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Abstract. There is a growing interest in the phase-field approach to nu-
merically handle the interface dynamics in multiphase flow phenomena
because of its accuracy. The numerical solution of phase-field models
has difficulties in dealing with non-self-adjoint operators and the res-
olution of high gradients within thin interface regions. We present an
h-adaptive mesh refinement technique for the least-squares spectral el-
ement method for the phase-field models. C1 Hermite polynomials are
used to give global differentiability in the approximated solution, and
a space-time coupled formulation and the element-by-element technique
are implemented. Two benchmark problems are presented in order to
compare two refinement criteria based on the gradient of the solution
and the local residual.
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1 Introduction

A phase-field model can avoid the problems of interface smearing and of the
inaccurate computation of surface tension, which arise in the interface tracking
methods such as volume-of-fluids or level-set method. The phase-field models
have been widely used to simulate the flow of two or more fluids [1; 2]. However,
the phase-field method yields non-self-adjoint operators and the solution contains
high gradients within thin interfacial regions. In this study, the Cahn-Hilliard
equation is selected as a representative of the phase-field models.

The least-squares formulation with C1 Hermite approximation is used in this
study as a main setup. The advantage of this method in the phase-field methods
is (1) it always provides a symmetric positive definite system, (2) the LBB con-
dition is circumvented, and (3) the higher order global differentiability improves
the approximation accuracy of the solution within the interface. Additionally, in
our solver a space-time coupled formulation is used, and the element-by-element
technique is implemented.



We also present a high-order h-adaptive mesh refinement technique. The
adaptive mesh makes our solver more efficiently by assigning finer elements
within narrow interfaces and coarser elements in pure phases. Dealing with dras-
tic topological changes requires tracking the interface movements. We compare
the performance of two refinement criteria based on the solution gradient and
the local residual.

2 The Mathematical Formulation

2.1 The Cahn-Hilliard Equation

We define the space-time set Ω := Ωx × (0, T ), T > 0, for a two-dimensional
open domain Ωx ∈ R

2. The boundary of Ω is denoted as Γ := ∂Ωx×(0, T ). For a
flow of two immiscible fluids, the dimensionless Cahn-Hilliard equation is stated
as follows: find the unknowns C = C(x, t) : Ω → (0, 1), ω = ω(x, t) : Ω → R

such that

∂C

∂t
− 1

Pe
∇2ω = 0 in Ω, (1)

ω = C3 − 1.5C2 + 0.5C − Cn2∇2C in Ω, (2)

C(x, 0) = C0(x) in Ωx, (3)

∇C · n = 0, ∇ω · n = 0 on Γ. (4)

Here C is the concentration, and w is the chemical potential. Peculet number
Pe = L0U0/M and Cahn number Cn = ε/L0 are used, where U0 and L0 are
the reference velocity and length, M is the mobility, and ε is the interfacial
parameter. The derivation and the physical meaning of the Cahn-Hilliard are
explained in our previous study [3] in more detail.

2.2 Least-Squares Method

We use the Newton linearization method to handle with nonlinear terms.
We use a subscript l to denote the terms from previous linearization step. For a
two-dimensional spatial domain, the Cahn-Hilliard equation with the unknowns
uT = [C ω] can be represented as

∂

∂t
C − 1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
ω = 0, (5)

[
3C2

l − 3Cl + 0.5− Cn2

(
∂2

∂x2
+

∂2

∂y2

)]
C − ω = 2C3

l − 1.5C2
l . (6)



The final system with the boundary conditions is expressed in general as

Lu = G in Ω, (7)

Bu = uΓ on Γ, (8)

where L represents the partial differential operator, G is the corresponding source
term, B is the boundary conditions operator, and uΓ is the specified value on
the boundaries. In this work, the boundary conditions are incorporated into the
least-squares functional so that they are also a part of the minimization problem,
namely

J (u) =
1

2
‖Lu − G‖2

0,Ω +
1

2
‖Bu − uΓ ‖2

0,Γ , (9)

or equivalently,
Find u ∈ X(Ω) such that

A(u, v) = F(v) ∀v ∈ X(Ω), (10)

with

A(u, v) = (Lu,Lv)0,Ω + (Bu,Bv)0,Γ , (11)

F(v) = (G,Lv)0,Ω + (uΓ ,Bv)0,Γ , (12)

where A : X×X → R is a symmetric, positive definite bilinear form, F : X → R

a continuous linear form, and X(Ω) is a solution space.

2.3 Spectral Element Discretization

The computational domain Ω is divided into Ne subdomains Ωe such that

Ω =

Ne∑

e=1

Ωe, Ωi ∩ Ωj = ∅, i 6= j. (13)

The discretization is based on a space-time coupled formulation. Space-time
strips are consecutively aligned, and a strip is composed of only one element
in time, Ωe = Ωx

e × Ωt
e = (xe, xe+1) × (tn, tn+1) with the time step size ∆t =

tn+1 − tn. Each subdomain is mapped onto the unit cube (ξ, σ, η) ∈ [−1, 1]3 for
a two-dimensional spatial domain, by an invertible mapping.

The transition region in the phase-field model is preferred to be close to a
sharp interface, with the consequent impact on the numerical solution and need
for higher spatial resolution. In this article, the local solution in each element
Ωe, uh

e , is approximated by C1 p-version hierarchical approximation functions,
so-called Hermite polynomials. A basis function for a two-dimensional space
and time domain can be written as the tensor product of one-dimensional basis
functions with same order, i.e., Φm(ξ, ς, η) = φi(ξ) ⊗ φj(ς) ⊗ φk(η), with m =



i + j(p + 1) + k(p + 1)2 where 0 ≤ i, j, k ≤ p. Thus, the local approximation uh
e

is expanded in Φ continuous basis functions as

uh
e =

(p+1)3∑

m=1

Um
e Φm

e . (14)

The same basis functions and construction approach have been used in our
previous study [4]. For more details we also refer to [5] and [6].

Together with integration by the Gaussian quadrature based on the GLL-
roots, the discretization of the least-squares formulation (10) can be expressed
on an element-level as

LT
e WeLeUe = LT

e WeFe, (15)

where L is a matrix whose components are the evaluation of L with the Hermite
polynomials at the quadrature points, and F is a vector of the evaluation of
G. W is a diagonal matrix of the quadrature weights, and in this article, the
number of quadrature points Q are fixed at the same number of polynomials of
one dimensional basis function as Q = p + 1.

The discretized algebraic equation is solved element-by-element with the con-
jugated gradient method with the Jacobi preconditioner. Matlab code and Mat-
lab MPI developed at our group are used. The local solutions in each elements
uh

e , are glued to construct the global approximation of the solution uh, i.e.,

uh =

Ne⋃

e=1

uh
e . (16)

3 Adaptive Mesh Refinement

3.1 C
1 continuous h-refinement

When the refinement level of neighboring elements is different, among the
nodal basis of the coarser element, ones which have non-zero values on the
element interface are shared with the finer element. To ensure the global C1

continuity over a non-conformal element interface, we introduce two L2-norm
least-squares functionals to be minimized for the value of solution, J r

0 , and for
the derivative of solution, J r

1 , respectively, over the inter-element interface γ
between the finer element F and the coarser element C:

J r
0

(
uF

b ; uC
b

)
=

∫

γ

(
uF

b − uC
b

)2
ds, (17)

J r
1

(
uF

b ; uC
b

)
=

∫

γ

(
∇uF

b · n −∇uC
b · n

)2
ds, (18)

where ub is the solution on the inter-element interface. With the expansion
coefficients related to the solution value on the inter-element interface Ub,0, the



minimization statement of J r
0 can be written in an algebraic form as

∇J r
0 = 0; UF

b,0 = H−1
F HCUC

b,0 ≡ Z̃0U
C
b,0, (19)

where H is a matrix of Hermite polynomials at the quadrature points, and Z̃0

is the projection matrix for the solution value. Similarly, with the expansion
coefficients related to the derivative of solution on the inter-element interface
Ub,1, the minimization statement of J r

1 is expressed as

∇J r
1 = 0; UF

b,1 = D−1
F DCUC

b,1 ≡ Z̃1U
C
b,1, (20)

with D a matrix of derivative of Hermite polynomials at the quadrature points,
and Z̃1 is the projection matrix for the derivative of solution.

With the relations (19) and (20), we can express all unknowns of finer element
UF in terms of UF ′

composed of the unknowns of coarser element on the boarder
and inner element unknowns UF

i only:

UF =




UF

b,0

UF
b,1

UF
i



 =




Z̃0 0 0

0 Z̃1 0

0 0 I








UC

b,0

UC
b,1

UF
i



 = ZUF ′

, (21)

where Z is the total projection matrix.
These constraints are implemented into the least-squares method by replacing

U as U
′

using Equation (21). The formulation at an element-level becomes

ZT
e LT

e WeLeZeU
′

e = ZT
e LT

e WeFe. (22)

ZT
e is multiplied to maintain the symmetricity of the least-squares system.

3.2 Refinement Strategy

For a transient problem, the decision should be made on the elements in
the original unrefined grid to be refined or retrieved at each time step. During
the refinement, an element is split into four daughter elements. An element
with the refinement level k can be made by k-th mesh refinements from the
reference element. In this study, the maximum refinement level is set to 2, and
we confine the irregularity up to 1-level, i.e., the difference in the refinement
levels of neighboring elements is no larger than 1. In addition to the advantage
of implementation, the 1-level irregularity can improve the accuracy in describing
the interface [7].

Regarding the decision on refinement, we consider two refinement criteria.
With the first criterion (gradient), the elements where the solution gradient
exceed a certain tolerance are refined, and it requires that

‖∇C‖2
0,Ωe

≥ tolg , (23)

with tolg the discretization tolerance for the gradient. The gradient criterion
does not use any error estimator but it intensively targets to the interface.



The second criterion (residual) is based on the local residual in each element,
and it is defined as

‖R‖2
0,Ωe

=

∫

Ωe

(
Luh − G

)2
dΩe. (24)

The conforming elements with top certain percent of local residual are refined.

4 Numerical Examples

4.1 Poisson problem

We first solve the Poisson problem with exact solution and compare two
refinement criteria. Consider the equation

∇2u =
(
4r2/σ4 − 4/σ2

)
exp(−r2/σ2), (25)

with the exact solution u = exp(−r2/σ2), where r2 = x2 + y2 and σ =
√

2/5.
The spatial domain is Ω = [−0.5, 0.5]2. In this example, tolg is set to 2.8, and

the percentage of refined elements with the residual criterion change by cases to
have similar number of degrees of freedom (Ndofs) with the gradient criterion.
Figure 1 shows the solution on the adaptive meshes by two refinement criteria
with Ne = 10 × 10 and p = 4. The hilltop area is refined into level 2 with the
residual criterion, but in level 1 with the gradient criterion.

Fig. 1. Solution of Poisson problem and adaptive mesh with Ne = 10× 10 and p = 4
generated by gradient criterion (left) and by residual criterion (right).

The estimated error, defined as ‖u − uex‖2
0,Ω, with respect to the Ndofs for

both refinement criteria is illustrated in Figure 2. The error exponentially decays
with increasing Ndofs for all expansion order cases. To compare the results from
two refinement criteria, we define the following index, called refinement efficiency



Ref , composed of ratios of the error and Ndofs from the conforming grid and
non-conforming grid, denoted as subscript c and n, respectively:

Ref =
‖uc − uc,ex‖2

0,Ω

‖un − un,ex‖2
0,Ω

× Ndofsc

Ndofsn

. (26)

The refinement efficiency is presented in Figure 3. We can conclude that the

Fig. 2. Error with respect to Ndofs with gradient (left) and residual (right) criteria.

efficiency is higher with the gradient criterion in lower Ndofs, while the residual
criterion is more efficient in higher Ndofs. With the gradient criterion the effi-
ciency decreases more monotonously with respect to the Ndofs. This conclusion
is also applicable to the solution from the phase-field method because of similar
contour of solution - having a plateau on the hilltop with steep hill.

Fig. 3. Refinement efficiency with respect to Ndofs with gradient (left) and residual
(right) criteria.



4.2 Benchmark Cross

The equilibrium state induced by the Cahn-Hilliard equation has the mini-
mum local free energy and surface tension energy [8]. A cross-shaped droplet is
initially located at the center of the domain [0, 0.8]2, filled with another phase.
The original unrefined grid in space is 102, and a single time-element of ∆t = 0.08
is used. Polynomials with order of p = 4 are used to approximate the solution.
The parameters used are M = 1, Re = 1, Ca = 1, P e = 100 and Cn = 0.01. The
tolerance in the gradient refinement criterion is set to 20, and for the residual re-
finement criterion 28% and 20% of elements in the initial coarse grid are refined,
which correspond to the numbers of refined elements in the gradient criterion at
the first and the last time step, respectively.

Among three cases, with the gradient criterion and with the residual cri-
terion of 28% and 20%, no significant difference in the concentration is found.
Figure 4 presents the evolution of the concentration and the local residuals of the
three cases on the refined grids. With the gradient criterion, the only elements
containing the interfaces are refined, so the distribution of the local residuals
is symmetric. On the other hand, with the residual criterion, the refinement
is performed rather assymetrically. Note that here the local residual from the
Navier-Stokes equation is negligible, of order under 10−6, compared with the one
from the Cahn-Hilliard equation over the entire domain. Figure 5 shows the total
residual and the Ndofs in time in log scale for the three cases. With the resid-
ual criterion of 28%, lower total residual can be achieved than the one with the
gradient criterion, but it requires more Ndofs. Compared with the result from
the residual criterion of 20%, the gradient criterion has a similar total residual
and Ndofs at the final phase but yields more stable result in time. The total
residual and Ndofs from the residual criterion have many fluctuation in time
due to assymetric refinement of grid.

5 Concluding Remarks

We presented an adaptive least-squares spectral element scheme for the Cahn-
Hilliard equation as a representative of the phase-field model. C1 Hermite poly-
nomials were used as basis functions to provide the global differentiability of so-
lution, and the corresponding refinement scheme was provided. Two refinement
criteria were considered, based on the solution gradient and the local residual.
Steady-state Poisson problem with manufactured solution and the Cahn-Hilliard
equation with a cross shaped initial solution were solved. Since the gradient cri-
terion targets only interface elements, it gives us more stable and predictable
error results. However, at the higher resolution case, the residual criteria be-
comes more efficient because the asymmetricity in refinement becomes subtle as
the number of degrees of freedom increases. Therefore, we recommend to use
the gradient criterion for the phase-field method, but it is worth considering the
residual criterion if the initial grid already has a larger number of degrees of
freedom.



Fig. 4. Evolution of concentration (1st row) and local residuals on refined grid with
gradient criterion (2nd row) and with residual criterion of 28% (3rd row) and of 20%
(4th row) at t = 0.02, 0.21 and 1.41.

Fig. 5. Total residual (solid line) and Ndofs (dotted line) in time with the gradient
criterion (black) and the residual criterion of 28% (blue) and of 20% (red) until t = 14.0.
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