(ñsym)αβbαβ + (m̃sym)αβ |βα − (m̃sym)αβbγαbγβ + p3 = 0, (3.24b)

with appropriate boundary conditions derived below.

Remark 2. Substitutions nαβ ↪→ (ñsym)αβ and mαβ ↪→ (m̃sym)αβ into (3.24)
result in the governing equations of the classical Kirchhoff–Love shell model.

Let us modify the boundary-integral terms of (3.23) separately with the
use of the formulae derived in Appendix A. With the aid of (A.4), substi-
tuting (m̃sym)αβνβ ↪→ fα and δu3 ↪→ u, we have:∫

Γ

(
(m̃sym)αβνβδu3|α

)
dΓ =

−
∫

Γ

tγ
(
(m̃sym)αβνβtα

)
|γ δu3 dΓ +

∫
Γ

(m̃sym)αβνβναν
ρδu3,ρ dΓ.

(3.25)

Next, re-indexing in the following combination of two terms results in:

l2
∫

Γ

(
ναn

βγ|αδuγ|β − 2ναm
βγ|αbλβδuλ|γ

)
dΓ

= l2
∫

Γ

(
νγn

βα|γ − 2νλm
γβ|λbαγ

)
δuα|β dΓ.

(3.26)
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Formula (A.2) with substitutions (νγn
βα|γ−2νλm

γβ|λbαγ ) ↪→ Φαβ and δuα|β ↪→
vβ|α changes (3.26) to the following form:

−l2
∫

Γ

tρ
(
tβ(νγn

βα|γ − 2νλm
γβ|λbαγ )

)
|ρ δuα dΓ

+ l2
∫

Γ

νβ(νγn
βα|γ − 2νλm

γβ|λbαγ )νρδuα|ρ dΓ.

(3.27)

Finally, for the last modified term, we use (A.11) with substitutions ναm
βγ|α ↪→

Φαβ and δu3|γβ ↪→ u,βα:

l2
∫

Γ

ναm
βγ|αδu3|γβ dΓ = l2

∫
Γ

tρ
(
tλ(tβtγναm

βγ|α)|λ
)
|ρ δu3 dΓ

−l2
∫

Γ

tλνγ(tβναm
βγ|α)|λ ν

ρδu3,ρ dΓ + l2
∫

Γ

νβνγναm
βγ|ανλνρδu3,ρλ dΓ

−l2
∫

Γ

tλ(νβtγναm
βγ|α)|λ(ν

ρδu3,ρ − δu3) dΓ.

(3.28)

By the substitution of (3.25)–(3.28) into (3.23) and by utilizing the prin-
ciple of virtual work (3.12), one can find the boundary conditions of the

16



gradient-elastic Kirchhoff–Love shell problem:

(ñsym)αβνβ − 2(m̃sym)γβνβb
α
γ

−l2tλ
(
tβ(νγn

βα|γ − 2νλm
γβ|λbαγ )

)
|λ − l

2νλm
βγ|λbαβ|γ = Pα or

uα = ǔα,

(3.29a)

(m̃sym)αβ |β να − t
γ
(
(m̃sym)αβνβtα

)
|γ − l

2ναn
βγ|αbβγ

+l2ναm
βγ|αbλβbλγ + l2tρ

(
tλ(tβtγναm

βγ|α)|λ
)
|ρ

+l2tλ(νβtγναm
βγ|α)|λ = P 3 or

u3 = ǔ3,

(3.29b)

νβ(νγn
βα|γ − 2νλm

γβ|λbαγ ) = Rα or

νλuα|λ = ϕ̌α,
(3.29c)

(m̃sym)αβνβνα − l2tλνγ(tβναmβγ|α)|λ

−l2tλ(νβtγναmβγ|α)|λ = M or

νρu3,ρ = ω̌,

(3.29d)

l2νβνγναm
βγ|α =M or

νλνρu3,ρλ = φ̌,
(3.29e)

where notation (̌.) stands for the prescribed values of the boundary variables.

4. Numerical implementation

The formulation of Problem 1 is written in terms of classical strain and
stress resultant tensors and their derivatives. In regard to the numerical
implementation, it means that we can follow the standard procedure for
the classical shell element formulation (e.g. [33]) and introduce the higher-
order terms as additional components. Isogeometric analysis (IGA), acting as
the numerical method of the present contribution, utilizes CAD-compatible
NURBS functions as the shape functions NI , where the capital Latin index
I takes integer values between 1 and NCP being the total number of control
points. Within IGA, as typical, we follow the isoparametric paradigm by
using exactly the same NURBS functions for both the representation of the
geometry and the approximations of the trial and test functions uh and vh.
In such a manner, the trial function approximation is written in a matrix
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form as

uh =

uh1uh2
uh3

 =

N1 0 0 N2 0 0 N3 0 0 ...
0 N1 0 0 N2 0 0 N3 0 ...
0 0 N1 0 0 N2 0 0 N3 ...

d = Nd,

(4.1)
where notation d stands for the column vector of unknown control point
displacements d = [d1

1 d
1
2 d

1
3 d

2
1 d

2
2 d

2
3 d

3
1 d

3
2 d

3
3 d

4
1 ...]

T with the super- and
subscripts pertaining to the control point number and the displacement com-
ponent ui, respectively.

Substituting uh and vh in place of the exact trial and test functions u
and v, we rewrite Problem 1 in the standard matrix form:

Kd = f , (4.2)

where stiffness matrix K is defined as

K =

∫
A

(
h(TLmN )TD(TLmN ) +

h3

12
(TLbN )TD(TLbN )

+ l2h

(
T∇

[
D1Lm

D2Lm

]
N

)T [
D 0
0 D

](
T∇

[
D1Lm

D2Lm

]
N

)
+ l2

h3

12

(
T∇

[
D1Lb

D2Lb

]
N

)T [
D 0
0 D

](
T∇

[
D1Lb

D2Lb

]
N

)
+ l2h

(
T (Lb + D3̄Lm)N

)T
D
(
T (Lb + D3̄Lm)N

)
+ l2

h3

12

(
TD3̄LbN

)T
D
(
TD3̄LbN

))
dA,

(4.3)

and the right hand side force vector f is given as

f =

∫
A

NT

p1

p2

p3

 dA. (4.4)

In (4.3), operators Lm and Lb (see (B.1) and (B.2), accordingly) are the
differential matrix operators arising in the definitions of the matrix forms for
the first and second strain tensors:

α = LmNd, β = LbNd, (4.5)
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where we slightly abuse the notations α and β meaning here not tensors, as
above, but column vectors containing tensor components, in accordance with
Voigt notation: α = [α11 α22 2α12]T , β = [β11 β22 2β12]T . With this, the
gradients of strain tensors arising in the expression for the gradient-elastic
part of the strain energy (3.8) take the following matrix forms:

∇Sα =


α11|1
α22|1
2α12|1
α11|2
α22|2
2α12|2

 =


D1Lm

D2Lm

Nd, ∇Sβ =


β11|1
β22|1
2β12|1
β11|2
β22|2
2β12|2

 =


D1Lb

D2Lb

Nd,
(4.6)

α;3 =

 α11;3

α22;3

2α12;3

 = D3̄LmNd, β;3 =

 β11;3

β22;3

2β12;3

 = D3̄LbNd. (4.7)

Information about the higher-order combinations of operators DαLm, D3̄Lm,
DαLb, and D3̄Lb can be found in Appendix B. Operator Lb contains the
second-order derivatives itself, and in combination with Dα it engenders the
third-order derivatives, which requires at least a C2-continuous finite-element
discretization. IGA with bi-cubic (and higher) NURBS shape functions nat-
urally provide this continuity. Transformation matrices T and T∇ also ap-
pearing in (4.3) perform the changes of the coordinate bases. The material
matrix D (see definition (C.5)) helps to establish the matrix form of the con-
stitutive equations for stress resultants n and m. More information about
these matrices can be found in Appendix C.

Integration in expressions (4.3) and (4.4) can be accomplished in a stan-
dard way by applying an appropriate integration scheme including the cal-
culation of values of the shape functions at the integration points and mul-
tiplying them by the weights with a consecutive summation. In the present
contribution, we skip the detailed description of the integration process.

5. Numerical results

The lack of analytical and numerical reference solutions for the present
shell problems makes the verification process more complicated. For the
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purpose of testing our gradient-elastic shell element implementation, we ac-
complish the following steps. First, we investigate the relative increase in
bending rigidity arising in micro- and nano-objects when their characteristic
sizes become compatible to the length scale parameters (so-called size-effect,
see Figure 5.1). Results for a bended strip modelled by the shell elements
are compared to the analytical solution of the corresponding Euler–Bernoulli
beam model. Second, we extend the Scordelis–Lo roof problem, a well-known
benchmark example for classical shell formulations, to strain gradient elastic-
ity. Third, a partially simply supported hyperbolic paraboloid shell affected
by a concentrated load is considered and convergence of displacements and
stress resultants at the point of singularity is studied. For the second and
third examples, we perform a comparison with a converged reference solu-
tion obtained with 3D solid simulations for different values of the length scale
parameter l.

5.1. Bending of a strip

Let us consider a bending problem of a thin strip (wide thin beam) which
is clamped on one of the short edges and affected by a distributed transversal
load Pz = 1 on the other short edge (see Figure 5.2). The problem parameters
are chosen as follows: Young’s modulus E = 166000, Poisson’s ratio ν =
0, 0.3, length scale parameter l = 0, 0.05, 0.1, length L = 20, width H = 5,
thickness h = 0.1. A fully converged numerical solution is obtained for a
model consisting of 8x32 shell elements with bi-quartic shape functions.
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Figure 5.1: Bending of a strip (typical size effect at micro-scale). Clamped cantilever
micro-beam: thickness dependence of bending rigidity D/D0 [15, 46]

.

Figure 5.2: Bending of a strip. Problem statement and deflection for parameters ν = 0.3,
l = 0.01

.

In accordance with the Euler–Bernoulli gradient-elastic beam model, bend-
ing rigidity D∇ normalized by the bending rigidity of the classical model D0

for a rectangular cross section is equal to [15, 16]

D∇
D0

= 1 + 12
l2

h2
. (5.1)

The comparison in Table 1 between the relative bending rigidities of the
(analytical) beam and (numerical) shell models reveals the agreement of the
results.
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l = 0.01 l = 0.05 l = 0.1

D∇/D0, analytical beam model 1.12 4 13
D∇/D0, shell model (ν = 0) 1.120001 4.000028 13.000100
D∇/D0, shell model (ν = 0.3) 1.120006 4.000201 13.000787

Table 1: Bending of a strip. Comparison between the relative bending rigidities for differ-
ent models and for different values of gradient-elastic parameter l

A similar size effect is observed for all the problems presented in this
section. In Figure 5.1, one can also see that the shell model gives practically
the same result as the Euler–Bernoulli beam model despite of the Poisson
effect and both models are able to explain the experimentally observed size
effect [46]. The ability of the model for capturing the size effect stems from
the terms with factor l2/h2 in (3.18) and (3.19) (cf. [15] and [27] for beams
and plates, respectively)

5.2. Scordelis–Lo roof problem

The Scordelis–Lo roof problem is one of the so-called ”shell obstacle
course” problems [47]. It consists of a cylindrical shell section affected by
a vertical distributed area loading pz = −90 (see the schema and bound-
ary conditions in Figure 5.3a). Parameters are defined as follows: R = 25,
L = 50, ϕ = 80°, thickness h = 0.25, Young’s modulus E = 4.32 · 108, and
Poisson’s ratio ν = 0.

(a) Shell problem statement (b) 3D solid model

Figure 5.3: Scordelis–Lo roof.

Results for the maximal displacement with different values of parameter
l and different basis functions orders are presented in Figure 5.4.
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(b) l = 0.1

Figure 5.4: Scordelis–Lo roof. Convergence of the maximal midsurface displacement for
different values of parameter l.

In order to verify the converged results, we compare them to the results of
a 3D solid simulation (see the model in Figure 5.3b). The solid model consists
of 128× 128× 2 fifth-order NURBS elements. The comparison presented in
Table 2 shows that the differences between the results for the shell and solid
models do not exceed 0.5% for both classical and gradient-elastic versions.

l = 0 l = 0.05 l = 0.1

uz, Shell −0.3006 −0.2278 −0.1386
uz, Solid −0.3015 −0.2285 −0.1391

Difference 0.30% 0.31% 0.36%

Table 2: Scordelis–Lo roof. Comparison of the midsurface maximal displacement for the
shell and solid models and different values of parameter l.

5.3. Partly clamped hyperbolic paraboloid

The geometry for this problem is taken from a typical benchmarking [48]
example. Let us consider a shell with a hyperbolic geometry described by
z = x2 + y2, (x, y) ∈ [−L/2, L/2]2 and depicted in Figure 5.5a. The shell
body is clamped along edge x = −L/2 and the concentrated load Px acts
in the middle of the opposite edge (point x = L/2, y = 0) in the direction
opposite to the x-axis. The problem parameters are given as L = 10, h = 0.1,
Px = 1, E = 210000, ν = 0.33, l = 0, 0.01.
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(a) Shell problem statement

(b) 3D solid model

Figure 5.5: Partly clamped hyperbolic paraboloid affected by a point load.

In Figure 5.6, the convergence curves for displacements at the point of the
applied load for different basis function orders are presented. The comparison
with the results of 3D solid simulation (obtained for a model with 100×100×2
third-order NURBS elements) shows that the differences do not exceed 5%
and this holds true for both classical and gradient elasticity (see Table 3).
Moreover, the simulations accomplished with the aid of the standard Finite
Element Method in a commercial software Abaqus® show the same difference
between shell and solid models for this problem in the framework of classical
elasticity (l = 0).
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Figure 5.6: Hyperbolic paraboloid. Displacement convergence in the point of the applied
load for different polynomial orders for the classical and gradient-elastic cases.

l = 0 l = 0.01

uz, Shell 0.1532 0.1324
uz, Solid 0.1600 0.1393

Difference 4.25% 4.95%

Table 3: Hyperbolic paraboloid. Comparison of the midsurface maximal displacement for
the shell and solid models and different values of parameter l.

Let us turn our attention to the stress resultants at the point of the applied
load. At this point, direction 2 coincides with the global axis y, whereas
direction 1 is perpendicular to direction 2 and belongs to the tangential plane.
In Figure 5.7, we depict a convergence study for the stress resultants which
are not negligibly small at the point of interest. Membrane forces n11 and n22

(Figure 5.7a,b), shear force q1 (Figure 5.7c) and bending moment m22 (Figure
5.7d, in semi-logarithmic scale) increase without limit with decreasing mesh
size at the point of singularity for the classical case, whilst in the framework
of gradient elasticity they converge to a limited value.
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(a) Membrane force n11
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Figure 5.7: Hyperbolic paraboloid. Non-zero stress resultants at the point of applied load.

Finally, Figure 5.8 shows the fields of membrane forces n11 and twisting
moments m12 for the classical (l = 0) and gradient-elastic case (l = 0.01).
One can see that the distribution of these force components is qualitatively
almost identical for both cases but the maximal and minimal values are
significantly different. The same observations have been made for the other
forces and moments which are not presented here.
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(a) Membrane force n11, l = 0 (b) Membrane force n11, l = 0.01

(c) Twisting moment m12, l = 0 (d) Twisting moment m12, l = 0.01

Figure 5.8: Hyperbolic paraboloid. Fields of stress resultants for the classical and gradient-
elastic shell model with l = 0.01.

6. Conclusions

We have derived the governing equations, boundary conditions and vari-
ational formulation for the Kirchhoff–Love shell model in the context of a
one-parameter variant of Mindlin’s strain gradient elasticity theory. The cor-
responding numerical method based on an isogeometric Cp−1-continuous ap-
proach with NURBS basis functions of order p ≥ 3 has been implemented into
a commercial finite element software (Abaqus®) by adopting the so-called
user element concept. The implementation has been verified and the conver-
gence properties of the method have been confirmed by a set of benchmark
problems. Regarding the shell model itself, the results demonstrate, first,
that the model is able to capture the size effect related to the relative stiff-
ening of thin micro-sized structures in bending. Second, the model is shown
to avoid stress singularities at a point of a concentrated load. This example
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demonstrates one of the properties of strain gradient elasticity: unphysical
singularities presented in the classical theory of elasticity are smoothened in
the strain gradient theory (see [49, 18, 50] for some examples of applications
related to fracture mechanics).

For widening the applicability of the model, one of our interests is to
extend the one-parameter model to a more general strain gradient model or to
the cases of geometrical and material nonlinearities. Furthermore, we want to
investigate the various locking mechanisms that can appear in the presented
model, in particular the classical membrane locking and its gradient-elastic
counterpart. The higher-order patch connections providing C2-continuity
would allow more complex shell geometries.
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Appendix A. Integration by parts formulae in tensor algebra

The derivations presented here are accomplished with the aid of contri-
bution [9].

Case 1. Notation Φ stands for an arbitrary second-order tensor, v =
aαvα is a smooth vector function defined on a closed space curve Γ containing
sharp wedges Ci:∫

Γ

Φ : ∇Sv dΓ =

∫
Γ

Φ : (t Dt + ν Dν)v dΓ

=
∑
i

[t ·Φ]Ci
· v −

∫
Γ

Dt(t ·Φ) · v dΓ +

∫
Γ

ν ·Φ ·Dνv dΓ,

(A.1)
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with Dt = t · ∇S, Dν = ν · ∇S denoting the tangential and normal parts of
the surface differential operator. The quantity enclosed by the brackets [ . ]
is the difference between its values on smooth pieces of the curve Γ divided
by wedges Ci. Expression (A.1) can be also written in the index notations:∫

Γ

Φαβvβ|α dΓ =
∑
i

[tαΦαβ]Ci
vβ −

∫
Γ

tλ(tαΦαβ)|λvβ dΓ +

∫
Γ

ναΦαβνλvβ|λ dΓ.

(A.2)

Case 2. Notation f stands for an arbitrary vector field, u is a smooth
scalar function defined on a closed space curve Γ:∫

Γ

f · ∇Su dΓ =
∑
i

[f · t u]Ci
−
∫
Γ

Dt(f · t)u dΓ +

∫
Γ

f · ν Dνu dΓ. (A.3)

Expression (A.3) in index notations is written as follows (note that u|α = u,α
for scalar functions):∫

Γ

fαu,α dΓ =
∑
i

[fαtαu]Ci
−
∫
Γ

tβ(fαtα)|β u dΓ +

∫
Γ

fαναν
βu,β dΓ. (A.4)

Case 3. Combination of cases 1 and 2. Substituting v = ∇Su into
(A.1), we can write the following:∫

Γ

Φ : ∇S∇Su dΓ =
∑
i

[t ·Φ · ∇Su]Ci

−
∫
Γ

Dt(t ·Φ) · ∇Su dΓ +

∫
Γ

ν ·Φ ·Dν∇Su dΓ.

(A.5)

Second term from the right hand side of (A.5) can be modified with the aid
of (A.3) as (substituting f = Dt(t ·Φ)):∫

Γ

Dt(t ·Φ)·∇Su dΓ =
∑
i

[Dt(t ·Φ) · t u]Ci

−
∫
Γ

Dt(Dt(t ·Φ) · t)u dΓ +

∫
Γ

Dt(t ·Φ) · ν Dνu dΓ.

(A.6)
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Next, by the use of expression

Dν∇Su = ν · ∇S∇Su = ∇S(ν · ∇Su)− (∇Sν) · ∇Su, (A.7)

which after the division of differential operator on the tangential and normal
parts changes to

νD2
νu+ tDtDνu−DννDνu−DtνDtu = νD2

νu+ tDtDνu− tDtu, (A.8)

where D2
ν = DνDν = (ν · ∇S)(ν · ∇S), we can write the third term from the

right hand side of (A.5) as∫
Γ

ν ·Φ ·Dν∇Su dΓ =

∫
Γ

ν ·Φ · νD2
νu dΓ +

∫
Γ

ν ·Φ · tDt(Dνu− u) dΓ

=

∫
Γ

ν ·Φ · νD2
νu dΓ +

∑
i

[ν ·Φ · t(Dνu− u)]Ci
−
∫
Γ

Dt(ν ·Φ · t)(Dνu− u) dΓ.

(A.9)

Remark 3. The derivations are done assuming that Dνν = 0.

Finally substituting (A.6) and (A.9) into (A.5), we obtain the following
expression∫

Γ

Φ : ∇S∇Su dΓ =

∫
Γ

Dt (Dt(t ·Φ) · t)u dΓ−
∫
Γ

Dt(t ·Φ) · ν Dνu dΓ

+

∫
Γ

ν ·Φ · νD2
νu dΓ−

∫
Γ

Dt(ν ·Φ · t)(Dνu− u) dΓ,

(A.10)

which is written in the index form as follows:∫
Γ

Φαβu,βα dΓ =

∫
Γ

tγ
(
tλ(tαΦαβ)|λtβ

)
|γ u dΓ

−
∫
Γ

tλ(tαΦαβ)|λνβ ν
γu,γ dΓ +

∫
Γ

ναΦαβνβν
λνγu,γλu dΓ

−
∫
Γ

tλ(ναΦαβtβ)|λ(ν
γu,γ − u) dΓ.

(A.11)

Remark 4. In expressions (A.10) and (A.11), the terms related to jumps
on the wedges Ci are omitted.
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Appendix B. Matrix operators Lm and Lb

The matrix operators used in (4.5) have the definitions which are obtained
directly from (2.25) and (2.26):

Lm =

D1 0 −2b11

0 D2 −2b22

D2 D1 −4b12

 , (B.1)

Lb = −

 2b1
1D1 + b1

1|1 2b2
1D1 + b2

1|1 D1D1 − b1
1b11 − b1

2b12

2b1
2D2 + b1

2|2 2b2
2D2 + b2

2|2 D2D2 − b1
2b12 − b2

2b22

2b1
1D2 + 2b1

2D1 + 2b1
1|2 2b2

1D2 + 2b2
2D1 + 2b2

1|2 2D1D2 − 2b1
1b12 − 2b2

1b22

 ,
(B.2)

where notations D1 and D2 are used for the operators performing covariant
derivation, such that Dαui = ui|α. Operator D3̄ used below performs the
following: D3̄ui = ui;3. It is worth to be mentioned that the matrix operators
Lm and Lb depend on the geometric quantities, namely, curvature coefficients
bαβ = bαβ(r), bβα = bβα(r) and their covariant derivatives which, in turn,
depend on geometry point r = r(N ,X) with X denoting the control point
coordinates.

The combination of operators DαLm, DαLb, D3̄Lm, D3̄Lb arising in defi-
nition of the stiffness matrix (4.3), affects their operands subsequently. How-
ever, they can be written as single higher-order matrix-operators. For in-
stance, element [1,3] of the combination D1Lm is equal to −2b11|1 − 2b11D1.

For the Kirchhoff plate model, which is a particular case of the considered
shell model, operators Lm and Lb can be simplified by setting the curvature
coefficients equal to zero:

Lm =

D1 0 0
0 D2 0

D2 D1 0

 , Lb = −

0 0 D1D1

0 0 D2D2

0 0 2D1D2

 . (B.3)

Structure of operators in (B.3) shows that the plate problem decouples into
the bending and membrane parts, as expected.

Appendix C. Coordinate transformation matrices

It is evident that components of any tensor depend on the chosen co-
ordinate system. So, the strain tensor in the curvilinear local base can be
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expressed as ε = εαβa
αaβ, whilst in the local Cartesian basis as ε = ε̄αβe

αeβ.
Components εαβ and ε̄αβ are interrelated through the formula:

ε̄λρ = εαβ(aα · eλ)(aβ · eρ). (C.1)

Using Voigt notation, we can write this formula in the matrix form: ε̄11

ε̄22

2ε̄12

 = T

 ε11

ε22

2ε12

 , (C.2)

where the transformation matrix T is defined as follows:

T =

 (a1 · e1)2 0 0
(a1 · e2)2 (a2 · e2)2 (a2 · e2)(a1 · e2)

2(a1 · e1)(a1 · e2) 0 (a1 · e1)(a2 · e2)

 . (C.3)

Expression (C.3) takes into account that e1 = a1

|a1| by definition and, subse-

quently, a2 · e1 = 0.
Necessity of the coordinate transformation arises due to the constitutive

relation: σ̄11

σ̄22

σ̄12

 = D

 ε̄11

ε̄22

2ε̄12

 , (C.4)

where σ̄αβ denotes the components of Cauchy stress tensor expressed in a
local Cartesian basis. The matter is that the material matrix D can be built
using physical parameters only in Cartesian basis. For isotropic material it
takes the form:

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 . (C.5)

Note that formula (C.2) can be applied for transformation of the compo-
nents of tensors α and β without any modifications of matrix T . By analogy
with (C.4), we can write the matrix forms of constitutive law (2.28) for the
stress resultants:n̄11

n̄22

n̄12

 = h D

 ᾱ11

ᾱ22

2ᾱ12

 ,
m̄11

m̄22

m̄12

 =
h3

12
D

 β̄11

β̄22

2β̄12

 . (C.6)
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Regarding the gradient-elastic analogues of expression (C.6), the following
can be established. Tensors τ and µ and, accordingly, their resultants and
parts ∇n, ∇m and ∇α, ∇β, include 9 non-zero independent components
each. With the aid of Voigt notation, we can write the following constitutive
laws in the matrix form (i = {1, 2, 3}):n̄11|i

n̄22|i

n̄12|i

 = h D

 ᾱ11|i
ᾱ22|i
2ᾱ12|i

 ,
m̄11|i

m̄22|i

m̄12|i

 =
h3

12
D

 β̄11|i
β̄22|i
2β̄12|i

 . (C.7)

Similarly to (C.1), the transformation rule for the third-order tensor is writ-
ten as

µ̄λρδ = µαβγ(a
α · eλ)(aβ · eρ)(aγ · eδ), (C.8)

and in the matrix form as
µ̄111

µ̄122

2µ̄112

µ̄211

µ̄222

2µ̄212

 = T∇


µ111

µ122

2µ112

µ211

µ222

2µ212

 , (C.9)

where the higher-order transformation matrix T∇ is defined as

T∇ =


T111111 0 0 0 0 0
T111111 T112222 T112122 0 0 0
T111111 0 T111122 0 0 0
T211111 0 0 T221111 0 0
T212121 T212222 T212122 T222121 T222222 T222122

T211121 0 T211122 T221121 0 T221122

 , (C.10)

with Tαλβργδ = (aα · eλ)(aβ · eρ)(aγ · eδ). Components µ3αβ are translated to
the Cartesian basis with the aid of transformation matrix T (C.3) by analogy
with (C.2):  µ̄311

µ̄322

2µ̄312

 = T

 µ311

µ322

2µ312

 . (C.11)

Expressions (C.9) and (C.11) hold true also for the components of tensors
∇α and ∇β.
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bending strip method for isogeometric analysis of Kirchhoff–Love shell
structures comprised of multiple patches, Computer Methods in Applied
Mechanics and Engineering 199 (37) (2010) 2403–2416.

[35] N. Nguyen-Thanh, N. Valizadeh, M. Nguyen, H. Nguyen-Xuan,
X. Zhuang, P. Areias, G. Zi, Y. Bazilevs, L. D. Lorenzis, T. Rabczuk,
An extended isogeometric thin shell analysis based on Kirchhoff–Love
theory, Computer Methods in Applied Mechanics and Engineering 284
(2015) 265–291.

[36] N. Nguyen-Thanh, K. Zhou, X. Zhuang, P. Areias, H. Nguyen-Xuan,
Y. Bazilevs, T. Rabczuk, Isogeometric analysis of large-deformation thin
shells using RHT-splines for multiple-patch coupling, Computer Meth-
ods in Applied Mechanics and Engineering 316 (2017) 1157–1178.

[37] T. X. Duong, F. Roohbakhshan, R. A. Sauer, A new rotation-free isoge-
ometric thin shell formulation and a corresponding continuity constraint
for patch boundaries, Computer Methods in Applied Mechanics and En-
gineering 316 (2017) 43–83.

37



[38] S. Khakalo, J. Niiranen, Isogeometric analysis of higher-order gradi-
ent elasticity by user elements of a commercial finite element software,
Computer-Aided Design 82 (2017) 154–169.
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