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Abstract

An isogeometric thin shell formulation allowing for large-strain plas-
tic deformation is presented. A stress-based approach is adopted, which
means that the constitutive equations are evaluated at different integra-
tion points through the thickness, allowing the use of general 3D material
models. The plane stress constraint is satisfied by iteratively updating
the thickness stretch at the integration points. The deformation of the
shell structure is completely described by the deformation of its midsur-
face, and, furthermore, the formulation is rotation-free, which means that
the discrete shell model involves only three degrees of freedom. Several
numerical benchmark examples, with comparison to fully 3D solid simu-
lations, confirm the accuracy and efficiency of the proposed formulation.

Keywords: Isogeometric; Kirchhoff-Love; Thin shell; Finite strain; Elasto-
plastic

1 Introduction

Shell structures play a central role in engineering design within many differ-
ent disciplines, e.g., mechanical, aerospace, marine, and civil engineering, due to
their high ratio of load capacity to self weight. In many cases, structural analy-
sis of such structures needs to extend from the elastic to the plastic regime, e.g.,
when assessing the ultimate load capacity of the structure or when plastic defor-
mations are part of the manufacturing process, like in sheet metal forming. The
analysis of such highly nonlinear processes is widely done with nonlinear finite
element (FE) analysis, and shell elements are typically employed for reducing
the computational effort.

Formulating shell elements that account for large-strain plastic deformations
is very challenging and a lot of research has been dedicated to such develop-
ments. From the modeling perspective, the crucial issue concerns the formula-
tion and implementation of inelastic constitutive models. Two different classical
approaches can be adopted: (i) to use stress resultant plasticity where the elasto-
plastic constitutive models are formulated entirely based on stress resultants,
see e.g. [1] - [6], or (ii) to define integration points in the thickness direction
of the shell and to use stress-based three dimensional (3D) plasticity models.
The stress resultants are obtained by integration through the thickness of the
shell, see e.g. [7] - [11]. With the stress resultant formulation, the deriva-
tion of inelastic stress resultant constitutive models is very difficult from the
solid constitutive models. Even the simplest von-Mises yield function leads to a
rather complex functional form when expressed in stress resultants and also the
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implementation of such constitutive models in the finite element framework is
difficult, see the recent work by Dujc and Brank [6] and references therein. The
stress-based formulation is widely used and is conceptually simple. It directly
stems from the 3D theory, therefore solid constitutive models can be applied
directly. For instance, this leads to the use of the standard return mapping
algorithms for plasticity problems. This approach is adopted in this work.

In FE shell analysis, such an approach can be applied to thick shell formula-
tions based on Reissner-Mindlin kinematics, which require only C0 continuous
discretization, or to thin shells models with the classical Kirchhoff-Love (KL)
kinematics, for which a C1 continuity is necessary. For a detailed review of shell
theories and numerical formulations, see Bischoff et al. [12]. In the present
work, the KL shell theory is considered. According to the KL shell hypothesis,
the cross-sectional fibers in the undeformed configuration stay normal to the
mid-plane and unstretched in the deformed configuration, which yields vanish-
ing transverse shear deformations. The shell kinematics is thus described by
the displacements of the middle surface and the thickness dimension is modeled
by the surface normal vector, which is a function of the second derivatives of
the displacements. This leads to the appearance of second derivatives in the
equilibrium equation, which requires a C1 continuous discretization of the dis-
placements. It is well known that this requirement has been a major obstacle
for the development of efficient KL FE shell formulations.

Isogeometric analysis (IGA) was introduced by Hughes and coworkers [13],
with the main original purpose to bridge the gap between computer aided de-
sign and FE analysis. In IGA, higher-order and smooth basis functions, e.g.,
non-uniform rational B-splines (NURBS), are used to represent the geometry
and to approximate the solution fields within the isoparametric approach. IGA
has proven to provide remarkable advantages compared to the standard FE
method based on conventional Lagrangian shape functions, mostly stemming
from the higher and tailorable continuity of the basis functions. Over the last
years, IGA has led to the new development of several efficient shell formulations,
including rotation-free KL shells [14]-[19], Reissner-Mindlin shells [20]-[24], hi-
erarchic shells [24]-[26] and solid shells [27]-[29]. The smoothness of the basis
functions allows a straightforward implementation of C1 thin shell models. An
isogeometric formulation for geometrically nonlinear KL shells has been devel-
oped in [14] and its extension to the large strain regime in [15]. The developed
formulation in [15] is such that an arbitrary 3D hyperelastic material model
can be used for the shell analysis. The transverse normal strain is statically
condensed using the plane stress condition (zero transverse normal stress). The
main advantages of this approach are its simplicity and the possibility of its
straightforward extension to any other complex constitutive law.

In this work, we extend the isogeometric shell model presented in [14, 15]
to model elasto-plastic behaviour in KL shells at large deformations. A general
stress-based 3D elasto-plastic constitutive model is used for the shell analysis.
The classical J2 plasticity with isotropic hardening based on the multiplicative
decomposition of the deformation gradient in elastic and plastic parts [30, 31] is
adopted. The backward Euler time integration scheme, required for the solution
of the elasto-plastic constitutive equations, with the classical elastic predictor
and plastic corrector (return-mapping) algorithm is used. The imposition of
the plane stress condition is done at the integration points in a local iterative
manner.
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The paper is structured as follows. In Section 2, we provide the details of
the proposed formulation. We first review the employed plasticity model in
a solid mechanics setting, with the time integration algorithm of the elasto-
plastic constitutive equations to be found in Appendix A. Then, we present the
KL shell model, where the kinematics is described purely by the deformation of
the middle surface, and we show how this can be extended to work with three-
dimensional nonlinear constitutive models like the presented plasticity model.
In Section 3, we illustrate the variational formulation. In Section 4, we present
numerous benchmark examples and compare the solution of the proposed for-
mulation with 3D solid element results and the available reference results from
the literature. Section 5 closes the paper with some conclusions.

2 Formulation

In this section, the proposed formulation is presented in detail. We first
review the employed plasticity model in a solid mechanics setting. Then, we
present the KL shell model and extend it to work with three-dimensional non-
linear constitutive models like the presented plasticity model.

2.1 Finite strain plasticity

We assume a three-dimensional isochoric von-Mises (J2) rate-independent
plasticity theory in combination with isotropic hardening, and we adopt the
framework based on the multiplicative decomposition of the deformation gradi-
ent in elastic and plastic parts and on maximum plastic dissipation developed
by Simo [33], see also Simo and Hughes [30].
With the chosen approach, the deformation gradient, F = dx/dX (dx,dX
being infinitesimal line elements in the deformed and reference configurations),
is decomposed in the product

F = F eF p , (1)

where F e and F p are, respectively, the elastic and plastic deformation gradients.
This decomposition may be interpreted as a plastic deformation to a stress-free
intermediate configuration, followed by a purely elastic deformation.
Based on the decomposition in eq. (1), the total and plastic right Cauchy-Green
deformation tensors are given by

C = FTF , Cp = F pT

F p , (2)

and the elastic left Cauchy-Green deformation tensor is given by

be = F eF eT . (3)

A useful relation between elastic and plastic deformation playing an important
role for the elasto-plasticity theory employed is

be = FCp−1

FT , (4)

with its Lie derivative
L{be} = FĊp−1

FT . (5)
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The total (free) energy functional is expressed as the sum of elastic and plastic
energy contributions as follows

Φ(be, Je, α) =

∫
Ω0

(Ψe(be, Je) + Ψp(α)) dV , (6)

where Ψe is the elastic strain energy density, Je = det[F e], Ψp is the plastic
energy density assuming isotropic hardening and α is the internal hardening
variable.
For the purpose of describing the elastic response of the material, a neo-Hookean
constitutive law of decoupled type is used, which will prove to be convenient for
the subsequently introduced plasticity model. The elastic strain energy density
Ψe is decomposed into a deviatoric (volume preserving) and volumetric (shape
preserving) part

Ψe = Ψe
vol + Ψe

dev , (7)

with

Ψe
vol =

κ0

2

(
Je2 − 1

2
− lnJe

)
, Ψe

dev =
µ

2
(Ie
b − 3) , (8)

where be = Je−2/3

be, Ie
b = tr[be]. Moreover, µ and κ0 are the shear and the

bulk modulus of the material, respectively. The Cauchy stress σ follows from
the elastic strain energy density through the well-known relation (e.g. [37])

σ =
2

J
be

(
∂Ψe

∂be

)
=

2

J
be

(
∂Ψe

vol

∂be
+
∂Ψe

dev

∂be

)
=

1

J

{κ0

2

(
J2 − 1

)
I + µdev{be}

}
=

1

J
{τvol + τdev} , (9)

with τvol and τdev as the volumetric and deviatoric parts of the Kirchhoff stress
tensor τ and dev(·) = (·)− 1

3 tr(·)I. Taking into account that plastic deformation
is stress-free and isochoric, the superscript e has been omitted in σ and J .
The von-Mises yield function is given by

f(τdev, α) = ‖τdev‖ −
√

2

3
R(α) ≤ 0 , (10)

where R(α) is the hardening function. Suitable hardening functions for the ma-
terials considered in this work will be specified in the numerical examples in
Section 4.
The associative flow rule stemming from the principle of maximum plastic dis-
sipation can be shown to be [33]

Ċp−1

= −2

3
λ̇Ie
bF
−1nF−T , L{be} = −2

3
λ̇Ie
bn , (11)

with Ie
b = tr[be], n = τdev/‖τdev‖ and λ̇ as the plastic consistency factor. The

evolution equation for the hardening variable is given by

α̇ =

√
2

3
λ̇ . (12)

Loading and unloading conditions are governed by the Kuhn-Tucker relations

λ̇ ≥ 0 , f ≤ 0 , λ̇f = 0 . (13)
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Solution of the elasto-plastic constitutive equations requires a time integration
scheme, which is outlined in Appendix A.
For the shell model described in the next section, we express stresses by the sec-
ond Piola-Kirchhoff stress tensor, which is obtained by the pull-back operation

S = JF−1σF−T . (14)

Finally, the consistent material tangent C is obtained through the time integra-
tion scheme as given in the Appendix.

2.2 Kirchhoff-Love shell with finite strains

The KL shell model is based on the assumption that cross sections remain
straight and stay normal to the middle surface during deformation, which means
that transverse shear deformation is neglected. Accordingly, the description of
the shell can be reduced to the description of its middle surface.
For the shell kinematics, we use the convective curvilinear coordinates θ1, θ2 of
the midsurface, and θ3 as the coordinate in thickness direction (−0.5h ≤ θ3 ≤
0.5h with h as the shell thickness). Furthermore, we employ index notation,
where Greek indices take the values {1,2} and Latin indices take the values
{1,2,3}, and summation over repeated indices is assumed.

Considering a point xm(θ1, θ2) on the middle surface, a local curvilinear
basis is defined by the covariant base vectors aα and the unit normal vector a3

aα =
∂xm

∂θα
, a3 =

a1 × a2

|a1 × a2|
, (15)

see also Figure 1. With the above base vectors, the covariant metric and curva-
ture coefficients of the surface are defined by the first and second fundamental
forms of surfaces [32, 12]

aαβ = aα · aβ , bαβ = aα,β · a3 . (16)

Due to the Kirchhoff hypothesis, the position vector of any point in the shell
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Figure 1: Schematic representation of a KL shell in the undeformed and de-
formed configurations.

continuum x can be described by the position vector of the corresponding point
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on the midsurface and the normal vector as

x = xm + θ3a3 . (17)

The base vectors in the shell continuum are then obtained as [15]

gα = aα + θ3a3,α , g3 = a3 , (18)

and the corresponding metric coefficients are

gαβ = aαβ − 2θ3bαβ , gα3 = 0 , g33 = a33 = 1 . (19)

We note that the quadratic term (θ3)2 in gαβ has been neglected corresponding
to the classical assumption of a linear strain distribution through the thickness,
while gα3 = 0 due to the Kirchhoff assumption.

Contravariant base vectors gi are defined by gi · gj = δij , with δij as the

Kronecker symbol. They can be computed as gα = gαβgα, g3 = g3, with
gαβ as the contravariant metric coefficients, which can be obtained by matrix
inversion [gαβ ] = [gαβ ]−1. The contravariant metric coefficients are completed
by gα3 = gα3 = 0 and g33 = g33 = 1.

Eqs. (15)–(19) have been written for the deformed configuration, indicated
by lower case letters (x,aα, aαβ , etc.), but they hold analogously for the ini-
tial configuration, which is indicated by upper case letters (X,Aα, Aαβ , etc.).
Note that these equations do not account for the thickness change in the de-
formed configuration, which will be corrected in the kinematic and constitutive
equations as shown in the following.

Within a curvilinear frame formed by the contravariant basis of the unde-
formed configuration Gi ⊗ Gj , the coefficients of the deformation gradient F
and the right Cauchy-Green deformation tensor are generally given as

Fij = Gi · gj ,
Cij = gi · gj = gij .

(20)

It is important to note that these general equations (20) have to be modified for
shells in finite strains, in order to consider also the thickness deformation, which
was neglected in the geometry definitions (17)-(19). Considering the thickness
stretch λ3, we have to correct the thickness base vector as

g3 = λ3a3. (21)

Accordingly, the corrected deformation tensors are obtained as

Fiβ = Gi · gβ , Fi3 = λ3Gi · a3,

Cαβ = gαβ , Cα3 = 0, C33 = λ2
3,

(22)

The general problem is that the thickness deformation cannot be determined
directly from the deformation, since the shell model describes only the deforma-
tion of the middle surface. However, it can be determined by using the plane
stress condition S33 = 0 as an additional equation. In [15], such an approach
was shown in the context of hyperelastic materials, where S33 = 0 was used
to solve for the unknown component C33. In the present paper, we adopt this
approach and extend it to elasto-plastic materials, where we typically need to
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work with the deformation gradient F . As can be seen in (22), only one com-
ponent of the Cauchy-Green deformation tensor, namely C33, is affected by the
thickness deformation, while for the deformation gradient the three components
F13, F23, F33 are affected. However, they are all determined by the thickness
stretch λ3, which, in turn, can be obtained as the square root of C33. Accord-
ingly, we first solve for C33, and then update also Fi3.

For the proposed approach we linearize the plane stress condition and solve
it for C33

S33 +
∂S33

∂C33
∆C33 = S33 +

1

2
C

3333∆C33 = 0, (23)

so

∆C33 = −2
S33

C3333
. (24)

The correction term ∆C33 is used to iteratively update C33, where a superscript
I indicates the iteration step

C
(I+1)
33 = C

(I)
33 + ∆C

(I)
33 . (25)

From the updated C33, we compute the update of the thickness stretch

λ
(I+1)
3 =

√
C

(I+1)
33 , (26)

which is finally used to compute the updated deformation gradient

F
(I+1)
iβ = F

(I)
iβ ,

F
(I+1)
i3 = λ

(I+1)
3 Gi · a3.

(27)

With the updated F , the stress and material tangent tensors S, C are recom-
puted according to the procedure outlined in Section 2.1 and the Appendix.
This procedure (23)-(27) is repeated until the plane stress condition is satisfied
within a specified tolerance.

As initial value for λ3, we take the converged value from the previous time
step, and λ3 = 1 in the first time step. It should be noted that this iterative
procedure is done locally at each integration point. Once it is converged, i.e.,
the correct S, C have been obtained, only the in-plane stress components Sαβ

are considered for shell analysis. The energetically conjugate strains are the
in-plane Green-Lagrange strains Eαβ , which are obtained as

Eαβ = εαβ + θ3καβ ,

εαβ =
1

2
(aαβ −Aαβ),

καβ = Bαβ − bαβ ,

(28)

where εαβ are the membrane strains and καβ the curvature changes, also called
bending strains. The total differential of in-plane stress and strain components
are related by

dSαβ = Ĉ
αβγδ dEγδ . (29)

where Ĉαβγδ is the statically condensed material tensor defined as

Ĉ
αβγδ = C

αβγδ − Cαβ33C33γδ

C3333
. (30)
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The stresses are integrated through the thickness and represented by membrane
forces N and bending moments M

N =

∫ h/2

−h/2
S dθ3 ,

M =

∫ h/2

−h/2
S θ3 dθ3 ,

(31)

and their total differentials are obtained as

dN = ĈAdε+ ĈBdκ ,

dM = ĈBdε+ ĈDdκ .
(32)

where ĈA, ĈB , ĈD are the thickness-integrated material tensors

ĈA =

∫ h/2

−h/2
Ĉ dθ3 , ĈB =

∫ h/2

−h/2
Ĉ θ3 dθ3 , ĈD =

∫ h/2

−h/2
Ĉ (θ3)2 dθ3 . (33)

We note that in contrast to linear shell models, the thickness integrals in (31)
and (33) cannot be computed analytically, but numerically [15].

With the approach outlined above, shell analysis can be performed with ar-
bitrary three-dimensional material models, which might be based on the defor-
mation tensor C as typical for hyperelastic models, or the deformation gradient
F as typical for plasticity models. Since such materials models are mostly for-
mulated in a Cartesian coordinate frame it is useful to define a local Cartesian
basis aligned with the shell middle surface as follows

Ē1 =
G1

‖G1‖
, Ē2 =

G2 − (G2 · Ē1)Ē1∥∥G2 − (G2 · Ē1)Ē1

∥∥ , Ē3 = G3 . (34)

The base vectors Ēi represent the local Cartesian basis, where the upper bar
(̄·) refers to their local nature. The coefficients of the deformation gradient in
the local Cartesian system, F̄ij , are then obtained by

F̄ij = Fmn
(
Ēi ·Gm

) (
Gn · Ēj

)
F = F̄ijĒi ⊗ Ēj .

(35)

Similar transformations apply to the coefficients of the strain tensors. As a
consequence, also the stress and material tensors will be expressed in the local
Cartesian coordinate system.

3 Variational formulation

In this work, a conventional incremental FE procedure is adopted to solve
the elasto-plastic boundary value problem, where the unknowns are the elastic
strain, the hardening variable and the plastic multiplier. The plastic strain does
not appear explicitly in the initial value problem [31, 30].
The FE formulation is based on the Principle of Virtual Work. The internal
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and external virtual quantities for the KL shell take the following form [40]

δW u
int =

∫
Ω0

δE : S dV =

∫
A0

(δε : N + δκ : M) dA ,

δW u
ext =

∫
A0

δu · f dA ,
(36)

where Ω0 is the initial domain, A0 denotes the undeformed midsurface, and f
is the external load per unit area. Note that E is the tensorial form of Eab
defined in (28). Here the assumption that a differential volume element dV can
be approximated by dV ≈ h dA applies.
In the FE procedure, with residual vectorRu = F u

ext−F u
int, the vector of internal

nodal forces F u
int is obtained by performing the variation of δW u

int with respect
to the discrete nodal displacement u. Its components read

F u
int r =

∫
A0

(
∂ε

∂ur
: N +

∂κ

∂ur
: M

)
dA , (37)

F u
ext is the external load vector. The linearization of the residual vector yields

the tangent stiffness matrix Ku, which, for displacement-independent loads, is
obtained from the linearization of the internal force vector. Its components are

Ku
rs =

∫
A0

(
∂ε

∂ur
:
∂N

∂us
+

∂2ε

∂ur∂us
: N +

∂κ

∂ur
:
∂M

∂us
+

∂2κ

∂ur∂us
: M

)
dA .

(38)
The linearized equation system, which is solved for the incremental displacement
vector ∆ũ, finally reads

Ku ∆ũ = Ru. (39)

The detailed linearization of ε and κ with respect to ur, us and further imple-
mentation aspects are presented in [15, 16].

4 Numerical tests

In this section, the capability of the proposed formulation to model the
elasto-plastic behaviour in shells is illustrated by means of several numerical
examples. In all tests, quadratic NURBS shape functions and three Gauss points
for the thickness integration are used. All obtained results are compared to
reference results, either from the literature, or from results of full 3D simulations
with isogeometric solid elements. In the latter case, quadratic NURBS solid
elements are used, with the same in-plane mesh as the shell model and with a
single element in the thickness direction. All examples were computed with an
in-house code on a series of meshes but in the following we present only those
meshes with converged results.

4.1 Simply supported plate

Firstly, a simply supported plate under uniform pressure loading is studied.
The geometry and boundary conditions of the problem are illustrated in Figure
2, whereas the material parameters are E = 70 × 103 N/mm2, ν = 0.32 and
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Figure 2: Simply supported plate. Geometry and boundary conditions. Dimen-
sions in mm.

Figure 3: Simply supported plate. (a-b) Hardening variable for simply sup-
ported plate at Unorm=0.35 mm obtained with (a) KL shell and (b) solid ele-
ments.

R(α) = 243 (perfect plasticity). Exploiting symmetry, only one quarter of the
plate is modeled and discretized uniformly with 1024 elements. The simulation
is performed under arc-length control. At every load increment, the norm of

the total displacement vector, defined as Unorm =
√

UT U
ncp

is monitored, where

U is the vector of the control point displacements and ncp is the total number of
control points. As mentioned already, the strategy to enforce plane stress con-
dition can be adopted for any material model. In this example, a geometrically
linear shell model combined with small-strain elasto-plasticity, isotropic harden-
ing and additive decomposition of the total strain into elastic and plastic strain
is used. For linear shell theory see [14] and for small-strain elasto-plasticity see
[31].

The results for both the shell and solid computations are shown in Figure 3
in terms of contour plots of the hardening variable. For the shell, the hardening

variable at Gauss point (-
√

3
5 ) in the thickness direction is displayed, projected

onto the mid surface. As expected, the equivalent plastic strain is maximum
in the plate center and branches form towards the plate corners. The pressure-
displacement curves are given in Figure 4 along with analytic upper and lower
bound limit load solutions, see e.g. [41]. A very good agreement between the
shell and solid results can be observed. Furthermore, the curves clearly show
that the numerical results lie within the analytical limit bounds. For the shells,
although the required plane stress condition is enforced in local iterative man-
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Figure 4: Simply supported plate. Pressure-norm of the total displacement
curves. Comparison between KL shell and solid elements. Analytical limit load
solutions [41].

ner, the computational cost is quite low compared to the solid computations
because only the middle surface is modeled and there are only three degrees of
freedom per control point.

4.2 Plane stress necking problems

A flat specimen and a hollow cylinder under tensile loading are studied,
considering fully nonlinear elasto-plasticity as described in Section 2.1. The ge-
ometric properties and boundary conditions are shown in Figure 5, the material
parameters are E = 189×103 N/mm2, ν = 0.29, with a nonlinear hardening law
R(α) = 343 + (680− 343) (1− exp(−16.93α)) + 300α taken from [46]. A mesh
with 1000 elements for the flat specimen and 4000 elements for the cylinder
is used. The simulations are performed under displacement control with fixed
displacement increments.

For the flat tensile specimen, Figure 6 (a-c) reports the evolution of the hard-
ening variable on the deformed configuration at various loading stages obtained
with KL shell elements. After the elastic state, from the yield point until the
ultimate stress the material behaves plastically (α > 0) with uniform deforma-
tions. As the deformation progresses, the hardening variable concentrates in
the necking zone, taking the maximum value in the center of the specimen. The
final result obtained with 3D solid elements can be seen in Figure 6 (d). The
corresponding load-displacement curve is presented in Figure 7, where it can be
observed that the KL shell results coincide with 3D solid solution. Note that the
present formulation is based on local plasticity and it is well known that in the
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Figure 5: Plane stress necking problem. Geometry and boundary conditions.
(a) flat tensile specimen (b) hollow cylinder. Dimensions in mm.

necking region, due to strong softening behaviour, the results may be sensitive
to the mesh. A way to overcome this problem is to adopt gradient plasticity
formulations [42]-[45].

For the hollow cylinder specimen, Figure 8 (a-c) shows the contour of the
hardening variable at various loading stages on the deformed configuration ob-
tained with KL shell elements. After the ultimate point, the hardening variable
localizes in the central region of the specimen and has the maximum value
along the entire circumference of the cylinder in the necking zone. Figure 8 (d)
shows the final result obtained with the 3D solid element. The corresponding
load-displacement curves from the numerical simulations are given in Figure 9,
where we can see a perfect agreement of the proposed formulation with the 3D
solution. As before, for both specimens, the shell elements require significantly
lower computational time compared to the solid elements.

4.3 Pinched hemisphere at large elasto-plastic deforma-
tions

A full hemispherical shell is one of the standard benchmark problems in
non-linear shell computations, see e.g [29, 2, 47, 52, 49, 6]. The geometry,
loading conditions and FE mesh of the model are depicted in Figure 10. The
material parameters are E = 100 N/mm2, ν = 0.2 and linear hardening law
R(α) = 2+30α taken from [47]. Due to symmetry, only one quarter of the shell
is modeled and discretized with 625 elements. Arc-length control is adopted.
Herein, the behaviour of the element undergoing loading and unloading condi-
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Figure 6: Plane stress necking problem. Flat tensile specimen. Hardening
variable at various loading stages on the deformed configuration. (a-c) Obtained
with KL shell elements at Unorm = 4.4, 5, 6 mm and (d) obtained with solid
elements at at Unorm = 6 mm.
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Figure 7: Plane stress necking problem. Flat tensile specimen. Load-
displacement curves. Comparison between KL shell and solid elements.
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Figure 8: Plane stress necking problem. Hollow cylinder. Hardening variable at
various loading stages on the deformed configuration. (a-c) Obtained with KL
shell elements at Unorm = 2.5, 5.5, 7 mm and (d) obtained with solid elements
at at Unorm = 7 mm (only lower half of the specimen is shown).
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Figure 9: Plane stress necking problem. Hollow cylinder. Load-displacement
curves. Comparison between KL shell and solid elements.
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Figure 10: Pinched hemisphere at large elasto-plastic deformations. (a) Geom-
etry and loading conditions (b) FE mesh. Dimensions in mm.

tions is investigated.
Figure 11 illustrates the hardening variable at several loading and unload-

ing stages on the deformed configuration. The corresponding load-displacement
curve is presented in Figure 12 along with results taken from [47] (which are
obtained with multi-layer shell kinematics based on a six-parametric shell the-
ory combined with finite strain plasticity). Once again, a very good agreement
with the reference results can be observed.

4.4 Scordelis-Lo roof at large elasto-plastic deformations

We now examine the collapse of the Scordelis-Lo roof subjected to uniform
gravity load, a classical benchmark problem for non-linear shell analysis with
both geometric and material non-linearity, see e.g [6, 8, 10]. The geometry and
boundary conditions of the problem are illustrated in Figure 13. The material
parameters are E = 2.1 × 104 N/mm2, ν = 0 and R(α) = 4.2 (perfect plas-
ticity) taken from [10]. The roof is supported by two rigid end diaphragms
and is subjected to a gravity-type load with the reference self-weight value of
f0 = 4 × 10−3 N/mm2. Due to symmetry, only one quarter of the roof with
a mesh of 1024 elements is used in the analysis. The simulation is performed
under arc-length control. The reference solution is given for the vertical dis-
placement at the midpoint of the side edge denoted as point A [10].

The evolution of the hardening variable at several loading stages on the
deformed configuration is visualized in Figure 14 whereas the corresponding
load-displacement curve is depicted in Figure 15 along with results taken from
[10] (which are obtained with non-linear shell kinematics with large displace-
ments and finite rotations of Reissner-Mindlin type, combined with a small-
strain elasto-plasticity model). A good agreement with the reference results can
be found.

4.5 Pinched cylinder at large elasto-plastic deformations

In this example, a thin cylinder bounded by two rigid diaphragms, loaded
with two concentrated forces at the mid section is analyzed. It is a typical and
demanding benchmark example to validate the elasto-plastic shell formulations,
see e.g. [8, 10, 2, 6, 53]. The geometry and boundary conditions of the problem
are shown in Figure 16. The material parameters taken from [2] are E = 3000,
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Figure 11: Pinched hemisphere at large elasto-plastic deformations. (a-f) Hard-
ening variables at various loading and unloading stages on the deformed config-
uration. (a-c) Loading stages at displacement 2.54, 5.34, 9.6 x 10 mm and (d-f)
unloading stages at 9.26, 6.73, 2.8 x 10 mm. The displacements correspond to
point A.

Point B                                            Point A

KL shell

2.7
x 10Displacement [mm]

Figure 12: Pinched hemisphere at large elasto-plastic deformations. Load-
displacement curves (displacements of the points of application of the load in
the load direction at points A and B). Reference curve [47].
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Figure 13: Collapse of Scordelis-Lo roof at large elasto-plastic deformations.
Geometry. Dimensions in mm.

Figure 14: Collapse of Scordelis-Lo roof at large elasto-plastic deformations. (a-
f) Hardening variable at various loading stages on the deformed configuration
at u = 0.05, 0.75, 1.0, 1.25, 1.5, 2.5 x 1000 mm. The displacements correspond
to point A.
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Figure 15: Collapse of Scordelis-Lo roof at large elasto-plastic deformations.
Load-displacement curves. Reference curve [10].

Figure 16: Pinched cylinder at large elasto-plastic deformations. Geometry and
boundary conditions.

ν = 0.3 and linear hardening law R(α) = 24.3 + 300α. Note that the units of
geometric dimensions and material parameters are consistent. Due to symme-
try, only one quarter of the shell is modeled and the spatial discretization is
performed with 1024 elements. Arc-length control is adopted.

Figure 17 reports the evolution of the hardening variable at various loading
stages on the deformed configurations. As can be observed, the structure un-
dergoes large displacements, severe relative rotations, large strain warping and
buckling during the loading process. The corresponding load-deflection curves
are given in Figure 18 along with the results taken from [53] (which are obtained
from the mixed displacement-shear strain KL shell element coupled with finite
strain plasticity), and again, good agreement of the proposed formulation with
the reference solution can be observed.
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Figure 17: Pinched cylinder at large elasto-plastic deformations. (a-i) Hardening
variable at various loading stages on the deformed configuration at u = 59.85,
102.19, 132.75, 165.65, 199.27, 229.98, 262.73, 299. (i) Top view at u = 299.
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Figure 18: Pinched cylinder at large elasto-plastic deformations. Load-
displacement curves. Reference curve [53].
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Figure 19: Twisted cylinder at large elasto-plastic deformations. Geometry and
loading conditions. Dimensions in mm.

4.6 Twisted cylinder at large elasto-plastic deformations

Finally, we simulate twisting of a cylinder with the boundary and loading
conditions as illustrated in Figure 19. We consider two cases, (a) torsion load
and (b) combined torsion and axial load. The material parameters are the same
as in example 4.2. In both the cases, the structure is discretized with 4000
elements. The calculation is performed with displacement control. For both
cases, in the simulation, a geometric imperfection is introduced in center in a
similar way as suggested in [20].

For both cases, a series of snapshots with the hardening variable plotted
on the deformed configuration at several loading stages are shown in Figure 20
(a-f). The curves in figure 21 plot the angle of twist against the norm of the
total displacement, where an applied axial displacement is given on the right
vertical axis for case (b). Note that the applied loads are chosen such that no
self-contact occurs.

5 Conclusions

We have presented an isogeometric thin shell formulation for large-strain
elasto-plastic analysis. It is based on a stress-based approach, where the con-
stitutive equations are evaluated at different integration points through the
thickness. It is important to note that the thickness integration does not im-
ply discretization through the thickness. Instead, only the shell midsurface is
discretized. Since Kirchhoff-Love kinematics is assumed, the formulation is also
rotation-free, such that the discrete formulation has only three degrees of free-
dom per node, namely the x, y, z displacement of the midsurface, resulting in
a very efficient element formulation. Due to the chosen stress-based approach,
general 3D solid constitutive models can be employed. In this paper, we em-
ployed classical J2 plasticity with isotropic hardening, but other models could
be readily used. Within such a stress-based approach, care has to be taken
that the plane stress condition is not violated. This is obtained by iteratively
updating the thickness stretch, which is done at the integration points. We have
performed several numerical examples and compared the results with available
reference results from literature and with those obtained from fully 3D solid
computations. These tests confirm the accuracy, stability, and efficiency of the
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Figure 20: Twisted cylinder at large elasto-plastic deformations. (a-e) Hard-
ening variable at various loading stages on the deformed configuration at twist
angle of 5, 10, 20, 30, 66.25 degrees. (f) Final stage at twist angle of 108.25
degrees.

90

120

60

30

7.5

10

5

2.5

A
x

ia
l 

d
is

p
la

ce
m

en
t

[d
eg

re
es

]

Figure 21: Twisted cylinder at large elasto-plastic deformations. Angle of twist-
displacement curves.
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proposed method.
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Appendix A. Time integration of elasto-plastic constitutive equations
at finite strains

Solution of the elasto-plastic constitutive eqs. (11) and (12) requires a time
integration scheme, which is outlined as follows. The evolution equations (flow
rule and hardening law) can be integrated with the backward Euler scheme,
obtaining

Cp−1

n+1 = Cp−1

n − 2

3
∆λtr[be

n+1]F−1
n+1nn+1F

−T
n+1 ,

αn+1 = αn +

√
2

3
∆λ ,

(40)

with nn+1 =
τdev,n+1

‖τdev,n+1‖ and ∆λ > 0 as the incremental plastic multiplier. The

subscripts (·)n and (·)n+1 define the values of (·) at tn and tn+1, respectively.
The Kuhn-Tucker conditions must be enforced at all times and at tn+1 they
read

f(τdev,n+1, αn+1) = ‖τdev,n+1‖ −
√

2

3
R(αn+1) ≤ 0 ,

∆λ ≥ 0, f(τdev,n+1, αn+1) ≤ 0, ∆λf(τdev,n+1, αn+1) = 0 .

(41)

In order to solve (40) while satisfying (41), the classical elastic predictor and
plastic corrector (return-mapping) algorithm outlined in [33, 34] is adopted,
which is summarized in Table 1.

22



Isogeometric Kirchhoff-Love shell formulation for elasto-plasticity

Elastic predictor: Given Fn, Cp−1

n and αn at tn and ∆F

(1) Compute trial elastic stress:

F n+1 = J
−1/3
n+1 Fn+1 Jn+1 = det[Fn+1] be,tr

n+1 = F n+1C
p−1
n FT

n+1

τ tr
dev,n+1 = µ dev[be,tr

n+1] τ tr
vol,n+1 = κ

2

(
J2
n+1 − 1

)
I

(2) Check plastic admissibility:

If f tr
n+1 =

∥∥∥τ tr
dev,n+1

∥∥∥−√ 2
3R(αn) ≤ 0

then (elastic process) set (·)n+1 = (·)tr
n+1 and exit

else (plastic process) go to (3)

(3) Plastic corrector (Return mapping):

Solve the nonlinear scalar equation for ∆λ > 0

f tr
n+1 =

∥∥∥τ tr
dev,n+1

∥∥∥−√ 2
3R(αn +

√
2
3∆λ)− 2

3∆λµtr[be,tr
n+1] = 0

Update the state variables

τdev,n+1 = τ tr
dev,n+1 − 2

3∆λµtr[be,tr
n+1]ntr

n+1 τvol,n+1 = τ tr
vol,n+1

σn+1 = 1
J {τvol,n+1 + τdev,n+1} ntr

n+1 =
τ tr
dev,n+1

‖τ tr
dev,n+1‖

Cp−1

n+1 = Cp−1

n − 2
3∆λtr[be,tr

n+1]F−1
n+1n

tr
n+1F

−T
n+1

αn+1 = αn +
√

2
3∆λ

Sn+1 = Jn+1F
−1
n+1σn+1F

−T
n+1

Compute the consistent elastoplastic tangent moduli: Table 2

Table 1: J2-plasticity at finite strains. Elastic predictor/return-mapping algo-
rithm [30, 33, 34].
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• Scaling factors:

f1 = 1 + R
′

3µ̄ f2 =
[
1− 1

f1

]
2
3

‖τ tr
dev,n+1‖
µ̄ ∆λ n = ntr

n+1 µ̄ = 1
3µtr(be)

δ1 = 2µ̄∆λ

‖τ tr
dev,n+1‖

δ2 = 1
f1
− δ1 + f2 δ3 =

[
1
f1
− δ1

] ‖τ tr
dev,n+1‖
µ̄

• Spatial elasticity tensor ce,tr
n+1:

c
e,tr
n+1 = 1

J

[
c

e,tr
vol,n+1 + c

e,tr
dev,n+1

]
c

e,tr
vol,n+1 = κ0

[
J2I⊗ I− (J2 − 1)II

]
c

e,tr
dev,n+1 = 2µ̄IId − 2

3

[
(τ tr

dev,n+1 ⊗ I) + (I⊗ τ tr
dev,n+1)

]
• Spatial consistent tangent moduli cn+1:

cn+1 = 1
J

[
c

e,tr
vol,n+1 + c

e,tr
dev,n+1(1− δ1)− 2µ̄δ2n⊗ n− 2µ̄δ3n⊗ dev[n2]

]
• Material consistent tangent moduli C:

C = JF−1F−1cF−1F−1

Table 2: J2-plasticity at finite strains. Consistent elasto-plastic tangent moduli
for the return mapping algorithm [30, 34] where II is the fourth-order symmetric
identity tensor and IId is the deviatoric projection tensor defined as IId =
II− 1

3I⊗ I.
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