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Abstract

The phase-field method has been successfully modeled the interface dynam-
ics in multiphase flow phenomena. However, there has been a great disjunction
in the interface thickness between in reality and in numerics due to the high
gradient of solutions within the interfacial region. By using finer mesh on the
interface and coarser mesh in the rest of computational domain, the phase-
field method can handle larger scale of problem with realistic length of inter-
face. In this work, a C1 continuous h-adaptive mesh refinement technique with
the least-squares spectral element method for the Navier-Stokes-Cahn-Hilliard
(NSCH) system and the isothermal Navier-Stokes-Korteweg (NSK) system is
presented. Hermite polynomials are used to give global differentiability in the
approximated solution, and a space-time coupled formulation and the element-
by-element technique are implemented. Two refinement strategies based on
the solution gradient and the local error estimators are suggested and they are
compared through two numerical examples.

Keywords: Adaptive mesh; Least-squares; Hermite polynoials; Cahn-Hilliard;
Korteweg; Phase-field

1. Introduction

The models in the phase-field method contain the convection-diffusion equa-
tions for the phase–field parameter. They can prohibit the necessity of tracking
the interface, and provide a thermodynamically consistent formulation for in-
terfacial surface tension from their own free energy functions [1, 2]. Among
the phase-field models, the Cahn-Hilliard equation [3] and the Korteweg type
equation [4] have been widely applied to a range of droplet dynamics [5], binary
polymer mixtures [6, 7] and dendritic growth [8]. The Cahn-Hilliard equation
can be coupled with the Navier-Stokes equation to take hydrodynamic effects
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into consideration, resulting in the Navier-Stokes-Cahn-Hilliard (NSCH) sys-
tem, so-called Model H [9]. Based on the van der Waals fluid model, Korteweg
[10] developed a model of the capillary stress tensor, and added the tensor into
the momentum equation, resulting the Navier-Stokes-Korteweg (NSK) system.

It is known that the thickness of the interface between immiscible liquids is
in the order of tens of nanometers [11]. However, there is a practical limitation
on the phase-field method to describe such thin interface. In the phase-field
method, the mesh is required to be sufficiently fine, since the order parameter
has a steep gradient within the interfacial region [12]. For instance, the Cahn-
Hilliard equation introduces the Cahn number, which is a ratio of the interface
thickness to the characteristic length of discretization. Typically 0.01 to 0.04 of
the Cahn number is used by controlling mesh size with respect to the interface
length [13]. Due to this limitation, most of numerical studies with the phase-
field method have been conducted on small-scale systems where the numerical
interface thickness is assumed to be of the same order of magnitude as the real
interface in the nature. Nevertheless, for larger problem where the droplet size
is much larger than the physical value of the interface thickness or for the flow
with the temperature far from the critical temperature, there has been a great
disparity between the numerical interface thickness and the macroscopic scale,
since capturing the real interfacial thickness is not numerically acceptable.

Our solver based on the least-squares formulation with a spectral approxi-
mation has succeeded in solving several phase-field models [14, 15]. The least-
squares formulation gives the symmetric positiveness and circumvents the LBB
condition, and a higher order accuracy is provided at the narrow interfacial
region from the spectral methods [16]. The adaptive mesh enables the least-
squares spectral element method to deal with the phase-field models more effi-
ciently by assigning finer elements within narrow diffuse interfaces and coarser
elements in pure phases. More information on the least-squares finite element
schemes can be found in [17] and on the mathematical background of adaptive
algorithm in [18].

In the present work, we apply a high-order h-adaptive mesh refinement tech-
nique on the least-squares spectral element formulation. C1 Hermite tricu-
bic bases are used, and to provide C1 continuity between geometrically non-
conforming neighboring elements, the hanging-node constraints suggested by
Stogner et al. [19], but expressed in the least-squares manner by us, are used.
Two refinement criteria based on the gradient of phase parameter and the local
error estimators are used to flag which elements need to be refined or to be
coarsened. Simulation results are computed using both uniform high-resolution
meshes and adaptive meshes for comparison purposes. To the authors’ best
knowledge, our work is the first C1 continuous adaptive scheme onto the least–
squares method.

The rest of the present paper is organized as follows. Section 2 presents a
least-squares spectral element formulation of the NSCH and the isothermal NSK
system. In Section 3, the C1 continuous h-refinement technique adapted into
the least-squares scheme is presented. New data structures and the refinement
strategies for a transient problem can be found in Section 4. The results and
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discussion with the simulation of coalescence driven by two phase-field models
are in Section 5. We draw conclusion in Section 6.

2. The mathematical formulation

2.1. The governing equations

We define the space-time set Ω := Ωx × (0, T ), T > 0, for a two-dimensional
open domain Ωx ∈ R

2. The spatial boundary of Ω is denoted as Γ := ∂Ωx ×
(0, T ). For a flow of two immiscible, incompressible and viscous fluids, the
dimensionless NSCH system can be stated as follows: find the unknowns u =
u(x, t) : Ω → R

2, P = P (x, t) : Ω → R, C = C(x, t) : Ω → (0, 1) and
ω = ω(x, t) : Ω → R such that

∇ · u = 0 in Ω, (1)

∂u

∂t
+ u∇ · u + ∇P − 1

Re
∇ · (∇u + ∇u

T
) − 1

ReCa
ω∇C = 0 in Ω, (2)

∂C

∂t
+ u · ∇C − 1

Pe
∇2ω = 0 in Ω, (3)

ω = C3 − 1.5C2 + 0.5C − Cn2∇2C in Ω, (4)

u(x, 0) = u0(x), C(x, 0) = C0(x) in Ωx, (5)

u = 0, ∇C · n = 0, ∇ω · n = 0 on Γ. (6)

Here u is the velocity field, P the pressure, w the chemical potential, and M
the mobility.

For a compressible two-phase flow based on the van der Waals fluid model,
the dimensionless isothermal NSK system can be stated as follows: find the
unknowns ρ = ρ(x, t) : Ω → R, u = u(x, t) : Ω → R

2 and ϕ = ϕ(x, t) : Ω → R

such that

∂ρ

∂t
+ ∇ · (ρu) = 0 in Ω, (7)

ρ

(
∂u

∂t
+ u∇ · u

)
+

[
24

(3 − ρ)2
− 6ρ

]
∇ρ

− 1

Re
∇ ·

(
∇u + ∇u

T − 2

3
∇ · uI

)
− 1

We
ρ∇ϕ = 0

in Ω, (8)

∇2ρ − ϕ = 0 in Ω, (9)

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x) in Ωx, (10)

∇ρ · n = 0, u = 0 on Γ (11)
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where ρ is the density, and ϕ is an auxiliary variable to reduce the differential
order of system from third to second.

The dimensionless numbers used in (1)-(11) are Reynold number Re, Cap-
illary number Ca, Peculet number Pe, Cahn number Cn and Weber number
We, and they are formulated as:

Re =
ρ0U0L0

μ
, Ca =

μU0

σ
, P e =

L0U0

M
, Cn =

ε

L0
,

We =
L2

0U
2
0

Kρ0
=

ρ0U
2
0 L0

σ
,

(12)

where ρ0, U0, L0 are the reference density, velocity and length, μ the viscosity,
σ the surface tension, ε the interfacial parameter and K the capillary coefficient.
The derivation and the physical meaning of the NSCH system and the isothermal
NSK system are explained in our previous studies [14] and [15] in more detail.

2.2. Least-squares method

The system (1)-(6) can be viewed as the coupled Navier-Stokes and Cahn-
Hilliard equations, and in the decoupling of those two equations we use a re-
laxation method to assure convergence and to accelerate the iteration. And
the Newton linearization method is used to cope with nonlinear terms in the
governing equations. The terms from previous decoupling step are denoted as
subscript n, and the terms from the previous linearization step are denoted as
subscript l. For the Navier-Stokes system for a two-dimensional spatial domain,
the set of partial differential equation with the unknown uT

NS = [u v P ] can be
represented as

∂u

∂x
+

∂v

∂y
= 0, (13)

[(
∂

∂t
+ ul

∂

∂x
+ vl

∂

∂y
+

∂u

∂x

∣∣∣
l

)
− 1

Re

(
∂2

∂x2
+

∂2

∂y2

)]
u +

∂u

∂y

∣∣∣
l
v +

∂P

∂x

= ul

∂u

∂x

∣∣∣
l
+ vl

∂u

∂y

∣∣∣
l
+

1

ReCa
ωn

∂C

∂x

∣∣∣
l
,

(14)

∂v

∂x

∣∣∣
l
u +

[(
∂

∂t
+ ul

∂

∂x
+ vl

∂

∂y
+

∂v

∂y

∣∣∣
l

)
− 1

Re

(
∂2

∂x2
+

∂2

∂y2

)]
v +

∂P

∂y

=
∂v

∂x

∣∣∣
l
+ vl

∂v

∂y

∣∣∣
l
+

1

ReCa
ωn

∂C

∂y

∣∣∣
l
,

(15)

In the same manner, for the Cahn-Hilliard system for a two-dimensional spatial
domain, the set of partial differential equations with the unknowns uT

CH = [C ω]
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can be represented as[
∂

∂t
+ un

∂

∂x
+ vn

∂

∂y

]
C − M

Pe

(
∂2

∂x2
+

∂2

∂y2

)
ω = 0, (16)

[
3C2

l − 3Cl + 0.5 − Cn2

(
∂2

∂x2
+

∂2

∂y2

)]
C − ω = 2C3

l − 1.5C2
l . (17)

For the isothermal NSK system for a two-dimensional spatial domain, the
set of partial differential equation with the unknown uT

K = [ρ u v ϕ] can be
represented as[

∂

∂t
+ ul

∂

∂x
+ vl

∂

∂y
+

∂ul

∂x
+

∂vl

∂y

]
ρ +

[
ρl

∂

∂x
+

∂ρl

∂x

]
u

+

[
ρl

∂

∂y
+

∂ρl

∂y

]
v = ul

∂ρl

∂x
+ ρl

∂ul

∂x
+ vl

∂ρl

∂y
+ ρl

∂vl

∂y
,

(18)

[(
24

(3 − ρl)2
− 6ρl

)
∂

∂x
+

(
∂ul

∂t
+ ul

∂ul

∂x
+ vl

∂ul

∂y
− 1

We

∂ϕl

∂x

)]
ρ

+

[
ρl

(
∂

∂t
+ ul

∂

∂x
+ vl

∂

∂y

)
− 1

Re

(
4

3

∂2

∂x2
+

∂2

∂y2

)
+ ρl

∂ul

∂x

]
u

+

[
ρl

∂ul

∂y
− 1

3Re

∂2

∂x∂y

]
v − 1

We
ρl

∂ϕ

∂x

= ρl

∂ul

∂t
+ 2ρlul

∂ul

∂x
+ 2ρlvl

∂ul

∂y
− 1

We
ρl

∂ϕl

∂x
,

(19)

[(
24

(3 − ρl)2
− 6ρl

)
∂

∂y
+

(
∂vl

∂t
+ ul

∂vl

∂x
+ vl

∂vl

∂y
− 1

We

∂ϕl

∂y

)]
ρ

+

[
ρl

∂vl

∂x
− 1

3Re

∂2

∂x∂y

]
u +

[
ρl

(
∂

∂t
+ ul

∂

∂x
+ vl

∂

∂y

)

− 1

Re

(
∂2

∂x2
+

4

3

∂2

∂y2

)
+ ρl

∂vl

∂y

]
v − 1

We
ρl

∂ϕ

∂y

= ρl

∂vl

∂t
+ 2ρlul

∂vl

∂x
+ 2ρlvl

∂vl

∂y
− 1

We
ρl

∂ϕl

∂y
,

(20)

[
∂2

∂x2
+

∂2

∂y2

]
ρ − ϕ = 0. (21)

For both equation sets, the final system with the boundary conditions in-
cluded can be expressed in general as

Lu = G in Ω, (22)

Bu = uΓ on Γ, (23)
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where L represents the partial differential operator, G the corresponding source
term, B the boundary conditions operator, and uΓ the specified values on the
boundaries. In this work, the boundary conditions are incorporated into the
least-squares functional so that they are also a part of the minimization problem,
namely

J (u) =
1

2
‖Lu− G‖2

0,Ω +
1

2
‖Bu − uΓ‖2

0,Ω , (24)

or equivalently,
Find u ∈ X(Ω) such that

A(u, v) = F(v) ∀v ∈ X(Ω), (25)

with

A(u, v) = (Lu,Lv)0,Ω + (Bu,Bv)0,Γ, (26)

F(v) = (G,Lv)0,Ω + (uΓ,Bv)0,Γ, (27)

where A : X × X → R is a symmetric, positive definite bilinear form and
F : X → R a continuous linear form.

2.3. Spectral element discretization

The computational domain Ω is divided into Ne non-overlapping sub-domains
Ωe such that

Ω =

Ne∑
e=1

Ωe, Ωi ∩ Ωj = ∅, i 	= j. (28)

The discretization is based on a time-space coupled formulation with the time-
stepping procedure. The solution is approximated on consecutively aligned
space-time strips domains, and a strip is composed of only one element in time,
Ωe = Ωx

e × Ωt
e = (xe, xe+1) × (tn, tn+1) with the time step size Δt = tn+1 − tn.

Each sub-domain is mapped onto the unit cube (ξ, σ, η) ∈ [−1, 1]3 for a two-
dimensional spatial domain and one dimensional time domain, by an invertible
mapping. A basis function for a two-dimensional space and time domain can be
written as the tensor product of one-dimensional basis functions with the same
order, i.e., Φm

e (ξ, ς, η) = φi
e(ξ)⊗φj

e(ς)⊗φk
e (η), with m = i+ j(p+1)+k(p+1)2

where 0 ≤ i, j, k ≤ p. Thus, the local approximation uh
e is expanded in Φ

continuous basis functions as

uh
e =

(p+1)3∑
m=1

Um
e Φm

e , (29)

with the expansion coefficient Um
e . The same basis functions and construction

approach have been used in our previous study [14], and for more details we
also refer [2, 21].
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Together with integration by the Gaussian quadrature based on the GLL-
roots, the discretization of the least-squares formulation (25) at an element-level
can be expressed as

LT
e WeLeUe = LT

e WeFe, (30)

where L is a matrix whose components are the evaluation of L with the Hermite
polynomials at the quadrature points, and F is a vector of the evaluation of G.
W is a diagonal matrix of the quadrature weights, and in this article, the number
of quadrature points Q are fixed at the same number of polynomial order of one
dimensional basis function as Q = p + 1.

In this work, the discretized algebraic equation is solved by the element-
by-element technique with the conjugated gradient method with the Jacobi
preconditioner. A Matlab code developed at our group has been used as the
main setup. For parallelization of the algorithm Matlab MPI is used to allocate
the elements to processors and communicate between processors. The local
solutions in all elements uh

e , are glued to construct the global approximation of
solution uh, i.e.,

uh =

Ne⋃
e=1

uh
e . (31)

3. C
1 continuous h-refinement

Local mesh refinement is efficient, but it yields a non-conformal grid which
could lead to discontinuities of the solution over the inter-element border. When
the refinement levels of neighboring elements are different, the nodal basis of
the coarser element, which have non-zero values on the inter-element border, are
shared with the finer element. The non-conformal mesh for a two-dimensional
case is illustrated in Figure 1, and nodal basis are shared on a non-conforming
border γ - between Ω0

1 and Ω1
2 and between Ω0

1 and Ω1
4.

In this study, the spectral expansions are the same in all elements and a non-
conformal mesh is obtained only by h-refinement. And since the grid refinement
is applied to only spatial domain, we present the refinement technique only for
a two-dimensional spatial domain. To ensure the global C1 continuity in a non-
conformal refinement, we introduce two L2-norm least-squares functionals to be
minimized for the value of solution, J r

0 , and for the derivative of solution, J r
1 ,

respectively, over the inter-element border γ between the finer element F and
the coarser element C:

J r
0

(
uF

b ; uC
b

)
=

∫
γ

(
uF

b − uC
b

)2
ds, (32)

J r
1

(
uF

b ; uC
b

)
=

∫
γ

(∇uF
b · n −∇uC

b · n)2
ds, (33)
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Figure 1: Non-conformal mesh in a two-dimensional domain.

where ub is the solution on the inter-element border. Here, we explain the
refinement formulation with an example configuration of elements where the
non-conforming border is aligned to the y-axis, as depicted in Figure 1.

For this configuration, we define five linear coordinate transformations:

X0 : x0(ξ) =
x1 − x0

2
ξ +

x1 + x0

2
ξ ∈ [−1, 1],

X1 : x1(ξ) =
x2 − x1

2
ξ +

x2 + x1

2
ξ ∈ [−1, 1],

Y : y(η) =
y2 − y0

2
η +

y2 + y0

2
η ∈ [−1, 1],

Mm : μm(η) =
1

2
(η − 1) η ∈ [−1, 1],

Mp : μp(η) =
1

2
(η + 1) η ∈ [−1, 1],

(34)

(ξ, η) are the local coordinate of (x, y) in the parent element. The superscript
0 on x is for the element Ω0

1 and 1 on x is for the lower refined-element Ω1
2 and

the upper refined-element Ω1
4. μm and μp are auxiliary mapping variables on

the border γ for Ω1
2 and Ω1

4, respectively.
The L2-norm for the solution value on the border γ for Ω1

2, denoted as J r
m,0

can be expressed as

J r
m,0 =

∫ y1

y0

[
uF

b (x, y) − uC
b (x, y)

]2
dy

=
y1 − y0

2

∫ 1

−1

[
uF

b

(
x1(−1), y(η)

) − uC
b

(
x0(1), y (μm(η))

)]2
dη,

(35)

and 2/(y1 − y0) is the y-Jacobian for Ω1
2, and it is denoted as Jy,1. With the

basis functions aforementioned in Section 2, the approximation of uF
b and uC

b
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can be expressed as

uF
b,h

(
x1(−1), y(η)

)
=

∑
k

uF
b,kφ1,i(−1)φ1,j(η),

uC
b,h

(
x0(1), y (μm(η))

)
=

∑
k

uC
b,kφ0,i(1)φ0,j (μm(η)) ,

(36)

with k = i + j(p + 1) where 0 ≤ i, j ≤ p. The subscripts 0 and 1 on φ stand for
the basis functions for Ω0

1 and Ω1
2, respectively. With the expansion coefficients

UF
b,0 = [uF

b,k] and UC
b,0 = [uC

b,k], the minimization statement of J r
m,0 can be

written in an algebraic form as

∇J r
m,0 = 0; HT

y,1WHy,1U
F
b,0 = HT

y,1WHym,0U
C
b,0, (37)

with

[Hy,1]Q2×N
= φ1(−1) ⊗ φ1(ηq),

[Hym,0]Q2×N
= φ0(1) ⊗ φ0 (μm(ηq)) , q = 1, ..., Q,

(38)

where Q is the number of quadrature points in either x- or y-axis, and N =
(p+1)2 is the number of basis functions in 2D. When Q = p+1, we can simplify
Equation (37) by multiplying inverse matrices as

UF
b,0 = H−1

y,1Hym,0U
C
b,0 ≡ Z̃m,0U

C
b,0, (39)

with Z̃m,0 the projection matrix for the solution value for the lower refined-
element.

The expression for the derivative of solution can be obtained in a similar
way. The L2-norm for the derivative of the solution on the border γ for Ω1

2,
denoted as J r

m,1, can be expressed as

J r
m,1 =

∫ y1

y0

[
∂uF

b

∂x
(x1, y) − ∂uC

b

∂x
(x0, y)

]2

dy

=
1

Jy,1

∫ 1

−1

[
∂ξ

∂x1

∂uF
b

∂ξ

(
x1(−1), y(η)

) − ∂ξ

∂x0

∂uC
b

∂ξ

(
x0(1), y (μm(η))

)]2

dη,

(40)

and ∂ξ/∂x1 and ∂ξ/∂x0 are the x-Jacobian for the mappings of X1 and X0,
respectively. With the basis functions, the approximation of the x-derivatives
of uF

b and uC
b can be expressed as

∂uF
b,h

∂ξ

(
x1(−1), y(η)

)
=

∑
k

uF
b,k

∂φ1,i

∂ξ
(−1)φ1,j(η),

∂uC
b,h

∂ξ

(
x0(1), y (μm(η))

)
=

∑
k

uC
b,k

∂φ0,i

∂ξ
(1)φ0,j (μm(η)) .

(41)
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Then, the minimization statement of J r
m,1 is expressed as

∇J r
m,1 = 0; DT

y,1WDy,1U
F
b,1 = DT

y,1WDym,0U
C
b,1, (42)

with

[Dy,1]Q2×N
= Jx,1

∂φ1

∂ξ
(−1) ⊗ φ1(ηq),

[Dym,0]Q2×N
= Jx,0

∂φ0

∂ξ
(1) ⊗ φ0 (μm(ηq)) , q = 1, ..., Q.

(43)

When Q = p+1, we can simplify Equation (42) by multiplying inverse matrices
as

UF
b,1 = D−1

y,1Dym,0U
C
b,1 ≡ Z̃m,1U

C
b,1, (44)

with Z̃m,1 the projection matrix for the derivative of solution value for the lower
refined-element.

The expressions for the upper refined-element Ω1
4 can be obtained in a similar

way. Having established a relation between the unknowns of the finer and
coarser elements at their inter-element borders, we can express the unknowns of
the finer element UF in terms of UF ′

, composed of the unknowns of the coarser
element on the boarder and inner element unknowns UF

i only:

UF =

⎡⎣UF
b,0

UF
b,1

UF
i

⎤⎦ =

⎡⎣Z̃0 0 0

0 Z̃1 0

0 0 I

⎤⎦ ⎡⎣UC
b,0

UC
b,1

UF
i

⎤⎦ = ZUF ′

, (45)

where Z is the total projection matrix.
Implementation of these constraints into the least-square method can be

performed by replacing the solution vector U as U
′

using (45). The formulation
at an element-level becomes

ZT
e LT

e WeLeZeU
′

e = ZT
e LT

e WeFe. (46)

ZT
e is additionally multiplied to maintain the symmetricity of the least-squares

system.

4. Adaptive mesh refinement

4.1. Implementation

We design a systematic mesh refinement process. During the h-refinement
an element is split into four daughter elements. An element with the refinement
level k can be made by k-th mesh refinements from the original unrefined ele-
ment. Each element is specified with two indices as Ωk

i , where i and k indicate
respectively the element number and the refinement level. Here we devise an
element numbering system - 1) the elements are numbered in +x direction first
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Figure 2: Examples of h-adaptivity with element numbering system and with 1-level irregu-
larity.

and then +y direction, but 2) the numbering of the refined elements is done first
inside the unrefined element in which they are. The grid system in Figure 2 is
composed of the elements with level 0, 1 and 2, and it illustrates our element
numbering system.

In this study, the maximum refinement level is set to 2, and we confine the
irregularity up to 1-level, i.e., the difference in the refinement levels of neighbor-
ing elements is no larger than 1. All element configurations in Figure 2 satisfy
the 1-level irregularity. The formulation of h-refinement can be simplified with
the 1-level irregularity as an element has at most 2 neighbors along an edge.
In addition, the 1-level irregularity can improve the accuracy in describing a
sharp interface. The adjacent elements of level 2 elements are not marked by
the refinement criteria, but their residual could be rather large. By the 1-level
irregularity, these elements are refined in level 1 so that they give a transition
zone. Fernandino et al. [22] showed the solution converged to a different steady
state than physically predicted without a proper irregularity principle.

To reduce the computational memory usage for the refinement, we establish a
lean data structure, revised from [23, 24]. The levels of each element are saved as
an array, and the element numbers and the geometrical information are unsaved
but calculated from this array. In addition, the location and configuration of
elements are found by searching for which neighbors each element has. Unlike
the conforming grid system, constructing the gathering matrix of basis functions
in the non-conforming grid system requires more complicated steps. The basic
element numbering is the same as the one of the conforming grid system, but
here how to share the basis functions on the non-conformal element boarder is
dependent on the configuration of the elements. If an element is neighboring
with smaller or equal level of elements on its left or bottom side, it adopts the
neighbor’s basis functions which are non-zero on their element border. With
this principle, all basis functions can be systematically numbered, except for
four element configurations, as depicted in Figure 3. These configurations are
automatically found by each specific conditions in the neighbor matrix, and
their basis functions are reassigned.

4.2. Refinement criteria

The elements in the original unrefined grid are refined or retrieved at each
time step depending on the result from the previous time step. Regarding
the decision on which reference elements have to be refined, we consider two
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Figure 3: Element configurations which have to be considered separately in element numbering
for element refinement level k − 1 and k.

refinement criteria. With the first criterion (gradient), the elements where the
solution gradients exceed a certain tolerance are refined, and it requires that

‖∇C‖2
0,Ωe

≤ tolg , (47)

with tolg the discretization tolerance for the gradient. In the Cahn-Hilliard
equation, it has been shown that the solution depends on the Cahn number
which is a ratio of the interface thickness to the grid size [25]. The gradient
criterion does not use any error estimator but it intensively targets to refine the
interface.

The second criterion (residual) is the refinement of a fixed given number of
elements based on the local residual in each element, defined as

‖R‖2
0,Ωe

=

∫
Ωe

(Luh − G)2
dΩe. (48)

Based on this, the reference elements are ordered in decreasing value of the local
residual and the first elements are refined based on the specified percentage of
elements given as refinement tolerance.

5. Numerical examples

For the Cahn-Hilliard equation, the equilibrium interface profile can be de-
termined analytically as,

Ceq =
1

2
+

1

2
tanh

(
z

2
√

2Cn

)
, (49)
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with the z-coordinate chosen along the gradient of the concentration. For the
NSK system, the equilibrium interface profile for the density can be expressed
as [15]:

ρeq =
ρ1 + ρ2

2
+

ρ1 − ρ2

2
tanh

(z

2

√
We

)
, (50)

for the bulk densities ρ1 > ρ2. The initial concentration and density of all
numerical simulations in the present article follow these equilibrium profiles.
For the NSCH system, to assure the equilibrium state numerically as well, only
the Cahn-Hilliard solver runs until the L∞-norm of difference of concentration
in time is lower than 10−4, i.e., max(Ct=n+1 − Ct=n) < 10−4.

Both nonlinear and decoupling convergence are declared when the relative
norm of the residual over the entire domain, i.e., ‖ΔR‖2

0,Ω / ‖R‖2
0,Ω, is less than

10−6, with the residual defined in (48) but over the entire domain Ω.
We display two coalescence examples driven by the NSCH and the isothermal

NSK systems. The equilibrium state induced by the phase–field method has
the minimum local free energy and surface tension energy, corresponding to the
phase separation and the minimum interface length [3]. Since the coalescence
examples accompany severe deformation of the interface, we can observe the
changes of refinement grid depending on the evolution of the solution.

5.1. Coalescence driven by the NSCH system

Two bubbles with the same size are closely located, and they are coarsened
by the diffusion without any external force. The initial concentration in a square
domain [0, 1]2 is given as

C0(x) =
1

2
+

1

2
tanh

(
R − ‖x− x1‖

2
√

2Cn

)
for ‖x− x1‖ <

(
R + 2

√
2Cn

)
,

C0(x) =
1

2
+

1

2
tanh

(
R − ‖x− x2‖

2
√

2Cn

)
for ‖x− x2‖ <

(
R + 2

√
2Cn

)
,

(51)

where radius R is 0.22 and ‖‖ is the Euclidean distance between x and x1 =
(0.3333, 0.3333) or x2 = (0.6667, 0.6667). For all simulation cases, the expan-
sion order p = 4, the time step size Δt = 0.1 and the dimensionless numbers
Re = 400, Ca = 1, P e = 100, Cn = 0.01 are used. The initial grid is
discretized with Ne = 62, and a conformal grid with Ne = 242 is also used for a
comparison. As the refinement criteria, the gradient criterion with tolg of 12.5
and the residual criterion with 45% and 62% of refined elements, correspond-
ing the number of refined elements with the graident criterion at t = 30.1 and
t = 0.1, are used.

The evolution of the concentration with the gradient criterion at t = 0.1, 5.1,
10.1 and 30.1 is presented in Figure 4. The interfacial area is successfully tracked
to be refined with time. During the evolution, the total volume is completely
conserved, more precisely that the volume loss is less than 10−5% even if there
is.
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Figure 4: Evolution of concentration of coalescence driven by NSCH system on non–conformal
grid with gradient criterion at t = 0.1,5.1,10.1,30.1.

grid Ndofs at t = 10.1 Total CPU hrs CPU hrs in refinement

gradient 9,150 (63.5%) 53,541 (75.3%) 8,406 (15.7%)
residual 45% 7,950 (55.2%) 51,337 (72.2%) 8,419 (16.4%)
residual 62% 9,750 (67.7%) 59,656 (83.9%) 9,247 (15.5%)
conforming 14,400 71,104

Table 1: Ndofs at t = 10.1, total CPU hours and CPU hours consumed in refinement procedure
until t = 10.1 for gradient criterion, residual criterion of 45% and 62% and conforming grid.
Percents in second and third column are values with respect to ones from confroming grid,
and percent in fourth column is relative time consumption with respect to total CPU hours.

Figure 5 presents the concentration contour and the local residuals at t =
10.1 from the conformal grid and from the refined grids. The concentrations
are almost identical regardless of the type of grids, but the refined elements
and the local residuals are different. Overall, the residuals from the conformal
grid is far smaller than the residual from the refined grids. The local residuals
are symmetric in the cases of the gradient criterion and the conformal grid,
while they are asymmetric with the cases of the residual criterion. The gradient
criterion has a flexibility of the number of refined elements in time, because it
is determined by the concentration. On the other hand, the number of refined
elements with the residual criterion is fixed. As a result, the residual criterion
sometimes yields asymmetric grid, and it manifests in the asymmetric local
residuals. Note that here the local residual from the Navier–Stokes equations is
negligible, of order under 10−5, due to small velocity fields.

The number of degrees of freedom (Ndofs) at t = 10.1, total time con-
sumption in CPU hours and time consumption for refinement procedures until
t = 10.1 are provided in Table 1. With the refinement, we can reduce memory
usage from 55.2% to 67.7%, and the computational hours from 72.2% to 83.9%.
Around 16% of computational cost is spent in the refinement procedures, mainly
in transferring the solution from the old to new refined grid in each time step,
regardless of refinement strategies.

5.2. Coalescence driven by the isothermal NSK system

In this example, we solve the isothermal NSK system to simulate the coa-
lescence of two droplets. This example has been handled in our previous study
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Figure 5: Concentration (top-left) local residual (bottom-right) on a) conformal grid and
with b) gradient criterion and residual criterion of c) 45% and d) 62% of refined elements at
t = 10.1.

[15] for a conformal grid. The initial density profile of two droplets in a spatial
domain Ωx = [0, 1]2 is given as

ρ0(x) = ρl +
ρl − ρv

2

[
tanh

(‖x − x1‖ − R1

2
×
√

We

)

+ tanh

(‖x− x2‖ − R2

2
×

√
We

) ]
,

(52)

where ρl = 1.810 and ρv = 0.3194 are bulk densities of liquid and vapor at
θ = 0.85, the locations of droplets x1 = (0.4, 0.5) and x2 = (0.78, 0.5), and radii
are set to be R1 = 0.25 and R2 = 0.1. The dimensionless parameters are fixed
as Re = 512 and We = 2000, and all elements have the same expansion order
p = 4. The initial reference grid is discretized with Ne = 102 elements, and it
is refined only with the gradient criterion in this example with the tolg of 13.
Time step sizes vary as Δt = 0.001, 0.0025, 0.005. The results on the refined grid
are compared with the one on the conformal grid Ne = 402 with Δt = 0.005.

Figure 6 presents the evolution of the density on the conformal grid and the
non-conformal grid with Δt = 0.005. It is confirmed that the solutions are the
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same regardless of the type of grid, and the gradient refinement criterion tracks
the interfacial region to refine. For different time step sizes with the refined
grid, the relative norms of the mass at t = 0.855 with respect to the initial mass
M0 = 0.6742, named mass loss, i.e., ‖Mt=0.855 −M0‖ / ‖M0‖, are presented
in Table 2. The mass loss from the non-conformal grid is almost same or even
a bit smaller than the one from the conformal grid for Δt = 0.005 case. And
it is found that mass loss on the non-conformal grid is reduced as decreasing
the time step size, and this result corresponds to our previous study for the
conformal grid [15].

Figure 6: Evolution of density of coalescence driven by isothermal NSK system on conformal
grid (top) and on non–conformal grid with gradient criterion (bottom), with Δt = 0.005 and
at t = 0.075,0.255,0.855.

grid type non-conformal conformal

time step size Δt = 0.001 Δt = 0.0025 Δt = 0.005 Δt = 0.005

‖Mt=0.855−M0‖
‖M0‖

5.93× 10−5 1.33× 10−4 2.67× 10−4 3.11× 10−4

Table 2: Mass loss at t = 0.855 from non-conformal grid with Δt = 0.001,0.0025,0.005 and
from conformal grid with Δt = 0.005.

6. Concluding remarks

We presented a C1 continuous h-adaptive least-squares spectral element
method for the Navier-Stokes-Cahn-Hilliard (NSCH) system and the isother-
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mal Navier-Stokes-Korteweg (NSK) system as the representatives of the phase-
field models. To provide the global differentiability of the solution, C1 Hermite
polynomials were used as basis functions, and the corresponding refinement pro-
cedures were provided. Two refinement strategies based on the solution gradient
and the local residual were considered, and their performances were compared
through the numerical examples. The results from the refined grid were vali-
dated by comparing with the results from the conformal grid. With an example
of coalescence driven by the NSCH system, we found the gradient criterion
gives us more stable and predictable results, because it targets only interface
elements. On the other hand, the residual criterion results in asymmetric local
residual map because of its rigidity on the number of refined elements. However,
the one of the greatest advantages of least-squares method is that the functional
provides a natural error measure, which no other methods possesses [16]. To
enjoy this advantage, we can consider in the future to refine elements based on
the gradient criterion but support it by refining other elements if their residu-
als are above a certain level. With the refinement technique, we reduced both
memory usage and computational cost, and it was found that the percentages
of the computational cost spent in the refinement procedures with respect to
the total cost are not very different depending on the refinement criteria. In the
coalescence driven by the isothermal NSK system, a parametric study on the
time step size was conducted with the gradient criterion. The mass loss with the
refined grid was almost the same as the one with the conformal grid if the same
time step size was used. And the mass loss is reduced as decreasing the time
step size, and this result corresponds to our previous study on the conformal
grid [15].
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