
Automating Behaviour Modelling for
Computer Generated Forces
Evolving Behaviour Trees with Observational

Learning

Gabriel Berthling-Hansen
Eivind Morch

Master of Science in Informatics

Supervisor: Odd Erik Gundersen, IDI
Co-supervisor: Rikke Amilde Løvlid, Forsvarets forskningsinstitutt

Department of Computer Science

Submission date: July 2018

Norwegian University of Science and Technology

Abstract

Computer generated forces are simulated entities that are used in simulation based
training and decision support in the military. The behaviour of these simulated
entities should be as realistic as possible, so that the lessons learned while simu-
lating are applicable in real situations. However, it is time consuming and difficult
to build behaviour models manually, and there has been an increasing interest in
automating this process using machine learning.
In this thesis, we investigate whether behaviour modelling for computer gener-

ated forces in complex, realistic simulation environments can be automated by us-
ing genetic programming to generate behaviour trees based on example behaviour.
A system for evolving behaviour trees was implemented in order to evaluate the
investigatedmethod. The system is able to connect to a complex simulation system
over high level architecture, and to use it for recording example behaviour and
simulating behaviour trees. With the use of this system, we were able to generate
behaviour trees that are close to identical to simple observed behaviour. The used
example behaviour was recorded from a simulated entity which was controlled
by a manually created behaviour tree. The results suggest that the investigated
method works for modelling simple behaviour, but further work is required to
evaluate how it performs with more complex behaviour.
The research presented in this thesis has three contributions: (i) proof that ge-

netic programming and behaviour trees can be used to mimic recorded, simple
behaviour in complex, realistic simulations; (ii) a proposed set of methods for mu-
tating behaviour trees; and (iii) a modular system for using genetic programming
to evolve behaviour trees through observational learning with a complex, realistic
simulation system over high level architecture.

Sammendrag

Datagenererte styrker er simulerte enheter som er brukt i simuleringsbasert trening
og beslutsningsstøtte i militæret. Oppførselen til disse simulerte enhetene bør være
så realistisk som mulig, slik at lærdommen fra disse simuleringene kan brukes i
virkelige situasjoner. Det er tidkrevende og vanskelig å bygge oppførselsmodeller
manuelt, og det har vært økende interesse for å automatisere denne prosessen ved
hjelp av maskinlæring.
I denne oppgaven undersøker vi om oppførselsmodellering for datagenererte

styrker i komplekse, realistiske simuleringsmiljøer kan automatiseres ved å bruke
genetisk programmering for å generere oppførselstrær ut fra eksempeloppførsel.
Det ble laget et system for å utvikle oppførselstrær gjennom evolusjon for å
kunne evaluere den undersøkte metoden. Systemet kan kobles til et komplekst
simuleringssystem over high level architecture, og bruke det til å ta opp eksem-
peloppførsel og simulere oppførselstrær. Ved å bruke dette systemet fikk vi til å
generere oppførselstrær som er nær identiske med enkel observert oppførsel. Ek-
sempeloppførselen som ble brukt ble tatt opp fra en simulert enhet som ble styrt av
et manuelt bygget oppførselstre. Resultatene antyder at den undersøkte metoden
fungerer for modellering av enkel oppførsel, men det er nødvendig med ytterligere
arbeid for å vurdere hvor godt den fungerer med mer komplisert oppførsel.
Forskningen som presenteres i denne oppgaven har tre bidrag: (i) bevis på at

genetisk programmering og oppførselstrær kan brukes til å imitere observert, enkel
oppførsel i kompliserte, realistiske simuleringer; (ii) et foreslått sett med metoder
for å mutere oppførselstrær; og (iii) et modulært system for bruk av genetisk
programmering til å utvikle oppførselstrær ved læring gjennom observasjon med
et komplekst, realistisk simuleringssystem over high level architecture.

Preface

This thesis has been authored by students at the Department of Computer Science
(IDI) at theNorwegianUniversity of Science and Technology (NTNU). The research
was conducted in cooperationwith theNorwegianDefenceResearchEstablishment
(FFI), as part of a larger project where the intent is to use the contributions of this
project for further research on automating behaviour modelling. The thesis was
supervised by Odd Erik Gundersen, an Associate Professor at NTNU, Rikke A.
(Løvlid) Seehuus, a senior scientist at FFI, and Martin Asprusten, a scientist at
FFI. MÄK provided us with student licenses for the simulation software that was
used during the research. This includes a simulation engine, a simulation GUI, a
Run-Time Infrastructure (RTI) and VR-Engage, among others.

Gabriel Berthling-Hansen
Eivind Morch

Oslo, July 15, 2018

Contents

1 Introduction 1

1.1 Background and Motivation . 1
1.2 Problem Outline . 2
1.3 Hypothesis and Research Questions 4
1.4 Research Approach . 5
1.5 Research Contributions . 6
1.6 Thesis Structure . 7

2 Background 9

2.1 Data-Driven Behaviour Modelling . 9
2.2 Behaviour Trees . 10
2.3 Genetic Algorithms and Genetic Programming 12
2.4 High Level Architecture . 13

2.4.1 Time Management . 13
2.5 MÄK Simulation Systems . 15

2.5.1 VR-Forces . 15
2.5.2 VR-Engage . 16

3 State of the Art 19

3.1 Observational Learning with Toy-Problems 19
3.2 Behaviour Evaluation in Complex Simulations 20
3.3 Observational Learning in Complex Simulations 21
3.4 Evolving Behaviour Trees . 22
3.5 Bloat-Control with Genetic Programming and Behaviour Trees 23
3.6 Summary . 24

4 Methods 27

4.1 System Overview . 27
4.1.1 Recording Data from Example Behaviour 29
4.1.2 Training Behaviour Trees . 29

4.2 Simulation Environment . 29
4.3 Data and Feature Extraction . 30

viii Contents

4.4 Behaviour Tree Representation . 31
4.5 Evolving Behaviour Trees . 31

4.5.1 NSGA-II . 31
4.5.2 Genetic Operators . 32
4.5.3 Behaviour Tree Evaluation and Bloat Control 35

4.6 Summary . 37

5 Implementation 39

5.1 System Interface . 39
5.1.1 Console Logging Output . 39
5.1.2 Training Progress Window . 40

5.2 System Components . 40
5.2.1 Simulation Package . 46
5.2.2 Unit Package . 47
5.2.3 Data Package . 49
5.2.4 Training Package . 50
5.2.5 Behaviour Tree Package . 52
5.2.6 Visualisation Package . 55
5.2.7 Experiments Package . 55

5.3 Setting up an Experiment . 56
5.4 System Processes . 58

5.4.1 Sequence Diagram Explanation 58
5.4.2 Initiation Process . 59
5.4.3 Simulation Process . 59
5.4.4 Recording Process . 60
5.4.5 Training Process . 61

5.5 Settings . 70
5.5.1 System Settings . 70
5.5.2 Simulation Settings . 70
5.5.3 Behaviour Tree Operations Settings 70
5.5.4 Training Settings . 71

5.6 System Logging . 71
5.7 Libraries Overview . 72
5.8 Summary . 72

6 Experiments and Results 73

6.1 Experimental Plan . 73
6.2 Experiment 1 . 74

6.2.1 Data Extraction and Processing 74
6.2.2 Behaviour Tree Nodes . 75
6.2.3 Scenarios . 75
6.2.4 Fitness Evaluation . 77
6.2.5 Settings . 78

6.3 Experiment 2 . 78

Contents ix

6.4 Results . 79
6.4.1 Experiment 1 . 79
6.4.2 Experiment 2 . 79

7 Evaluation 85

7.1 Evaluation of the Experiments . 85
7.1.1 Evaluation of Experiment 1 . 85
7.1.2 Evaluation of Experiment 2 . 87

7.2 Evaluation of the System . 89
7.3 Research Questions Revisited . 90
7.4 Evaluation of the Contributions . 92

8 Conclusion and Future Work 95

8.1 Conclusion . 95
8.2 Future Work . 96

Bibliography 99

Glossary 103

Appendices 105

A CogSIMA2018 Article and Poster 107

B Single-Page Figure Versions 117

C VR-Forces Settings 123

D Literature Review Notes 125

List of Tables

1.1 RQ2 system requirements . 5

5.1 Entity colour-coding in system diagrams (Figures 5.4, 5.5 and 5.7
to 5.10) . 43

5.2 Sequence diagram fragment explanations (used in Figures 5.7 to 5.10) 59
5.3 Simulation settings used internally in the system 70
5.4 Mutation settings . 71

6.1 NSGA-II settings used for Experiment 1 78
6.2 Comparison of the Scenario 1 fitness values in Experiment 1 and

Experiment 2 . 80
6.3 Comparison of the Scenario 2 fitness values in Experiment 1 and

Experiment 2 . 80

List of Figures

2.1 Graphical representation of a sequence node with N children 11
2.2 Visualisation of sequence node execution 11
2.3 Graphical representation of a selector node with N children 11
2.4 Visualisation of selector node execution 11
2.5 Graphical representation of behaviour tree leaf node types 12
2.6 Scenario showing one of the issues related to time management in

distributed simulation . 14
2.7 Virtual terrain simulated in VR-Forces 15
2.8 VR-Forces GUI with 2D view of a simulation scenario 16

4.1 Process flowof the complete process of recording example behaviour
and generating behaviour models through observational learning . . 28

4.2 HLA federation overview shown in MÄK RTI Assistant 30
4.3 Crossover . 32
4.4 Add Random Subtree . 34
4.5 Randomise Variables of Random Node 34
4.6 Remove Random Subtree . 35
4.7 Replace Random Node With Node of Same Type 35
4.8 Replace Tree With Subtree . 36
4.9 Switch Positions of Random Sibling Nodes 36

5.1 System console logging output during training 41
5.2 Training visualisation window with “Old population” tab open . . . 42
5.3 Training visualisation window with “Fitness history” tab open 42
5.4 Architecture overview of the system connected to MÄK VR-Forces . 43
5.5 Class diagram of the core system and the experiment package 45
5.6 Communication sequence diagram of HLA communication per sys-

tem tick during simulation . 61
5.7 Sequence diagram of the system initiation process 62
5.8 Sequence diagram of the simulation process 64
5.9 Sequence diagram of the recording process. References Figures 5.7

and 5.8 as subprocesses. 66

xiv List of Figures

5.10 Sequence diagram of the training process. References Figures 5.7
and 5.8 as subprocesses. 68

6.1 Visualisation of approaching angle calculation used in Experiment 1 76
6.2 2D view of scenario terrain and target path for the scenarios used in

Experiment1. 77
6.3 Manually made behaviour tree . 78
6.4 Experiment 1 fitness development over 90 epochs 81
6.5 Zoomed view of Experiment 1 fitness development on Scenario 2

over 30 epochs . 82
6.6 Graphical representations of two of the resulting behaviour trees in

Experiment 1 after 30 epochs . 82
6.7 Experiment 2 fitness development over 148 epochs 83
6.8 Zoomed view of Experiment 2 fitness development over 148 epochs . 84
6.9 Graphical representation of the overall best generated behaviour tree

in Experiment 2 . 84

B.1 Single-page version of Figure 5.5 . 118
B.2 Single-page version of Figure 5.7 . 119
B.3 Single-page version of Figure 5.8 . 120
B.4 Single-page version of Figure 5.9 . 121
B.5 Single-page version of Figure 5.10 . 122

Chapter1
Introduction

This thesis is about automating behaviour modelling for computer-controlled enti-
ties in military simulations. It documents our experiments with using genetic pro-
gramming (GP) to generate behaviour models – specifically, behaviour trees – that
represent specific, human-like behaviour. As part of the research, a poster article
was submitted and accepted to the 2018 Conference on Cognitive and Computa-
tional Aspects of SituationManagement (CogSIMA 2018), and will be published in
the IEEE Xplore Digital Library. The article and poster is included in Appendix A.
In this first chapter, the motivation and context of the research, the hypothesis and
research questions, and the research approach and contributions are introduced.

1.1 Background and Motivation

Computer generated forces (CGFs) are autonomous or semi-autonomous entities
that represent military units, such as tanks, soldiers and combat aircrafts, in simu-
lation software for military operations. CGFs are similar to non-player characters
in computer games and are used in military simulation-based training and deci-
sion support applications. CGFs enable simulating largemilitary operations as one
operator is able to control several military units. The behaviour of the CGFs, e.g.
how theymove, where they look, when they shoot, should represent the behaviour
of corresponding human soldiers or manned systems as accurately as possible.
Ideally, a soldier training with a virtual simulator should not notice whether his
teammates or opponents are human controlled entities or CGFs. Realistic CGF
behaviour also makes it possible to simulate various plans or courses of actions to
improve the situation awareness and get a good understanding of how a situation
could play out [1]. Simulations can for instance help build and train the mental
model of the trainee by practising situation comprehension and projection, situa-
tion awareness level two and three in Endsley’smodel of situation awareness [2]. In
aviation, around 20% of the errors are related to problems with the mental model
according to Endsley andGarland [3]. Given that errorsmade by soldiers in a stress

2 Chapter 1 Introduction

situation are similar to those made in aviation, improving their mental model is
of high importance. This requires the CGFs to behave in a natural way, as their
behaviour affects the situation comprehension and projection of the trainee.
There are several ways to represent the behaviour of CGFs. The most common

way is to use state machines that describe different states that the CGFs can be in
and the actions they can perform in every state. Lately, however, behaviour trees
have grown popular [4, 5, 6, 7]. In any case, the behaviour models are typically
made manually. This means that military experts first have to tell programmers
how theywant theCGFs to behave, and that the programmers then have to translate
those descriptions into code. This is a difficult and time consuming process [8],
and requires the presence of domain experts.
Lately, there has been an increasing interest in automating this process using

machine learning [9]. The use of machine learning to model behaviour is also re-
ferred to as data-driven behaviour modeling (DDBM), and can be done by e.g. first
recording data from a demonstration of desired behaviour and then usingmachine
learning to train an agent based on the recorded data. As emphasised by Luotsinen
et al. [10] and Løvlid et al. [11], there are significant challengeswith automating this
process, but the potential payoff in increased training efficiency and reduced costs
is significant. Observational learning, a machine learning technique with inspira-
tion from how humans and other mammals learn from observing others, has been
argued to be especially suited for learning tactical knowledge – knowledge on how
to act given the current situation [12]. Observational Learning has been success-
fully used to learn personal behaviour traits from the observed actors, which again
can be used to createmore unpredictable and realistic behaviourmodels [13, 14]. In
any case, successfully applying machine learning for automating behaviour mod-
elling for real-world problems can reduce the amount of resources and number
of domain experts required to support simulated exercises. For instance, it might
enable military end-users to create CGF behaviour by demonstrating the desired
behaviour themselves [11].

1.2 Problem Outline

Manual modelling of CGF behaviour is expensive, time consuming, and requires
the engagement of domain experts. Automating this process has several significant
benefits, such as lowered costs and increased availability of behaviour models.
These benefits may again result in better training efficiency, reduce the number
of people required to create and manage simulated exercises, and make running
simulated exercises with larger forces more feasible.
Modelling realistic human-like behaviour is also difficult. When using human

experts to identify the behaviour and then communicate it to programmers, the
resulting model is often logical, but also lacking of personal characteristics, and
carry little resemblance to real human behaviour [14]. Realistic CGF behaviour is
important for providing realistic simulated environments for training and analysis

1.2 Problem Outline 3

of possible situational outcomes. DDBM is believed to be more efficient at creating
objective and realistic behaviour models [11].
In this thesis, the focus is on using GP to generate behaviour trees based on

example behaviour, as a way of automating behaviour modelling for CGFs in
complex simulation environments. GP is a type of machine learning that is based
on the Darwinian principle of survival of the fittest, where candidate solutions
are selected for breeding and survival based on their performance. They are
not typically used for observational learning, and to our knowledge, there is no
existing software that enables using GP to generate behaviour trees from observing
behaviour in complex simulations.
The conducted research is part of a larger project at the Norwegian Defence Re-

search Establishment (FFI) on automating CGF behaviour modelling with DDBM.
FFI requested that any communication with simulation systems is done over High
Level Architecture (HLA) – an interoperability standard for distributed simulation.
In order to conduct experiments with the proposed method for automating be-
haviour modelling, it was therefore necessary to develop a new system that would
be able to extract simulation data from a simulation system over HLA, generate
behaviour models in the form of behaviour trees from the extracted data, and then
evaluate the generated models by controlling simulated entities in the simulation
system by using theHLA infrastructure. Developing a system that has the ability to
connect to distributed simulation systems overHLA enables it to use a large variety
of simulation engines and equipment for controlling simulated entities. It also en-
ables the system to be used with the equipment that is already used for simulated
military exercises today. However, it introduces challengeswith timemanagement,
data extraction, controlling the actions of the simulated units, among others. For
our research, we used a real, military simulation system called VR-forces1 from
MÄK.
A potential problem when creating behaviour models with machine learning, is

that the model often becomes opaque, meaning it becomes hard to interpret the
represented behaviour. Løvlid et al. [11] present this as maybe the most significant
drawback of generating CGF behaviour models with machine learning, and it has
been addressed in initiatives such as the Explainable Artificial Intelligence (XAI)2.
This problem is e.g. often experienced with artificial neural networks (ANNs),
which quickly turn into black-boxes as the complexity of their non-symbolic knowl-
edge representations increases. In our work, we focus on trying to learn behaviour
trees, i.e. the same type of model that can be used to model the behaviour man-
ually. By using behaviour trees, the learned model for a CGF is explicit, which
enables and simplifies explaining the behaviour. However, despite being used for
manual behaviour modelling, complex behaviour trees are not necessarily easy
to analyse. This is especially true for computer generated trees, that may seem
arbitrarily structured to humans.
Running simulations in complex, realistic environments is often computation-

1https://www.mak.com/products/simulate/vr-forces
2https://www.darpa.mil/program/explainable-artificial-intelligence

https://www.mak.com/products/simulate/vr-forces
https://www.darpa.mil/program/explainable-artificial-intelligence

4 Chapter 1 Introduction

ally heavy. In fact, some of the systems used today, such as Virtual Battlespace 3
(VBS3)3, are only able to run simulations in realtime [10]. GP typically depends on
frequent evaluations of candidate solutions, and using a GP to generate behaviour
models that need to be tested in complex simulations can quickly result in simu-
lation becoming a bottleneck. It is therefore necessary to consider the number of
behaviour evaluations that can be done during training depending on the available
processing power.

1.3 Hypothesis and Research Questions

The hypothesis (HYP) underlying this thesis is:

HYP: The process of creating behaviour models for CGFs can be automated by replacing

manual behaviour analysis and programming with GP that generates behaviour

trees from observing examples.

Currently, behaviour models for CGFs are manually designed and programmed.
This is hard and time consuming. Wehave investigated the use ofGP andbehaviour
trees to automate this process.
The hypothesis is divided into two research questions (RQ). The first research

question, RQ1, relates to the research on how GP and behaviour trees perform in
imitating observed behaviour. The second research question, RQ2, relates to the
development of a completely new system for connecting to third-party distributed
simulation systems and using them for data extraction and behaviour training.

RQ1: How do behaviour trees generated with GP perform in imitating observed behaviour

in complex, realistic environments?

The goal of this thesis is to investigate whether the CGF behaviour modelling
process can be automated by using GP to evolve behaviour trees from observations
of example behaviour. CGFs are used in military simulations, with highly complex
and realistic simulated environments. Therefore, in order to answer the hypothesis,
we need to research the feasibility of using GP for generating behaviour trees
through observational learning in complex, realistic environments.

RQ2: How should a system for generating behaviour trees with GP be designed to be used

with an external simulation system?

In order to answer RQ1, we needed to develop a system that would enable us to run
experiments using GP to generate behaviour trees based on observed behaviour
in complex simulations. The system had to satisfy three requirements, shown
in Table 1.1. FFI requested that the system should use HLA for communication
with the simulation system, forming the first requirement. They also required

3https://bisimulations.com/products/virtual-battlespace

https://bisimulations.com/products/virtual-battlespace

1.4 Research Approach 5

that it should be able to extract data from the simulation system and then use
the simulation system for evaluating generated behaviour models, forming the
second requirement. The systemwas intended to be used formultiple experiments,
resulting in the third requirement.

Table 1.1: RQ2 system requirements

Requirements

1. The system should use HLA for communication with an external
simulation system.

2. The system should be able to extract data from the simulation sys-
tem, and then use the simulation system for evaluating generated
behaviour models.

3. The system should support running different experiments with dif-
ferent scenarios, different simulated entities with different possible
actions, and different types of data.

1.4 Research Approach

The research documented in this thesis has been done in three phases:

1. Literature review: First, a literature review was performed. During the lit-
erature review, we focused on researching observational learning with both
toy-problems and complex simulations, evaluating behaviour in complex
simulations, evolving behaviour trees, and bloat-control with genetic pro-
gramming and behaviour trees. The literature review was done in order to
become familiar with the state of the art, as well as to help identify how the
system should be designed and what methods that should be applied for
evolving behaviour trees. Notes from the literature review is included in
Appendix D.

2. System design and implementation: After the literature review was fin-
ished, the process of designing and implementing the system started. This
phase followed a design and creation methodology [15, pp. 108–124], where
the system for running experiments with GP and behaviour trees in complex
simulationswas developed. During this phase, we had frequent contact with
our external supervisors at FFI, who assisted with issues with connecting to
and controlling the simulation system over HLA. The goal of this phase was
to design and implement a modular system that can be used for running
different experiments, both in this and future projects.

6 Chapter 1 Introduction

3. Experiments: Finally, in order to both evaluate the system and address the
hypothesis, we performed experiments. The first experiment identified is-
sues with the extraction of data used for behaviour tree evaluation during
training. It was therefore necessary to go back to the system implemen-
tation phase and fix the identified issues before continuing. However, the
experiment showed that the proposed method works for imitating simple
behaviour. This phase was planned to include multiple experiments, but
was cut short due to the time required to fix the identified issues with the
system. After the issues with data extraction had been addressed, the first
experiment was re-done for a new evaluation of the system.

1.5 Research Contributions

The research presented in this thesis has three contributions, which are introduced
in this section. An evaluation of the contributions is given in Section 7.4.

C1: Proof that GP and behaviour trees can be used to mimic recorded, simple behaviour

in complex simulations.

The results from our experiments show that GP and behaviour trees can be used to
successfully mimic simple behaviour in a complex simulated environment. While
we can not guarantee that our solution will work for more complex behaviour, the
results are promising. The results work as a proof of concept, andmotivates further
research on the subject.

C2: A proposed set of methods for mutating behaviour trees.

In this thesis, we propose a set of methods for performing mutations on behaviour
trees. Amutation is a genetic operationwhich alters an existing candidate solution.
To our knowledge, most of the methods for mutating behaviour trees described in
this thesis have not been discussed in current research. Although several authors
have used mutations for evolving behaviour trees, they typically use one or two
mutations [5, 4]. In our research, we propose multiple independent behaviour tree
mutations, aswell as a technique for combining the use of differentmutationswhen
evolving behaviour trees. With inspiration from simulated annealing (SA) [16,
p. 128], this technique uses scaling probability weights to select which mutation
method should be used, favouring mutations that make smaller changes as time
passes.

C3: A modular system for using GP to evolve behaviour trees through observational

learning with a complex, realistic simulation system over HLA.

The system can be used for running different experiments, with different types of
data, different types of simulated entities, different algorithms and potentially with

1.6 Thesis Structure 7

different simulation systems. The system has been primarily designed for obser-
vational learning, but should also be able to support experiential learning due to
its modular structure. The system is intended to be used for further research on
automating behaviour modelling for CGF as part of a larger project at FFI. The sys-
tem is published as open source at https://github.com/eivinmor/msc-gbh-em
under the MIT license4.

1.6 Thesis Structure

This thesis is divided into eight chapters. Chapter 1motivates the research, outlines
the problem, and introduces the hypothesis, research questions and contributions.
Chapter 2 covers relevant background theory. Chapter 3 describes related work
and the state of the art. Chapter 4 covers the methods used in order to to answer
the hypothesis and research questions of this thesis. Chapter 5 provides a detailed
description of the implemented system. Chapter 6 covers the experimental plan,
the conducted experiments and the results. Chapter 7 contains the evaluation of
the experiments, implemented system, research questions and contributions. And
finally, Chapter 8 presents the conclusion and suggestions for future work.

4https://opensource.org/licenses/MIT

https://github.com/eivinmor/msc-gbh-em
https://opensource.org/licenses/MIT

Chapter2
Background

This chapter contains an overview of the most important topics discussed in this
thesis. The following chapters have been written with the assumption that the
reader is familiar with the information that is presented here. The topics covered
in this chapter are DDBM, behaviour trees, genetic algorithms (GAs) and GP, HLA,
and MÄK simulation systems.

2.1 Data-Driven Behaviour Modelling

DDBM refers to the use of machine learning to automate the creation of behaviour
from recorded data [17]. It is believed that replacing the manual work of human
domain experts with DDBM will result in more objective and realistic behaviour
models [11]. The learning techniques used in DDBM are usually divided into
observational learning, experiential learning and a hybrid learning approach.
Observational learning is the process of learning from observing the behaviour

of another agent, and is often used to create behaviour models that imitate human
behaviour. The learning agent is trained to behave as similar as possible to the
observed agent. The behaviour is trained on the same activities as the observed
agent, and its performance is evaluated based on howmuch it resembles that of the
observed agent. Observational learning is also commonly referred to as learning
from examples, learning from imitation, and learning from demonstration.
Experiential learning is the process of learning from experience. This method

does not use any example of the “correct” behaviour, but evaluates the performed
actions based on experiences of their consequences. Experiential learning is typi-
cally used for finding the optimal way of achieving a specific goal or minimising
a specific evaluation metric. Human behaviour is influenced by subjective bias,
and is therefore often different from the objectively optimal behaviour learned
through experiential learning. Behaviour learned through experiential learning
may therefore seem unnatural or unrealistic if used for CGF.

The hybrid approach uses both observational and experiential learning. It uses

10 Chapter 2 Background

observational learning to learn the observed behaviour, whichmay include the per-
sonal behaviour traits of a human, and then uses experiential learning to improve
the learnt behaviour to be more optimal based on specific evaluation metrics, or to
generalise the behaviour for different environments and problems.

2.2 Behaviour Trees

We use behaviour trees to represent the CGF behaviour. Behaviour trees are trees
of hierarchical nodes that control decision making and task execution, and have
been popularly used for modelling the behaviour of computer-controlled units in
video games [4]. They provide a scalable and modular solution for representing
complex behaviour without the exponential complexity of Finite State Machines
(FSM) and reusability-problem of Hierarchical Finite State Machines (HSFM) [5].
The modular structure of behaviour trees allows for easy manipulation of the
represented behaviour, and the ability to use one behaviour tree as a subtree of
another makes them highly reusable. Behaviour trees are also human-readable,
giving the opportunity for visual analysis of the represented behaviour.
Behaviour tree nodes can return one of three statuses: running, success or failure.

Running means that the node is currently active, has not completed its tasks and
needs more time to finish. Success is returned when a node is finished executing
and its task was successfully completed, and failure is returned when the task
finished unsuccessfully.
Behaviour trees are traversed from the root node and down. If all visited nodes

are finished, the tree will be traversed from the root and down again on the next
timestep. However, if one of the nodes return running, the tree will keep running
that node every timestep until it returns either failure or success. Once the node is
done, the tree will continue traversing from the position of the node.

Composite Nodes

A composite node is used to group nodes into a higher level task [5]. The type of
the composite node dictates in which order it will execute children nodes, when to
stop, and what status to return. The system described in this article uses two types
of composite nodes, sequence and selector.
A sequence node, shown in Figure 2.1, executes its children from left to right

until one of the children returns failure or all return success. If a child returns
failure, then the sequence will stop and return failure. If all its children return
success, it will return success. Figure 2.2 shows a visualisation of the sequence
node execution.
A selector node, shown in Figure 2.3, executes its children from left to right until

one of the children returns success or all children return failure. If a child returns
success, the selector will stop and return success. If all its children return failure,
the selector will return failure. Figure 2.4 shows a visualisation of the selector node
execution.

2.2 Behaviour Trees 11

 →

Child 1 Child 2 Child N. . .
Figure 2.1: Graphical representation of a sequence node with N children

 →

Child 1 Child 2 Child 4Child 3

Star
t

Success Success

Failed

Failed

Figure 2.2: Visualisation of sequence node execution

?

Child 1 Child 2 Child N. . .
Figure 2.3: Graphical representation of a selector node with N children

?

Child 1 Child 2 Child 4Child 3

Star
t

Failed Failed

Success

Success

Figure 2.4: Visualisation of selector node execution

12 Chapter 2 Background

Action

(a) Action node

Condition

(b) Condition node

Figure 2.5: Graphical representation of behaviour tree leaf node types

Leaf Nodes

A leaf node has no children, and is either an action node or a condition node. An
action node is used to perform a specific low-level action, e.g. move to a certain
location. A condition node returns success or failure based on some condition,
e.g. whether an object is within a specific distance or not. Figure 2.5 shows the
graphical representation of the action node and the condition node.

Blackboard

A blackboard contains data that is accessible for all the nodes of the behaviour tree.
Nodes may also alter data inside the blackboard. A blackboard is an important
feature of a behaviour tree as it enables nodes to share and alter the same state
representation, avoiding an exponential state complexity such as in FSMs.

2.3 Genetic Algorithms and Genetic Programming

GAs are stochastic search algorithms inspired by evolution. A GA generates and
evolves a population of chromosomes, where each chromosome is a candidate
solution for solving a problem. Chromosomes are assigned a value representing
how well they solve the problem, called fitness. For each iterative step of the algo-
rithm, called an epoch, a GA typically produces a new generation of chromosomes
through crossover, mutation and selection. Crossover is the creation of a new
chromosome by combining the traits of two existing chromosomes to produce a
hybrid solution. The chromosomes can also be randomly mutated, making direct
changes to existing solutions. Selection is the process of deciding which chromo-
somes should be used for crossovers and which chromosomes that should survive
to the next generation, and is usually done by comparing fitness values. See [16,
pp. 129–132] for more information on GAs.
Multi objective genetic algorithms (MOGAs) are GAs that optimise candidate

solutions for multiple objectives by using multiple fitness values simultaneously.
For comparing candidate solutions, MOGAs often use the concept of dominance,
where a solution is said to dominate another solution if it is equal or better on all
fitness objectives. The set of non-dominated solutions form the Pareto-front [18].
In 1992, Koza [19] introduced GP as an extension of the GA, where the evolved

candidate solutions are computer programs. In this thesis, we define GP as the
use of GAs to evolve computer programs represented as tree structures, where
behaviour trees are defined as a type of computer program. A common problem

2.4 High Level Architecture 13

whenworkingwith GP, is that that the generated trees tend to grow in size without
significant return in terms of fitness, called bloat [20]. This can cause several issues,
including poor generalisation and reduced effectiveness of crossover andmutation
operators, and should be addressed when working with GP.

2.4 High Level Architecture

HLA is a communication standard for distributed simulation systems, originally
developed by the US Department of Defence [21]. It provides a general purpose
architecture for interoperation between simulation engines, user interfaces, passive
data collectors, and other entities used in simulation networks. A network of enti-
ties communicating over HLA is called a federation, where each connected entity is
called a federate. All federates in a federation must agree on data and data formats
to exchange. This is formalised in a Federation Object Model (FOM). All inter-
actions between the federates go through a Run-Time Infrastructure (RTI), which
provides a set of services to the federates. Among these services are management
of the federates’ ownership of simulated objects, management of publishing and
subscribing to data updates and interactions, data distribution management and
time management.

2.4.1 Time Management

In distributed simulations, there are three different types of time: physical time

– the time in the simulated scenario, simulation time – the logical time used by
the simulator to represent the physical time, and wallclock time – the real-world
time when the simulation is executed [22]. Uncoordinated time advancement in
the simulation engines and uncoordinated sending of events between them can
result in temporal anomalies. An example of this is shown in Figure 2.6. A unit in
Simulator A shoots and destroys a target in Simulator B. Both the “shoot event” and
the “target destroyed event” are published to the other simulators in the network
as they occur in the simulations. However, the “shoot event” is delayed as it
travels through the network from Simulator A to Simulator C, and Simulator C is
therefore notified that the target in Simulator B has been destroyed before it receives
the “shoot event” from simulator A.
In HLA, each federation has a global simulation time which is used to manage

communication and simulation advancement between the federates. Messages
between the federates are controlled and distributed by the RTI, and can be sent
bothwith andwithout a timestamp. TheRTI also controls the time advancement of
the federates, with the purpose of ensuring that no federate will receive messages
with a timestamp less than its current logical time. In order to ensure this, the
RTI needs to calculate what the smallest possible timestamp is for future messages,
and then prevent any federate that receives timestampedmessages from advancing
past that time.

14 Chapter 2 Background

Simulator C

Simulator B

Simulator A

shoot event

target destroyed event

wallclock time

Figure 2.6: Scenario showing one of the issues related to time management in distributed
simulation. Simulator C receives is notified of the consequential event before the
causing event due to lack of time management.

Lookahead

Federates have two boolean flags related to message handling with time manage-
ment – time regulating and time constrained. A time regulating federate is a federate
that is able to send timestamped messages, and a time constrained federate is a
federate that depends on receiving messages in timestamp order. In order for the
RTI to calculate the smallest possible timestamp of the messages the time regulat-
ing federates can produce, each time regulating federate is required to register a
value called lookahead with the RTI. Lookahead is the minimum amount of time
between the federates current logical time and the timestamp used for its outgoing
messages. E.g., a federate with a current logical time of 20 and a lookahead of
5 is not allowed to produce messages with a timestamp lower than 25. The time
constrained federates have to request permission from theRTI to advance its logical
time. For federates that are not marked as time constrained, the RTI will deliver
timestamped messages as if they were sent without a timestamp. To summarise,
the RTI uses the logical time and lookahead of the time regulating federates to cal-
culate how far the time constrained federates can advance their logical time before
they risk receiving messages with a timestamp that is smaller than their current
logical time.

For a more detailed explanation of HLA time management, see [22].

2.5 MÄK Simulation Systems 15

Figure 2.7: Virtual terrain simulated in VR-Forces

2.5 MÄK Simulation Systems

VT MÄK is a company that develops modelling and simulation software. Their
simulation products include software for setting up and managing simulation net-
works, creating scenarios and entity models, and running and visualising simula-
tions. For the research covered in this thesis, we used VR-Forces Engine, VR-Forces
GUI and MÄK RTI. VR-Engaged is also mentioned as a tool for controlling simu-
lated entities. Following is an overview of of these applications.

2.5.1 VR-Forces

VR-Forces is MÄKs complete simulation solution, including a simulation engine
and a graphical user interface (GUI) which is used to create scenarios and observe
and control simulations. It also includes a set of terrains, unit models and simple
behaviour functions such as move to location or waypoint, patrol along route, etc.
These behaviour functions can be combined and scheduled in a behaviour plan.
Figure 2.7 shows an example of a virtual terrain in VR-Forces. Both the Simulation
Engine and the GUI supports HLA.

VR-Forces Simulation Engine

The VR-Forces Simulation Engine handles the calculations needed to run the sim-
ulation. It creates new world states and publishes event and data updates on the

16 Chapter 2 Background

Figure 2.8: VR-Forces GUI with 2D view of a simulation scenario

simulation network every frame. The simulation engine also supports scripted
entity behaviour, e.g. in the form of Lua1 scripts.

VR-Forces GUI

VR-ForcesGUI is an application that connects to theVR-Forces engine to display the
simulation to the user. The observer can choose to render the simulation in several
different ways, including different 2D and 3D visualisations. This application is
optional and is not needed to run simulations, but is a useful tool for the user to
view the simulation and ensure that the agents perform the tasks correctly. The
VR-Forces GUI can also be used to create scenarios. That includes choosing a
terrain and placing entities and objects – such as soldiers, tanks, planes, waypoints
and roadblocks – andmodelling behaviour by creating behaviour plans, movement
routes, etc. Figure 2.8 shows the GUI when used to display a simulated scenario in
2D.

2.5.2 VR-Engage

VR-Engage2 allows a user to take control of a simulated agent in first-person mode.
It connects to a simulation engine and can either create a new entity to control or be

1https://www.lua.org/
2https://www.mak.com/products/simulate/vr-engage

https://www.lua.org/
https://www.mak.com/products/simulate/vr-engage

2.5 MÄK Simulation Systems 17

used to control entity that already exist in a scenario. VR-Forces Engage can be used
with keyboard and mouse, joystick or other peripherals and must be connected to
a simulation engine, i.e. the VR-Forces Simulation Engine. The visualisation in
VR-Engage is similar to the 3D view in the VR-Forces GUI.

Chapter3
State of the Art

In order to evaluate the hypothesis and contributions, the state of the art of obser-
vational learningwith toy-problems, behaviour evaluation in complex simulations,
observational learning in complex simulations, evolving behaviour trees, and bloat-
control with genetic programming and behaviour trees has been reviewed. Finally,
a summary of the most important takeaways and their relations to the RQs and
contributions is given.

3.1 Observational Learning with Toy-Problems

Here, we look at experiences and results fromworking with observational learning
with toy-problems. The motivation behind this thesis is related to automating
modelling of human behaviour, and the work on using observational learning on
human behaviour is therefore especially interesting. The reviewed work includes
the use of GP, as well as other learning techniques.

Fernlund et al. [14] show that observational learning with the use of GP can
be successfully applied to learn personal behaviour traits from observed human
behaviour. They attempt to learn human driving behaviour, and use driving sim-
ulations for both recording example behaviour and for evaluating generated be-
haviour models. By using a combination of GP and case based reasoning (CBR),
the researchers were able to generate behaviourmodels that were found to perform
at least as good as behaviour models that were manually developed by proficient
engineers.
Luotsinen et al. [23] were able to use learning from observation to train an ANN

and decision treemodels to perform a specific task of passing a hockey puck as part
of a toy-problem. The trained agents were able to learn the desired behaviour in
three different exercises with small observation data sets. The researchers discuss
how the training method would work in more realistic environments, and go on
to list a set of problems that must be addressed in order to use the approach in
real-world applications. Some of these are issues with data, such as insufficient,

20 Chapter 3 State of the Art

incomplete or noisy data, that arise from using a real-world application.
Stein et al. [24]were able to imitate human behaviour on three separate problems,

each with a different goal and domain. The researchers used observational learn-
ing to learn from recorded human behaviour, experiential learning to learn optimal
behaviour, and a hybrid approach where behaviour learned through observational
learning was optimised with experiential learning. For these experiments, they
created an algorithm called PIGEON-Alternate which is a combination of Neu-
roEvolution of Augmenting Topologies [25] and Particle Swarm Optimization [26].
With observational learning, Stein et al. were able to train behaviour models that
successfully imitate the observed human behaviour. With experiential learning,
they were able to train more optimal behaviour, however, lacking of human be-
havioural traits. With a combination of using the human-like behaviour trained
through observational learning and then optimising it with experiential learning,
they found that the behaviour model became more proficient at its designated
tasks, while it had retained most of its human-like qualities.

3.2 Behaviour Evaluation in Complex Simulations

Using complex simulation systems for behaviour evaluation can introduce new
challenges. In this section, we look at the experiences and discussions related to
these potential issues in the literature.
Luotsinen et al. [10] discuss potential issues of using complex simulation systems

for behaviour evaluation. In their experiments, they use GP for experiential learn-
ing in a toy-problem, and go on to discuss three important issues with running
similar experiments in a more complex simulation system, specifically VBS3.
The first issue Luotsinen et al. discuss is that when using simulation systems or

conducting exercises that are restricted to running in real-time, the evaluation of
generated behaviour is done in real-time as well. This limits the possible number
of evaluations that can be done during training. The simulation system we have
used for our experiments – VR-Forces from MÄK – is not restricted to simulating
in real-time. However, due to the heavy computational load of calculating new
world states in realistic simulated environments, the issue with long simulation
times and limited possible evaluations is still relevant. The researchers mention
that a common solution to this problem is scaling the algorithm, either vertically
(high performance computing) or horizontally (clusters). The second issue is that
defining behaviour in a single fitness function can be a difficult process. The third
and final issue discussed by the authors is that the level of complexity in VBS3 will
increase the search space for the GP algorithm.

Lim et al. [5] also discuss the limitations related to long simulation times and
limited number of evaluations. They used GP to evolve a behaviour tree which
was able to win the majority of games played versus the default AI-bot on the DE-
FCON1 multiplayer real-time strategy game. The behaviour trees were generated

1Official DEFCON website: http://www.introversion.co.uk/defcon/

http://www.introversion.co.uk/defcon/

3.3 Observational Learning in Complex Simulations 21

through experiential learning. The authors emphasise the time required to pro-
cess the simulations as an important limitation. In their experiment, they trained
a population of 100 individuals over 100 generations, a process they estimated
would take approximately 41 days to complete using a single simulation engine.
However, they were able to reduce the processing time down to approximately
two days per experiment by distributing the load over 20 computers. The issue of
computationally heavy behaviour evaluation is especially relevant when using GP
that require frequent evaluations of a large population of candidate solutions.

3.3 Observational Learning in Complex Simulations

In this section, we look at the results and experiences of other authors from using
observational learning in complex simulations.
Using machine learning to generate behaviour models for CGFs has been dis-

cussed in the NATO Research Task Group IST-121 RTG-060 “Machine Learning
Techniques for Autonomous Computer Generated Entities” [27]. The paper refers
to different case studies performed by the participating nations. Worthmentioning
is the work done by Totalförsvarets forskningsinstitut (FOI), who used machine
learning to create autonomous agents that learn a tactical movement called bound-
ing overwatch, for dismounted infantry [17]. The researchers were able to learn
bounding overwatch behaviour by using observational learning in realistic simula-
tions. Although, for our experimentswewill use a different simulation system than
the one used in this approach, it is still interesting that the researchers were able
to create bounding overwatch behaviour by using a realistic, complex simulation
system.
Kamrani et al. [17] trained four behaviourmodels for each agent in the simulation.

The four models determine the actions of the agent – whether it should it move or
not, what stance it should be in, if the the agent should turn to correct the direction
of itsweapon andwhatwaypoint it shouldmove to. Theyuseddecision trees for the
first, second and fourth model, and an ANN for the third model. All four models
were trained separately. The models using decision trees were trained by using
observed example behaviour. The four models were then manually combined to
create desired behaviour, such as bounding overwatch. The experiments were all
performed on a simulation system called VBS32, a game based military simulation
system. An important note here is that the generated behaviour model required
a route of waypoints specifying where the agents are to stop and change roles. In
otherwords, it required the scenario tobe specificallydesigned touse this behaviour
model. In contrast to the approach described in this paper, our approach will not
involve any manual steps in creating the behaviour tree.
Floyd and Esfandiari [28] propose a framework for modelling behaviour for

CGFs in realistic, complex environments. The framework uses CBR that learns
from observation, and is designed to be domain agnostic, although still allowing a

2https://bisimulations.com/virtual-battlespace-3

https://bisimulations.com/virtual-battlespace-3

22 Chapter 3 State of the Art

designer to make the framework domain biased in order to optimise performance.
The authors emphasise benefits of complete separation between the central rea-
soning system and any domain-specific information – allowing agents to learn and
act in a variety of domains. They also emphasise the importance of good quality
observations, including coverage of problem-space and data noise, as it greatly
affects the learning performance of the agent.
Zhang et al. [29] propose another CBR-based learning framework, which can be

used to train CGF behaviour in military simulation based training and analysing
applications. The proposed framework learns both from observational and expe-
riential learning and uses behaviour trees to model the CGF behaviour. Instead of
evolving a behaviour tree from a randomly generated starting point, they suggest
generating an initial tree that ismaximally specific to the observed behaviour. Then,
they suggest pruning the tree by merging common subsequences in the initial tree.
Finally, they suggest storing the selector nodes in the tree as separate case cata-
logues in a knowledge base, containing the actions of the respective selector node
as cases. The authors also emphasise the potential computational expensiveness of
using GAs to evolve behaviour trees in an exploratory process.

3.4 Evolving Behaviour Trees

Here, we look at how other authors have approached the process of evolving be-
haviour trees, including choice and evaluation of genetic operators. The discussed
articles cover the use of experiential learning to optimise agent behaviour, but their
approaches and experienceswith evolving behaviour trees are relevant for usewith
observational learning as well.
Colledanchise et al. [4] used experiential learning to generate behaviour trees

that control Mario in the open source benchmark Mario AI [30]. The researchers
used a combination of a greedy heuristic algorithm and GP to evolve the behaviour
trees to be able to obtain as many points in the Mario AI benchmark as possible.
The researchers describe their results as “encouraging and comparable to the state-
of-the-art”. For genetic operations, they used a two-point crossover and a single
mutation. The crossover is done by swapping a random subtree from one parent
with a subtree from the other parent. The mutation replaces a single node in
the behaviour tree with a node of the same type (composite or leaf node). They
used SA [16, p. 128] for gradually reducing the mutation rate for each generation,
focusing on local search as the algorithm converges.
As previously described, Lim et al. [5] used GP to evolve behaviour trees for

playing the real-time strategy game, DEFCON. They were able to create behaviour
models that won the majority of games played against the default game AI. For
evolving the behaviour trees, they used a two-point crossover, where a random
subtree from the first parent is replaced by a random subtree from the second
parent, and vice versa. They also used two types of mutations – one which adds a
new action node to an existing behaviour tree, and onewhich changes the variables

3.5 Bloat-Control with Genetic Programming and Behaviour Trees 23

of an existing action node. They use action nodes with variables that adjust how
the represented action is performed, e.g. the coordinates of where a fleet is to
be placed. The authors conclude that their approach is feasible for developing
AI for commercial games, but emphasise that the mean fitness reaches a plateau,
possibly indicating the need for supplementing the evolutionary learning with
other learning techniques.
Perez et al. [6] used grammatical evolution to evolve behaviour trees using expe-

riential learning. Grammatical evolution is a specialisation ofGP, where a specified
context-free grammar is used to map candidate solutions to syntactically correct
solutions. Like Colledanchise et al. [4], they also used the Mario AI benchmark
in their experiments. They submitted a generated behaviour model to a competi-
tion where they placed fourth out of seven contenders, and the authors conclude
thatGP approaches are serious contenders to othermore traditional artificial intelli-
gence (AI) algorithms. For genetic operations, they also used a two-point crossover,
where they switch the positions of two blocks of the binary strings. The blocks are
marked with grammar symbols, indicating possible crossover points. They also
allowed the crossover operation to be done with the same chromosome as both
parents – effectively creating an operation which clones the selected parent and
switches the positions of two sub-trees.

3.5 Bloat-Control with Genetic Programming and

Behaviour Trees

As mentioned in Section 2.3, bloated solution representations is a common issue
with GP. There are several proposed techniques for controlling or reducing the
effects of bloating. In this section, we look at some of these techniques, and how
they affect the training performance with GP.
Poli [31] present the Tarpeian method for controlling bloat in GP where they

randomly penalise a selection of the offspring that are larger than a specified size
limit, specifically setting their fitness to zero. This creates fitness “holes” that
discourages search in the vicinity of larger solutions. The method is proven to be
effective at controlling bloat, and the authors emphasise the benefit of not needing
to evaluate the solutions whose fitness is automatically set to zero.
Another approach, as suggested by Bleuler et al. [32], is the use of solution size

as a minimisation objective in multi-objective GP techniques. A problem with
using this method is that the non-dominated individuals of the population can
tend to cluster at the edges of the pareto-front. A way of handling this problem
is by introducing diversity-control into the selection process [33], discouraging
clustering. SPEA2 [34] is a multi-objective evolutionary algorithm (MOEA) that
does exactly this. Bleuler et al. test the approach with SPEA2 and conclude that it
is a promising approach for reducing bloat in GP that will most likely work well
with other MOEAs, a conclusion supported by [35].

Another approach is to use a fixed limit for the depth or size of the solutions.

24 Chapter 3 State of the Art

Koza [19] popularised the technique of limiting depth size, a technique commonly
used for bloat control in GP. Crane and McPhee [36] investigated the effects of
using both depth and size limits. From the results of their experiments, they
observed that using a depth limit introduced more bias toward smaller solutions
in the specified search space compared to using a size limit. They also observed
that there were more inconsistencies in how much of the search space that was
covered, when using depth limits. The authors emphasise that these observations
will probably, but not necessarily, generalise to other problems than those used in
the experiments.
Luke andPanait [37] compared some of themost popularmethods for controlling

bloat in GP, including the Tarpeian method and the multi-objective method. They
concluded that when combined with the use of limited tree depth, both techniques
are effective in reducing bloat. They discovered that all the evaluated methods
performed the same or better when augmented with depth limitations.
Colledanchise et al. [4] uses a retroactive approach to bloat-control in observa-

tional learning with GP. They do not use any bloat-controlling techniques when
evolving behaviour trees, however, once a behaviour tree satisfies the specified
goal, they search for and remove ineffective subtrees. This is done by selecting
subtrees in breadth-first order, simulating the tree without the selected subtree,
and then deciding whether the selected subtree should be kept based on the fitness
score. If the fitness score is better or the same as the original behaviour tree, then
the subtree is permanently removed, and a new subtree then considered for re-
moval. The researchers mention that bloat-control is most often performed by the
genetic operations or selection mechanism in GP, such as the previously discussed
methods.

3.6 Summary

In this chapter we have looked at the state of the art of observational learning
with toy-problems, behaviour evaluation in complex simulations, observational
learning in complex simulations, evolving behaviour trees, and bloat-control with
genetic programming and behaviour trees. Observational learning has been suc-
cessfully used to learn personal behaviour traits from the observed actors, and
has been shown to be at least as good as proficient engineers at modelling human
behaviour [13]. Several authors have discussed the potential challenges of using
complex simulation systems for evaluation of behaviour models, emphasising the
issues with heavy computational load and long simulation times when used with
GP. We found little research on the use ofGPwith observational learning. Kamrani
et al. [17] have shown that observational learning in complex simulations is possi-
ble, but their work does not includeGP or behaviour trees. WhileGP has been used
to evolve behaviour trees through experiential learning in complex simulations [5],
we have not found any research on using GP to evolve behaviour trees through
observational learning in complex simulations. These findings relate to C1 and

3.6 Summary 25

help answer RQ1.
In current literature, there are proposed frameworks for using observational

learning in complex environments. However, both the discussed frameworks are
CBR-based, and are not suitable for our research. Kamrani et al. [17] developed
a system for running observational learning in complex environments, but their
solution is not designed to use HLA. The design of such a system that uses HLA is
related to RQ2 and C3.
For evolving behaviour trees, the reviewed research uses two-point crossovers

with one or two mutations. The mutations include adding a single node, replacing
a node with a node of the same type, and tuning the variables of a single node.
Lim et al. [5] use variables in their action nodes to tune the specific action. This is
an interesting approach, which can be useful for tuning condition nodes as well.
Research on how to evolve behaviour trees is relevant for C1 and C2, which help
answer RQ1.
Bloat is a common issue with GP, and there are several well-documented ap-

proaches to reducing bloat during training. We have looked at three techniques,
the Tarpeian method, minimisation of solution size as an objective in a MOEA,
and the Koza-method of setting a hard depth limit for the generated solution
trees. Luke and Panait [37] conclude that both the Tarpeian method and the multi-
objective method both work well when combined with the depth limit. Crane and
McPhee [36] argue that limiting the total size of the tree instead of the depth is a
better alternative as it results in better coverage of the search space. Knowing how
to manage bloat control with GP is related to C1, that helps answer RQ1.

Chapter4
Methods

This chapter covers the methods used in order to answer the hypothesis and re-
search questions of this thesis. During the literature review, we found no existing
system that would allow us to run the experiments required to answer RQ1. We
therefore created RQ2, related to how a system should be designed to be able to
run different experiments with observational learning in complex environments
by connecting to a simulation engine over HLA. Included in RQ2 was a set of
requirements for the system, shown in table 1.1.
Section 4.1 provides an overview of the developed system. Section 4.2 describes

the used simulation environment and how our system communicates with it. Sec-
tion 4.3 describes how the system handles data and feature extraction. Section 4.4
describes the used behaviour tree representation. Section 4.5 covers the methods
used for evolving behaviour trees. And finally, a summary which relates the cov-
ered methods to the RQs and contributions is given in Section 4.6. For a detailed
description of the system implementation, see Chapter 5.

4.1 System Overview

We developed a system for using GP to generate behaviour trees with observa-
tional learning in complex simulations within a HLA federation network. The
system is used to record example behaviour and to train behaviour trees that imi-
tate the recorded examples. The system handles data extraction, data processing,
behaviour tree generation and behaviour tree visualisation, but the actual simula-
tion of the behaviour is done in an external simulation system. Figure 4.1 shows
an overview of the complete process, including recording example behaviour and
training behaviour trees.
All communication between the system and the external simulation system is

done exclusively over HLA. This includes publishing of instructions to the simula-
tion engine and simulated entities, and subscribing to simulation data updates. By
restricting all communication to go over HLA, the system has the ability to connect

28 Chapter 4 Methods

Record
example
behaviour

Scores good
enough?

Generate
random
behavior
trees

Score
behaviour

tree
performance

No

Yes

Start End

Generate
behaviour
trees based
on scores

Simulate
behaviour
trees

Figure 4.1: Process flow of the complete process of recording example behaviour and gener-
ating behaviour models through observational learning

to a variety of simulation systems.
CGFs include a large variety of different types of simulated entities, and as

specified in the RQ2 requirements, the system had to be compatible with training
behaviour for different types of entities. It is reasonable to assume that training
different entities with different behaviour would require different data from the
simulation, and that entities have different types of actions that they typically
perform. This led to maybe the most important design decision for the system:
that it should be compatible with any type of simulated entity as long as it is
specified in the HLA federation FOM used for the simulation network. As long
as the simulation data related to the entity is published on the HLA federation
network, the system is able to subscribe, process and store the data based on the
requirements of the specific experiment. For controlling entities in the simulation,
the system uses a FOM extension module called Low Level Behaviour Markup
Language (LLBML), developed byNetherlands Organisation for Applied Scientific
Research (TNO) and FFI [38, 39]. LLBML allows sending of low-level instructions
to the simulated entities. To enable full modularity, the core system provides a
framework for representing entities, simulation data and entity instructions, and
it is required that the user implements any specialised functionality by using this
framework.
The system can be used for both recording example behaviour and for training

behaviour models based on previously recorded examples. The data that should
be used depends on the type of behaviour that is to be recorded or trained, and is
specified by the user when setting up an experiment. Following are descriptions
of how the system is used for recording and training.

4.2 Simulation Environment 29

4.1.1 Recording Data from Example Behaviour

When recording data from example behaviour, the system connects to the HLA
federation, and subscribes to data updates on specific types of simulated entities.
The user specifies which entities’ updates that should be recorded as example
behaviour. These observed entities may e.g. be controlled by humans with VR-
Engage. As the simulation is running, the system works only as a passive data
collector, saving the received data updates to comma-separated values (CSV) files
on a specified simulation time interval. When the data from the desired behaviour
has been successfully stored in the CSV file, the file is then manually marked with
the scenario it was recorded in. The file is now ready to be used as example
behaviour.

4.1.2 Training Behaviour Trees

For training the behaviour trees, the system uses a GA implementation to generate
a random initial set of behaviour trees, and then evolve these trees to better imitate
the desired behaviour. One or more examples of desired behaviour is loaded from
CSV files that are generated as described in Subsection 4.1.1. Specifics on the used
GA implementation and methods for evolving the behaviour trees are provided
in Section 4.5. In order to evaluate the generated behaviour trees, the system has
to simulate and record their performance in the same environment (scenario) as
the example behaviour. The system first instructs the simulation system to load
and run the scenario specified in the example file. It then controls the specified
simulated entity with the generated behaviour tree that is being evaluated, while
recording the entity data updates from the simulation system. Finally, the system
evaluates how much the behaviour represented in the generated behaviour tree
resembles the desired example behaviour. This evaluation score is then used to
guide the generation of new behaviour trees.

4.2 Simulation Environment

For our experiments we used a real, military simulation system called VR-Forces
from MÄK. The virtual terrain, physical simulation of entities, etc. are simulated
in this system. Figure 2.7 shows an example of a virtual terrain in VR-Forces.
Our system communicates with VR-Forces using HLA – a standard for distributed
simulation that is commonly used in military simulation systems [40]. Other CGF
systems that support HLA could be used in place of VR-Forces. An overview of
the HLA federation, as visualised in theMÄK RTI Assistant, is shown in Figure 4.2.
Our system is named no.ffi.msc.gbhem.
Systems that communicate over HLA must agree on data and data formats to

exchange. This is formalised in a federation object model (FOM), and we have
used the Real-time Platform-level Reference Federation Object Model (RPR FOM),
which is a standard FOM that many military simulation systems support [41, 42].

30 Chapter 4 Methods

Figure 4.2: HLA federation overview shown in MÄK RTI Assistant

However, this FOM does not include commands or the perceived truth of the CGF
entities. For this we use the LLBML module, which is made as an extension to
the RPR FOM. Bruvoll et al. describe using a multiagent system to control a CGF
system in a similar manner [1, 43].

4.3 Data and Feature Extraction

Each experiment may require different data from the simulation. Data is used by
the action and condition nodes in the behaviour tree – nodes that are specific to
the entities controlled in the experiment, and for evaluating the behaviour trees
total performance – done by experiment-specific evaluation methods. Both the
behaviour tree nodes and the evaluation methods may need specific features ex-
tracted from the simulation data. The simulation system publishes data updates
to the HLA federation when calculating new world states. Our system subscribes
to data updates on specific types of simulated entities that are formalised in the
HLA federation FOM. To select what data that should be used and how it should
be processed, the system uses experiment-specific system entity for handling sim-
ulation data, called DataRows. The DataRows are used to store raw data, and for
extracting features from the raw data and storing those. This data is then available
for the behaviour tree nodes and for behaviour tree evaluation.

4.4 Behaviour Tree Representation 31

4.4 Behaviour Tree Representation

For representing behaviour trees used during simulation, we use gdxAI1, a Java
library for AI techniques used in computer games that is actively maintained and
has an active community. Behaviour trees represented with the gdxAI behaviour
tree framework has limited structural modularity once created. In order to allow
easier manipulation of the behaviour trees during evolution, we created a simple
hierarchical representation that works as a blueprint for how the executable trees
should be built once needed for simulation. The blueprint representations are
suitable for performing genetic operations. Functionality for sending instructions
to the simulated entities is implemented in the gdxAI-based leaf nodes.
We use selector and sequence composite nodes, and experiment-specific action

and condition nodes for our experiments. In our implementation, both condition
and action nodes can be augmented with internal variables that change how they
function. E.g., for a condition node which checks if two agents are within xmeters
of each other, the variable x may be changed to different values. Lim et al. [5]
used variable action nodes in their work. In the graphical representations of the
behaviour trees, the variables of a variable node are shown in square brackets after
the name of the node.

4.5 Evolving Behaviour Trees

We use GP to evolve behaviour trees. The developed system supports the use of
different algorithms. For our experiments we implemented and used a GA called
Non Sorting Genetic Algorithm II (NSGA-II). Following are descriptions of the
algorithm and the genetic operators used for evolving behaviour trees.

4.5.1 NSGA-II

NSGA-II is aMOGAwhich uses a non-domination ranking system and implements
diversity control using of crowing distance [44]. For each epoch, the algorithm
generates an offspring population based on the existing population, then combines
the offspring population with the existing population, rank all candidate solutions
in the combined populations, and then selects a new population based on their
non-domination ranks and crowding distances.
The NSGA-II implementation has four settings: population size, crossover rate,

minimum tree size and maximum tree size. The population size determines the
size of the population and offspring populations used. In our implementation,
when generating an offspring population, the new behaviour trees are created
either through crossover or mutation. The crossover rate determines whether each
new candidate solution should be created by crossover or by cloning and mutating
an existing candidate solution. That means that with a crossover rate of 0.6, there

1https://github.com/libgdx/gdx-ai

https://github.com/libgdx/gdx-ai

32 Chapter 4 Methods

 →

Action ?

Action ActionCondition

(a) Parent 1

?

 →

Action Action

Action

(b) Parent 2

 →

?

Action Action

 →

Action Action Condition

(c) Child

Figure 4.3: Crossover

is a 60% chance that the offspring candidate solution is created through crossover,
and 40% chance that it is created throughmutation. Selection of parents and cloned
candidate solutions is done with a binary tournament comparing non-domination
ranks and crowding distance, in that order. The minimum and maximum tree
size settings restrict the genetic operators from creating trees that are outside the
specified limits. This is further discussed in Subsection 4.5.3.

4.5.2 Genetic Operators

Following is a description of the crossover and mutation operators used in the
system.

Crossover

The crossover operator takes two behaviour trees as parents. First it chooses a
random subtree in each of the parents, as illustrated in Figures 4.3a and 4.3b. Then,
a clone of parent 1 is created and the random subtree in parent 2 is inserted at the
position of the random subtree in parent 1. Figure 4.3c displays the final tree after
crossover. This is the same crossover operator as is used in [4]. When selecting the
parents, the crossover operator is allowed to select the same behaviour tree twice.
This will result in a clone of the parent, where two randomly selected subtrees
switches position. This is a technique also used by Perez et al. [6].

4.5 Evolving Behaviour Trees 33

Mutation

The mutation operator uses seven different mutations with varying level of impact
on the behaviour trees. In our NSGA-II implementation, each offspring is either
created by the crossover operator, or by cloning andmutating a selectedparent from
the existing population. We created a probabilistic method for choosing between
multiple mutations.
Each mutation is given a starting weight. When the system chooses which

mutation to use, eachmutation has the probability to be chosen relative to itsweight
divided by the total weight of all the mutations. This means that a mutation with
a weight of two is twice as likely to be chosen as a mutation with a weight of one.
The equation for calculating the mutation probability is shown in Equation (4.1),
wherem is the single mutation andM is the set of all mutations.

prob(m) =
mweight

∑
xεM

xweight
(4.1)

In addition, the weights of the mutations can also be scaled based on the number
of epochs the training algorithm has been running. In order to do this, each
mutation is given a factor base in addition to the starting weight. When calculating
a mutation’s weight given the current epoch, the mutation’s starting weight is
multiplied with the base factor to the power of the epoch number. This equation is
shown in Equation (4.2), where weight0 is the mutation’s starting weight.

weightepoch = weight0 × (factor_baseepoch) (4.2)

With a factor base of 1.1, the mutation weight would increase by 10% for each
epoch, andwith a factor base of 0.9, themutationweightwould decrease by 10% for
each epoch. With this technique, we are able to use mutations that result in drastic
alterations to the behaviour trees more frequently in the early stages of the training,
and use the mutations that make smaller changes more as the training goes on.
This creates a SA effect, which helps prevent the algorithm from getting stuck in
local minima while still allowing localised search as the algorithm converges [16,
p. 128].
Following are descriptions of the seven different mutations that are used by the

mutation operator.

AddRandomSubtree Thismutation generates a random subtreewith a specified
minimum and maximum number of nodes, and inserts it at a random position in
the behaviour tree. Figure 4.4 shows the insertion of a tree with three nodes,
marked with a dotted line.

Add Random Leaf Node This mutation is identical to the Add Random Subtree
mutation, except that it only adds a leaf node. This mutation is also used in [5].

34 Chapter 4 Methods

 →

Action 1 ?

Action 2 Action 3Condition 1

(a) Original

 →

Action 4Condition 2

 →

Action 1 ?

Action 2 Action 3Condition 1

(b) Result

Figure 4.4: Add Random Subtree

 →

Scout
area

?

Approach
target

Rescue
target

Target is
[safe]

(a) Original

 →

Scout
area

?

Approach
target

Rescue
target

Target is
[in danger]

(b) Result

Figure 4.5: Randomise Variables of Random Node

Randomise Variables of Random Node Both action nodes and condition nodes
can have variables that affect their functionality. This reduces the total number of
nodes a developer has tomake and also allows the system tofine-tune the behaviour
of the behaviour tree. E.g., for a condition node that checks if the distance between
two units is lower than a certain value, the value can be altered during training to
check for different distances. This mutation randomises one or multiple variables
in an action or condition node. In Figure 4.5 the value of the “Target is ...” condition
node is changed from safe to in danger. Lim et al. [5] uses a similar mutation in
their research.

Remove Random Subtree This mutation removes a random subtree from a be-
haviour tree. Figure 4.6 shows the removal of the Action 2 node.

Replace Random Node With Node of Same Type This mutation replaces a ran-
domnodewith another randomnodeof the same type. Thismeans that a composite
node can be replaced with another composite node (e.g. sequence to selector) or

4.5 Evolving Behaviour Trees 35

 →

Action 1 ?

Action 2 Action 3Condition 1

(a) Original

 →

Action 1 ?

Action 3Condition 1

(b) Result

Figure 4.6: Remove Random Subtree

 →

Hide ?

Fight FleeIs discovered

(a) Original

 →

Hide ?

Freeze FleeIs discovered

(b) Result

Figure 4.7: Replace Random Node With Node of Same Type

that a leaf node is replaced with another leaf node. Condition and action nodes are
not treated differently, and may be replaced by any other leaf node. In Figure 4.7,
the Fight action node is changed to a Freeze action node, marked with a stippled
outline. This mutation is also used in [4].

Replace TreeWith Subtree This mutation replaces the entire tree with a random
subtree of that tree. In Figure 4.8 the entire tree is replaced by the selector subtree.

Switch Positions of Random Sibling Nodes This mutation switches the position
of two randomsiblingnodes, includingboth leaf and composite nodes. In Figure 4.9
the Condition 1 and Action 2 nodes have switched places.

4.5.3 Behaviour Tree Evaluation and Bloat Control

Evaluation metrics for behaviour trees and their performance are experiment-
dependent, and it is therefore required that the evaluation is defined per exper-
iment. However, as described in Section 3.5, evolving behaviour trees with GP
can often result in bloated trees, with subtrees that does not affect the represented
behaviour. To combat this, we applied three countermeasures, where the first is
part of the behaviour tree evaluation process.

36 Chapter 4 Methods

 →

Action 1 ?

Action 2 Action 3Condition 1

(a) Original

?

Action 2 Action 3Condition 1

(b) Result

Figure 4.8: Replace Tree With Subtree

 →

Action 1 ?

Action 2 Action 3Condition 1

(a) Original

 →

Action 1 ?

Action 2 Action 3Condition 1

(b) Result

Figure 4.9: Switch Positions of Random Sibling Nodes

First, we added size as a minimisation objective for the NSGA-II, as suggested
by Bleuler et al. [32]. This causes the NSGA-II algorithm to consider tree size
when selecting solutions for creating offspring solutions and selecting the new
population. NSGA-II implements diversity-control through the use of crowding
distance, which should help reduce the issues with clustering among the non-
dominated solutions related to this method of managing bloat.

Luke and Panait [37] concluded that the use of size as an objective workedwell in
combination with limiting tree depth. Crane and McPhee [36] argue that limiting
the total size of the tree instead of the depth is a better alternative than using
tree depth. In our NSGA-II implementation, we combine the use of size as one
of the multiple fitness objectives with restricting minimum and maximum size of
the generated behaviour trees. The exact sizes can be specified in the algorithm
settings.

Finally, we apply a set of methods for removing unused and unnecessary parts of
the behaviour trees after each crossover or mutation. This includes the removal of
empty composite nodes, removal of unreachable nodes, and combining any nested
composite nodes of the same type in order to reduce hierarchical complexity.

4.6 Summary 37

4.6 Summary

In this chapter, the methods used to help answer the hypothesis and research
questions have been described. The system overview, simulation system commu-
nication, data and feature extraction, and behaviour tree representation are related
to RQ2 and C3. The methods used for evolving behaviour trees are related to
C1, which helps answer RQ1, and the proposed method for performing mutations
forms C2.

Chapter5
Implementation

This chapter contains a detailed description of the system implementation. The
level of detail provided here is important for documenting how the system works,
for future use at FFI. The system is written in Java, and is published as open source
at https://github.com/eivinmor/msc-gbh-em under the MIT license1.

Section 5.1 provides an overview of the console output and training visualisation
of the system. Section 5.2 covers the most important components of the system
implementation. Section 5.3 explains what is needed to set up an experiment.
Section 5.4 describes the processes of initiating the system, running simulations,
recording behaviour and training behaviourmodels. Section 5.5 covers thedifferent
settings used in the system. Section 5.6 covers the logging system used in the
system. Section 5.7 provides an overview of the libraries that are used in the
implementation. And finally, Section 5.8 summarises the chapter and relates it to
the RQs and contributions.

5.1 System Interface

The system is started by initiating either the recording or training process. When
the system is running, it provides the user with system status updates by logging
to the system console, and with training progress visualisations during training.
Following are descriptions of the console logging output and the training progress
visualisation window.

5.1.1 Console Logging Output

All important events in the system are logged to both files and the system console.
This includes events such as sending HLA messages, registering of simulated enti-
ties, starting new training epochs, starting and stopping the simulation, and general
simulation and training progress, such as the evaluation of candidate solutions. All

1https://opensource.org/licenses/MIT

https://github.com/eivinmor/msc-gbh-em
https://opensource.org/licenses/MIT

40 Chapter 5 Implementation

log outputs are timestamped and marked with the logging level (DEBUG, INFO,
WARN, ERROR). The log outputs are colour-coded and indented to let the user
more easily see what the output message is related to. Figure 5.1 shows an example
of the console log output during training. For more information on the system
logging implementation, see Section 5.6.

5.1.2 Training Progress Window

During training, the system will create a window which displays the evolved be-
haviour trees and the overall fitness development for the training session. This
window is updated for every training epoch. When usedwith the included NSGA-
II implementation, the window contains five different tabs. The first four tabs
include graphical representations of the behaviour trees in the previous popula-
tion, the offspring population, the new population and the non-dominated set of
behaviour trees. The graphical representations of the behaviour trees use the same
symbols, shapes and colours as explained in Section 2.2, with the exception that
composite nodes are coloured blue instead of grey. Figure 5.2 shows window with
the “Old population” tab open.
The last tab displays plots of the fitness history so far for the training session, as

shown in Figure 5.3. Each fitness history plot contain three different data series,
one for the best fitness, one for the average fitness, and one for the worst fitness.
The fitness history plots are interactive, allowing the user to change axis ranges,
point symbols, line styles, etc.

5.2 System Components

The system is composed of a large number of different entities with different re-
sponsibilities and functionality. Figure 5.4 shows a high level overview of the
system architecture, with the most important components. The section provides
a detailed description of the system components and the relationships between
them. The system is divided into two main modules – the core systemmodule and
the experiment module.
The core system works as a framework for running different experiments with

experiment-dependent types of data, experiment-dependent types of simulated
entities with varying possible actions, and experiment-dependent evaluation met-
rics. It has also been designed to be used with different GAs, and to make the
addition of new GAs as easy as possible. The only requirement for new GAs im-
plementations is that they extend the Algorithm abstract class and are placed in
the core.training.algorithms package.
The class diagram in Figure 5.5 shows an overview of the classes described

in this section. It uses the same colour-coding as the architecture overview in
Figure 5.4 and the sequence diagrams in Figures 5.7 to 5.10. An explanation of
what the different colours means is given in Table 5.1. The beige packages are part

5.2 System Components 41

Figure 5.1: System console logging output during training

42 Chapter 5 Implementation

Figure 5.2: Training visualisation window with “Old population” tab open

Figure 5.3: Training visualisation window with “Fitness history” tab open

5.2 System Components 43

Communication over HLA

Our system

MÄK
VRForces

HlaManager
SimController UnitHandler

UnitLogger

RPR FOM 2.0

LLBML

Trainer

 NSGAII

Figure 5.4: Architecture overview of the system connected to MÄK VR-Forces

Table 5.1: Entity colour-coding in system diagrams (Figures 5.4, 5.5 and 5.7 to 5.10)

Colour Relation

Yellow Most important entities (those included in Figure 5.4)
Blue Process controllers used to start VR-Forces and RTI
Green Entities related to behaviour tree representation and operations
Pink Entities related to algorithm implementations
Purple Entities that are specified per experiment

of the core system, the pink package contains the included implementation of the
NSGA-II algorithm, and the purple package is the experiments package that holds
all experiment-specific classes. In the core system packages, there are several pink
and purple coloured classes with names that start with “?”, that have a red number
box in the top left corner. These classes are used to indicate where and how the
classes from the experiment module and algorithm implementations are used in
the system. In other words, these classes indicate the experiment- and algorithm-
specific classes that are required to run the core system. These classes will hereby
be referred to aswildcard entities. Each wildcard entity in the core system is marked
with an ID that is sharedwith one of the classes in either the experiment package or
the NSGA-II implementation package. These IDs indicate exactly which class from
the experiment or algorithm implementation package that replaces the wildcard
entity. It is important to note that NSGA-II is used as an example of an algorithm
implementation, and can be replaced by any other implementation without any
modifications to the core system.
The green package, core.btree.task.template, shows the specialisation hierarchy

of tasks used in the internal representation of behaviour trees. Task (green coloured
class in the core system) is the highest abstraction level of the possible behaviour
tree tasks, and the wildcard entity that extends it can be any of the subclasses
shown in the core.btree.task.template package.

Wilcard entities in the core system
(marked '?') are replaced by the entity or
entities with corresponding ID(s).

core.btree.tasks.blueprint.template

core.simulation

core.data

core.training.algorithms.nsga2

core.training

core.btree

core.btree.operations

core.unit

experiments

Task

children: List<Task>

HlaManager

getInstance(): HlaManager

connectFederate()

DataSet

D: DataRow

dataRows: List<D>

scenarioPath: String

unitMarking: String

SimController

getInstance(): SimController

Algorithm

D: DataRow, C: Chromosome

population: Population<C>

setup()

step(epoch, exampleDataSets)

Selector

? extends Chromosome

« Interface »

ConditionTask

VariableLeafTask

randomiseVariables()

randomiseRandomVariable()

NSGA2Chromosome

rank: integer

crowdingDistance: double

dominates: List<NSGA2Chromosome>

DataRow

getTimestamp(): double

getHeader(): String

getValues(): String

Task

children: List<Task>

parent: CompositeTask

getTasks(): List<Task>

instantiateExecutableTask(): com.badlogic.gdx.ai.btree.Task

Trainer

U: Unit, D: DataRow

exampleDataSets: List<DataSet<D>>

fitnessEvaluator: FitnessEvaluator

algorithm: Algorithm<D, ?>

? extends Algorithm

Sequence

« Interface »

AlwaysSuccessfulTask

Population

C: Chromosome

chromosomes: List<C>

NSGA2

createOffspringPopulation(...): [...]

rankPopulationByNonDomination(...): [...]

selectNewPopulationFromRankedPopulation(...): [...]

LeafTask

« Interface »

FitnessEvaluator

evaluate(...): LinkedHashMap<Double>

Chromosome

fitness: LinkedHashMap<String, Double>

behaviourTreeRoot: Task

CompositeTask

addChild(Task)

insertChild(Integer, Task)

removeChild(Task)

? extends DataRow ? implements FitnessEvaluator

? extends Task

Mutation

mutate(Task)

getWeight(double): double

canBePerformed(Task): boolean

Crossover

crossover(Task, Task): Task

Mutator

mutations: List<Mutation>

mutate(Task): Task

? extends Unit

UnitDataWriter

unit: ? extends Unit

writeDataToFile()

UnitLogger

unitDataWriters: HashMap<Handle, UnitDataWriter>

Unit

dataRows: List<DataRow>

handle: Handle

UnitHandler

units: HashMap<Handle, Unit>

controlledUnits: HashMap<Handle, ControlledUnit>

ControlledUnit

U: Unit

unit: U

btree: BehaviorTree

sendUnitCommands()

UnitTypeInfo

unitClass: Class<? extends Unit>

availableTasks: List<Task>

ExperimentInitialiser

setup(UnitTypeInfoInitialiser, AddUnitMethod, boolean, boolean, boolean)

« Interface »

UnitTypeInfoInitialiser

initUnitTypeInfo()

Blackboard

BehaviorTreeUtil

1

1

1..*

1 1

1

1..*

*

1

1

*

0..1

1..*

*

1

*

*

0..1

*

1

0..1

1

1

1*

1

1

*

1

*

1

*

« use »

« use »

« use »

« use »

external process controllers

btree.operations.mutations

experiments.experiment[x]

SimEngine

start()

Rti

start()

SimGui

start()

AddRandomSubtreeMutation

RandomiseVariablesOfRandomVariableTaskMutation

RemoveRandomSubtreeMutation

ReplaceRandomTaskWithTaskOfSameTypeMutation

ReplaceTreeWithSubtreeMutation

SwitchPositionsOfRandomSiblingTasksMutation

Experiment[x]FitnessEvaluator Experiment[x]UnitTypeInfoInitialiserExperiment[x]AddUnitMethod

1 1

0..1 1

1

1

experiments.experiment[x].units experiments.experiment[x].tasksexperiments.experiment[x].datarows

Experiment[x]DataRow[m] Experiment[x]Task[k]

...

Experiment[x]DataRow[2]

Experiment[x]DataRow[1]

...

Experiment[x]Unit[2] Experiment[x]Task[2]

Experiment[x]Unit[1]

...

Experiment[x]Task[1]

Experiment[x]Unit[n]

1

1 2

2
3

4 5 6

3

4

5

6

Wilcard entities in the core system
(marked '?') are replaced by the entity or
entities with corresponding ID(s).

core.btree.tasks.blueprint.template

core.simulation

core.data

core.training.algorithms.nsga2

core.training

core.btree

core.btree.operations

core.unit

experiments

Task

children: List<Task>

HlaManager

getInstance(): HlaManager

connectFederate()

DataSet

D: DataRow

dataRows: List<D>

scenarioPath: String

unitMarking: String

SimController

getInstance(): SimController

Algorithm

D: DataRow, C: Chromosome

population: Population<C>

setup()

step(epoch, exampleDataSets)

Selector

? extends Chromosome

« Interface »

ConditionTask

VariableLeafTask

randomiseVariables()

randomiseRandomVariable()

NSGA2Chromosome

rank: integer

crowdingDistance: double

dominates: List<NSGA2Chromosome>

DataRow

getTimestamp(): double

getHeader(): String

getValues(): String

Task

children: List<Task>

parent: CompositeTask

getTasks(): List<Task>

instantiateExecutableTask(): com.badlogic.gdx.ai.btree.Task

Trainer

U: Unit, D: DataRow

exampleDataSets: List<DataSet<D>>

fitnessEvaluator: FitnessEvaluator

algorithm: Algorithm<D, ?>

? extends Algorithm

Sequence

« Interface »

AlwaysSuccessfulTask

Population

C: Chromosome

chromosomes: List<C>

NSGA2

createOffspringPopulation(...): [...]

rankPopulationByNonDomination(...): [...]

selectNewPopulationFromRankedPopulation(...): [...]

LeafTask

« Interface »

FitnessEvaluator

evaluate(...): LinkedHashMap<Double>

Chromosome

fitness: LinkedHashMap<String, Double>

behaviourTreeRoot: Task

CompositeTask

addChild(Task)

insertChild(Integer, Task)

removeChild(Task)

? extends DataRow ? implements FitnessEvaluator

? extends Task

Mutation

mutate(Task)

getWeight(double): double

canBePerformed(Task): boolean

Crossover

crossover(Task, Task): Task

Mutator

mutations: List<Mutation>

mutate(Task): Task

? extends Unit

UnitDataWriter

unit: ? extends Unit

writeDataToFile()

UnitLogger

unitDataWriters: HashMap<Handle, UnitDataWriter>

Unit

dataRows: List<DataRow>

handle: Handle

UnitHandler

units: HashMap<Handle, Unit>

controlledUnits: HashMap<Handle, ControlledUnit>

ControlledUnit

U: Unit

unit: U

btree: BehaviorTree

sendUnitCommands()

UnitTypeInfo

unitClass: Class<? extends Unit>

availableTasks: List<Task>

ExperimentInitialiser

setup(UnitTypeInfoInitialiser, AddUnitMethod, boolean, boolean, boolean)

« Interface »

UnitTypeInfoInitialiser

initUnitTypeInfo()

Blackboard

BehaviorTreeUtil

1

1

1..*

1 1

1

1..*

*

1

1

*

0..1

1..*

*

1

*

*

0..1

*

1

0..1

1

1

1*

1

1

*

1

*

1

*

« use »

« use »

« use »

« use »

external process controllers

btree.operations.mutations

experiments.experiment[x]

SimEngine

start()

Rti

start()

SimGui

start()

AddRandomSubtreeMutation

RandomiseVariablesOfRandomVariableTaskMutation

RemoveRandomSubtreeMutation

ReplaceRandomTaskWithTaskOfSameTypeMutation

ReplaceTreeWithSubtreeMutation

SwitchPositionsOfRandomSiblingTasksMutation

Experiment[x]FitnessEvaluator Experiment[x]UnitTypeInfoInitialiserExperiment[x]AddUnitMethod

1 1

0..1 1

1

1

experiments.experiment[x].units experiments.experiment[x].tasksexperiments.experiment[x].datarows

Experiment[x]DataRow[m] Experiment[x]Task[k]

...

Experiment[x]DataRow[2]

Experiment[x]DataRow[1]

...

Experiment[x]Unit[2] Experiment[x]Task[2]

Experiment[x]Unit[1]

...

Experiment[x]Task[1]

Experiment[x]Unit[n]

1

1 2

2
3

4 5 6

3

4

5

6

Figure 5.5: Class diagram of the core system and the experiment package. A single-page version for electronic viewing is shown in Figure B.1. The
colouring of the system entities follows the system diagram colour-coding, specified in Table 5.1. The core system requires class implementations from
both the experiment package and an algorithm implementation to work. These missing classes are shown as purple (experiment) and pink (algorithm)
classes with names that start with “?” and have red number boxes in the top left corner. The numbers indicate where each class or set of classes from the
experiment and algorithm packages are used in the core system.

46 Chapter 5 Implementation

5.2.1 Simulation Package

The simulation package contains the HlaManager, the SimController, and three
external process controllers. HlaManager manages all incoming and outgoing
HLA communication, the SimController is used for controlling the simulation, and
the three process controllers are used to initiate the external simulation systems.

HlaManager

HlaManager manages all incoming and outgoing HLA communication. That in-
cludes restricting federation time advancement, requesting time advancement, ad-
vancing the system federate time, sending HLA messages and forwarding incom-
ing data updates to any listener in the system. All other entities in the system use
exposed methods in the HlaManager to communicate with the simulation engine.

SimController

The SimController (simulation controller) controls the simulation. It uses the Hla-
Manager to send instructions to the simulation system, including instructions to
play, pause or load a scenario, and instructions for what the simulated entities
should do. The SimController is added as a “tick listener” in the HlaManager,
meaning that it is notified every time the system federate time advances by a spec-
ified internal tick interval. When the SimController is notified that the time has
advanced, it instructs the system entities responsible for updating internal data
representations (UnitHandler), storing data to files (UnitLogger) and generating
entity instructions (UnitHandler) to process the new data received from the sim-
ulation system. The SimController also controls how long the simulation should
run, depending on a specified number of ticks. The methods for loading, playing,
and pausing a scenario is exposed to the rest of the system, and is e.g. used by the
Trainer entity.

External Process Controllers

There are three external process controllers, shown in the top left corner in Figure
5.5 under the simulation package. An external process controller is responsible
for starting and maintaining external simulation software processes. They listen to
the console output of the process, logs this output to our internal logging sysem,
and can be set to listen to specific process console outputs. The RTI class can be
used to start the MÄK RTI software, the SimEngine can be used to start the MÄK
VR-Forces simulation engine, and the SimGUI can be used to start the MÄK VR-
Forces GUI. Both the RTI and simulation engine must be running for our system to
function as intended. However, they can be started manually instead of using the
process controllers. The external process controllers are not able to shutdown or
relay console output if the processes were manually started.

5.2 System Components 47

The SimEngine and SimGUI process have multiple settings that are tuned in
the SimSettings class. These include application ID, HLA version, HLA federation
FOM, FOM modules, plugins, etc.

5.2.2 Unit Package

Simulated entities are represented as “units” in our system. The package contains
the Unit, ControlledUnit, UnitHandler, UnitLogger, UnitInfo and UnitDataWriter
classes. The Unit class is a base class intended to be extended to create more
advanced unit types. The ControlledUnit class is used to control a specific unit in
the simulation. TheUnitHandler is responsible for storing andmanaging the active
units in the system. The UnitLogger is responsible for storing unit data to CSV. The
UnitTypeInfo is used to store information about the different types of simulated
entities, how they should be represented as units, and what types of nodes that can
be used in their behaviour trees.

Unit

The Unit class is the base class that all other units types are built on. It is an abstract
class and can therefore not be instantiated. It defines several parts of the unit that
must be present: a marking, an identifier, a handle and a list of DataRows. See 5.2.3
for more information on the DataRow base class. The Unit class also contains a
set of methods, including an abstract method for updating the unit’s DataRows,
and getters for the unit variables. Any class that implements the Unit class must
implement the updateData method.
A simulated entity in HLA has a marking field which is a text field that the

user can fill in when creating the entity. The marking should make it easier for
a human to identify different entities in the simulation. In order for our system
to determine certain properties of the entity, it requires a special syntax in the
marking text. A string representing the identifier of the agent, e.g. “F1”, must be
present for the system to know which unit type the entity is. The identifiers for
different unit types are registered as UnitTypeInfo instances in our system. The
identifier is stored in the unit instance and should be unique to each simulated
entity in the scenario. This can be followed by a goal separator, the “−” character,
which is followed by a string that represents the agents goal. The goal can e.g. be
the identifier of another unit that the unit should follow. This is followed by a “[”
character to define properties of the agent and closed by a “]” character, e.g. “F1[c]”
or “F1-W1[c]”. The system uses the “c” character (short for controlled) to define
that the agent should be controlled by our system. If no such option is used, then
the system will not send instructions to the unit. The user may insert additional
text that is ignored by the system by using the “(” character followed some text and
closed by a “)” character. An important note is that the entity marking is limited
to eleven 8-bit characters in HLA, and it should be investigated if there are other
more suitable fields to store this information.

48 Chapter 5 Implementation

The handle is the simulation unique identifier given to every entity in the simu-
lation. The handle is required when sending commands to a specific unit.

ControlledUnit

The ControlledUnit class holds a Unit instance and a behaviour tree. The Unit
instance is the internal representation of a single simulated entity. When the
SimController is notifiedof a new tick in the simulation, it instructs theUnitHandler
to execute all ControlledUnits. When a ControlledUnit is executed, it will execute
its behaviour tree, which then sends instructions to the simulated entity related
to its Unit. The behaviour tree uses data stored in the Unit class instance when
executing its nodes.

UnitHandler

The UnitHandler holds all Unit instances in the system. It handles registration
and removal of UnitTypeInfo, Units and ControlledUnits. It also updates the
internal simulation data representations (DataRows) of the Units and instructs
ControlledUnits to execute behaviour trees in order to generate instructions for the
simulated entities.
The UnitHandler requires the user to provide a method that handles adding

units when the simulation entity is discovered. This is done by passing an im-
plementation of the AddUnitMethod interface to the UnitHandler. The user must
supply this method because the unit types are experiment-specific. The method
that is supplied should use the UnitHandler’s methods for extracting information
from an agent’s marking text. The UnitHandler exposes methods that return the
identifier, options, and methods that can remove the comments and options from
the marking string. Once a unit instance has been created, it should be added to
the UnitHandler by calling the UnitHandler’s putUnit method.

UnitLogger

The UnitLogger is responsible for writing all simulation data stored in the Unit
instances to CSV files for use in training evaluation. Each Unit has one or multiple
CSV files, depending on howmany types of DataRows they contain. The UnitLog-
ger creates a separate folder for each unit, which contains one file for each type of
DataRow used by the Unit. The UnitHandler registers every created Unit with the
UnitLogger, which then stores the header information and metadata in the CSV
file. Metadata may be added before the header line of the CSV file, where each
metadata line is prepended with a # symbol followed by the metadata key, the ∶
character and the metadata value. The UnitLogger stores the system start time, the
scenario path and the unit marking in the metadata. When the SimController is
notified of a simulation tick, it will call the logAllRegisteredUnits method in the
UnitLogger, and the UnitLogger will store the updated data stored in the Units to
the respective data files.

5.2 System Components 49

UnitDataWriter

The UnitDataWriter class is an internal class of the UnitLogger, and is used to write
the Unit’s data to files. The UnitLogger maintains a list of all the UnitDataWriters,
where there is one instance per DataRow per Unit.

UnitTypeInfo

TheUnitTypeInfo is used to store information about the different types of simulated
entities, how they should be represented as units, and what types of nodes that
can be used in their behaviour trees. For each type of simulated entity, an instance
of UnitTypeInfo is registered in the UnitHandler. Each instance contains a name,
symbol, class type used for internal entity representation (Unit), and leaf tasks
and composite tasks that can be used when generating behaviour trees for that
type of simulated entity. The UnitHandler exposes two methods for extracting this
information – one for extracting UnitTypeInfo instances by symbol, and one for
extracting by Unit class.

5.2.3 Data Package

The data from the simulation is used for both generating unit commands during
simulation, and stored for use in evaluating behaviour performance after the sim-
ulation has been completed. The data package contains entities related to data
management. It provides a framework for creating specialised classes for process-
ing and storing simulation data. It contains the DataRow class, an abstract class
intended to be extended with specialised data fields, which is used to store data
related to a specified timestamp in the simulation. It also contains the DataSet
class, used to group multiple DataRows to a data set.

DataRow

The DataRow is the fundamental component for storing and interacting with data
in the system. It is an abstract class and can therefore not be instantiated. The
only field in the DataRow base class is the simulation timestamp for when the data
was extracted. The intent is that the data fields are specified in the implementation
extending the DataRow base class. All classes that extend the DataRow class must
implement the getDataSetName, getHeader, setValues, and getValuesAsCsvString
methods.
The getDataSetName method should return the name of the data set which is

used to store the data row to a file with that name. The getHeader is used to
get the header line that should be used when writing the data to a CSV file. The
getValuesAsCsvString method should return all the values in the DataRow as a
comma separated string. The order of the values in the string should match the
order given by the getHeader method. The setValues method takes a list of strings
as argument and is intended to be used to create a DataRow from a line in a CSV
file. Each string in the list should be converted to the appropriate data format

50 Chapter 5 Implementation

before being stored. The order of the values in the argument should also match the
order given by the getHeader method.

DataSet

The DataSet is used to group multiple DataRows to create a data set. A DataSet
will only contain one type of DataRow. When constructed, the DataSet takes has
two parameters. The first parameter is a class that implements the type of DataRow
that the respective DataSet should contain. The second parameter is a path to a
CSV file that the data should be loaded from. The constructor reads the scenario
path and unit marking from the metadata of the file, but ignores the system time
and header line. For each of the remaining lines it will create a DataRow instance,
of the specified type, and use the setValue method to add the data values to the
DataRow instance.
The DataSet exposes methods to retrieve the scenario path, all the DataRows,

the unit marking, the DataSet name and the number of ticks. The number of ticks
corresponds to the number of DataRows in the DataSet.

5.2.4 Training Package

The Training package contains entities that are used for training the behaviour
trees. This includes the Trainer which controls the training process, and a set of
classes that provide a framework for implementing GAs (Algorithm, Population,
Chromosome) and experiment-specific evaluation methods (FitnessEvaluator).

Trainer

The Trainer class controls the training process. To make the Trainer experiment-
independent, it requires a lot of the experiment specific implementations to run.
When creating a Trainer instance, the constructor requires a set of parameters. It
requires the Unit class that the behaviour trees should be trained for, the DataRow
touse for evaluating the behaviour trees, an implementation of the FitnessEvaluator
interface, an algorithm implementation to use when training, and a list paths to the
example data files. To start the training, the user must call the train method with
a specified number of epochs to run as argument. The Trainer will then, for each
epoch, call the step method on the algorithm.
The Trainer exposes a set of methods that are used by the algorithm implemen-

tation. It provides a method that easily allows for simulation of the candidate
solutions (Chromosome). The method takes a Population and a list of example
DataSets as arguments. The example DataSets are used to retrieve the scenario
to simulate and the duration to run the simulation. The method then simulates
each of the Chromosomes in the Population before returning. The method locks
the training thread while the simulation is running. This makes development of
the algorithms easier but forces the algorithm to wait until all Chromosomes have
been simulated until evaluating them. With the current use of the system, this

5.2 System Components 51

restriction has no significant effect on the training time as the time spent evaluating
Chromosomes is insignificant compared to the time spent simulating.
The Trainer also exposes a method called setFitness. This method takes a Pop-

ulation and the current epoch number as inputs. It loads the DataSets generated
from simulating the Chromosomes and passes the Chromosome, the DataSet from
simulating the Chromosome and the example DataSet to the FitnessEvaluator im-
plementation. The FitnessEvaluator implementation returns a set of fitness values
which the Trainer sets as the Chromosomes fitness.
The Trainer tracks the fitness history of the training session. The Algorithm

implementation can call the updateFitnessHistorymethodwith the newPopulation
of evaluated Chromosomes. When thismethod is called, the Trainer stores the best,
average and worst scores out of all the Chromosomes for each fitness value. This
method is typically called each training epoch. The stored fitness history is used to
present the fitness development as graphical plots to the user.

Algorithm

The Algorithm class is essential in the training process. It is an abstract class,
providing a skeleton for implementing GA algorithms for use during training. The
Trainer requires an implementationof theAlgorithmclass towork. During training,
the Algorithm implementation dictates how to generate a new Populations, what
Chromosomes to simulate, and which Chromosomes that should be selected for
the new Population.
The Algorithm base class requires the implementations to have a setup method,

and a step method. The setupmethod should contain any actions that are required
to prepare the algorithm for running the training, such as generating a starting
Population. The step method is called for each epoch of the training process, and
should contain all necessary actions for the algorithm to generate new Chromo-
somes, evaluate them and select a new Population.

Population

The Population class is used to hold and manipulate a list of Chromosomes. The
Population has a method called selectionTournament that selects a Chromosome
based on the number of contenders and a specified Comparator which is defined
in the Chromosome implementation. Typically, different algorithms would use
different Comparators. The Population class also provides a utility method called
containsChromosomeWithEqualTree which takes a behaviour tree as argument
and checks if a Chromosome containing an equivalent behaviour tree already exists
in the Population. This is used to only keep unique individuals in the Population.

Chromosome

The Chromosome class holds a behaviour tree and fitness values, and is the repre-
sentation used for candidate solutions of the GA. It works as a baseline implemen-

52 Chapter 5 Implementation

tation for a Chromosome, and can be extended and replaced with an algorithm-
specific implementation that require more than the base functionality provided in
this class. In the baseline implementation, the fitness values are stored in a map
that uses the fitness name as the key and the fitness value as the value. The fitness
name is a string representation of what the fitness value measures, for example
"Scenario X" can be a fitness name which scores the Chromosome on how well it
performs in a specific scenario.
The baseline class exposes getters and setters for behaviour trees and fitness,

as well as two other methods – the singleObjectiveComparator method and the
functionallyEquals method. The singleObjectiveComparator method returns a
Comparator that can be used to sort a collection of Chromosomes based on a
specific fitness value. The functionallyEquals method is called on a Chromosome
instance and takes another Chromosome instance as an argument. It compares the
two Chromosome instances and return true if all their fitness values are equal.

FitnessEvaluator

The FitnessEvaluator is an interface that needs to be implemented in order to eval-
uate the Chromosomes. What data and how it should be processed and scored
will typically be specific to each experiment, and the implementation of the Fitnes-
sEvaluator interface should be provided per experiment. The interface specifies
only one required method, the evaluate method, which takes a Chromosome in-
stance, a list of example DataSet instances and a list of DataSet instances resulting
from simulating the Chromosome as arguments. Each DataSet corresponds to data
recorded from a scenario. The order of the DataSet lists are the same, so that index
0 in both the lists correspond to the same scenario. The evaluate method must
return a map that has fitness names as keys and fitness values as values.

NSGA-II Algorithm Implementation

The only included implementation of the Algorithm abstract class is the NSGA2
class. We implemented the NSGA-II algorithm, with a few modifications, as de-
scribed in Subsection 4.5.1. For use with the NSGA-II algorithm, we had to extend
the functionality of the baseline Chromosome class. The NSGA2Chromosome
class has extra functionality for comparing and storing non-domination ranks and
crowding distance.

5.2.5 Behaviour Tree Package

For representing behaviour trees used during simulation, we use the gdxAI library.
Behaviour trees represented with the gdxAI behaviour tree framework has limited
structural modularity once created. In order to allow easier manipulation of the
behaviour trees during evolution, we created a simple hierarchical representation
that works as a blueprint for how the executable trees should be built once needed
for simulation. The blueprint representations are suitable for performing genetic

5.2 System Components 53

operations. Therefore, it is required that each type of behaviour tree node used
in our system has two implementations, one for the blueprint behaviour trees and
one for the executable behaviour trees. The code for processing simulation data
and producing instructions for the simulated entity are only implemented in the
executable nodes.
The gdxAI library defines a tree of nodes as a task, where the nested children of

the root node define sub-tasks. When referring to a node as a task, it includes all
nodes in the tree spanning from that node. Our implementation of the blueprint
behaviour tree representation follows the same naming convention, and as the
nodes are typically referenced as the root of a tree, we use “task” instead on “node”
in the class names.

Blueprint Task Template

The blueprint task template package is located in the behaviour tree package, and
provides a framework for creating nodes for use in blueprint behaviour trees. The
structure of the nodes mirrors the structure used in the gdxAI framework. The
blueprint task template contains the Task class, the CompositeTask class and the
LeafTask class, as well as the ConditionTask and VariableLeafTask interfaces.

Task Each node in a behaviour tree is an instance of some class that extends
the Task class. The Task class is abstract and cannot be instantiated. An instance
of the Task class may have a single parent and any number of children. Classes
that implement the Task class must also implement three methods: getDisplay-
Name, cloneTask and instantiateExecutableTask. The instantiateExecutableTask
method must return the gdxAI Task class that this blueprint Task represents. For
each blueprint Task class there must therefore be a gdxAI Task class with the im-
plementation of the executable behaviour of that blueprint Task. The Task class
also includes some static utility methods, e.g. methods for removing unnecessary
nesting of composite nodes in a task (hierarchy of nodes).

CompositeTask Composite tasks are tasks that have one or more children. The
CompositeTask class is also an abstract class which provide utility methods for the
different types of composite tasks – sequence and selector. These utility methods
include addChild, insertChild, removeChild, replaceChild, shuffleChildren, etc.
These methods are used by the genetic operations to alter the behaviour tree in
some way. See Subsection 4.5.2 for more information on the genetic operations.
The system includes two CompositeTask implementations: the Sequence task,

and theSelector task. TheSequence andSelector implementations arenot experiment-
specific and is therefore part of the core system. For information on the concept of
sequence and selector nodes in behaviour trees, see Section 2.2. The Sequence and
Selector blueprint implementations extend the CompositeTask base class and im-
plements the getDisplayName, cloneTask and instantiateExecutableTask abstract
methods of Task base class.

54 Chapter 5 Implementation

LeafTask Leaf tasks are tasks that have no children. Any task in the system that
is meant to be a leaf task must implement the LeafTask abstract class, or implement
the VariableLeafTask abstract class which in turn extends the LeafTask. In the
system there are two types of leaf tasks: the condition task and the action task.
The condition tasks are nodes that do not alter the environment, but tests some
condition on the current environment and returns Success or Failure based on that
condition. The action tasks are used to instruct the controlled simulated entity to
perform an action.
TheVariableLeafTask should beused if the task requires some internal variable(s)

for tuning the conditon or action. This can e.g. be meters a target should move or
the quantity a condition node should check for. VariableLeafTask implementations
need to implement a method randomising the values of the variable(s), within
specified limits. It also requires a specialised method for checking if the node is
equal to another node. This is because the VariableLeafTask nodes need to check
the variable values in addition to the normal structural comparison used in the
Task class.
If the task is a condition task then it should also implement the ConditionTask

interface. This is primarily used for recognising condition tasks when creating
graphical representations of the behaviour trees.

Crossover

The Crossover class is used for performing crossover on the behaviour trees. It
provides a single static method, crossover, which takes two behaviour trees as
arguments. The first argument is cloned and becomes the child of the crossover
operation, a random subtree (Task) in the child is then replaced with a random
subtree (Task) from the second argument. The child is then returned by themethod.
This method does not alter the behaviour trees given as arguments but returns a
new behaviour tree instance.

Mutator

The Mutator class is used to select between the seven mutation operators used in
the system, and to instruct the selected mutation operator to mutate a behaviour
tree. The system calls the static mutate method on the Mutator class, which takes
a Task, the Unit class that the behaviour trees are intended for and the current
training epoch as arguments. The Unit class is needed to request the UnitTypeInfo
object so that the mutation operator can get the types of tasks that can be used
in the behaviour tree. The training epoch is used when getting the weight of a
specific mutation, where the weights are used for a probabilistic selection between
the different mutations , described in Subsection 4.5.2.

Mutation

The Mutation class is an abstract class that must be extended by all mutation
operator implementations. The class has a constructor that takes a weight and a

5.2 System Components 55

factorBase as arguments. It also implements a getWeight method which returns
the current weight of the mutation which takes the current epoch as its argument.
Subsection 4.5.2 gives an explanation on how the weight for a specific epoch is
calculated.
The class also defines an abstract method called canBePerformed which must be

implemented by the mutation operators. The method takes a Task instance as its
argument and should return true if the mutation can be performed on the Task
instance, and false otherwise. For example, a mutation that removes two nodes
from a behaviour tree should return false if there are only one node in the behaviour
tree. TheMutation class also defines an abstract method called mutate which takes
a Task instance and a Unit class as arguments. The method is used to actually
perform the mutation operation on the Task instance. The method should return a
new Task and not alter the Task instance given as argument.
All seven mutation implementations included in the system are described in

Subsection 4.5.2.

5.2.6 Visualisation Package

Visualisation of behaviour trees and fitness history is handled by the Visualisation
package. JGraphX2 is used to generate a JScrollPane (Swing3 component) that
contains the graphical representation of a behaviour tree. The JScrollPane can be
used in a JFrame to render the figure to the user. For visualising the fitness history,
JFree4 is used to plot historical fitness data, creating a JPanel (a Swing component)
that can be rendered in the same JFrame as the graphical representations of the
behaviour trees.

5.2.7 Experiments Package

For each experiment, the user has to create their package containing the classes
required to run the experiment. These packages are intended to be placed in the
Experiments package. The Experiments package contains two classes that are used
for setting up an experiment – the ExperimentInitialiser and the UnitTypeInfoIni-
tialiser. Following are description on these two classes. For more information on
how the experiment-specific packages should contain, see Section 5.3.

ExperimentInitialiser

The experiments package includes the ExperimentInitialiser class which has a sin-
gle static method called setup. The setup method takes a UnitTypeInfoInitialiser
instance, a AddUnitMethod instance, a boolean called startRti, a boolean called
startSimEngine and a boolean called startSimGui. The three boolean arguments

2https://github.com/jgraph/jgraphx
3https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
4http://jfree.org

https://github.com/jgraph/jgraphx
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
http://jfree.org

56 Chapter 5 Implementation

tell the ExperimentInitialiser if it should start the RTI, simulation engine and sim-
ulation GUI. The method will first call the initUnitTypeInfo method on the Unit-
TypeInfoInitialiser instance. It will then register the AddUnitMethod instance in
the UnitHandler. Then, it will start the RTI if specified, instruct the HlaManager
to connect to the HLA federation, and add the SimController as a tick listener
and physical entity update listener in the HlaManager. Finally, it will start the
simulation engine and the simulation GUI if specified.

UnitTypeInfoInitialiser

The UnitTypeInfoInitialiser is an interface that the user should implement in their
experiment package. The interface contains a single method called initUnitType-
Info. The method is called by the ExperimentInitialiser and should add every
UnitTypeInfo to the UnitHandler.

5.3 Setting up an Experiment

When creating a new experiment, the user has to create classes for all experiment
specific system components. The necessary implementations to run an experiment
include specialisations of the Unit, DataRow and Task classes, an implementa-
tion of the FitnessEvaluator interface, instances of UnitTypeInfo for registering the
different types of Units that should be used, and an implementation of the Ad-
dUnitMethod interface for registering simulated entities as Units. The experiment
also requires a main class which is the entry point of the system. The main class
should contain methods for starting the recording or training process. For more
information on how these processes are initiated, see Subsection 5.4.2.
To register the experiment-specific instances of UnitTypeInfo, the user must im-

plement the UnitTypeInfoInitialiser interface. Listing 5.1 shows an example of how
this can be done.
When the user wants to start the training or recording phase, they must first call

the static setupmethod on the ExperimentInitialiser class located in the Experiment
package. This class takes theUnitTypeInfoInitialiser, theAddUnitMethodand three
boolean arguments. The three boolean arguments tell the ExperimentInitialiser if
it should also start the RTI, the simulation engine and the simulation GUI.
If the user wants to start the training phase, they must first instantiate the Algo-

rithm implementation that should be used with the algorithm-specific arguments.
Then, an instance of the Trainer class can be created, with the class of the Unit type
to train, the DataRow implementation to use for evaluation data, the FitnessEvalua-
tor implementation to use for evaluating the Chromosomes, the created Algorithm
instance, and paths to example data files. Finally, the train method must be called
on the Trainer instance. An example of how to start the training process is shown
in Listing 5.2.

5.3 Setting up an Experiment 57

Code 5.1: Example of how to register unit type information.

1
2 public class Experiment1UnitTypeInfoInitialiser implements

UnitTypeInfoInitialiser {
3 @Override
4 public void initUnitTypeInfo() {
5 UnitHandler.addUnitTypeInfo(
6 name: "Follower",
7 symbol: "F",
8 class: FollowerUnit.class,
9 availableLeafTasks: Arrays.asList(

10 MoveToTargetTask.class,
11 WaitTask.class,
12 IsApproachingTask.class,
13 IsWithinTask.class,
14 TurnToTargetTask.class
15),
16 availableCompositeTasks: Arrays.asList(
17 Selector.class,
18 Sequence.class
19)
20);
21 UnitHandler.addUnitTypeInfo(
22 name: "Wanderer",
23 symbol: "W",
24 class: Experiment1Unit.class,
25 availableLeafTasks: new ArrayList <>(),
26 availableCompositeTasks: new ArrayList <>()
27);
28 }
29 }

Code 5.2: Example of how to initiate the training process.

1 private static void train() {
2 ExperimentInitialiser.setup(
3 new Experiment1UnitTypeInfoInitialiser(),
4 new Experiment1AddUnitMethod(),
5 startRti: false,
6 startSimEngine: true,
7 startSimGUI: false
8);
9

10 Algorithm <FollowerEvaluationDataRow , NSGA2Chromosome >
algorithm = new NSGA2<>(

11 populationSize: 30,
12 crossoverRate: 0.5,

58 Chapter 5 Implementation

13 minimumTreeSize: 3,
14 maximumTreeSize: 12
15);
16 String[] exampleFileNames = new String[]{
17 "experiment1/brooklyn.csv",
18 "experiment1/village.csv",
19 "experiment1/makland.csv"
20 };
21 Trainer trainer = new Trainer <>(
22 FollowerUnit.class,
23 FollowerEvaluationDataRow.class,
24 new Experiment1FitnessEvaluator(2),
25 algorithm ,
26 exampleFileNames
27);
28
29 trainer.train(200);
30 }

5.4 System Processes

This sectiongives ahigh level descriptionof four important systemprocesses. These
are the system initiation process, the simulation process, the recording process, and
the training process. Each of the processes are documented in more detail in the
sequence diagrams found in this section. An explanation of how to read the
sequence diagrams is given in Subsection 5.4.1.

5.4.1 Sequence Diagram Explanation

Each sequence diagram has an ID which is shown in the top left corner of the
figure. The sequence diagrams for system initiation and simulation (Figures 5.7
and 5.8) also have process parameters specified after the diagram ID. All diagrams
can be referenced by their ID, and the ones with parameters can be referenced with
different arguments that affect the sequence of events.
System entities are colour-coded according system diagram colour-coding stan-

dard we specified in Table 5.1. In addition, the sequence diagrams use a separate
colour-coding for entity activity blocks (the rectangular shapes along the entity
lifelines), where colours indicate different processing threads. Thread colour indi-
cations are consistent through the diagrams, meaning the blue active blocks in one
diagramwill be on the same thread as the blue active blocks in the other diagrams,
etc.
The diagrams contain four different types of fragments, shown as frames with

an green card in the top left corner which contains a fragment code. The fragment
codes and their associated fragment names and meanings are shown in Table 5.2.

5.4 System Processes 59

Table 5.2: Sequence diagram fragment explanations (used in Figures 5.7 to 5.10)

Code Name Explanation

Alt Alternative Indicates mutually exclusive choices, with the choices
separated by a stippled line.

Opt Option Indicates an optional sequence, with potential condi-
tions included in square brackets.

Loop Loop Indicates a repetitive sequence, with looping condition
included in square brackets.

Ref Reference References a process shown in another diagram by dia-
gram ID,withpotential diagramparameter arguments.

For a more detailed description of the different types of fragments, see the IBM
DeveloperWorks page on sequence diagrams5

5.4.2 Initiation Process

The system initiation process starts when the Experiment[x] is initialised. The
complete system initiation process is shown in Figure 5.7. The Experiment[x]
class will first instantiate the Experiment[X]UnitTypeInfoInitialiser and Experi-
ment[x]AddUnitMethod classes. It will then call the setup method in the Exper-
imentInitialiser, with the instantiated classes as arguments in addition to three
booleans that specify if the RTI, simulation engine and simulation GUI should be
initiated as well. The ExperimentInitialiser will add all UnitTypeInfo objects from
the Experiment[x]UnitTypeInfoInitialiser and specify to the UnitHandler that the
Experiment[x]AddUnitMethod should be used when adding new simulation en-
tities to the system. It will then start the RTI, if this is specified in the options,
and connect the federate to the RTI. It will then add the SimController instance
as a “tick listener” and “physical entity updated” listener. Finally, it will start the
simulation engine and simulation GUI if this is specified.

5.4.3 Simulation Process

The entire process of running simulations is shown in Figure 5.8. All communica-
tion between our system and the simulation system goes through the HlaManager,
the HlaLib library and the RTI, as shown in the diagram. As the process starts, the
HlaManager threadwhich is responsible for advancing simulation time and notify-
ing the system of new simulation ticks is waiting for the TIME_ADVANCE_LOCK
to be opened. This means that our system will not allow time advancement in the
federation simulation time until the TIME_ADVANCE_LOCK is opened.
The simulation process begins with the loading of a scenario. The user may

manually instruct the MÄK simulation engine to load a scenario by using the

5https://www.ibm.com/developerworks/rational/library/3101.html

60 Chapter 5 Implementation

MÄK GUI application, or the system may automatically load the scenario during
training. The choice between these is shown by the Alt fragment in the sequence
diagram. When the system automatically loads a scenario, it will first reset the
UnitHandler and the UnitLogger. This will clear any units already stored and close
any file streams that are currently open. The SimController will then instruct the
simulation engine to load the scenario that should be simulated by by calling the
sendCgfLoadScenarioInteractionmethod on the HlaManager with the appropriate
scenario path. During training, the scenario path is retrieved from the provided
example file(s). TheHlaManagerwill then forward the interaction toHlaLib, which
sends the command to the RTI, which again forwards the command to the MÄK
simulation engine to load the specified scenario.
Once a scenario has been loaded, the system will call the play method on the

SimController. The SimController will then wait for the simulation entities to be
discovered. Once the systemhas receivedall the simulation entities that it expects, it
willwait for all the simulation entities to receive adata update. This ensures that the
units have all information that is required, such as marking, location, velocity, etc.
Once all the simulated entities have been discovered and updated, the system will
send aplay interaction to theRTI. This is done by calling the sendCgfPlayInteraction
method on the HlaManager which sends the CgfInteraction to HlaLib. When the
system has sent the play interaction, it will call the enableTimeAdvancemenet
method on the HlaManager. This will open the TIME_ADVANCE_LOCK, which
allows the system to tick the simulation forward.
For each tick in the simulation, our system will receive data updates from the

simulation, update all internal units in the system with the new data, write any
data updates to CSV files, and send instructions to the simulated entities. Once
this is done, the HlaManager will then request a new time advance from the RTI.
Figure 5.6 shows a simplified overview of the per-tick communication between
the system, the RTI and the simulation engine. When the system has run the
simulation for the specified number of ticks, it will pause the simulation and notify
any listeners that the simulation has ended.

5.4.4 Recording Process

The process of recording behaviour using our system is shown in Figure 5.9. The
usermust firstmanually start both theRTI and the simulation engine, andmanually
load a scenario in the simulation engine. Once this is done, they may start the
recording mode of the system, which is initiated by the record method call on
the Experiment[x] class. The system will then begin the system initiation process,
described in Subsection 5.4.2. Then, the system will call the play method on the
SimController with the number of ticks to simulate set to unlimited. The system
does not know how long the user wants to record behaviour for, and the user
must therefore manually stop the system when they have finished recording the
behaviour. The system starts the simulation process once the playmethod is called.
The simulation process is described in Subsection 5.4.3. The systemwill record data
in the backgroundwhile the simulation is running and continuously write the data

5.4 System Processes 61

Our system RTI Simulation Engine

unit data updates

unit data updates

unit commands

unit commands

request time advance

allow time advanceallow time advance

Figure 5.6: Communication sequence diagram of HLA communication per system tick dur-
ing simulation

to CSV files. When the user has finished recording the behaviour, the user needs to
place the generated file in the proper location to use it as an example file. The user
must also fill in the scenario file path that was used when recording the example
in the example file metadata.

5.4.5 Training Process

The trainingprocess is startedwith a call to the trainmethod in theExperimentmain
class. The complete process is shown in Figure 5.10. The Experiment[X] class will
first start the system initiation process, which is documented in Subsection 5.4.2.
It continues by creating an Algorithm and a FitnessEvaluator instance. It then
instantiates a Trainer instance with the Algorithm and FitnessEvaluator instances
as part of the constructor arguments. 5.2 shows an example of how to instantiate
the Algorithm and Trainer. The Trainer instance will call the setup method in the
provided Algorithm instance and read the example data sets from the specified
files. When the setup method is called on the Algorithm instance, it will perform
any steps required before starting the training process. This can e.g. include
generating a random starting population.
The Experiment[x] class will then call the train method on the Trainer instance,

which starts the training process. The Trainer instance calls the step method on
the Algorithm instance once for each epoch. When the step method is called on
the Algorithm instance, it will simulate every candidate solution in the popula-
tion and calculate the fitness for each based on the results of the simulations. See
Subsection 5.4.3 for more information on the simulation process. Finally, the Algo-
rithm instance will call the updateFitnessHistory method on the Trainer instance,
which stores the fitness values to later show them to the user. The Trainer instance
will then continue to the next epoch and will again call the step method on the
Algorithm instance.

<process controller>
Rti

Experiment[x]UnitTypeInfoInitialiser

Experiment[x]AddUnitMethod

UnitHandler HlaManager HlaLib

HlaLib.
FederateManager

SimController

<process controller>
SimEngine

<process controller>
SimGui

ExperimentInitialiserExperiment[x]

UnitTypeInfo

setAddUnitMethod(addUnitMethod)

connectFederate() init()

federateManager

new()

federateManager

init()
federateManager

getInstance()
simController

[startSimengine = true] startSimEngine()
new()

addTickListener(simController)

addPhysicalEntityUpdatedListener(simController)

simEngine

thread.start()

[startSimGui = true] startSimGui()
new()

simGui
start()

thread.start()

new()

unitTypeInfoInitialiser
new()

addUnitMethod

setup(unitTypeInfoInitialiser, addUnitMethod, startRti, startSimEngine, startSimGui)

 Loop

[for each unit type]

initUnitTypeInfo()

addUnitTypeInfo(name, symbol, tasks)
new()

unitTypeInfo

[startRti = true] startRti()

thread.start()

new()

rti

start()

sd System Initiation (boolean startRti, boolean startSimEngine, boolean startSimGui)

store unitTypeInfo

start()

start RTI

start Simulation Engine

start Simulation GUI

connect to RTI

Figure 5.7: Sequence diagram of the system initiation process

<process controller>
Rti

Experiment[x]UnitTypeInfoInitialiser

Experiment[x]AddUnitMethod

UnitHandler HlaManager HlaLib

HlaLib.
FederateManager

SimController

<process controller>
SimEngine

<process controller>
SimGui

ExperimentInitialiserExperiment[x]

UnitTypeInfo

setAddUnitMethod(addUnitMethod)

connectFederate() init()

federateManager

new()

federateManager

init()
federateManager

getInstance()
simController

[startSimengine = true] startSimEngine()
new()

addTickListener(simController)

addPhysicalEntityUpdatedListener(simController)

simEngine

thread.start()

[startSimGui = true] startSimGui()
new()

simGui
start()

thread.start()

new()

unitTypeInfoInitialiser
new()

addUnitMethod

setup(unitTypeInfoInitialiser, addUnitMethod, startRti, startSimEngine, startSimGui)

 Loop

[for each unit type]

initUnitTypeInfo()

addUnitTypeInfo(name, symbol, tasks)
new()

unitTypeInfo

[startRti = true] startRti()

thread.start()

new()

rti

start()

sd System Initiation (boolean startRti, boolean startSimEngine, boolean startSimGui)

store unitTypeInfo

start()

start RTI

start Simulation Engine

start Simulation GUI

connect to RTI

Single-page version for electronic viewing is shown in Figure B.2.

HlaLibUnitLogger
UnitUnitUnitUnitControlledUnit

UnitUnitUnitHandlerHlaManagerSimController <external system>
RTI

<external system>
Simulation Engine

play(numberOfTicks)

wait for all units to be discovered

wait for all units to be updated

enableTimeAdvancement()

sendCgfPlayInteraction()

unlock TIME_ADVANCE_LOCK

send CgfInteraction with command "Play"

simulate up
to allowed
logical time

[for numberOfTicks]

loadScenario(scenarioPath)
reset()
reset()

sendCgfLoadScenarioInteraction(scenarioPath)
send CgfInteraction with command "LoadScenario" and scenario path

wait for TIME_ADVANCE_LOCK to be opened

load
scenario

CgfInteraction

CgfInteraction

all units discovered

physicalEntityUpdated(...)

tick(timestamp)
updateUnits(timestamp)

? extends Unit

process and store data

updateData(timestamp)Loop

[for each unit]
get raw simulation data for relevant units

raw simulation data

logAllRegisteredUnits()

write all
unit data
to csv files

tickAllControlledUnits()

Loop

[for each controlledUnit]
sendUnitCommands()

gdx.ai.
BehaviourTree

LLBML interaction

sendCgfPauseInteraction() send CgfInteraction with command "Pause"
CgfInteraction

CgfInteraction
lock TIME_ADVANCE_LOCK

holdTimeAdvancement()

requestTimeAdvanceAndBlock() requestTimeAdvanceAndBlock(current logical time + tick interval)
time advance request

allow time advance

sd Simulation (String scenarioPath, int numberOfTicks)

Loop

register unit
commands

simulate up
to allowed
logical time

CgfInteraction

units discovered

unit data updates

unit data updates
unit data updates

store data

allow time advance

notify simulation ended

Alt

units discovered

unit data updates

stop trying
to advance
time

LLBML interaction

remoteObjectDiscovered(...)

CgfInteraction

hlaObjectUpdated(...)

wait for TIME_ADVANCE_LOCK to be opened

manually instruct simulation engine to load scenario

send unit commands
step()

Figure 5.8: Sequence diagram of the simulation process

HlaLibUnitLogger
UnitUnitUnitUnitControlledUnit

UnitUnitUnitHandlerHlaManagerSimController <external system>
RTI

<external system>
Simulation Engine

play(numberOfTicks)

wait for all units to be discovered

wait for all units to be updated

enableTimeAdvancement()

sendCgfPlayInteraction()

unlock TIME_ADVANCE_LOCK

send CgfInteraction with command "Play"

simulate up
to allowed
logical time

[for numberOfTicks]

loadScenario(scenarioPath)
reset()
reset()

sendCgfLoadScenarioInteraction(scenarioPath)
send CgfInteraction with command "LoadScenario" and scenario path

wait for TIME_ADVANCE_LOCK to be opened

load
scenario

CgfInteraction

CgfInteraction

all units discovered

physicalEntityUpdated(...)

tick(timestamp)
updateUnits(timestamp)

? extends Unit

process and store data

updateData(timestamp)Loop

[for each unit]
get raw simulation data for relevant units

raw simulation data

logAllRegisteredUnits()

write all
unit data
to csv files

tickAllControlledUnits()

Loop

[for each controlledUnit]
sendUnitCommands()

gdx.ai.
BehaviourTree

LLBML interaction

sendCgfPauseInteraction() send CgfInteraction with command "Pause"
CgfInteraction

CgfInteraction
lock TIME_ADVANCE_LOCK

holdTimeAdvancement()

requestTimeAdvanceAndBlock() requestTimeAdvanceAndBlock(current logical time + tick interval)
time advance request

allow time advance

sd Simulation (String scenarioPath, int numberOfTicks)

Loop

register unit
commands

simulate up
to allowed
logical time

CgfInteraction

units discovered

unit data updates

unit data updates
unit data updates

store data

allow time advance

notify simulation ended

Alt

units discovered

unit data updates

stop trying
to advance
time

LLBML interaction

remoteObjectDiscovered(...)

CgfInteraction

hlaObjectUpdated(...)

wait for TIME_ADVANCE_LOCK to be opened

manually instruct simulation engine to load scenario

send unit commands
step()

Single-page version for electronic viewing is shown in Figure B.3.

Opt

<external system>
Simulation Engine

<external system>
RTI

SimControllerExperiment[x]

sd Recording

manually instruct simulation engine to load scenario

play(unlimited)

Simulation (
scenarioPath=manually configured
numberOfTicks=unlimited)

Ref

record()

Ref System Initiation (
startRti=false,
startSimEngine=false,
startSimGui=false)

manually start simulation engine

manually start RTI

Opt

ControlledUnit

set unit(s) to be controlled by behaviour tree

manually stop simulation

stop system

<CSV file>
unit data file

select and extract unit data file to use as example

unit data file

<create>

Figure 5.9: Sequence diagram of the recording process. References Figures 5.7 and 5.8 as subprocesses.

Opt

<external system>
Simulation Engine

<external system>
RTI

SimControllerExperiment[x]

sd Recording

manually instruct simulation engine to load scenario

play(unlimited)

Simulation (
scenarioPath=manually configured
numberOfTicks=unlimited)

Ref

record()

Ref System Initiation (
startRti=false,
startSimEngine=false,
startSimGui=false)

manually start simulation engine

manually start RTI

Opt

ControlledUnit

set unit(s) to be controlled by behaviour tree

manually stop simulation

stop system

<CSV file>
unit data file

select and extract unit data file to use as example

unit data file

<create>

Single-page version for electronic viewing is shown in Figure B.4.

ControlledUnit

Chromosome

Task

BehaviorTreeUtil

Trainer

Experiment[x]FitnessEvaluator

Algorithm

Population

Experiment[x] SimController

sd Training

train()

new(algorithm-specific arguments)

algorithm

new(unitToTrain, dataToEvaluate, fitnessEvaluator, algorithm, exampleFileNames)

new(fitnessevaluator-specific arguments)

fitnessEvaluator

trainer

train(number of epochs)

setup()

step()

algorithm-specific operations

updateFitnessHistory(population)

generateRandomPopulation(unitToTrain, chromosomeClass, populationSize, ...)

population

getBehaviourTreeRoot()
behaviourTreeRoot

simulatePopulation(population)

setFitness(population, epoch)

algorithm-specific operations

[for number of epochs]
algorithm-specific operations

setControlledUnitBtreeMap(unitToTrainClass, behaviourTreeRoot)

loadScenario(scenarioPath – specified in example)

play(numberOfTicks – specified in example)

[for each chromosome]

[for each chromosome]

[for each example]

Ref System Initiation (startRti=true, startSimEngine=true, startSimGui=false)

Simulation (
scenarioPath,
numberOfTicks)

lock thread while
simulation runs

loadExampleDataSets(exampleFileNames)

Ref

Loop

Loop

Loop

notify simulation ended

Loop

new(randomTree)

Loop

chromosome

randomTree rootTask

setFitness(fitness)

evaluate(chromosome, exampleDataSet, chromosomeDataSet)
fitness

[for populationSize]

generateRandomTree(unitToTrain, ...)
new()

create chromosome data
set from unit data file

Figure 5.10: Sequence diagram of the training process. References Figures 5.7 and 5.8 as subprocesses.

ControlledUnit

Chromosome

Task

BehaviorTreeUtil

Trainer

Experiment[x]FitnessEvaluator

Algorithm

Population

Experiment[x] SimController

sd Training

train()

new(algorithm-specific arguments)

algorithm

new(unitToTrain, dataToEvaluate, fitnessEvaluator, algorithm, exampleFileNames)

new(fitnessevaluator-specific arguments)

fitnessEvaluator

trainer

train(number of epochs)

setup()

step()

algorithm-specific operations

updateFitnessHistory(population)

generateRandomPopulation(unitToTrain, chromosomeClass, populationSize, ...)

population

getBehaviourTreeRoot()
behaviourTreeRoot

simulatePopulation(population)

setFitness(population, epoch)

algorithm-specific operations

[for number of epochs]
algorithm-specific operations

setControlledUnitBtreeMap(unitToTrainClass, behaviourTreeRoot)

loadScenario(scenarioPath – specified in example)

play(numberOfTicks – specified in example)

[for each chromosome]

[for each chromosome]

[for each example]

Ref System Initiation (startRti=true, startSimEngine=true, startSimGui=false)

Simulation (
scenarioPath,
numberOfTicks)

lock thread while
simulation runs

loadExampleDataSets(exampleFileNames)

Ref

Loop

Loop

Loop

notify simulation ended

Loop

new(randomTree)

Loop

chromosome

randomTree rootTask

setFitness(fitness)

evaluate(chromosome, exampleDataSet, chromosomeDataSet)
fitness

[for populationSize]

generateRandomTree(unitToTrain, ...)
new()

create chromosome data
set from unit data file

Single-page version for electronic viewing is shown in Figure B.5.

70 Chapter 5 Implementation

Table 5.3: Simulation settings used internally in the system

Setting Value

tickInterval 1.0
simulationTickDelayInMilliseconds 0.0
secondsToWaitForUnitsBeforeReload 10.0
numberOfTicksToCalculateAverageTickTime 100.0

5.5 Settings

This section gives an overview of important settings used in the system. The
settings used in VR-Forces are included in Appendix C.

5.5.1 System Settings

The system settings are defined in a single file called SystemSettings. The system
settings include settings for simulation data file storage directories and the date
format used in the system.

5.5.2 Simulation Settings

All settings that is used when automatically starting the simulation engine and the
simulation GUI is given in the SimSettings file, located in the Simulation package.
The settings file contains settings that are needed to start the simulation systems
and connect to the HLA federation. The file also contains some settings used in-
ternally in our system, shown in Table 5.3. The tickInterval controls the interval
in logical simulation time between each internal system tick, where the system
extracts data from the simulation and sends instructions. The simulationTick-
DelayInMilliseconds setting is used to give an artificial delay after a tick, before
the rest of the system continues. This setting can be used for slowing down the
simulation to better observe the simulation in the MÄK Simulation GUI system.
The secondsToWaitForUnitsBeforeReload is used when a new scenario is loaded,
where the system will wait x number of seconds to receive units before it reloads
the scenario. This is done to prevent the system getting stuck if the simulation en-
tities in a scenario are not properly published to the HLA federation. And finally,
numberOfTicksToCalculateAverageTickTime is used to set how often the system
should calculate the average tick time that is displayed in the system console output
during simulation.

5.5.3 Behaviour Tree Operations Settings

Every mutation in the system takes in two numbers which can be tuned when
creating the mutation – weight and factor base. The weight is a number indicating
the relative probability of choosing this mutation compared to the other mutations,

5.6 System Logging 71

Table 5.4:Mutation settings

Mutation Weight Factor base

Add Random Leaf Task 1.0 0.995
Add Random Subtree 1.0 1.000
Remove Random Subtree 1.0 1.000
Switch Positions of Random Sibling Tasks 1.0 1.000
Replace Tree With Subtree 1.0 0.990
Replace Random Task With Task of Same Type 1.0 1.000
Randomise Variables of Random Variable Task 1.0 1.020

and the factor base is used to scale the mutation weight over the number of epochs
that has been run. Table 5.4 shows an example of how the mutation weights and
factor bases can be tuned.

5.5.4 Training Settings

When starting the training process, the user must provide the number of epochs
for which the training should be run. In addition, every algorithm can have spe-
cific settings that are specified as arguments upon instantiation. The system only
implements one algorithm, NSGA-II, which takes in six arguments: population
size, crossover rate, minimum tree size and maximum tree size. Each of these set-
tings should be set for every experiment. For an explanation on how the NSGA-II
settings are used, see Subsection 4.5.1.

5.6 System Logging

The system logging is built on the Log4j 26 library, which can be used to log to
the console, file or both. All logging is controlled from a properties file called
log4j2.xml located in the system resources directory. The file defines each package
or class that should be grouped, sets the log level of the group and where the log
output should go (console, file or both). Log4j 2 has eight log levels, of which
the system uses four: DEBUG, INFO, WARN and ERROR. Each class that wants
to utilise the logger must define a logger instance to use. To create this the class
must call the getLogger on the LoggerFactory class that is provided by the Log4j 2
library. The method takes a class as an argument which will appear as the origin
of the log messages. An example of the log output is shown in Figure 5.1.

6https://logging.apache.org/log4j/2.x/

https://logging.apache.org/log4j/2.x/

72 Chapter 5 Implementation

5.7 Libraries Overview

This section gives a short summary of the libraries used in the system.

• HlaLib – HlaLib is used for all communication over HLA, and is a library
used internally at FFI. The library is used in the HlaManager class, which
handles all HLA communication in our system.

• LLBML – The LLBML library is a HlaLib module, which allows the system
to control units in the simulation engine that it does not own [38, 39].

• GeographicLib7 – GeographicLib is used in our system for solving geodesic
problems, such as finding the shortest vector between two units. The library
is used for processing data from the simulation engine and used as a utility
for the behaviour tree action tasks.

• log4j 28 – The log4j 2 library is used for logging system information to the
console or log files.

• gdxAI9 – The gdxAI library is used for behaviour tree execution. The library
is used in the ControlledUnit class, and every blueprint behaviour tree task
must have an executable version built on the gdxAI task framework.

• JFree10 – The JFree library is used to visualise behaviour trees during training.

• JGraphX11 –The JGraphX library is used tovisualise thefitness historyduring
training.

• Batik12 – The Batik library is used to write the visualisations of the behaviour
trees and the fitness history to the Scalable Vector Graphics (SVG) file format.

5.8 Summary

In this chapter, the details of the system implementation have been described. The
implementation of the system is one of the three contributions of this thesis, C3,
and the experience from implementing and testing the system has assisted the
answering of RQ2.

7https://geographiclib.sourceforge.io
8https://logging.apache.org/log4j/2.x/
9https://github.com/libgdx/gdx-ai

10http://jfree.org
11https://github.com/jgraph/jgraphx
12https://xmlgraphics.apache.org/batik/

https://geographiclib.sourceforge.io
https://logging.apache.org/log4j/2.x/
https://github.com/libgdx/gdx-ai
http://jfree.org
https://github.com/jgraph/jgraphx
https://xmlgraphics.apache.org/batik/

Chapter6
Experiments and Results

This chapter covers the experimental plan, the conducted experiments, and the
results. The conducted experiments and the results are evaluated in Section 7.1.

6.1 Experimental Plan

The initial experiment plan included three experiments. The first was a simple
experiment designed to verify that the system is able to create behaviour models
that imitate simple behaviour. The simple behaviour was to follow a specified
moving target on foot. The plan was to manually create a behaviour tree that
would represent the described behaviour, use that behaviour tree for controlling a
simulated entity, and use the recording of that entity’s behaviour as the example
behaviour for our system. This way, we have a ground truth representation of the
observed behaviour, which can be used for evaluating the generated models. This
experimentwasdesigned to help answerRQ1–howbehaviour trees generatedwith
GP perform in imitating observed behaviour in complex, realistic environments.
At the same time, the experiment could be used for evaluating the system design
and implementation, related to RQ2, and help identify areas for improvement in
the system. The results from this experiment were to be submitted to the CogSIMA
2018 conference.
The secondplanned experimentwas to record the same type of behaviour as used

in the first experiment, however, with a human controlling the following entity
instead of a manually created behaviour tree. This was to introduce subjective
personal behaviour traits, and investigate how well the system would be able to
imitate these.
The third experiment was planned to involve the learning of a cooperative be-

haviour, called bounding overwatch, where agents must work together to advance
forward. It was also planned to use human-controlled entities for recording exam-
ple behaviour. The third experiment was designed to evaluate how the proposed
methods work on more complex activities.

74 Chapter 6 Experiments and Results

During the process of conducting the first experiment, we identified significant
issues with the system, and fixing the identified issues were given a higher priority
than to conduct the second and third planned experiments. After the identified
issues had been addressed, we had time for one more experiment. For a new
evaluation of the system and the performance of the behaviour trees it generates,
we did a new, longer run of the first experiment, with a larger population size. This
is hereby referred to as Experiment 2.
The experiments were performed on a system with an Intel i5-6600K @4.4GHz

CPU, 16GB RAM and an NVIDIA GeForce GTX 1070 GPU.

6.2 Experiment 1

Experiment 1 revolves around a wanderer and a follower. The objective for the
experiment is to have the follower agent follow the wanderer. The wanderer is pre-
programmed to follow a specific plan, which involves going to different locations
and waiting a given amount of time at certain positions. The example file used for
trainingwas recorded from amanually created behaviour tree, shown in Figure 6.3.
Using this behaviour tree, the controlled agent would follow the specified target,
with two conditions causing it to stop: (i) If the target is within 30 meters, and (ii) if
the target is moving toward the controlled agent. This was an easy way to generate
training data, and it also made it possible to compare the learned model with the
“true” model. A poster article which briefly covers Experiment 1 was submitted
and accepted to the CogSIMA 2018 conference, and both the article and the poster
is included in Appendix A. This section provides a more detailed description of
the experiment.

6.2.1 Data Extraction and Processing

For this experiment, we created three types of DataRows – an object used to hold
and process data in our system. The first DataRow, called the raw DataRow, is
used hold the raw simulation data for the simulated entities. This includes the
latitude, longitude, altitude and movement angle of the entity. The movement
angle is stored as an absolute bearing between the current and next position of the
entity, and the next position is calculated by adding its velocity vector to its current
position vector. This DataRow is used for both the wanderer and follower.
The second DataRow, called the follower processed DataRow, is used by some of

the behaviour tree tasks. It stores the euclidean distance between the follower agent
and a target agent, and an angle called the approaching angle. The approaching
angle calculation is explained in more detail below. This DataRow uses the raw
DataRows of both the wanderer agent and the follower agent to calculate the
necessary values. This DataRow is only used for the follower.
The third DataRow, called the follower evaluation DataRow, only contains the

euclidean distance between the follower and the target. This DataRow is used in

6.2 Experiment 1 75

the evaluation of the behaviour trees during training, to determine the fitness of
the behaviour tree. This DataRow is only used for the follower.

Approaching Angle

When following an agent, it seems reasonable that knowing to what degree the
wanderer is approaching the followerwould be valuable information. The follower
may, for example, want to stop and wait for the wanderer or change direction
based on the angle of approach the wanderer has relative to the follower. We
therefore added a calculation that would tell the follower to what degree the target
is approaching. Where 0° or 360° means that the target is headed directly towards
the follower agent and 180° means that the target is heading directly away from the
follower.
Figure 6.1 shows a visualisation of how the approaching angle is calculated. The

first step is to calculate the line from the follower position to the target position and
find the absolute bearing of this line. In Figures 6.1a and 6.1b, this angle is shown
as the α angle. Then, we have to calculate the absolute bearing of the movement
direction for the target. This has already been calculated in the raw DataRow. In
Figures 6.1a and 6.1b this angle is shown as the β angle. Finally, we have to subtract
α from β to produce the final angle. The final angle is shown in Figures 6.1a
and 6.1b as δ. The α might be larger than β, as shown in Figure 6.1b. This results
in a negative δ angle. When this happens, we subtract δ from 360° which results in
a positive angle.

6.2.2 Behaviour Tree Nodes

Abehaviour tree for a follower unit can have five different types of leaf nodes: Move

to target, which makes the follower move toward its target. Turn to target, which
makes the follower turn towards its target. Wait, which makes the follower stand
still. Is within, a variable condition node which checks whether the followers target
is within a specified euclidean distance. Is approaching, a variable condition node
which checks whether the angle between the movement vector of the target and
the vector between the follower and the target is smaller than a specified threshold
– effectively checking whether the followers target is moving towards the follower.

6.2.3 Scenarios

For this experiment, the trainingwasdoneon twoseparate scenarios, usingdifferent
terrains and wanderer paths. 2D overviews of the terrain and wanderer paths for
both scenarios are shown in Figure 6.2. The first scenario simulates approximately
18 minutes of real-time over 1100 ticks, and the second approximately 12 minutes
of real-time over 700 ticks.

76 Chapter 6 Experiments and Results

(a)Method for calculating approaching angle when α is smaller than β

(b) Method for calculating approaching angle when α is larger than β

Figure 6.1: Visualisation of approaching angle calculation used in Experiment 1

6.2 Experiment 1 77

(a) Scenario 1: Brooklyn (b) Scenario 2: Desert village

Figure 6.2: 2D view of scenario terrain and target path for the scenarios used in Experiment1.

6.2.4 Fitness Evaluation

The objective is to imitate the recorded behaviour. The fitness function therefore
compares the behaviour produced by the behaviour tree with the recorded be-
haviour. The behaviour trees were evaluated by comparing the euclidean distance
in each tick between follower and target position in the training data with the
follower-target distance during behaviour tree simulation. All trees were tested on
both scenarios. The equation for calculating the fitness value of a behaviour tree
for a single scenario is shown in Equation (6.1), where n is the number of ticks that
were simulated.

Fitness =
1
n ×

n

∑
t=0

(dist(examplet) − dist(btreet))
2

(6.1)

For each of the recorded ticks we find the follower-target distance from the train-
ing data and the simulated behaviour tree. The difference of these two distances is
then squared so that a large difference over a few ticks is worse than a small dif-
ference over a large number of ticks. The squared differences in euclidean distance
are summed and normalised over the number of ticks (n) to make the different
scenario fitness values more comparable. The fitness values should be minimised.
We chose this fitness function, as it is a simple formula that captures the similarity
of the example and evaluated behaviour.
During training in this experiment, NSGA-II was set to simultaneously minimise

three fitness values: the fitness value from running scenario 1, the fitness value from
running scenario 2, and the number of nodes in the behaviour tree. By adding the
tree size as a minimisation objective, we prevented the algorithm from creating
bloated behaviour trees with unnecessary subtrees that have no significant effect
on the behaviour.

78 Chapter 6 Experiments and Results

Figure 6.3: Manually made behaviour tree

Table 6.1: NSGA-II settings used for Experiment 1

Setting Value

Population Size 10.0
Crossover Rate 0.5
Minimum Tree Size 3.0
Maximum Tree Size 12.0

6.2.5 Settings

Table 6.1 shows the NSGA-II settings used for this experiment. The results from
this experiment were to be submitted to the CogSIMA 2018 conference, and we
had limited time before the submission deadline. Due to the long time it takes to
simulate a behaviour tree, we ran the experiment with a small population of 10.
The default mutation settings of the system, shown in Table 5.4, were used for

this experiment. The mutations that change the behaviour trees drastically – add

random subtree and replace tree with subtree – were given a factor base of less than 1,
while randomise variable of random variable nodewas given a factor base higher than 1.
This way, the algorithm prioritises local search over larger changes at later epochs.
In addition, there are a fewsimulation-specific and system-specific settingswhich

were not changed from the default settings. An overview of these settings can be
found in Section 5.5.

6.3 Experiment 2

After we had identified issues with the system during Experiment 1, several im-
provements were made to how it handles data extraction and entity control. We
then had time to do one more experiment. The goal of this experiment was to

6.4 Results 79

see if we could improve on the results from Experiment 1, related to RQ1, and to
do a new evaluation of the system, related to RQ2. We used the same scenarios,
same entities, same example behaviour and same settings as in Experiment1, but
with a population size of 30 instead of 10. The small population size used in Ex-
periment 1 was chosen in order to meet the submission deadline for the CogSIMA
2018 conference, and we wanted to see how the new system performs with a larger
population.

6.4 Results

In this section, the results from Experiment 1 and Experiment 2 are presented.

6.4.1 Experiment 1

Experiment 1 ran for 90 epochs, taking approximately 4.5 hours. Figure 6.4 shows
the fitness development for Scenario 1 and 2, as well as the size of the behaviour
trees over the 90 epochs. Figure 6.5 shows a zoomed in view of the development
of best fitness on Scenario 2 over the first 30 epochs. The results show that the
generated behaviour trees improve over time. For both scenarios, the trend is that
the best and average score is continually decreasing for the first 30 epochs, before
stagnating. On Scenario 2, there are minor improvements to the average fitness
after the first 30 epochs. A possible explanation for the increases in average fitness
values for single fitness objectives is that it is caused by themulti-objective selection
of the NSGA-II algorithm.
As can be seen in Figure 6.4a, the fitness development on Scenario 1 stagnated

after the first 30 epochs, without approximating zero.
We have chosen two of the non-dominated behaviour trees from the population

at epoch 30, shown in Figure 6.6 with fitness values included in the sub figure
captions. The behaviour tree in Figure 6.6a has the smallest possible size following
the size restrictions, and has the lowest fitness on Scenario 2 of all the trees of the
same size. The larger one, shown in Figure 6.6b, performs better at Scenario 1
and Scenario 2, but has more than twice the number of nodes. It is important to
note that the best fitness achieved on Scenario 1 and the best fitness achieved for
Scenario 2 are not from the same behaviour tree.

6.4.2 Experiment 2

Experiment 2 ran for 148 epochs, taking approximately 39 hours. Figures 6.7 and 6.8
show the fitness development for Scenario 1 and 2 and the size of the behaviour
trees over 148 epochs. During this experiment, we observed a more continuous
fitness improvement than in Experiment 1. The results show that the generated
behaviour trees improve over time. For both scenarios, the trend is that the best,
average and worst fitness is continually decreasing as the algorithm is running.

80 Chapter 6 Experiments and Results

Table 6.2: Comparison of the Scenario 1 fitness values in Experiment 1 and Experiment 2.
The values for Experiment 1 are estimates from reading the plot in Figure 6.4a.

Epoch 30 60 90

Fitness measure Average Best Average Best Average Best

Experiment 1 ~150 ~84 ~150 ~84 ~142 ~84
Experiment 2 114 14 100 1 102 1
Improvement ~24% ~83% ~33% ~99% ~28% ~99%

Table 6.3: Comparison of the Scenario 2 fitness values in Experiment 1 and Experiment 2.
The values for Experiment 1 are estimates from reading the plot in Figure 6.4b.

Epoch 30 60 90

Fitness measure Average Best Average Best Average Best

Experiment 1 ~117 ~1 ~103 ~1 ~90 ~1
Experiment 2 87 1.30 47 0.66 57 0.03
Improvement ~26% ~-30% ~54% ~34% ~37% ~97%

After 141 epochs, the best fitness for both scenarios is close to zero. Again, a
possible explanation for the short-term and long-term increases in the average
fitness values is the multi-objective selection of the NSGA-II algorithm.
Figure 6.9 shows a graphical representation of the best behaviour tree generated

in Experiment 2, with the fitness scores included in the figure caption. Out of the
generated behaviour trees, this behaviour tree performs the best on both scenarios.
Tables 6.2 and 6.3 show comparisons of the average and best fitness values in

Experiment 1 and Experiment 2 for both scenarios respectively at epoch 30, 60 and
90. It should be noted that the Experiment 1 fitness values used in the tables are
estimates from reading the fitness history plots in Figure 6.4. This is because we
did not have the required data from Experiment 1 to fill in precise values. The
fitness values are consistently better in Experiment 2, except for the best fitness on
Scenario 2 after 30 epochs, where the best fitness in Experiment 2 is ~30% worse
than in Experiment 1. Overall, the fitness values of Experiment 2 are consistently
better. The best fitness after 90 epochs is significantly better in Experiment 2 than
Experiment 1, with an improvement of ~99% on Scenario 1 and ~97% on Scenario
2.

6.4 Results 81

(a) Scenario 1

(b) Scenario 2

(c) Size

Figure 6.4: Experiment 1 fitness development over 90 epochs

82 Chapter 6 Experiments and Results

Figure 6.5: Zoomed view of Experiment 1 fitness development on Scenario 2 over 30 epochs

(a) Fitness: [size=3, scenario1=219, scenario2=114]

(b) Fitness: [size=7, scenario1=84, scenario2=5]

Figure 6.6: Graphical representations of two of the resulting behaviour trees in Experiment
1 after 30 epochs

6.4 Results 83

(a) Scenario 1

(b) Scenario 2

(c) Size

Figure 6.7: Experiment 2 fitness development over 148 epochs

84 Chapter 6 Experiments and Results

(a) Scenario 1

(b) Scenario 2

Figure 6.8: Zoomed view of Experiment 2 fitness development over 148 epochs

Figure 6.9: Graphical representation of the overall best generated behaviour tree in Experi-
ment 2. Fitness: [size=7, scenario1=0.012, scenario2=0.030]

Chapter7
Evaluation

In this chapter, the experiments, system, research questions and contributions are
evaluated.

7.1 Evaluation of the Experiments

It is important to note that the results from Experiment 1 and Experiment 2 are
from single runs of a probabilistic training algorithm with small population sizes.
However, they are representative of the general trend infitnessdevelopment thatwe
observed while testing the system in the same period as the respective experiment
was conducted. Ideally, the performance should have been measured over a large
number of runs for each experiment, however, this was not possible due to long
simulation times.
The example behaviour used in the two conducted experiments is very simple.

It involves only two simple tasks – move and wait – and two conditions – checking
distance and relative movement angle of the target. Therefore, the results are only
representative of how the system performs with simple behaviour. In addition, the
follower’s behaviour model is fed ground truth information about the target from
the simulation system. This means that the follower always knows the current
position of the target, even if the follower unit is unable to observe the targets
position and velocity. For a more realistic experiment, the follower behaviour
model should only have access to perceived truth, as supported by the LLBML
module introduced in Section 4.2.

7.1.1 Evaluation of Experiment 1

In Experiment 1, we used amanually created behaviour tree, shown in Figure 6.3, to
record the example file used in the training phase. While running the experiment,
we observed different outcomes of the simulations with identical inputs. Running
multiple simulationswith the same behaviour tree controlling the follower resulted

86 Chapter 7 Evaluation

in slightlydifferentpathing, and thereforedifferentfitness values. When simulating
the same behaviour tree that was used for recording the example data, the fitness
on Scenario 1 varied between 0 and 40, and on Scenario 2 the fitness varied between
0 and 9.
We initially suspected that the simulation engine had internal inconsistencies for

when received unit tasks were executed, and that this was caused by the internal
path planning of the simulation engine taking different lengths of time to complete
depending on the available processing power. We observed that the simulationwas
not paused while the pathing was calculated, and that the units therefore started
to move at different frames in the simulation. However, after investigating these
issues further, we discovered that path planning was not the cause of the issues
with stochastic evaluation outcomes. Section 7.2 covers the identified issues and
how they were addressed.
The consequence of the issues with stochastic simulation outcomes was that we

had to account for stochastic evaluation of chromosomes, where a chromosome can
be evaluated better orworse based on luck. Away ofmanaging stochastic problems
with GAs is to simulate each chromosome a large number of times, combining the
results [45]. However, as it took approximately 18 seconds to simulate each be-
haviour tree, running a large number of simulations per chromosome was not an
option. The inconsistencies in fitness evaluation can affect the selection process of
NSGA-II negatively. We suspect that this issue contributed to the stagnation of fit-
ness development on Scenario 1, shown in Figure 6.4a. The were no improvements
to the best fitness on both scenarios after the 20th epoch. The small population size
used for this experiment is also a potentially contributing factor to the stagnation.
Theoretically, the system should be able to find behaviour trees that result in 0 fit-

ness on both scenarios. We suspect that the stochastic simulation outcomes during
this experiment significantly limited the performance of the algorithm by causing
it to keep trees that were lucky during evaluation over trees with statistically better
performance that were unlucky during evaluation, and by increasing bloat. We
observed that a significant portion of the population consisted of bloated trees that
had beenmore lucky during evaluation than the functionally identical non-bloated
versions. These trees typically had redundant condition nodes, with no effect on
the represented behaviour. Normally, these bloated trees would be dominated by
the smaller functionally identical trees as theywould receive the same fitness on the
scenarios and a worse fitness on size. However, due to the stochastic evaluations,
the bloated trees now had a chance to receive a better fitness on the scenarios.
Despite the issues with behaviour tree evaluation, when comparing the two

selected resulting behaviour trees with the manually made behaviour tree used
for recording the example, we can see that there are significant similarities. For
the tree in Figure 6.6a, it has managed to represent an approximation of what we
consider the most important part of the example behaviour – moving only when
more than 30 meters away from the target. In both example scenarios, checking for
distance is more important than checking whether the target is approaching. This
is because the target usually moves away from the follower, and is standing still for
a significant portion of the scenarios.

7.1 Evaluation of the Experiments 87

The bigger resulting tree, shown in Figure 6.6b, includes most of the behaviour
of the manually made example tree. Before moving to the target, both distance and
movement angle is checked with approximately the same distance and angle used
in the example tree. However, due to the sequence of distance checks and wait
node, the follower might move closer while it is between 29.77 and 26.19 meters
away from the target. Then again, as the target is moving, the wait node between
the distance checks will often cause the target to be further than 29.77 meters away
for the next tick.
Combinedwith the long time it takes to simulate abehaviour tree, findingoptimal

models could take a very long time, even with simple experiments. However, the
resulting behaviour trees reproduce the most essential parts of the behaviour used
to record the example data, which shows that the system is able to replicate simple
behaviour by generating and evolving behaviour trees.

7.1.2 Evaluation of Experiment 2

Experiment 2 was conducted after the issues identified during Experiment 1 had
been addressed. The goal of the experiment was to see if we could improve on the
results from Experiment 1 and to do a new evaluation of the system.
In Experiment 2, the system was able to generate behaviour trees that perform

close to identical to the observed behaviour. It is important to note that in Experi-
ment 2, the best fitness score on Scenario 1 and 2 both belong to the same behaviour
tree. This tree is shown in Figure 6.9, and had a fitness score of 0.012 on Scenario 1
and 0.03 on Scenario 2. This tree is structurally identical to the tree used to record
the example behaviour. The only difference is small variations in the variables
of the variable condition nodes: 21.11° versus 20° for Is approaching and 30.22m
versus 30m for Is within. The system was able to generate a behaviour tree with a
fitness score approximating 0 on both scenarios, indicating that it is able to create
generalised behaviour models based on multiple scenarios. In Experiment 1, the
best behaviour tree for Scenario 1 is not the same as the best tree for Scenario 2.
This is a significant improvement from Experiment 1 to Experiment 2.
During Experiment 2, we observed that the generated behaviour trees contained

few or no ineffective subtrees, and we observed that the algorithm actively re-
moved the present ineffective subtrees, reducing bloat. While we have not done a
thorough analysis, our evaluation is that the applied bloat-control works well after
the improvements to simulation determinism had been implemented. A downside
with the applied fixes to increase simulation determination is increased simulation
time. The process of simulating a single chromosome on the two scenarios took
approximately 32 seconds during Experiment 2 – almost 80% more than that of
Experiment 1. However, with the observed reduction in bloat, we consider the
more deterministic evaluation to be worth the increased simulation time.
While the average fitness on Scenario 1 and Scenario 2 is increasing from ap-

proximately epoch 90, the average size of the behaviour trees in the population is
decreasing. A possible explanation is that this is due to NSGA-II’s multi-objective
selection, which is also set to minimise the number of nodes in the trees. Overall,

88 Chapter 7 Evaluation

the systemwas continuously improving the average and best fitness on one ormore
fitness objective.

For the first 30 epochs, the Scenario 2 fitness development, shown in Figures 6.7
and 6.8, is close to the Scenario 2 fitness development in Experiment 1. A compar-
ison of the fitness development between Experiment 1 and 2 is shown in Tables 6.2
and 6.3. At 30 epochs, the average fitness for Scenario 2 is ~26%better in Experiment
2 than in Experiment 1, but for the the best fitness, Experiment 2 is ~30%worse than
Experiment 1. Although the relative difference in best fitness is ~30%, the actual
difference in fitness value is only ~0.3, which is not that significant. For Scenario
1, the best fitness achieved in Experiment 2 after 30 epochs is significantly better
than the best fitness achieved in Experiment 1 after 30 epochs. An improvement of
~83% with an actual fitness value difference of ~70. With the fitness function used
in this experiment, we consider this to be a significant improvement.

From epoch 30 to epoch 60, the development on average and best fitness has
mostly stagnated on both scenarios in Experiment 1. In Experiment 2, however,
the best fitness on Scenario 1 and average and best fitness on Scenario 2 are con-
tinuously improving. After 60 epochs, the best fitness on Scenario 1 is ~99% better
in Experiment 2 than in Experiment 1, with a fitness of ~84 in Experiment 1 and a
fitness of 1 in Experiment 2.

At 90 epochs, there has been little to no improvement on both scenarios in
Experiment 1. This is also true for Scenario 2 in Experiment 2, but for Scenario 1,
the best fitness in Experiment 2 has improved from 0.66 at the 60th epoch to 0.03 at
the 90th epoch. A fitness of 0.03 means the behaviour is approximately identical to
the example behaviour. In addition, when letting Experiment 2 run for 148 epochs,
the best fitness on Scenario 1 further improved to 0.012.

There are several significant factors that could have caused Experiment 2 to have
better results than Experiment 1: a larger population size, a longer running time,
more evaluations performed, and a more deterministic evaluation of behaviour
trees. After 90 epochswith apopulationof 30, the systemhasdone2700 evaluations,
whichwouldbe equivalent to that of 270 epochswith apopulationof 10. The system
might be able to produce just as good results with a population of 10, given the
same number of evaluations. Therefore, we can not exclude the possibility that
Experiment 1 could have produced as good or better results as Experiment 2 given
the same number of evaluations or time. However, when comparing the results
after 90 epochs in Experiment 1 and 30 epochs in Experiment 2 (where the system
has done the same amount of evaluations), Experiment 2 is still considerably better
at Scenario 1, and they are approximately even on Scenario 2. In any case, the goal
of the conducted experiments is not to analyse the effects of these factors, but to
investigate if the system and applied GP method is feasible for imitating observed
behaviour in complex environments. The conclusion from these experiments is
that the system is able to imitate simple observed behaviour, and that the applied
bloat-control seems to work well in the improved system.

7.2 Evaluation of the System 89

7.2 Evaluation of the System

Experiment 1 and Experiment 2 have shown that the system is able to produce
behaviour models that imitate simple behaviour. It is able to connect to complex
simulation systems over HLA, and to extract data and control entities in order to
evaluate the generated behaviour models. The system was designed to be usable
with different types of experiments, with different simulated entities, different
types of data, different types of activities. The system is also designed to be used
with multiple GAs, but has only been tested with an implementation of NSGA-
II. The system can in theory also be used for both observational and experiential
learning, but has only been tested for observational learning.
Experiment 1 identified issues with how the system handled data extraction and

time management in the HLA federation. When conducting experiment 1, the
system used a lookahead value (see Subsection 2.4.1) of 1. This was done to enable
the simulation engine to calculate new world states in parallel with our systems
data processing and calculation of entity instructions. We suspect the issues were
due to the parallel time advancement, where the updates from the simulation
engine would be received by our system at different steps of its current internal
logical time, for different runs of the simulation. By setting the lookahead of our
federate to 0, timestamping all outgoing entity instructions, and introducing an
internal tick rate for how long our system should advance in time, the determinism
of behaviour tree evaluations was greatly improved. The same tree will now get
the exact same score or a score with a minimal difference when evaluated in the
same scenariomultiple times. While this seems to have improved bloat-control, the
evaluation is still not completely deterministic, which may cause GAs to converge
to bad solutions [45]. A commonway of handling stochastic evaluation outcomes is
to run evaluations a large number of times and then using those results to calculate
a final evaluation score [45]. However, as complex simulations are computationally
heavy, applying this method would probably result in inefficient use of training
time.
When the system sends the first interaction after connecting to a new HLA

federation, itwill sometimes crash. This ismost likely caused by improper handling
of timestamped interactions inHlaLib, the library used forHLA in our system. This
is only an issue with the first interaction.
The system has only been tested with VR-Forces from MÄK. For controlling

simulated entities in the simulation engine, the system sends instructions with the
use of LLBML. For VR-Forces to be able to process LLBML messages, it is required
to install the LLBML plugin in VR-Forces. This means that our system is not fully
compatible with other simulation systems using HLA. The system is designed to
use RPR FOM 2.0, a specification of data and data formats to exchange in the HLA
federation, and it is required that simulation systems are compatiblewith this FOM.

The system has only been used with scenarios containing maximum five simu-
lated entities. It is therefore unknown how the systems would handle scenarios
with a large number of simulated entities. However, the operations done by our sys-
tem are minimal compared to the calculations done in the simulation engine, and

90 Chapter 7 Evaluation

we can not foresee any immediate problems with using it in large scale exercises.
Overall, the system is able to perform the tasks that were necessary to conduct

the experiments required for answering RQ1. It also meets the requirements that
were specified as part of RQ2: that it should use HLA for communication with an
external simulation system, that it should be able to extract data from the external
simulation system and then use the simulation system for evaluating generated
behaviour models, and that it should support running different experiments with
differentwithdifferent scenarios, different simulated entitieswithdifferent possible
actions, and different types of data. It is also compatible with running more
complex experiments than the ones conducted as part of this thesis.

7.3 Research Questions Revisited

In this section, the research questions are revisited, and we present how they are
answered through the conducted research.

RQ1: How do behaviour trees generated with GP perform in imitating observed behaviour

in complex, realistic environments?

The goal of this thesis is to investigate whether the CGF behaviour modelling
process can be automated by using GP to evolve behaviour trees from observations
of example behaviour. CGFs are used in military simulations, with highly complex
and realistic simulated environments. Therefore, in order to answer the hypothe-
sis, we need to research the feasibility of using GP for generating behaviour trees
through observational learning in complex, realistic environments. To our knowl-
edge, this has not been answered in current literature.
The results from Experiment 1 and Experiment 2 showed that behaviour trees

generated with GP was able to successfully imitate the observed behaviour. We
usedNSGA-II, aMOGA, for our experiments. The examplebehaviourwas recorded
in a complex, realistic simulated environment, which was used to evaluate the gen-
erated solutions during training as well. In Experiment 1, the generated behaviour
models were not identical to the observed behaviour, but contained the most es-
sential aspects of the behaviour. After improvements were made to the system
used for generating behaviour models, the results from Experiment 2 show that
we are able to generate behaviour models that are approximately identical to the
model used to control observed behaviour. The example behaviour used for these
experiments was, however, very simple. How GP and behaviour trees perform
in imitating more complex behaviour is still unclear. RQ1 has therefore been only
partially answered, with the conclusion that behaviour trees generatedwith GP are
able to successfully imitate simple behaviour in complex, realistic environments.
One of the issues with using GAs for training complex behaviour is that it can

become difficult to define how the behaviour should be evaluated. When training
complex behaviour in scenarios with a lot of affecting factors, it might be difficult to
identify relevant data and to define the fitness function(s). Away of addressing this

7.3 Research Questions Revisited 91

issue is by learning pieces of the behaviour separately, and then combining the be-
haviour parts either manually or with machine learning. The modular hierarchical
structure of behaviour trees is suitable for this approach.

RQ2: How should a system for generating behaviour trees with GP be designed to be used

with an external simulation system?

In order to answer RQ1, we needed to develop a system that would enable us
to run experiments with using GP to generate behaviour trees based on observed
behaviour in complex simulations. The system had to satisfy three requirements,
shown in Table 1.1. FFI requested that the system should use HLA for communica-
tion with the simulation system, forming the first requirement. They also required
that it should be able to extract data from the simulation system and then use the
simulation system for evaluating generated behaviour models, forming the sec-
ond requirement. The system was intended to be used for multiple experiments,
resulting in the third requirement.
During the literature review, we found no existing system or solution that would

meet these requirements. Some of the reviewed publications discussed issues
such as complex simulations being time-consuming, but provided no conclusions
that could be used as basis for the design. The system created as part of this
thesis explores a possible design solution. While our research does not provide a
definitive answer to how such a system should be designed, it illustrates a working
design that can be used for different exercises, simulated entities, actions, and data.
The design allows the system to be connected to different simulation systems

over HLA. When using HLA, it is important to design the system for use with
HLA time management in order to achieve deterministic solution evaluation, as
discussed in Section 7.2. The system should be designed to be a time regulating
federate, for being able to restrict how far the simulation engine is able to advance
in time while the system is calculating new entity instructions, and to be a time
constrained federate, for being able to receive timestamped messages from the
simulation engine. When choosing what lookahead to use, it is important to
remember that the lookahead will be the minimal delay between the timestamp of
incoming data to the timestamp of the outgoing instruction calculated from that
data, effectively setting a minimal response time for the agent. Our experience is
that using a lookahead of 0 makes it easier to handle time management properly,
at the cost of increased simulation time.
The system uses a HLA module (LLBML) to control entities in the simulation

engine. The controlled entities are created and owned by the simulation engine. An
alternative approach is to create the simulated entities internally, and then calculate
their new states and send updates on where and what the entities are doing to
the simulation engine during simulation. This will, however, require complex
calculations in the local system. With our system, we have shown that the approach
of controlling the simulated entities remotely via a module like LLBML works.
By using strict federation time management, it should be possible to guarantee
that the instructions are executed at the right time. However, this approach may

92 Chapter 7 Evaluation

require extra software specifically designed to work with a simulation system,
such as the LLBML plugin we have used with MÄK VR-Forces. In addition, many
simulation systems do not support plugins at all, and this approach therefore limits
compatibility with a lot of simulation systems.
Complex simulations are able to simulate a large variety of different entities.

These entities can e.g. have different types of possible actions. When creating a
system for use with complex simulations with unknown scenarios and entities, we
consider it important to provide a framework for specifying what data that should
be extracted, how it should be processed and to create and send different types of
instructions to the simulated entities, etc. Learning different behaviour may often
require different tuning of algorithm-specific variables and genetic operators, and
we recommend that the design allows these settings to be accessible to the user. To
summarise, modularity should be prioritised.
The system designed as part of this thesis shows how a system for generating

behaviour trees with GP can be designed to be used with an external simulation
system, and satisfies the requirements specified as part of RQ2. The design satisfies
the first requirement, as all communication with the simulation system is done
over HLA. We have shown that this design works for training behaviour models,
however, there are still some minor issues with time management that need to be
addressed. It satisfies the second requirement as it uses the simulation system for
both data extraction and solution evaluation. Finally, the modular, data agnostic
framework design makes the system compatible with different experiments with
different scenarios, different simulated entities with different possible actions, and
different types of data, satisfying the third requirement. The implementation
described in this paper has been proven to be successful, and works as a possible
design for answering RQ2.

7.4 Evaluation of the Contributions

In this section, the contributions are evaluated. The contributions provided in
this thesis are significant enough to have been published at CogSIMA 2018, an
international peer-reviewed conference, where we received positive response on
the work that has been done. C1 and C3 have been further improved after the first
publication.

C1: Proof that GP and behaviour trees can be used to mimic recorded, simple behaviour

in complex simulations.

The results from our experiments show that GP and behaviour trees can be used to
successfully mimic simple behaviour in a complex simulated environment. While
we can not guarantee that our solution will work for more complex behaviour, the
results are promising. In current literature, there is limited research on using GP to
evolve behaviour trees with observational learning, andwe found noworkwhere it

7.4 Evaluation of the Contributions 93

was applied in complex simulated environments. The results fromour experiments
work as a proof of concept, and motivates further research on the subject.
The experiments discussed in this thesis are two single runs with a probabilistic

algorithm. Therefore, while the results are promising, they do not guarantee that
our method will be able to consistently imitate behaviour models. This could
have been investigated by running the experiments a large number of times, but
was not possible within the timespan of this project. However, the results of the
experiment represent the general trend in training performance we have observed
during testing of the system.
While we have shown that the technique can work on simple behaviour, there

are limitations to using it for more complex behaviour. The long simulation times
required for evaluating chromosomes drastically limits the speed of the training,
even with the simple experiments described in this thesis. In addition, when using
a MOGA for learning the behaviour, it requires fitness functions that effectively
measure the different aspects of the desired behaviour. Defining these fitness
functions may be a significant challenge when working with complex behaviour,
and it should be investigated how this process can be made easier.

C2: A proposed set of methods for mutating behaviour trees.

In this thesis, we propose a set of methods for performing mutations on behaviour
trees. A mutation is a genetic operation which alters an existing candidate solu-
tion. To our knowledge, four of the seven methods for mutating behaviour trees
described in this thesis have not been discussed in current research. Although
several authors have used mutations for evolving behaviour trees, they typically
use one or two mutations [5, 4]. In our research, we propose multiple independent
behaviour tree mutations, as well as a technique for combining the use of different
mutations when evolving behaviour trees. With inspiration from SA [16, p. 128],
this technique uses scaling probability weights to select which mutation method
should be used, favouring mutations that make smaller changes as time passes.
With the ability to scale the selection weights of the different mutations inde-

pendently, we are able to encourage use of drastic mutations early in the training
process without limiting the localised search as the algorithm converges. Drastic
mutations help the algorithm from getting stuck in local minima, while smaller
mutations are important during the fine tuning of the generated behaviour trees.
We propose to use a set of differentmutationswith varying effects on the behaviour
trees, and to assign scaling selectionweights based on howdrastic the changes they
make to the behaviour trees are.
The proposed mutations and technique for selecting between them has been

successfully applied in evolving behaviour trees that imitate simple behaviour. In
Experiment 2, we were able to generate behaviour trees that are close to identical
to the example behaviour by using the proposed mutation method with a MOGA.
While we have shown that the combined use of the mutations works, we have not
analysed how the individual mutations affect the training performance. We have
also not done any detailed analysis on how theweight and factors used for selecting
between the mutations should be tuned.

94 Chapter 7 Evaluation

C3: A modular system for using GP to evolve behaviour trees through observational

learning with a complex, realistic simulation system over HLA.

The system can be used for running different experiments, with different types of
data, different types of simulated entities, different algorithms and potentially with
different simulation systems. The system has been primarily designed for obser-
vational learning, but should also be able to support experiential learning due to
its modular structure. The system is intended to be used for further research on
automating behaviour modelling for CGF as part of a larger project at FFI. The sys-
tem is published as open source at https://github.com/eivinmor/msc-gbh-em
under the MIT license1.
The results from Experiment 2 show that the system is able to provide a frame-

work that enables the applied GA to generate behaviour trees that successfully
imitate the observed behaviour. In current literature, there are proposed frame-
works for using observational learning in complex environments. However, the
ones we have seen are for use with other learning techniques, including CBR, de-
cision trees and ANN, or have not been designed to work with HLA. As far as we
know, our system is the first to support evolving behaviour trees with GP through
observational learning with complex simulations over HLA.

1https://opensource.org/licenses/MIT

https://github.com/eivinmor/msc-gbh-em
https://opensource.org/licenses/MIT

Chapter8
Conclusion and Future Work

In this chapter, we present the conclusion of the thesis and provide suggestions for
future work.

8.1 Conclusion

The hypothesis underlying this thesis was stated as the process of creating behaviour

models for CGFs can be automated by replacing manual behaviour analysis and program-

ming with GP that generates behaviour trees from observing examples. The hypothesis
was divided into RQ1 and RQ2. To evaluate the hypothesis, we had to answer
RQ1: How do behaviour trees generated with GP perform in imitating observed behaviour

in complex, realistic environments? In order to answer RQ1, we first had to develop
a system that would enable us to run experiments with using GPs to generate be-
haviour trees based on observed behaviour in complex simulation. This led to the
creation of RQ2: How should a system for generating behaviour trees with GP be designed

to be used with an external simulation system? The implemented system is one of the
contributions of this thesis, C3. C3 supports RQ2 by working as a proposed design
that has been proven successful in the conducted experiments. C3 is also intended
to be used for further research, as part of a larger project on DDBM at FFI.
As part of the developed system, we created a set of seven behaviour tree muta-

tions. The proposed set of mutations and the probabilistic SA-inspired method for
choosing which mutation to use forms the contribution C2. C2 has been used in
the experiments conducted to answer RQ1.
We conducted two experiments, where we were able to mimic simple behaviour

in complex simulations by evolving behaviour trees with GP. The proof that GP
and behaviour trees can be used to mimic recorded, simple behaviour in complex
simulations forms C1, which supports RQ1. Based on C1, RQ1 has been partially
answered, with the conclusion that behaviour trees generated with GP are able to
successfully imitate simple behaviour in complex, realistic environments.
In conclusion, we have shown that the hypothesis is true when working with

96 Chapter 8 Conclusion and Future Work

simple behaviour. However, more work is required to evaluate how the proposed
method performs with more complex behaviour. The issues related to defin-
ing good fitness functions for observational learning of complex behaviour with
MOGA, and the long simulation times required to evaluate behaviour models in
complex simulations are important limitations. Even for experiments with simple
behaviour, the time required to simulate a single chromosome significantly limits
the speed at which you are able to train behaviour models. A solution proposed in
current literature is to distribute the load over a large number of computers.
In any case, the results of this thesis work as a proof of concept, and motivate

further research on automating CGF behaviour modelling by using GP to evolve
behaviour trees in complex environments. The contributions of this thesis add
knowledge to the literature, and provides a system andmutation methods that can
assist in further research on the topic.

8.2 Future Work

Following are suggestions for future work.

Reduce simulation time A significant limitation with using GP to evolve be-
haviour trees in complex simulations is the long time it takes to simulate, and
therefore evaluate, the behaviour trees. For using the proposed method for learn-
ing complex behaviour, reducing the simulation time is important. We suggest
looking at ways of distributing the simulation over multiple computers, either by
simulating the behaviour trees in parallel or by distributing the computational load
of a single simulation.

Defining fitness functions Defining MOGAs fitness functions that are able to
capture the important aspects of complex behaviour is difficult. It should be inves-
tigated if there are any helpful techniques or alternative methods, e.g. learning the
behaviour in chunks and then combining it by hand or with machine learning, that
can make the process of defining good fitness functions easier.

Evaluatemethodwithmore complex behaviour In this thesis, wewere only able
to partially answer the hypothesis, by showing that the proposed method works
with simple behaviour. Creating realistic CGFs will often require modelling of
complex behaviour, and the techniques used for automating the modelling process
should therefore be able to work with complex behaviour as well. In order to
fully answer the hypothesis underlying this thesis, it should be evaluated whether
GP and behaviour trees are feasible for learning complex behaviour in complex
simulations.

Humanbehaviour RealisticCGF behaviour is important for creating realistic sim-
ulated environments for training and evaluating battle plans. Being able to create

8.2 Future Work 97

unpredictable behaviour models with personal human behavioural traits is there-
fore important. Evolving GP with behaviour models has been shown successful
at recording personal traits in driving behaviour [13], but not in realistic simula-
tions. We suggest further investigation on how the method investigated in this
thesis performs in capturing human behavioural traits. Demonstrating the desired
behaviour can be done with e.g. VR-Engaged.

Perceived truth simulation data For generatingmore realistic behaviour models,
the trained agent should only have access to the perceived simulation data, in the
same way a human would have in a real-life situation or in a simulated exercise.
For future experiments with the proposed method, we suggest using only the
simulation data that is perceived by the controlled simulated entity, in order to
create more human-like behaviour.

Heuristics for randomising node variables In the proposed mutation for ran-
domising node variables, the variables are currently randomised between a mini-
mum andmaximum boundary set in the respective node. This canmake it difficult
to finely tune the variables, which may be necessary for creating good behaviour
models. Introducing a heuristically guided search, e.g. SA, could improve the
convergence of the algorithm used with this mutation.

Further testing of proposed mutations The proposed set of mutations has not
been thoroughly tested. While we have shown that we are able to reach good
results when using the proposed mutations, it still remains to investigate how each
mutation, and combinations of the mutations, affect the training performance. It
could also be interesting to investigate the effects of using different weights and
scaling factors.

Compare the computer generated behaviour tomanually created behaviour Re-
alisticCGF behaviour is important for creating realistic simulated environments for
training and evaluating battle plans. It should therefore be investigated how well
the models generated by evolving behaviour trees with GP through observational
learning in complex simulations are able to imitate the observed behaviour com-
pared to behaviour models that have been manually created by domain experts.

Bibliography

[1] S. Bruvoll, J. E. Hannay, G. K. Svendsen, M. L. Asprusten, K. M. Fauske,
V. Kvernelv, R. A. Løvlid, and J. I. Hyndøy, “Simulation-supportedwargaming
for analysis of plans,” in NATO Modelling and Simulation Group Symphosium.

M&S Support to Operational Tasks IncludingWar Gaming, Logistics, Cyber Defence

(MSG-133), 2015.

[2] M. R. Endsley, “Toward a theory of situation awareness in dynamic systems,”
Human factors, vol. 37, no. 1, pp. 32–64, 1995.

[3] M. R. Endsley and D. J. Garland, “Pilot situation awareness training in general
aviation,” in Proceedings of the Human Factors and Ergonomics Society Annual

Meeting, vol. 44, no. 11. SAGE Publications Sage CA: Los Angeles, CA, 2000,
pp. 357–360.

[4] M. Colledanchise, R. Parasuraman, and P. Ögren, “Learning of behavior trees
for autonomous agents,” arXiv preprint arXiv:1504.05811, 2015.

[5] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees for the
commercial game defcon,” in European Conference on the Applications of Evolu-

tionary Computation. Springer, 2010, pp. 100–110.

[6] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving behaviour
trees for the mario ai competition using grammatical evolution,” in European

Conference on the Applications of Evolutionary Computation. Springer, 2011, pp.
123–132.

[7] G. Robertson and I. Watson, “Building behavior trees from observations in
real-time strategy games,” in Innovations in Intelligent SysTems and Applications

(INISTA), 2015 International Symposium on. IEEE, 2015, pp. 1–7.

[8] A. Toubman, G. Poppinga, J. J. Roessingh, M. Hou, L. Luotsinen, R. A. Løvlid,
C. Meyer, R. Rĳken, and M. Turčaník, “Modeling cgf behavior with machine
learning techniques: Requirements and future directions,” in Proceedings of the

2015 Interservice/Industry Training, Simulation, and Education Conference, 2015,
pp. 2637–2647.

[9] J. J. Roessingh, A. Toubman, J. van Oĳen, G. Poppinga, M. Hou, L. Luotsinen
et al., “Machine learning techniques for autonomous agents in military simu-

100 Bibliography

lations—multum in parvo,” in Systems, Man, and Cybernetics (SMC), 2017 IEEE

International Conference on. IEEE, 2017, pp. 3445–3450.

[10] L. J. Luotsinen, F. Kamrani, P. Hammar, M. Jändel, and R. A. Løvlid, “Evolved
creative intelligence for computer generated forces,” in Systems, Man, and

Cybernetics (SMC), 2016 IEEE International Conference on. IEEE, 2016, pp.
003 063–003 070.

[11] R. A. Løvlid, L. J. Luotsinen, and F. Kamrani, “Data-driven behavior modeling
for computer generated forces,” Norwegian Defence Research Establishment
(FFI), Tech. Rep., 2017.

[12] A. J. Gonzalez, R. F. DeMara, and M. Georgiopoulos, “Vehicle model genera-
tion and optimization for embedded simulation,” Proceedings of the 1998 Spring
Simulation Interoperability Workshop (SIW’98), 1998.

[13] H. K. G. Fernlund, “Evolving models from observed human performance,”
Ph.D. dissertation, University of Central Florida, 2004.

[14] H. K. Fernlund, A. J. Gonzalez, M. Georgiopoulos, and R. F. DeMara, “Learn-
ing tactical human behavior through observation of human performance,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36,
no. 1, pp. 128–140, 2006.

[15] B. J. Oates, Researching information systems and computing. Sage, 2006.

[16] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach, 3rd ed.
Pearson Education, 2014.

[17] F. Kamrani, L. J. Luotsinen, and R. A. Løvlid, “Learning objective agent behav-
ior using a data-driven modeling approach,” in Systems, Man, and Cybernetics

(SMC), 2016 IEEE International Conference on. IEEE, 2016, pp. 002 175–002 181.

[18] T. Murata and H. Ishibuchi, “Moga: multi-objective genetic algorithms,” in
Proceedings of 1995 IEEE International Conference on Evolutionary Computation,
vol. 1, Nov 1995, pp. 289–.

[19] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, 1992, vol. 1.

[20] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic

programming. Lulu.com, 2008.

[21] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly, “The department of
defense high level architecture,” in Proceedings of the 29th conference on Winter

simulation. IEEE Computer Society, 1997, pp. 142–149.

[22] R. M. Fujimoto, “Timemanagement in the high level architecture,” Simulation,
vol. 71, no. 6, pp. 388–400, 1998.

Bibliography 101

[23] L. J. Luotsinen andR.A. Løvlid, “Data-driven behaviormodeling for computer
generated forces,” inNATOModelling and SimulationGroup Symp.M&SSupport

to Operational Tasks Including War Gaming, Logistics, Cyber Defence (MSG-133),
2015, pp. 1–13.

[24] G. Stein and A. J. Gonzalez, “Building high-performing human-like tactical
agents through observation and experience,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 3, pp. 792–804, 2011.

[25] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through aug-
menting topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

[26] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of machine learning.
Springer, 2011, pp. 760–766.

[27] J. J. Roessingh, A. Toubman, J. van Oĳen, G. Poppinga, R. A. Løvlid, M. Hou,
and L. Luotsinen, “Machine learning techniqus for autonomous agents in mil-
itary simulations - multum in parvo,” in Proceedings of the 2017 IEEE Interna-

tional Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 3445–3450.

[28] M. W. Floyd and B. Esfandiari, “A case-based reasoning framework for devel-
oping agents using learning by observation,” in Tools with Artificial Intelligence

(ICTAI), 2011 23rd IEEE International Conference on. IEEE, 2011, pp. 531–538.

[29] Q. Zhang, Q. Yin, and K. Xu, “Towards an integrated learning framework for
behavior modeling of adaptive cgfs,” in Computational Intelligence and Design

(ISCID), 2016 9th International Symposium on, vol. 2. IEEE, 2016, pp. 7–12.

[30] J. Togelius, S. Karakovskiy, J. Koutník, and J. Schmidhuber, “Super mario
evolution,” in Computational Intelligence and Games, 2009. CIG 2009. IEEE Sym-

posium on. IEEE, 2009, pp. 156–161.

[31] R. Poli, “A simple but theoretically-motivated method to control bloat in ge-
netic programming,” inEuropeanConference onGenetic Programming. Springer,
2003, pp. 204–217.

[32] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multiobjective genetic pro-
gramming: Reducing bloat using spea2,” in Proceedings of the 2001 Congress on

Evolutionary Computation CEC2001, 2001, pp. 536–543.

[33] E. D. De Jong and J. B. Pollack, “Multi-objective methods for tree size control,”
Genetic Programming and Evolvable Machines, vol. 4, no. 3, pp. 211–233, 2003.

[34] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto
evolutionary algorithm,” TIK-report, vol. 103, 2001.

[35] E. D. De Jong, R. A. Watson, and J. B. Pollack, “Reducing bloat and promoting
diversity using multi-objective methods,” in Proceedings of the 3rd Annual Con-

ference onGenetic and EvolutionaryComputation. MorganKaufmannPublishers
Inc., 2001, pp. 11–18.

102 Bibliography

[36] E. F. Crane and N. F. McPhee, “The effects of size and depth limits on tree
based genetic programming,” in Genetic Programming Theory and Practice III.
Springer, 2006, pp. 223–240.

[37] S. Luke and L. Panait, “A comparison of bloat control methods for genetic
programming,” Evolutionary Computation, vol. 14, no. 3, pp. 309–344, 2006.

[38] A. Alstad, O. Mevassvik, M. Nielsen, R. Løvlid, H. Henderson, R. Jansen, and
N. de Reus, “Low-level battle management language,” in Proceedings of the

2013 Spring Simulation Interoperability Workshop, no. 13S-SIW-032, 2013.

[39] J. Ruiz, D.Désert, A.Hubervic, P.Guillou, R. Jansen,N.deReus,H.Henderson,
K. Fauske, and L. Olsson, “BML and MSDL for multi-level simulations,” in
Proceedings of the 2013 Fall Simulation InteroperabilityWorkshop, no. 13F-SIW-002,
2013.

[40] NATONSA, STANAG 4603 - Modelling and Simulation Architecture Standards for

Technical Interoperability: High Level Architecture (HLA), 2nd ed., 2015.

[41] Simulation Interoperability Standards Organization (SISO), Standard for Guid-
ance, Rationale, and Interoperability Modalities (GRIM) for the Real-time Platform

Reference FederationObjectModel (RPRFOM),Version 2.0, http://www.sisostds.
org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30822, 2015,
SISO-STD-001-2015.

[42] ——, Standard for Real-time Platform Reference Federation Object Model (RPR

FOM),Version 2.0, http://www.sisostds.org/DigitalLibrary.aspx?Command=
Core_Download&EntryId=30823, 2015, SISO-STD-001.1-2015.

[43] A. Alstad, R. A. Løvlid, S. Bruvoll, M. N. Nielsen, and O. M. Mevassvik,
“Autonomous simulation of a battalion operation - seamless integration of
command and control and simulation for planning and training,” Norwegian
Defence Research Establishment (FFI), FFI-rapport 2013/01547, 2013.

[44] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation,
vol. 6, no. 2, pp. 182–197, 2002.

[45] R. Al-Aomar, “Incorporating robustness into genetic algorithm search of
stochastic simulationoutputs,” SimulationModellingPractice andTheory, vol. 14,
no. 3, pp. 201–223, 2006.

http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30822
http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30822
http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30823
http://www.sisostds.org/DigitalLibrary.aspx?Command=Core_Download&EntryId=30823

Glossary

AI artificial intelligence.

ANN artificial neural network.

CBR case based reasoning.

CGF computer generated force.

CogSIMA 2018 2018 Conference on Cognitive and Computational Aspects of Sit-
uation Management.

CSV comma-separated values.

DDBM data-driven behaviour modeling.

FFI Norwegian Defence Research Establishment.

FOI Totalförsvarets forskningsinstitut.

FOM Federation Object Model.

GA genetic algorithm.

GP genetic programming.

GUI graphical user interface.

HLA High Level Architecture.

LLBML Low Level Behaviour Markup Language.

MOEA multi-objective evolutionary algorithm.

MOGA multi objective genetic algorithm.

104 Glossary

NSGA-II Non Sorting Genetic Algorithm II.

RPR FOM Real-time Platform-level Reference Federation Object Model.

RTI Run-Time Infrastructure.

SA simulated annealing.

SVG Scalable Vector Graphics.

VBS3 Virtual Battlespace 3.

Appendices

AppendixA
CogSIMA2018 Article and Poster

This appendix includes the poster article that was published at the CogSIMA2018
conference. It also includes the poster that was presented at the conference.

Automating Behaviour Tree Generation for
Simulating Troop Movements

(Poster)
Gabriel Berthling-Hansen∗, Eivind Morch∗, Rikke Amilde Løvlid†, and Odd Erik Gundersen∗‡

∗Norwegian University of Science and Technology (NTNU), Trondheim, Norway
†Norwegian Defence Research Establishment (FFI), Kjeller, Norway

‡Corresponding author: odderik@ntnu.no

Abstract—Computer generated forces are simulated units that
are used in simulation based training and decision support in
the military. These simulations are used to help trainees build
a mental model of how different scenarios could play out, and
thus give them a better situation awareness when conducting
operations in real life. The behaviour of these simulated units
should be as realistic as possible, so that the lessons learned
while simulating are applicable in real situations. However, it is
time consuming and difficult to build behaviour models manually.
Instead, we explore the possibility of applying machine learning
to generate behaviour models from a set of examples. In this
paper we present the results of our preliminary experiments on
using machine learning for behaviour modelling. We implement
a follow behaviour by using behaviour trees that are evolved
using genetic algorithms. The fitness of the evolved behaviour
trees have been evaluated by comparing them with a manually
generated behaviour tree that implements the behaviour properly.
The genetic algorithm converges to a tree that is very similar
to the manually generated behaviour tree, suggesting that the
method works. Further work is necessary to test whether this
approach will work on more complex behaviours.

Index Terms—Behaviour tree, simulation, genetic algorithms

I. INTRODUCTION

Computer generated forces (CGFs) are autonomous or semi-
autonomous entities that represent military units, such as
tanks, soldiers and combat aircrafts, in simulation software for
military operations. CGFs are similar to non-player characters
in computer games and are used in military simulation-
based training and decision support applications. CGFs enable
simulating large military operations as one operator is able to
control several military units. The behaviour of the CGFs, e.g.
how they move, where they look, when they shoot etc., should
represent the behaviour of corresponding human soldiers or
manned systems as accurately as possible. Ideally, a soldier
training with a virtual simulator should not notice whether
his teammates or opponents are human controlled entities or
CGFs. Realistic CGF behaviour also makes it possible to
simulate various plans or courses of actions to improve the
situation awareness and get a good understanding of how a
situation could play out [1]. Simulations can help build and
train the mental model of the trainee by practising situation
comprehension and projection, situation awareness level two

and three in Endsley’s model of situation awareness [2]. In
aviation, around 20% of the errors are related to problems with
the mental model according to Endsley and Garland [3]. Given
that errors made by soldiers in a stress situation are similar
to those made in aviation, improving their mental model is of
high importance. This requires the CGFs to behave in a natural
way, as their behaviour affects the situation comprehension and
projection of the trainee.

There are several ways to represent the behaviour of CGFs.
The most common way is to use state machines that describe
different states that the CGFs can be in and the actions they can
perform in every state. Lately, however, behaviour trees have
grown very popular [4]. In any case, the behaviour models
are typically made manually. This means that military experts
have to tell programmers how they want CGFs to behave. This
is a difficult and time consuming process [5], and we want to
explore how to use machine learning to generate behaviour
models from examples of desired behaviour.

One potential problem when building a behaviour model
with machine learning is that the model often becomes opaque,
meaning it becomes hard to interpret what the model has
learned. In our work we decided to focus on trying to learn
behaviour trees, i.e. the same type of model that can be used
to model the behaviour manually. By using behaviour trees,
the learned model for a CGF is explicit, which enables and
simplifies explaining the behaviour. Core et al. [6] present
a similar system with a separate module for explaining the
CGF’s behaviours. By contrast, they represent the behaviours
as rules and not behaviour trees.

Using machine learning to generate behaviour models for
CGFs has been discussed in the NATO Research Task Group
IST-121 RTG-060 “Machine Learning Techniques for Au-
tonomous Computer Generated Entities” [7]. The paper refers
to different case studies performed by the participating na-
tions. Worth mentioning is the work done by Totalförsvarets
forskningsinstitut (FOI), who used machine learning to create
autonomous agents that learn a tactical movement called
bounding overwatch for dismounted infantry [8]. They divided
the behaviour into different decision-models, like whether
to move or not, where to aim and whether to stand or

kneel. These models where learned separately and combined
manually. This research was done with Virtual Battle Space 3
(VBS3), a game based military simulation system [9].

In this paper we present our preliminary work on using
machine learning to generate a behaviour model for CGFs.
The work has been done with a real, military simulation
system called VR-forces from MÄK [10]. We have used a
genetic algorithm (GA) to generate a model for a soldier who
follows another soldier. The next section includes necessary
background information on genetic algorithms and behaviour
trees. Section III describes the simulation system architecture
and how data generation and the actual training are performed.
An experiment and results are presented in section IV, fol-
lowed by a discussion of the results and related work in section
V. Finally, conclusion and suggestions for future work are
included in VI.

II. BACKGROUND

A. Genetic Algorithms

GAs are stochastic search algorithms inspired by evolution.
A GA generates and evolves a population of chromosomes,
where each chromosome is a candidate solution for solving
a problem. Chromosomes are assigned a value representing
how well they solve the problem, called fitness. In each
epoch, the GA produces a new generation of chromosomes
through crossover and selection. Crossover is the creation of
a new chromosome by combining the traits of two existing
chromosomes to produce a hybrid solution. Selection is the
process of deciding which chromosomes should be used for
crossovers, and which should be potentially included as they
are in the new generation, which is usually done by comparing
fitness values. The chromosomes are also randomly mutated,
making direct changes to existing solutions. See [11] for more
information on GAs.

B. Behaviour Trees

Behaviour trees are trees of hierarchical nodes that control
decision making and task execution, and have been popularly
used for modelling the behaviour of computer-controlled units
in video games [4]. They provide a scalable and modular solu-
tion for representing complex behaviour without the exponen-
tial scalability of Finite State Machines (FSM) and reusability-
problem of Hierarchical Finite State Machines (HSFM) [12].
Behaviour trees are also human-readable, giving the opportu-
nity for visual analysis of the represented behaviour.

Behaviour tree nodes can return one of three statuses:
running, success or failure. Running means that the node is
currently active, has not completed its tasks and needs more
time to finish. Success is returned when a node is finished
executing and its task was successfully completed, and failure
is returned when the task finished unsuccessfully.

Behaviour trees are traversed from the root node and down.
If all visited nodes are finished, the tree will be traversed from
the root and down again on the next timestep. However, if one
of the nodes return running, the tree will keep running that
node every timestep until it returns either failure or success.

Once the node is done, the tree will continue traversing from
the position of the node.

1) Composite Nodes: A composite node is used to group
nodes into a higher level task [12]. The type of the composite
node dictates in which order it will execute children nodes,
when to stop, and what status to return. The system described
in this article uses two types of composite nodes, sequence
and selector. A sequence node (displayed as →) executes its
children from left to right until one of the children returns
failure or all return success. If a child returns failure, then the
sequence will stop and return failure. If all its children return
success, it will return success. A selector node (displayed as ?)
executes its children from left to right until one of the children
returns success or all children return failure. If a child returns
success, the selector will stop and return success. If all its
children return failure, the selector will return failure.

2) Leaf Nodes: A leaf node has no children, and is either
an action node or a condition node. An action node is used
to perform a specific low-level action, e.g. move to a certain
location. A condition node returns success or failure based
on some condition, e.g. whether an object is within a specific
distance or not.

3) Blackboard: A blackboard contains data that is acces-
sible for all the nodes of the behaviour tree. Nodes may also
alter data inside the blackboard. A blackboard is an important
feature of a behaviour tree as it enables nodes to share and
alter the same state representation, avoiding an exponential
state complexity such as in FSMs.

III. GENERATING BEHAVIOUR TREES FOR CGF

A. System Architecture

For our experiments we used a real, military simulation sys-
tem called VR-Forces from MÄK. The virtual terrain, physical
simulation of entities etc. are simulated in this system. We
made a separate system that can record data from VR-Forces,
generate the behaviour models using machine learning and
send commands to the entities in VR-Forces. Figure 1 shows
an example of a virtual terrain in VR-Forces. Our system
communicates with VR-Forces using high level architecture
(HLA), a standard for distributed simulation that is commonly
used in military simulation systems [13]. Other CGF systems
that support HLA could be used in place of VR-Forces.

Systems that communicate over HLA must agree on data
and data formats to exchange. This is formalised in a feder-
ation object model (FOM), and we have used the Real-time
Platform-level Reference (RPR) FOM, which is a standard
FOM that many military simulation systems support [14],
[15]. However, this FOM does not include commands or the
perceived truth of the CGF entities. For this we use an extra
module for low level battle management language (LL-BML),
which is made as an extension to the RPR FOM [16], [17].
Bruvoll et al. describe using a multiagent system to control a
CGF system in a similar manner [1], [18].

Our system generates and evaluates behaviour models for
different types of units in different scenarios. Different units,
scenarios and objectives require different behaviour tree nodes

Fig. 1: VR-Forces simulation environment

Fig. 2: Architecture Overview

with specialised tasks, different data collection and data
processing, different performance evaluations (fitness), and
different training algorithm tuning.

Figure 2 shows a high level overview of the system architec-
ture. The Simulation Controller provides an abstraction level
for the rest of the system to interact with VR-Forces, which
it communicates with through the HLA Interface. These in-
teractions include sending instructions to play, pause and load
a scenario, as well as forwarding events of newly discovered
units from VR-Forces to the Unit Handler. The Unit Handler
handles the registration of simulation entities as local unit
objects that can be used for logging data or giving commands.
The Simulation Controller also instructs the Unit Handler to
update unit data when the simulation time advances (tick).
The Unit Logger writes data from the units registered by the
Unit Handler to a database. The Trainer handles training of
behaviour models. This includes deciding which scenario to
simulate, initiating simulations, and creating, evaluating and
modifying the behaviour trees. The main system has two
modes—example recording and training.

1) Example Recording: The recording mode is used to
record the behaviour of a unit that is controlled by an ex-
ternal source (human or script), in order to generate training
data. This could be a person controlling a unit by joystick
or mouse and keyboard through VR-Engage [19] while our
system records data relevant to the performed task from the
simulation. When recording, VR-Forces is initiated externally,
and our system is only listening to and logging data updates,

(a) Parent 1 (b) Parent 2

(c) Child

Fig. 3: Crossover

such as position, velocity and current engagement status. This
data can later be used as examples of desired behaviour in the
respective scenario.

2) Training: During training, the system uses a GA to
generate, evaluate and improve behaviour trees. This is han-
dled by the Trainer, shown in Figure 2, which takes a GA
implementation as an argument upon initiation. NSGA-II [20],
a multi-objective GA, is used for the experiments described
in this paper. The Trainer also requires a list of scenarios and
recorded example data, an object responsible for evaluating
the fitness of behaviour trees, and an object responsible for
collecting and holding the data to be used for evaluation.

B. Evolving Behaviour Trees

The evolution of behaviour trees is done using NSGA-II,
a multi-objective GA which sorts and selects chromosomes
by non-domination [20]. A chromosome is said to dominate
another chromosome if it has a better fitness value for one or
more objectives and equal fitness value for the rest.

1) Crossover: The crossover operator chooses two be-
haviour trees as parents through tournament selection, and then
chooses a random subtree in each of the parents, as illustrated
in Figures 3a and 3b. A clone of parent 1 is then created and
the subtree of parent 2 is inserted at the position of the subtree
of parent 1. Figure 3c displays the final tree after crossover.
This is the same crossover operator as is used in [4].

2) Mutations: The system uses six different mutations with
varying level of impact on the behaviour trees. The probability
of choosing one mutation over the others is decided by
weights that are tuned per experiment. It is also possible to
set weight factors for each mutation, altering the mutation
weight depending on how many epochs the algorithm has been
running. All mutations were designed by the authors of this
paper for this specific system.

a) Add Random Subtree: This mutation generates a ran-
dom subtree with a specified minimum and maximum number
of nodes, and inserts it at a random position in the behaviour

(a) Original (b) Result

Fig. 4: Add Random Subtree

(a) Original (b) Result

Fig. 5: Randomise Variables of Random Node

tree. Figure 4 shows the insertion of a tree with three nodes,
marked with a dotted line.

b) Randomise Variables of Random Node: Both action
nodes and condition nodes can have variables that affect
their functionality. This reduces the total number of nodes a
developer has to make and also allows the system to fine-tune
the behaviour of the behaviour tree. E.g., for a condition node
that checks if the distance between two units is lower than
a certain value, the value can be altered during training to
check for different distances. This mutation randomises one
or multiple variables in an action or condition node. In Figure
5 the value of the “Target is ...” condition node is changed
from safe to in danger.

c) Remove Random Subtree: This mutation removes a
random subtree from a behaviour tree.

d) Replace Random Node With Node of Same Type:
This mutation replaces a random node with another random
node of the same type. This means that a composite node
can be replaced with another composite node (e.g. sequence
to selector) or that a leaf node is replaced with another leaf
node. Condition and action nodes are not treated differently,
and may be replaced by any other leaf node.

e) Replace Tree With Subtree: This mutation replaces the
entire tree with a random subtree of that tree. In Figure 6 the
entire tree is replaced by the selector subtree.

f) Switch Positions of Random Sibling Nodes: This mu-
tation switches the position of two random sibling nodes,
including both leaf and composite nodes. In Figure 7 the
Condition 1 and Action 2 nodes have switched places.

IV. EXPERIMENTS AND RESULTS

A. Experiments

The experiment revolves around a wanderer and a follower.
The objective for the experiment is to have the follower

(a) Original (b) Result

Fig. 6: Replace Tree With Subtree

(a) Original (b) Result

Fig. 7: Switch Positions of Random Sibling Nodes

agent follow the wanderer. The wanderer is pre-programmed
to follow a specific plan, which involves going to different
locations and waiting a given amount of time at certain
positions. The example file used to for training was recorded
from a manually created behaviour tree, shown in Figure 11.
This was an easy way to generate training data, and it also
made it possible to compare the learned model with the “true”
model.

A behaviour tree for a follower unit can have five different
types of leaf nodes: Move to target, which makes the follower
move toward its target for one tick. Turn to target, which
makes the follower turn towards its target. Wait, which makes
the follower stand still for a single tick. Is within, a variable
condition node which checks whether the followers target is
within a specified euclidean distance. Is approaching, a vari-
able condition node which checks whether the angle between
the movement vector of the target and the vector between the
follower and the target is smaller than a specified threshold—
effectively checking whether the followers target is moving
towards the follower.

For this experiment, the training was done on two separate
scenarios, using different terrains and wanderer paths. 2D
overviews of the terrain and wanderer paths for both scenarios
are shown in Figure 8. The first scenario simulates approxi-
mately 18 minutes of real-time over 1100 ticks, and the second
approximately 12 minutes of real-time over 700 ticks. The
training ran for 30 epochs with a population of 10 behaviour
trees. The objective is to imitate the recorded behaviour. The
fitness function therefore compares the behaviour produced by
the behaviour tree with the recorded behaviour. The behaviour
trees were evaluated by comparing the euclidean distance in
each tick between follower and target position in the training
data with the follower-target distance during behaviour tree
simulation. All trees were tested on both scenarios. The
equation for calculating the fitness value of a behaviour tree

(a) Scenario 1 (b) Scenario 2

Fig. 8: Scenario terrain and path overviews

for a single scenario is shown in Equation 1, where n is the
number of ticks that were simulated.

Fitness =
1

n
×

n∑

t=0

(
dist(examplet)− dist(btreet)

)2
(1)

For each of the recorded ticks we find the follower-target
distance from the training data and the simulated behaviour
tree. The difference of these two distances is then squared
so that a large difference over a few ticks is worse than a
small difference over a large number of ticks. The squared
differences in euclidean distance are summed and normalised
over the number of ticks (n) to make the different scenario
fitness values more comparable. The fitness values should
be minimised. We chose this fitness function, as it is a
simple formula that captures the similarity of the example and
evaluated behaviour.

During training in this experiment, NSGA-II was set to
simultaneously minimise three fitness values: the fitness value
from running scenario 1, the fitness value from running
scenario 2, and the number of nodes in the behaviour tree.
By adding the tree size as a minimisation objective, we
prevented the algorithm from creating bloated behaviour trees
with unnecessary subtrees that have no significant effect on
the behaviour.

All mutations were initially weighted the same, however
with different weight factors, as described in Section III-B2.
The mutations that change the behaviour trees drastically—add
random subtree and Replace tree with subtree—were given a
factor of less than 1, while randomise variable of random
variable node was given a factor higher than 1. This way, the
algorithm prioritises local search over larger changes at later
epochs. The creation, crossover and mutation functions for
behaviour trees were also restricted from producing behaviour
trees with less than three and more than 12 nodes.

B. Results

Figure 9 shows the development of the fitness for the
first scenario over 30 epochs. Figure 10a shows the fitness
development over time for scenario 2, and Figure 10b shows
a zoomed in view of the best-fitness development. The results
show that the generated behaviour trees improve over time.
For both scenarios, the trend is that the best and average score

Fig. 9: Scenario 1 fitness development

(a) Complete

(b) Zoomed

Fig. 10: Scenario 2 fitness development

is continually decreasing as the algorithm is running. Short-
term increases in average fitness values are due to the multi-
objective selection of the NSGA-II algorithm.

We have chosen two of the non-dominated behaviour trees
from the population at epoch 30, shown in Figure 12 with fit-
ness values included in the sub figure captions. The behaviour
tree in Figure 12a has the smallest possible size following the
size restrictions, and has the lowest fitness on scenario 2 of
all the trees of the same size. The larger one, shown in Figure
12b, performs better at scenario 1 and scenario 2, but has more
than twice the number of nodes.

Fig. 11: Manually made behaviour tree

(a) Fitness: [size=3, scenario1=219, scenario2=114]

(b) Fitness: [size=7, scenario1=84, scenario2=5]

Fig. 12: Two of the resulting behaviour trees from epoch 30

V. EVALUATION AND DISCUSSION

We used a manually created behaviour tree, shown in Figure
11, to record the example file used in the training phase.
While running the experiment, we observed different outcomes
of the simulations with identical inputs. E.g., running the
multiple simulations with the same behaviour tree controlling
the follower resulted in slightly different pathing, and therefore
different fitness values. When simulating the same behaviour
tree that was used for recording the example data, the fitness
on scenario 1 varied between 0 and 40, and on scenario 2 the
fitness varied between 0 and 9.

It appears that the simulation engine has internal inconsis-
tencies on when received unit tasks are executed. We suspect
this is caused by the internal path planning of the simulation
engine taking different lengths of time to complete due to
available processing power. It seems the simulation is not
paused while the pathing is calculated, and so the units start
to move at different ticks.

The consequence is that we have to account for stochastic
evaluation of chromosomes, where a chromosome can be
evaluated better or worse based on luck. A way of managing
stochastic problems with GAs is to simulate each chromo-
some a large number of times, combining the results [21].
However, as it takes approximately 18 seconds to simulate
each behaviour tree, running a large number of simulations per
chromosome was not an option. The inconsistencies in fitness
evaluation can also affect the selection process of NSGA-II
negatively.

When comparing the two selected resulting behaviour trees
with the manually made behaviour tree used for recording the
example, we can see that there are significant similarities.
For the tree in Figure 12a, it has managed to represent
approximately what we consider the most important part of the
example behaviour—moving only when more than 30 meters
away from the target. In both example scenarios, checking for
distance is more important than checking whether the target
is approaching. This is because the target usually moves away
from the follower, and that the target is standing still for a
significant portion of the scenarios.

The bigger resulting tree, shown in Figure 12b, includes
most of the behaviour of the manually made example tree.
Before moving to the target, both distance and movement
angle is checked with approximately the same distance and
angle used in the example tree. However, due to the sequence
of distance checks and wait node, the follower might move
closer while it is between 29.77 and 26.19 meters away from
the target. Then again, as the target is moving, the wait node
between the distance checks will often cause the target to be
further than 29.77 meters away for the next tick.

Theoretically, the system should be able to find behaviour
trees that result in 0 fitness on both scenarios. However, we
suspect that the stochastic simulation outcomes significantly
limits the performance of the algorithm by causing it to keep
trees that were lucky during evaluation over trees with statisti-
cally better performance that were unlucky during evaluation.
Combined with the long time it takes to simulate a behaviour
tree, finding optimal models will take a very long, even with
simple experiments.

The bottleneck of the system is running simulations to
evaluate the behaviour trees. Simulating a single behaviour
tree on the two scenarios used for the previously described
experiment takes approximately 18 seconds. This limits the
population size we can use for NSGA-II, as evaluating a
large number of chromosomes per epoch will be inefficient
use of time, especially when multiple scenarios are used for
evaluation.

Colledanchise et al. [4] and Lim et al. [12] also use GAs
to generate behaviour trees, with the same crossover operator
as we have used in our system. For mutation, however,
Colledanchise et al. used a single mutation which replaces
a single node in a behaviour tree with another node of the
same type, while we use six different mutations that alter the
behaviour tree in different ways. Another important difference
is that Colledanchise et al. use reinforcement learning to
generate behaviour trees designed to play Mario, while we
generate behaviour trees that imitate example behaviour in
complex simulation environments.

Lim et al. [12] use two mutations with similarities to two of
our mutations—adding a random behaviour tree as a subtree,
and changing the an inner variable of an existing node. They
also had issues with long simulation times, which they handled
by distributing their simulation over 20 computers, drastically
speeding up each experiment. Lim et al. trains the behaviour
using reinforcement learning while we use supervised learning.

The followers behaviour model is currently fed ground truth
information about the target from the simulation system. This
means that the follower always knows the current position of
the target, even if the follower unit is unable to observe the
targets position and velocity. For a more realistic experiment,
the follower behaviour model should only have access to
perceived truth, which is supported in VR-Forces through e.g.
line of sight and radio communication. This would probably
result in more human-like behaviour.

VI. CONCLUSION AND FUTURE WORK

In this paper we used genetic algorithms to generate be-
haviour trees that control the behaviour of CGFs in a real
military simulation system. The objective was to imitate a
recorded behaviour. As mentioned in the previous section,
other researchers have used GAs to generate behaviour trees,
but we have not seen other work that has used GAs for learning
from observation. Also, the other research has been done with
simpler simulation systems.

We consider the experiment to be a success. The resulting
behaviour trees reproduce the most essential parts of the
behaviour used to record the example data, which shows that
the system is able to replicate simple behaviour by generating
and evolving behaviour trees.

We were surprised by the fact that the simulation system
is not deterministic, which resulted in significant variation in
the fitness of a behaviour tree when executed on the same
scenario multiple times. Assuming that we are able to solve
the issues with stochastic simulation outcomes, the system’s
ability to replicate more complex behaviour seems promising.
Hence, solving this issue should has the highest priority going
forward.

Increasing the complexity of the objective and scenarios is
also very relevant. E.g. using a number of agents to perform
a military action called bounding overwatch where multiple
agents must work together to advance forward. See [8] for
more information on bounding overwatch. The agents could
use radio messages to communicate when the next agent
should advance. Extending the experiment described in this
paper with variable movement speeds and using perceived
truth target information are other potential ways of increasing
experiment complexity.

In addition to implementing a larger variety of action leaf
nodes, we wish to introduce other types of composite nodes in
future experiments, e.g., random and parallel composite nodes.
We also wish to include the use of decorators, that alter the
resulting status of a single node.

The example used in this experiment was recorded with a
manually created behaviour tree used to control the follower
unit. This was done to have a representation of optimal
behaviour to compare the results with, making visual analysis
easier. However, for future experiments, the example behaviour
should be recorded with the unit controlled by a human, e.g.
using VR-Engage to control the example unit with mouse and
keyboard. It should be interesting to compare how the person
controlling the unit would represent his/her own behaviour to
how the computer ends up representing it.

Finally, we aim at investigating the possibilities of dis-
tributing the simulation to reduce the required run-time of
simulating and evaluating behaviour trees. Lim [12] had a
similar problem, where running the entire experiment would
take approximately 41 days. They were able to distribute the
computation to 20 computers, reducing the number of days to
approximately 2 days per experiment. This is also an option for
our simulation system and would allow for a larger population
or a higher number of epochs in the experiment.

REFERENCES

[1] S. Bruvoll, J. E. Hannay, G. K. Svendsen, M. L. Asprusten, K. M.
Fauske, V. Kvernelv, R. A. Løvlid, and J. I. Hyndøy, “Simulation-
supported wargaming for analysis of plans,” in NATO Modelling and
Simulation Group Symphosium. M&S Support to Operational Tasks
Including War Gaming, Logistics, Cyber Defence (MSG-133), 2015.

[2] M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems,” Human factors, vol. 37, no. 1, pp. 32–64, 1995.

[3] M. R. Endsley and D. J. Garland, “Pilot situation awareness training in
general aviation,” in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 44, no. 11. SAGE Publications Sage CA:
Los Angeles, CA, 2000, pp. 357–360.

[4] M. Colledanchise, R. Parasuraman, and P. Ögren, “Learning of behavior
trees for autonomous agents,” arXiv preprint arXiv:1504.05811, 2015.

[5] A. Toubman, G. Poppinga, J. J. Roessingh, M. Hou, L. Luotsinen, R. A.
Løvlid, C. Meyer, R. Rijken, and M. Turčanı́k, “Modeling cgf behavior
with machine learning techniques: Requirements and future directions,”
in Proceedings of the 2015 Interservice/Industry Training, Simulation,
and Education Conference, 2015, pp. 2637–2647.

[6] M. G. Core, H. C. Lane, M. Van Lent, D. Gomboc, S. Solomon, and
M. Rosenberg, “Building explainable artificial intelligence systems,” in
AAAI, 2006, pp. 1766–1773.

[7] J. J. Roessingh, A. Toubman, J. van Oijen, G. Poppinga, R. A. Løvlid,
M. Hou, and L. Luotsinen, “Machine learning techniqus for autonomous
agents in military simulations - multum in parvo,” in Proceedings of the
2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2017, pp. 3445–3450.

[8] F. Kamrani, L. J. Luotsinen, and R. A. Løvlid, “Learning objective agent
behavior using a data-driven modeling approach,” in Systems, Man, and
Cybernetics (SMC), 2016 IEEE International Conference on. IEEE,
2016, pp. 002 175–002 181.

[9] Bohemia Interactive. (2016) VBS. [Online]. Available: https://
bisimulations.com/virtual-battlespace-3

[10] MÄK. (2018) VR-Forces. [Online]. Available: https://www.mak.com/
products/simulate/vr-forces

[11] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach,
3rd ed. Pearson Education, 2014, pp. 129–132.

[12] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game defcon,” in European Conference on the
Applications of Evolutionary Computation. Springer, 2010, pp. 100–
110.

[13] NATO NSA, STANAG 4603 - Modelling and Simulation Architecture
Standards for Technical Interoperability: High Level Architecture (HLA),
2nd ed., 2015.

[14] Simulation Interoperability Standards Organization (SISO), Standard for
Guidance, Rationale, and Interoperability Modalities (GRIM) for the
Real-time Platform Reference Federation Object Model (RPR FOM),
Version 2.0, http://www.sisostds.org/DigitalLibrary.aspx?Command=
Core\ Download\&EntryId=30822, 2015, SISO-STD-001-2015.

[15] ——, Standard for Real-time Platform Reference Federation Object
Model (RPR FOM), Version 2.0, http://www.sisostds.org/DigitalLibrary.
aspx ? Command = Core\ Download\&EntryId = 30823, 2015, SISO-
STD-001.1-2015.

[16] A. Alstad, O. Mevassvik, M. Nielsen, R. Løvlid, H. Henderson,
R. Jansen, and N. de Reus, “Low-level battle management language,” in
Proceedings of the 2013 Spring Simulation Interoperability Workshop,
no. 13S-SIW-032, 2013.

[17] J. Ruiz, D. Dsert, A. Hubervic, P. Guillou, R. Jansen, N. de Reus,
H. Henderson, K. Fauske, and L. Olsson, “BML and MSDL for
multi-level simulations,” in Proceedings of the 2013 Fall Simulation
Interoperability Workshop, no. 13F-SIW-002, 2013.

[18] A. Alstad, R. A. Løvlid, S. Bruvoll, M. N. Nielsen, and O. M.
Mevassvik, “Autonomous simulation of a battalion operation - seamless
integration of command and control and simulation for planning and
training,” Forsvarets forskningsinstitutt, FFI-rapport 2013/01547, 2013.

[19] VT MAK. (2017) VR-Engage. [Online]. Available: https://www.mak.
com/products/simulate/vr-engage

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[21] R. Al-Aomar, “Incorporating robustness into genetic algorithm search
of stochastic simulation outputs,” Simulation Modelling Practice and
Theory, vol. 14, no. 3, pp. 201–223, 2006.

Automating Behaviour Tree Generation

for Simulating Troop Movements
Gabriel Berthling-Hansen, Eivind Morch, Rikke Amilde Seehuus, Odd Erik Gundersen

We used machine learning to learn behaviour

from examples.
This project explores automatic generation of behaviour based on recorded

simulated exercises. Currently, behaviour models for computer generated forces

(CGF) are made manually, which is a difficult and time-consuming process. By

using machine learning to learn from examples, we hope to provide a faster and

less expensive method.

The behaviour is represented using behaviour

trees.
Behaviour trees have popularly been used for modelling the behaviour of

computer-controlled units in video games. They provide a scalable and modular

solution for representing complex behaviour, and enable visual analysis of the

behaviour they represent.

A multi-objective genetic algorithm was used to

evolve the behaviour trees.
The system uses the NSGA-II algorithm to generate and evolve a population of

behavior trees. Each tree in the population is simulated in complex simulation

systems and then evaluated based on recorded data. The next population is

selected by using the evaluation scores. By using multi-objective algorithms, the

system maintains and improves a diverse set of different behaviour. This allows

the system to progressively improve the generated behavior to imitate the

behavior shown in the recorded exercises.

The experiment was performed with a real

military simulation system.
The system uses a real military simulation system, which consist of complex

real-life scenarios and terrains, as well as specialized military entity models. For

our experiment we used VR-Forces from MÄK. Our system connects to the

simulation system using high-level architecture (HLA), and records and

processes data from the simulated entities. While the simulation is running, the

generated behaviour trees are used to choose what commands to send to the

simulated entities. The recorded data is also used to calculate evaluation scores

for each behaviour tree.

We managed to evolve behaviour trees that

imitate a follow-behaviour.
The example behaviour was recorded from a unit controlled by the manually

created behaviour tree shown below. The training was done on two scenarios,

with different terrains and target movement paths. One of the resulting behaviour

trees is shown in the lower right corner, representing behaviour that closely

resembles the example behaviour.

System architecture

Our system

MÄK

VR-Forces

HLA Interface Simulation

Controller
Unit Handler

Unit Logger

RPR FOM 2.0

LLBML

Trainer

NSGA-II

Generated behaviour treeManually created behaviour tree

Scenario 1 path Scenario 2 path

Communication over HLA

?

→

Is approaching [20.00°] Is within [30.00m]

Turn to target

Move to target

?

Move to targetIs approaching [20.98°]

Is within [26.19m]Is within [29.77m] Wait

?

→

AppendixB
Single-Page Figure Versions

In this appendix, single-page versions of Figures 5.5 and 5.7 to 5.10 are included.
All figures use scalable vector graphics.

118 Appendix B Single-Page Figure Versions

Wilcard entities in the core system
(marked '?') are replaced by the entity or
entities with corresponding ID(s).

core.btree.tasks.blueprint.template

core.simulation

core.data

core.training.algorithms.nsga2

core.training

core.btree

core.btree.operations

core.unit

experiments

Task

children: List<Task>

HlaManager

getInstance(): HlaManager

connectFederate()

DataSet

D: DataRow

dataRows: List<D>

scenarioPath: String

unitMarking: String

SimController

getInstance(): SimController

Algorithm

D: DataRow, C: Chromosome

population: Population<C>

setup()

step(epoch, exampleDataSets)

Selector

? extends Chromosome

« Interface »

ConditionTask

VariableLeafTask

randomiseVariables()

randomiseRandomVariable()

NSGA2Chromosome

rank: integer

crowdingDistance: double

dominates: List<NSGA2Chromosome>

DataRow

getTimestamp(): double

getHeader(): String

getValues(): String

Task

children: List<Task>

parent: CompositeTask

getTasks(): List<Task>

instantiateExecutableTask(): com.badlogic.gdx.ai.btree.Task

Trainer

U: Unit, D: DataRow

exampleDataSets: List<DataSet<D>>

fitnessEvaluator: FitnessEvaluator

algorithm: Algorithm<D, ?>

? extends Algorithm

Sequence

« Interface »

AlwaysSuccessfulTask

Population

C: Chromosome

chromosomes: List<C>

NSGA2

createOffspringPopulation(...): [...]

rankPopulationByNonDomination(...): [...]

selectNewPopulationFromRankedPopulation(...): [...]

LeafTask

« Interface »

FitnessEvaluator

evaluate(...): LinkedHashMap<Double>

Chromosome

fitness: LinkedHashMap<String, Double>

behaviourTreeRoot: Task

CompositeTask

addChild(Task)

insertChild(Integer, Task)

removeChild(Task)

? extends DataRow ? implements FitnessEvaluator

? extends Task

Mutation

mutate(Task)

getWeight(double): double

canBePerformed(Task): boolean

Crossover

crossover(Task, Task): Task

Mutator

mutations: List<Mutation>

mutate(Task): Task

? extends Unit

UnitDataWriter

unit: ? extends Unit

writeDataToFile()

UnitLogger

unitDataWriters: HashMap<Handle, UnitDataWriter>

Unit

dataRows: List<DataRow>

handle: Handle

UnitHandler

units: HashMap<Handle, Unit>

controlledUnits: HashMap<Handle, ControlledUnit>

ControlledUnit

U: Unit

unit: U

btree: BehaviorTree

sendUnitCommands()

UnitTypeInfo

unitClass: Class<? extends Unit>

availableTasks: List<Task>

ExperimentInitialiser

setup(UnitTypeInfoInitialiser, AddUnitMethod, boolean, boolean, boolean)

« Interface »

UnitTypeInfoInitialiser

initUnitTypeInfo()

Blackboard

BehaviorTreeUtil

1

1

1..*

1 1

1

1..*

*

1

1

*

0..1

1..*

*

1

*

*

0..1

*

1

0..1

1

1

1*

1

1

*

1

*

1

*

« use »

« use »

« use »

« use »

external process controllers

btree.operations.mutations

experiments.experiment[x]

SimEngine

start()

Rti

start()

SimGui

start()

AddRandomSubtreeMutation

RandomiseVariablesOfRandomVariableTaskMutation

RemoveRandomSubtreeMutation

ReplaceRandomTaskWithTaskOfSameTypeMutation

ReplaceTreeWithSubtreeMutation

SwitchPositionsOfRandomSiblingTasksMutation

Experiment[x]FitnessEvaluator Experiment[x]UnitTypeInfoInitialiserExperiment[x]AddUnitMethod

1 1

0..1 1

1

1

experiments.experiment[x].units experiments.experiment[x].tasksexperiments.experiment[x].datarows

Experiment[x]DataRow[m] Experiment[x]Task[k]

...

Experiment[x]DataRow[2]

Experiment[x]DataRow[1]

...

Experiment[x]Unit[2] Experiment[x]Task[2]

Experiment[x]Unit[1]

...

Experiment[x]Task[1]

Experiment[x]Unit[n]

1

1 2

2
3

4 5 6

3

4

5

6

Figure B.1: Single-page version of Figure 5.5 – Class diagram of the core system and the
experiment package. The colouring of the system entities follows the system
diagram colour-coding, specified in Table 5.1. The core system requires class
implementations from both the experiment package and an algorithm imple-
mentation to work. These missing classes are shown as purple (experiment)
and pink (algorithm) classes with names that start with “?” and have red num-
ber boxes in the top left corner. The numbers indicate where each class or set of
classes from the experiment and algorithm packages are used in the core system.

119

<process controller>
Rti

Experiment[x]UnitTypeInfoInitialiser

Experiment[x]AddUnitMethod

UnitHandler HlaManager HlaLib

HlaLib.
FederateManager

SimController

<process controller>
SimEngine

<process controller>
SimGui

ExperimentInitialiserExperiment[x]

UnitTypeInfo

setAddUnitMethod(addUnitMethod)

connectFederate() init()

federateManager

new()

federateManager

init()
federateManager

getInstance()
simController

[startSimengine = true] startSimEngine()
new()

addTickListener(simController)

addPhysicalEntityUpdatedListener(simController)

simEngine

thread.start()

[startSimGui = true] startSimGui()
new()

simGui
start()

thread.start()

new()

unitTypeInfoInitialiser
new()

addUnitMethod

setup(unitTypeInfoInitialiser, addUnitMethod, startRti, startSimEngine, startSimGui)

 Loop

[for each unit type]

initUnitTypeInfo()

addUnitTypeInfo(name, symbol, tasks)
new()

unitTypeInfo

[startRti = true] startRti()

thread.start()

new()

rti

start()

sd System Initiation (boolean startRti, boolean startSimEngine, boolean startSimGui)

store unitTypeInfo

start()

start RTI

start Simulation Engine

start Simulation GUI

connect to RTI

Figure B.2: Single-page version of Figure 5.7 – Sequence diagram of the system initiation
process

120 Appendix B Single-Page Figure Versions

HlaLibUnitLogger
UnitUnitUnitUnitControlledUnit

UnitUnitUnitHandlerHlaManagerSimController <external system>
RTI

<external system>
Simulation Engine

play(numberOfTicks)

wait for all units to be discovered

wait for all units to be updated

enableTimeAdvancement()

sendCgfPlayInteraction()

unlock TIME_ADVANCE_LOCK

send CgfInteraction with command "Play"

simulate up
to allowed
logical time

[for numberOfTicks]

loadScenario(scenarioPath)
reset()
reset()

sendCgfLoadScenarioInteraction(scenarioPath)
send CgfInteraction with command "LoadScenario" and scenario path

wait for TIME_ADVANCE_LOCK to be opened

load
scenario

CgfInteraction

CgfInteraction

all units discovered

physicalEntityUpdated(...)

tick(timestamp)
updateUnits(timestamp)

? extends Unit

process and store data

updateData(timestamp)Loop

[for each unit]
get raw simulation data for relevant units

raw simulation data

logAllRegisteredUnits()

write all
unit data
to csv files

tickAllControlledUnits()

Loop

[for each controlledUnit]
sendUnitCommands()

gdx.ai.
BehaviourTree

LLBML interaction

sendCgfPauseInteraction() send CgfInteraction with command "Pause"
CgfInteraction

CgfInteraction
lock TIME_ADVANCE_LOCK

holdTimeAdvancement()

requestTimeAdvanceAndBlock() requestTimeAdvanceAndBlock(current logical time + tick interval)
time advance request

allow time advance

sd Simulation (String scenarioPath, int numberOfTicks)

Loop

register unit
commands

simulate up
to allowed
logical time

CgfInteraction

units discovered

unit data updates

unit data updates
unit data updates

store data

allow time advance

notify simulation ended

Alt

units discovered

unit data updates

stop trying
to advance
time

LLBML interaction

remoteObjectDiscovered(...)

CgfInteraction

hlaObjectUpdated(...)

wait for TIME_ADVANCE_LOCK to be opened

manually instruct simulation engine to load scenario

send unit commands
step()

Figure B.3: Single-page version of Figure 5.8 – Sequence diagram of the simulation process

121

Opt

<external system>
Simulation Engine

<external system>
RTI

SimControllerExperiment[x]

sd Recording

manually instruct simulation engine to load scenario

play(unlimited)

Simulation (
scenarioPath=manually configured
numberOfTicks=unlimited)

Ref

record()

Ref System Initiation (
startRti=false,
startSimEngine=false,
startSimGui=false)

manually start simulation engine

manually start RTI

Opt

ControlledUnit

set unit(s) to be controlled by behaviour tree

manually stop simulation

stop system

<CSV file>
unit data file

select and extract unit data file to use as example

unit data file

<create>

Figure B.4: Single-page version of Figure 5.9 – Sequence diagram of the recording process.
References Figures B.2 and B.3 as subprocesses.

122 Appendix B Single-Page Figure Versions

ControlledUnit

Chromosome

Task

BehaviorTreeUtil

Trainer

Experiment[x]FitnessEvaluator

Algorithm

Population

Experiment[x] SimController

sd Training

train()

new(algorithm-specific arguments)

algorithm

new(unitToTrain, dataToEvaluate, fitnessEvaluator, algorithm, exampleFileNames)

new(fitnessevaluator-specific arguments)

fitnessEvaluator

trainer

train(number of epochs)

setup()

step()

algorithm-specific operations

updateFitnessHistory(population)

generateRandomPopulation(unitToTrain, chromosomeClass, populationSize, ...)

population

getBehaviourTreeRoot()
behaviourTreeRoot

simulatePopulation(population)

setFitness(population, epoch)

algorithm-specific operations

[for number of epochs]
algorithm-specific operations

setControlledUnitBtreeMap(unitToTrainClass, behaviourTreeRoot)

loadScenario(scenarioPath – specified in example)

play(numberOfTicks – specified in example)

[for each chromosome]

[for each chromosome]

[for each example]

Ref System Initiation (startRti=true, startSimEngine=true, startSimGui=false)

Simulation (
scenarioPath,
numberOfTicks)

lock thread while
simulation runs

loadExampleDataSets(exampleFileNames)

Ref

Loop

Loop

Loop

notify simulation ended

Loop

new(randomTree)

Loop

chromosome

randomTree rootTask

setFitness(fitness)

evaluate(chromosome, exampleDataSet, chromosomeDataSet)
fitness

[for populationSize]

generateRandomTree(unitToTrain, ...)
new()

create chromosome data
set from unit data file

Figure B.5: Single-page version of Figure 5.10 – Sequence diagram of the training process.
References Figures B.2 and B.3 as subprocesses.

AppendixC
VR-Forces Settings

This appendix includes the versions, plugins and settings of the MÄK VR-Forces
software used when conducting our experiments.

MÄK system versions

• RTI: 4.4.2d VC10

• VR-Forces: 4.5 VC10

• VR-Link: 5.3.1 VC10

MÄK VR-Forces plugins

• LLBML

• CgfControl (LLBML addon)

VrfSim.mtl settings

• timeManagementMode: 1

• sendFedTime: 1

• disableParallelTick: 1

VrfSimSettings.xml

• myTranslationThreshold: 0

• myRotationThreshold: 0

AppendixD
Literature Review Notes

This appendix includes notes from the literature review. The notes include the
title, author(s), year of publication, type of publication and relevant pages. They
also include a topic, where we would write down the topics of the article, and a
relevance and credibility score. The relevance and credibility score is a five star
system where five stars are extremely relevant and 1 star is not so relevant. The
relevance score is a measure of how relevant the publication is to the work done in
the thesis. The credibility score represents our subjective opinion of how credible
the publication is.

126 Appendix D Literature Review Notes

Lim2010 – Evolving BTs for [...] DEFCON

Title: Evolving Behaviour Trees for the Commercial Game DEFCON
Author: Chon-U Lim, Robin Baumgarten and Simon Colton
Year: 2010
Type: Article
Pages: 1–9

Topic: Using Grammatical Evolution (GE) to evolve BTs
Relevance: ⭑⭑⭑⭑⭐
Credibility: ⭑⭑⭑⭑⭑

Abstract: Behaviour trees provide the possibility of improving on existing Artificial

Intelligence techniques in games by being simple to implement, scalable, able to handle

the complexity of games, andmodular to improve reusability. This ultimately improves

the development process for designing automated game players. We cover here the use

of behaviour trees to design and develop an AI-controlled player for the commercial

real-time strategy gameDEFCON. In particular, we evolved behaviour trees to develop

a competitive player which was able to outperform the game’s original AI-bot more

than 50% of the time. We aim to highlight the potential for evolving behaviour trees

as a practical approach to developing AI-bots in games.

Notes:

1. Investigates evolutionary techniques for developing BTs

2. (p. 1) Arguments for BTs advantages over FSM for game design.

3. (p. 5) Crossover through swapping random subtrees between the parents

4. (p. 5) Mutation
a) Additive mutation (adding subtree)
b) Altering mutation (changing node details etc)

5. The article also talks about the fitness functions it use to score its bot, these
seem to be high level fitness functions.

6. (p. 9) The article concludes by speculating that GE might need to supple-
mented with other AI methods (marked section).

7. Should be noted that with training against a single, deterministic AI-

opponent, in combinationwith simplified behaviour (defence then attack)

in the training AI, most likely resulted in overfitting.

127

Simpson2014 – BTs for AI: How they work

Title: Behavior trees for AI: How they work
Author: Chris Simpson
Year: 2014
Type: Online (blog)
Pages: 1–12

Topic: A overview of how BTs work
Relevance: ⭑⭑⭑⭑⭑
Credibility: ⭑⭑⭐⭐⭐

Abstract: None

Notes:

1. Very informative. Provides good examples and talks about all node types,
execution orders and so on.

2. Suggested BT lib: https://github.com/gaia-ucm/jbt

3. (p. 8-9) Interesting point regarding recursive use of BTs. Can create deep
behaviour from small trees run recursively.

https://github.com/gaia-ucm/jbt

128 Appendix D Literature Review Notes

Robertson2015 – Building BTs from Obs. in RTS

Title: Building Behavior Trees from Observations in Real-Time Strategy Games
Author: Glen Robertson and Ian Watson
Year: 2015
Type: Article
Pages: 1–6

Topic: BT reduction
Relevance: ⭑⭑⭑⭑⭐
Credibility: ⭑⭑⭑⭐⭐

Abstract: This paper presents a novel use of motif-finding techniques from computa-

tional biology to find recurring action sequences across many observations of expert

humans carrying out a complex task. Information about recurring action sequences

is used to produce a behavior tree without any additional domain information besides

a simple similarity metric – no action models or reward functions are provided. This

technique is applied to produce a behavior tree for strategic-level actions in the real-

time strategy game StarCraft. The behavior tree was able to represent and summarise

a large amount of information from the expert behavior examples much more com-

pactly. The method could still be improved by discovering reactive actions present in

the expert behavior and encoding these in the behavior tree.

Notes:

1. Never tested the resulting tree, so this may not work in practice.

2. (p. 4–5) Discusses BT reduction based on GLAM2 algorithm
a) Uses simulated annealing on sequence patterns
b) Originally used for DNA – used on strings
c) Note: Can be combined with GE? – see Perez2011 (1.9)

129

Colledanchise2015 – Learning of BTs for Autonomous

Agents

Title: Learning of Behavior Trees for Autonomous Agents
Author: Michele Colledanchise, Ramviyas Parasuraman, and Petter Ögren
Year: 2015
Type: Article
Pages: 1–7

Topic: BTs and genetic programming
Relevance: ⭑⭑⭑⭑⭑
Credibility: ⭑⭑⭑⭑⭐

Abstract: Definition of an accurate systemmodel forAutomated Planner (AP) is often

impractical, especially for real-world problems. Conversely, off-the-shelf planners

fail to scale up and are domain dependent. These drawbacks are inherited from

conventional transition systems such as Finite State Machines (FSMs) that describes

the action-plan execution generated by the AP. On the other hand, Behavior Trees

(BTs) represent a valid alternative to FSMs presenting many advantages in terms

of modularity, reactiveness, scalability and domain-independence. In this paper, we

propose a model-free AP framework using Genetic Programming (GP) to derive an

optimal BT for an autonomous agent to achieve a given goal in unknown (but fully

observable) environments. We illustrate the proposed framework using experiments

conducted with an open source benchmark Mario AI for automated generation of BTs

that can play the game character Mario to complete a certain level at various levels of

difficulty to include enemies and obstacles.

Notes:

1. Only focuses on evolution – no LfO.

2. Provides a detailed description and explanation of all the steps in the

algorithm– crossover,mutation, selection, diversity rankmethod, learning

algorithm, anti-bloat control.

3. Spendsmultiple pages explaining howBTs and genetic programmingworks.
Good, graphical explanation of BT.

4. Providesuseful graphical andmathematical explanations formutation, crossover
and ranking.

5. (p. 2) Mentions the use of GE in Perez2011, but uses EA instead due to
possibility of a “natural” representation.

6. (p. 4) Uses only unary replacement mutation. Lim2010 (1.2) provides an
additional mutation type (additive).

7. (p. 6) Discusses and describes methods of handling bloated BTs.

130 Appendix D Literature Review Notes

Zhang2016 – Integrated Learning Framework for BM

Title: TowardsAn IntegratedLearning Framework for BehaviorModeling ofAdap-
tive CGFs
Author: Qi Zhang, Quanjun Yin, Kai Xu
Year: 2016
Type: Article
Pages: 7–12

Topic: Generating BTs through LfO, combined with CBR in runtime
Relevance: ⭑⭑⭑⭑⭑
Credibility: ⭑⭑⭑⭑⭑

Abstract: Computer generated forces (CGFs) are autonomous or semi-autonomous

actors within military, simulation based, training and analyzing applications. Rapid,

realistic and adaptive behavior modeling for CGFs is imperative and challenging.

Traditional modeling approaches like rule-based script usually need time-consuming,

repetitive endeavor and result in rigid, predictable behavior performance. Recent de-

velopments introducing Machine Learning (ML) techniques, such as dynamic script

or neural network models, always present as black box systems, which are difficult to

understand and revise for subject matter experts (SMEs). To overcome these limita-

tions, we propose an integrated learning framework to facilitate adaptive CGF behavior

modeling. The framework represents domain knowledge explicitly as Behavior Trees

(BTs), and integrates learning BTs automatically from demonstration and Reinforce-

ment Learning (RL) node into BTs. Besides, a CBR-style planner is adopted to

retrieve executable behavior for diverse situations encountered at runtime. Through

aforementioned components, the framework can make full use of the advantages of

various learning approaches and knowledge sources to generate realistic and adaptive

behaviors for CGFs easily.

Notes:

1. Provides a recipe for creating BTs from examples by directly copying ac-

tions as sequences, and combining them by applying a set of rules to

structure them. Contrast to using GA to converge to equal resulting be-

haviour.

2. (p. 7) Discusses drawbacks of different ML generated behaviour (black box,
slow convergence, etc.)

3. (p. 7, 10) Use CBR to select behaviour tree during runtime.

4. References and discusses multiple relevant articles (most included here).

5. (p. 10) Provides requirements for automatically built BTs. Probably good to
enforce for both faster convergence and better performance.

6. (p. 10) Definition of a demonstration:

131

• Aset ofdemonstrationsof experts carryingout a single task, {E1, E2, ..., En}.
• A demonstration is a sequence of cases ordered by time,
Ei = (Ci1, Ci2, ..., Cim).

• A case is an observation and action pair, Cij = (Oij , Aij).
• An observation and an action are selected state information available

to agent, (eg. A key-value mapping).

7. (p. 10) Provides a detailed recipe for generating the BT from observation.

132 Appendix D Literature Review Notes

Ontanon2011 – Unified Framework for Obs. Learning

Title: Towards a Unified Framework for Learning from Observation
Author: Santiago Ontanon, Jose L. Montana and Avelino J. Gonzalez
Year: 2011
Type: Article
Pages: 1–6

Topic: Formalisation of Learning from Observation
Relevance: ⭑⭑⭑⭑⭑
Credibility: ⭑⭑⭑⭑⭐

Abstract: This paper discusses the recent trends inmachine learning towards learning

from observation (LfO). These reflect a growing interest in having computers learn as

humans do — by observing and thereafter imitating the performance of a task or an

action. We discuss the basic foundation of this field and the early research in this area.

We then proceed to characterize the types of tasks that can be learned from observation

and how to evaluate an agent created in this manner. The main contribution of this

paper is a joint framework that unifies all previous formalizations of LfO.

Notes:

1. (p. 1) LfO definition: “The agent shall adopt the behavior of the observed
entity solely from interpretation of data collected by means of observation.”

2. (p. 2) A behaviour trace is defined as the change of the set of variables the
actor can control over time [(t1, y1), ..., (tn, yn)]

3. (p. 2) “The evolution of the environment is captured into an input trace”.
[(t1, x1), ..., (tn, xn)]

4. (p. 2) A learning trace is a combination of a beavhiour trace and an input
trace. [(t1, x1, y1), ..., (tn, xn, yn)]

5. (p. 3) Evaluating the agent
• Evaluate the performance of the agent A performing task T. Regardless

of how the actions match the actors actions.
• Evaluate how the actions of the agent and actor compares
• Evaluate how the generated model compares with the model that cre-

ated the traces, this is not as relevant forus as the traceswill begenerated
by humans. “This evaluation method is specially interesting to assess
whether a given procedure can be recovered by learning from a set of
learning traces.”

6. (p. 3) Key factors that determine the complexity of an LfO task
• Generalisation.
• Planning.

133

• Known environment. If the learner does not have a model of the
environment then it might have to learn this model at some point.

7. (p. 3) Levels of difficulty
• Strict imitation
• Reactive skills. Includes the above and generalisation
• Tactical behaviour in known environments. Includes the above and

planning
• Tactical behaviour in unknown environments. Includes generalisation,

may include planning and has an unknown environment.

8. (p. 4 – 6) The article delves into detail about its statistical models for the
solving the problems. It also has some examples for each of the difficulty
levels. This may be mostly relevant as an argument to why we should not
use GP or any other AI method, as we can achieve a better estimate using
these statistical models.

134 Appendix D Literature Review Notes

Stein2011 – Human-Like Through Observation and

Experience

Title: Building High-Performing Human-Like Tactical Agents Through Observa-
tion and Experience
Author: Gary Stein, Avelino J. Gonzalez
Year: 2011
Type: Article
Pages: 792–804

Topic: Combining observational and experiential learning
Relevance: ⭑⭑⭑⭑⭐
Credibility: ⭑⭑⭑⭑⭑

Abstract: This paper describes a two-phase approach for automating the agent-

building process when the agent is to perform tactical tasks. The research is inspired

by how humans learn—first by observation of a teacher’s performance and then by

practicing the performance themselves. The objectives of this approach are to produce

a high-performing agent that 1) approaches or exceeds the proficiency of a human and

2) does so in a human-like manner. We accomplish these objectives by combining

observational learning with experiential learning. These processes are executed se-

quentially, with the former creating a competent but somewhat limited human-like

model from scratch, and the latter improving its performance without significantly

eroding its human-like qualities. The process is described in detail, and test results

confirming our hypothesis are described.

Notes:

1. Presents arguments for how the method is equal to human learning

2. (p. 2) “In observational learning, the objective is to be similar to the human
movements, whereas in experiential learning, the objective is to be as high
performing as possible.”

3. (p. 8) The agent basedonViolet outperformed the agent trained fromOrange,
although Orange outperformed Violet. The researchers propose that this
happens because the agents based on Violet is able to learn how to escape
from bad situations whereas from Orange, a good trainer, they are unable to
learn this.

4. (p. 9) The researchers also try to find out how human like the agents are and
point out that there is a difference between the actions taken and the output
seen on the screen. For example in the car domain, the agent would move
the steering-wheel back and forth (not affecting the movement of the car) but
it is unnatural for humans.

5. (p. 10–11) The observational and experiential agents improved on the agents

135

that were only observational. And improved on the experiential agent or
had the same score, while also being more human like.

6. Some human like traits were lost when using both observational and experi-
ential methods compared to only observational

136 Appendix D Literature Review Notes

Perez2011 – Evolving BTs [...] Using Grammatical

Evolution

Title: Evolving Behaviour Trees for the Mario AI Competition Using Grammatical
Evolution
Author: Diego Perez et al.
Year: 2011
Type: Article
Pages: 1–11

Topic: Evolving BTs with grammatical evolution (GE)
Relevance: ⭑⭑⭑⭑⭐
Credibility: ⭑⭑⭑⭑⭑

Abstract: This paper investigates the applicability of Genetic Programming type

systems to dynamic game environments. Grammatical Evolution was used to evolve

Behaviour Trees, in order to create controllers for the Mario AI Benchmark. The

results obtained reinforce the applicability of evolutionary programming systems to

the development of artificial intelligence in games, and in dynamic systems in general,

illustrating their viability as an alternative to more standard AI techniques.

Notes:

1. Intro to Grammatical Evolution (GE):
https://cran.r-project.org/web/packages/gramEvol/vignettes/ge-intro.
pdf

2. (p. 8) The researchers determined that adding a default sequence that would
always be executed if no other sequences were executed was crucial. If this
was not present, most agents would end up not moving the character.

3. (p. 12) “These results obtained strengthen the idea that GP systems are
serious alternatives to more traditional AI algorithms, either on their own or
combined into hybrid systems.”

https://cran.r-project.org/web/packages/gramEvol/vignettes/ge-intro.pdf
https://cran.r-project.org/web/packages/gramEvol/vignettes/ge-intro.pdf

137

Hou2015 – Modeling CGF Behaviour [...] Req. and

Future Dir.

Title: Modeling CGF Behavior with Machine Learning Techniques: Requirements
and Future Directions
Author: Ming Hou et al.
Year: 2015
Type: Article
Pages: 2 – 12

Topic: Requirements and future directions for using machine learning in CGF
behaviour
Relevance: ⭑⭑⭑⭑⭐
Credibility: ⭑⭑⭑⭑⭑

Abstract: Commercial/Military-Off-The-Shelf (COTS/MOTS) Computer Generated

Forces (CGF) packages are widely used in modelling and simulation for training pur-

poses. Conventional CGF packages often include artificial intelligence (AI) interfaces,

with which the end user define CGF behaviors. We believe machine learning (ML)

techniques can be beneficial to the behavior modelling process, yet such techniques

seem to be underused and perhaps underappreciated. This paper aims at bridging the

gap between users in academia and the military/industry at a high level when it comes

to ML and AI. Also, specific user requirements and how they can be addressed by ML

techniques are highlighted with the focus on the added ML value to CGF packages.

The paper is based on the work of the NATO Research Task Group IST-121 RTG-060

‘Machine Learning Techniques for Autonomous Computer Generated Entities’.

Notes:

1. (p. 7) “Moreover, development of CGFs often remains a painstaking devel-
opment of a set of rules (for example ‘if-then rules’) that need to be derived
for each specific problem or situation to be resolved, based on the manual
elicitation of operational expertise.”

2. (p. 7) ML might lead to more desirable behaviour, which in turn might
lead to more autonomous CGFs which means less personnel is required for
preparing and planning an operation.

3. (p. 8) “While ML techniques offer many benefits, they rely on consistent and
accurate data to learn from, and one is not guaranteed sensible or even safe
behavior.”

4. (p. 8) The researchers defined some computational and functional require-
ments in regards to using ML.

5. (p. 8) Computational requirements

138 Appendix D Literature Review Notes

a) (p. 8) Speed. Behavior generation should be fast, as it is (possibly) done
live

b) (p. 8) Effectiveness. Generated behavior should be effective, evenwhile
the system is still learning.

c) (p. 8) Robustness. Generated behavior has to be able to cope with
randomness and unexpected events.

d) (p. 8) Efficiency. Generated behavior should quickly be optimized
based on few interaction moments with the human participant.

6. (p. 8) Functional requirements
a) (p. 8) Clarity. Generated behavior should be easily interpretable by

human operators.
b) (p. 8) Variety. A variety of behavior should be generated, as repeated

behavior can be uninteresting or even suspicious.
c) (p. 8) Consistency. The number of interaction moments needed to

generate or adapt behavior should have low variance and should be
independent from the behavior of the human participant.

d) (p. 8) Scalability. Generated behavior should be scalable to the skills of
the human participant.

7. (p. 10) The researchers suggest an architecture that follows two principles
a) (p. 10) “Decoupling learning CGF models from the simulation appli-

cation or from the scenario management application,”
b) Enabling the distribution of such models at different client-CGFs.

139

Dey2013 – Enhancing BTs using Q-Learning

Title: QL-BT: Enhancing Behaviour Tree Design and Implementation with Q-
Learning
Author: Rahul Dey, Chris Child
Year: 2013
Type: Article
Pages: 1–8

Topic: Enhancing BTs with Q-learning
Relevance: ⭑⭑⭑⭑⭑
Credibility: ⭑⭑⭑⭑⭐

Abstract: Artificial intelligence has become an increasingly important aspect of com-

puter game technology, as designers attempt to deliver engaging experiences for players

by creating characters with behavioural realism to match advances in graphics and

physics. Recently, behaviour trees have come to the forefront of games AI technology,

providing amore intuitive approach than previous techniques such as hierarchical state

machines, which often required complex data structures producing poorly structured

code when scaled up. The design and creation of behaviour trees, however, requires

experience and effort. This research introduces Q-learning behaviour trees (QL-BT),

a method for the application of reinforcement learning to behaviour tree design. The

technique facilitates AI designers’ use of behaviour trees by assisting them in iden-

tifying the most appropriate moment to execute each branch of AI logic, as well as

providing an implementation that can be used to debug, analyse and optimize early

behaviour tree prototypes. Initial experiments demonstrate that behaviour trees pro-

duced by the QL-BT algorithm effectively integrate RL, automate tree design, and are

human-readable.

Notes:

1. Emphasises the lack of research on automated manipulation or improve-

ment of initial BTs.

2. References Lim2010 (1.2) and Perez2011 (1.9).

3. Q-learning requires discrete states – might be problematic in the simulation
environment.

4. Deepest sequence nodes are found in the BT, these are made into the actions
of the Q-learning.

5. Condition nodes are replaced with Q-condition nodes which is a "lookup
table containing all high-utility states"

6. (p. 5) Setup of the game world, agents and BT

7. Rewards were given form a predefined table with state-action pairs. e.g.

140 Appendix D Literature Review Notes

health low any action gave -10 reward.

8. A drawback of QL-BT is it’s reliance on correct Q-values.

9. Q learning grows exponential to the state-action space of the agents

10. A drawback of the algorithm is that the simulation time for a complex time
can be intractable.

141

Colledanchise2017 – Synthesis of

Correct-by-Construction BTs

Title: Synthesis of Correct-by-Construction Behavior Trees
Author: Michele Colledanchise, Richard M. Murray, and Petter Ogren
Year: 2017
Type: Article
Pages: 1–8

Topic: Synthesising correct-by-construction BTs using Linear Temporal Logic (LTL)
Relevance: ⭑⭑⭐⭐⭐
Credibility: ⭑⭑⭑⭑⭐

Abstract: In this paper we study the problem of synthesizing correct-by-construction

Behavior Trees (BTs) controlling agents in adversarial environments. The proposed

approach combines the modularity and reactivity of BTs with the formal guarantees

of Linear Temporal Logic (LTL) methods. Given a set of admissible environment

specifications, an agent model in form of a Finite Transition System and the desired

task in form of an LTL formula, we synthesize a BT in polynomial time, that is

guaranteed to correctly execute the desired task. To illustrate the approach, we present

three examples of increasing complexity.

Notes:

1. (p. 2) Explains BT and LTL (Linear Temporal Logic)

2. As you will have to define an LTL formula for the problem, this is probably
not a possibility for our project.

3. They are able to generate a BT in polynomial time that is guaranteed to solve
the assignment.

142 Appendix D Literature Review Notes

SMC2016 – Learning Objective Agent Behavior using

DDBM

Title: Learning Objective Agent Behavior using a Data-drivenModeling Approach
Author: Farzad Kamrani, Linus J. Luotsinen, Rikke Amilde Løvlid
Year: 2016
Type: Article
Pages: 1–7

Topic: DDBM
Relevance: ⭑⭑⭑⭑⭑
Credibility: ⭑⭑⭑⭑⭑

Abstract: This paper presents a data-driven approach towards the modeling of agent

behaviors in a full-fledged, commercial off-the-shelf simulation milieu for tactical

military training. The modeling approach employs machine learning to identify

behavioral rules and patterns in data. Potential advantages of this approach are that it

may improve modeling efficiency and, perhaps more importantly, increase the realism

of the training simulator.

In this work, we present an architecture outlining the main components of the data-

driven behavior modeling approach. Using a prototype that implements the approach,

we conduct and present results from an experiment targeting the learning of coopera-

tive military movement tactics. It is shown that the prototype is capable of identifying

the rules of the tactics. Moreover, it is shown that the agents are able to generalize

such that the learned behavior can be applied in a new setting different from the one

observed in the training data.

Notes:

1. Example of using DDBM for bounding overwatch

2. Gives a good intro to the field of DDBM.

3. Defines observational, experiential and hybrid learning.

4. Discusses positives and negatives with experiential learnin (computational
creativity).

5. Describes and explains the structure and functionality of a BT.

6. Discusses the necessity and provides examples of data feature extraction.

7. Promising results.

143

SMC2016 – Evolved Creative Intelligence for CGF

Title: Evolved Creative Intelligence for Computer Generated Forces
Author: Farzad Kamrani, Linus J. Luotsinen, Rikke Amilde Løvlid
Year: 2016
Type: Article
Pages: 1–8

Topic: Evolving CGFS’s behaviour using GP (computational creativity)
Relevance: ⭑⭑⭑⭑⭑
Credibility: ⭑⭑⭑⭑⭑

Abstract: This paper provides an example of using genetic programming for engen-

dering computational creativity in computer generated forces, i.e. simulated entities

used to represent own, opponent and neutral forces in military training or decision

support applications. We envision that applying computational creativity in the de-

velopment of computer generated forces may not only reduce development costs but

also offer more interesting and challenging training environments.

In this work we provide experimental results to strengthen our arguments using a

predator/prey game. We show that predator behavior created by a computer, using

genetic programming, surpasses predator behavior manually programmed by humans

and argue that the sparse automatically generated code is unlikely to be generated

by a human and therefore can be considered as a good example of computational

creativity. Although the experiments are not conducted in a real-world training

simulator they provide valuable insight that exemplifies the opportunities and the

challenges of computational creativity applied to computer generated forces.

Notes:

1. Does not mention observational learning

2. (p. 1) Explains the purpose (with source) for simulations of military scenar-
ios.

3. (p. 1) Reasons for why computational creativity is useful in simulations.

4. Introduces genetic programming (GP), and explains the program represen-
tation, variables and fitness functions in detail.

5. Uses "Hunting Game" toy problem for comparison

6. Compares human-made and computer-generated behaviour
-> computer-generated performs better

7. (p. 7) Discusses challenges with applying this technique in real-time, com-
plex environments such as VBS3:

a) Real-time simulation – actions and fitness calcuation is done in real-

144 Appendix D Literature Review Notes

time
b) Fitness function –Difficult in complex environments such as VBS3 (This

can be solved with Pareto-front?)
c) Complexity – Larger search space due to environment complexity

(physics, sensors, available actions, etc.)

8. (p. 8) Argues for the benefits of successfully applying computational creativ-
ity in complex military simulations.

145

MSG2015 – DDBM for CGF

Title: Data-Driven Behavior Modeling for Computer Generated Forces
Author: Linus J. Luotsinen, Rikke Amilde Løvlid
Year: 2015
Type: Article
Pages: 1–14

Topic: DDBM (ANN and DT)
Relevance: ⭑⭑⭑⭑⭐
Credibility: ⭑⭑⭑⭑⭑

Abstract: Computer generated forces (CGFs) are autonomous or semi-autonomous

actors within military, simulation based, training and decision support applications.

The CGF is often used to replace human role-players in military exercises to, ulti-

mately, improve training efficiency. The modeling and development of CGFs is a

complex, time-consuming and expensive endeavor where military domain expertise

and doctrinal knowledge are interpreted and programmed into the CGF by hand. Fur-

thermore, CGFs often represent human actors and behaviors (pilots, soldiers, manned

systems, etc.) making it an even more challenging task.

In recent years the Artificial Intelligence (AI) research community achieved some

remarkable results where Intelligent Agents (IA) successfully defeated human cham-

pions in games such as chess and Jeopardy. AI researchers have demonstrated that

Machine Learning (ML) algorithms can be used to learn IA behaviors from recorded

observations such as log-files, GPS coordinate traces and, more recently, pixels from

images and video.

The ability of the machine learning approach to learn the ”behavioral rules” of the

CGFs, which we from now on will refer to as Data-Driven Behavior Modeling

(DDBM), has many potential advantages compared to the traditional CGF model-

ing approach where the ”behavioral rules” are manually handcrafted using subject

matter experts and doctrines. Using DDBM the modeling efficiency with respect to

cost and time may improve, in particular, when modeling complex CGFs designed

to mimic human actors and behaviors within complex environments. The DDBM

approach may also improve behavior realism and objectiveness resulting in better and

more realistic training and decision support tools.

In this work we introduce the concept of DDBM including its main components in the

context of CGF behaviormodeling. We also provide preliminary results of experiments

where our DDBM-prototype is used to generate behaviors using both observational

and experiential learning strategies.

Notes:

1. (p. 2) Investigates:

146 Appendix D Literature Review Notes

a) Is DDBM more efficient than traditional manual behaviour program-
ming? – N/A

b) Can DDBM be used to create behaviors that are too complex to model
using the traditional modeling approach? – N/A

c) Can DDBM be used to create objective behavior models that imitates
the behavior of its real-world counterpart? – Yes

2. Identified challenges:
a) Data problems such as insufficient, incomplete and noisy data.
b) Verification and validation problems related to black-box representa-

tions such as neural networks that are difficult to visualize and analyze
by humans experts.

c) Real-time simulation problems caused by advanced feature extraction
functions (e.g. terrain analysis, route planning).

d) The need for intuitive and easy-to-use DDBM authoring tools capable
of visualizing, editing and processing datasets acquired synthetically
or from military exercises.

3. (p. 4) Good overview figure of DDBM.

4. Emphasises lack of software targets data-acquisition, visualisation and pre-
processing.

5. Uses ANN and decision trees.

6. Successful observational learning, even with small datasets (passing experi-
ment).

7. Worse results than with SMC2016 – Evolved Creative Intelligence for CGF

(Predator-sheep experiment)

147

MSG2015 – Sim.-supported Wargaming for Analysis of

Plans

Title: Simulation-supported Wargaming for Analysis of Plans
Author: Solveig Bruvoll, Jo E. Hannay, Guro K. Svendsen, Martin L. Asprusten,
Kjell Magne Fauske, Vegard B. Kvernelv, Rikke A. Løvlid, Jens Inge Hyndøy
Year: 2015
Type: Article
Pages: 1–17

Topic: Increase quality of plans and planning time (SWAP)
Relevance: ⭑⭐⭐⭐⭐
Credibility: ⭑⭑⭑⭑⭑

Abstract: Wargaming is used in the military decision making process to visualize the

execution of a preliminary plan or course of action in order to analyze and discover

weaknesses and possibilities. Thewargaming is traditionally donemanually on a paper

map, and the course of events is determined based on the experience and assumptions

of the officers conducting the wargame. This paper describes ongoing research in

Norway on the development of a demonstrator for Simulation-supported Wargaming

for Analysis of Plans – SWAP. The focus is particularly on the synchronization of

cooperating and supporting units, aiming to enable the planning group to more easily

distribute supporting units to its subordinates when the support is most needed. This

tool is intended to integrate simulation-supported wargaming in the planning process

and thereby increase the quality of plans and decrease the planning time. SWAP uses

a computer generated force federated with an agent-based simulation of C2 and combat

management for simulation of a plan. It takes as input elements of a brigade plan from

the Norwegian Command and Control Information System (C2IS) (NORCCIS). A

web-based tool has been developed to support the officers in creating a synchronization

matrix and to review the results of the simulation. The user can follow the simulated

execution of the plan in the C2IS and receive information, such as fuel and ammunition

consumption and casualties on both sides. C2 to Simulation (C2SIM) standards and

a service-based approach is used to promote interoperability, while the simulation

comprises a time-managed High Level Architecture (HLA) federation.

Notes:

1. (p. 1) Introduction, how a plan is made

2. (p. 3-5) Explains the SWAP program

3. (p. 5-10) Development of SWAP and Architechture of SWAP

4. (p. 12) Route planning service, probably the only relevant thing for our
system as talked about using it to calculate routes that we could use in our
system.

148 Appendix D Literature Review Notes

Yao2011 – The Behavior Modeling of CGF based on

ANN

Title: The Behavior Modeling of Computer Generated Warship Forces System
Based on Neural Network
Author: Nan Yao, Jianyun Wang and Yaoxing Shang
Year: 2011
Type: Article
Pages: 1–6

Topic: Intelligent decision-making for surface warships
Relevance: ⭑⭑⭑⭐⭐
Credibility: ⭑⭑⭑⭐⭐

Abstract: This paper focuses on an intelligent decisionmaking model of surface

warship modeling in Computer Generated Forces (CGF) System. Different kinds of

AI technologies were used to found the decision-making model, enable the surface

warship CGF system to select battle region, layout path, identify targets, estimate

threat and control firing. The model was validated through simulating with other

CGF systems. Behavior model can make the Computer Generated Forces system more

intelligent and actual.

Notes:

1. Battle region selection employs maximum likelihood and fuzzy inference

2. The path planning is based on ordered state-space searching.

3. Used shallow ANN to determine the identification of the target. Was also
based on some simple rules based on the velocity of objects and such

4. Used simple Perceptron network to determine the threat of the target.

5. Used simple rules to determine if the warship should file at the target

149

Floyd2011 – A CBR Framework for Developing Agents

Using LfO

Title: ACase-Based Reasoning Framework for Developing Agents Using Learning
by Observation
Author: Michael W. Floyd and Babak Esfandiarin
Year: 2011
Type: Article
Pages: 1–8

Topic: Learning from Observation with a case base
Relevance: ⭑⭑⭑⭐⭐
Credibility: ⭑⭑⭑⭑⭐

Abstract: Most realistic environments are complex, partially observable and impose

real-time constraints on agents operating within them. This paper describes a frame-

work that allows agents to learn by observation in such environments. When learning

by observation, agents observe an expert performing a task and learn to perform the

same task based on those observations. Our framework aims to allow agents to learn

in a variety of domains (physical or virtual) regardless of the behaviour or goals of

the observed expert. To achieve this we ensure that there is a clear separation between

the central reasoning system and any domain-specific information. We present case

studies in the domains of obstacle avoidance, robotic arm control, simulated soccer and

Tetris.

Notes:

1. No information about themeaning of what the inputs actuallymean, i.e. that
the touch sensor indicates that the robot is in contact with an obstacle.

2. No need to define the goals of the expert user or add non-observable features
related to the goals that the expert user may have.

150 Appendix D Literature Review Notes

Fujimoto1998 – Time Management in HLA

Title: Time Management in the High Level Architecture
Author: Richard M. Fujimoto
Year: 1998
Type: Article
Pages: 1–21

Topic: Time management in HLA
Relevance: ⭑⭑⭑⭑⭐
Credibility: ⭑⭑⭑⭑⭐

Abstract:Time management is required in simulations to ensure temporal aspects of

the system under investigation are correctly reproduced by the simulation model. This

paper describes the time management services that have been defined in the High Level

Architecture. The need for time management services is discussed, as well as design

rationales that lead to the current definition of the HLA time management services.

These services are described, highlighting information thatmust flow between federates

and the Runtime Infrastructure (RTI) software in order to efficiently implement time

management algorithms

Notes:

1. Physical time: Time of the simulation, e.g. Pearl Harbor midnight to 06:00
December 7 1941

2. Simulation time: Simulation engine’s representation of time

3. Wallclock time: When the simulation was executed, e.g. 12:00 to 15:00 if the
simulation takes 3 hours to complete and was started at 12:00

4. If realtime simulation then the simulation time pace and the wallclock time
pace are matched.

5. (p. 6) Different methods to advance simulation time: event driven, time
stepped, parallel discrete event simulation, wallclock time driven.

6. (p. 14 - 15) Time constrained and time regulating federates, lookahead

7. (p. 16) Timestamp guarantees

151

Weber2012 – ABL versus Behaviour Trees

Title: ABL versus Behaviour Trees
Author: Ben Weber
Year: 2012
Type: Online (blog)
Pages: 1–3

Topic: ABL and BTs
Relevance: ⭑⭐⭐⭐⭐
Credibility: ⭑⭐⭐⭐⭐

Abstract: While preparing for the 2011 Paris Game AI conference, Alex Champan-

dard asked me if there are any differences between ABL and behavior trees (BTs) at

the planning level, which motivated me to dig a bit deeper into this topic. The goal

of this post is to distinguish differences between behavior trees and ABL. While I am

contrasting ABL with the Behavior Tree architecture described in Alex’s chapter in

AI Game Programming Wisdom 4, I am aware that there are several flavors of BT

implementations so feel free to add feedback or corrections based on any BT variant.

Notes:

1. Talks about the difference betweenABL and BT. ABL is a behaviour language
written in Java, whereas BT is a data structure. A result of this is that ABL
cannot be modified during runtime (it needs to compile again).

2. “ABL runs asynchronously from the main game update, while BT are up-
dated during an AI tick.”

3. Another difference is when the action is executed, in ABL an action is exe-
cuted when it is chosen. In BT an action is executed on the discretion of a
scheduler.

4. There is also a difference in semantics between the two, the article goes on to
explain the different nodes of ABL.

	Introduction
	Background and Motivation
	Problem Outline
	Hypothesis and Research Questions
	Research Approach
	Research Contributions
	Thesis Structure

	Background
	Data-Driven Behaviour Modelling
	Behaviour Trees
	Genetic Algorithms and Genetic Programming
	High Level Architecture
	Time Management

	MÄK Simulation Systems
	VR-Forces
	VR-Engage

	State of the Art
	Observational Learning with Toy-Problems
	Behaviour Evaluation in Complex Simulations
	Observational Learning in Complex Simulations
	Evolving Behaviour Trees
	Bloat-Control with Genetic Programming and Behaviour Trees
	Summary

	Methods
	System Overview
	Recording Data from Example Behaviour
	Training Behaviour Trees

	Simulation Environment
	Data and Feature Extraction
	Behaviour Tree Representation
	Evolving Behaviour Trees
	NSGA-II
	Genetic Operators
	Behaviour Tree Evaluation and Bloat Control

	Summary

	Implementation
	System Interface
	Console Logging Output
	Training Progress Window

	System Components
	Simulation Package
	Unit Package
	Data Package
	Training Package
	Behaviour Tree Package
	Visualisation Package
	Experiments Package

	Setting up an Experiment
	System Processes
	Sequence Diagram Explanation
	Initiation Process
	Simulation Process
	Recording Process
	Training Process

	Settings
	System Settings
	Simulation Settings
	Behaviour Tree Operations Settings
	Training Settings

	System Logging
	Libraries Overview
	Summary

	Experiments and Results
	Experimental Plan
	Experiment 1
	Data Extraction and Processing
	Behaviour Tree Nodes
	Scenarios
	Fitness Evaluation
	Settings

	Experiment 2
	Results
	Experiment 1
	Experiment 2

	Evaluation
	Evaluation of the Experiments
	Evaluation of Experiment 1
	Evaluation of Experiment 2

	Evaluation of the System
	Research Questions Revisited
	Evaluation of the Contributions

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Glossary
	Appendices
	CogSIMA2018 Article and Poster
	Single-Page Figure Versions
	VR-Forces Settings
	Literature Review Notes

