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Abstract— This paper presents a modeling technique and
a controller for an underactuated crane payload. The crane
payload is modeled as a bifilar pendulum. The payload is
attached to a sheave block, such that a cable can freely run to
either side. This configuration is often used in different types
of cranes, including offshore cranes. To achieve asymptotic
stability in the absence of damping, we propose a controller
based on an energy approach and the passivity properties of
the system. We prove stability of the system with the proposed
controller using LaSalle’s invariance principle.
The control performance is studied in the numerical sim-
ulations. The simulation results show that all the states of
the closed-loop system with coupled sway and skew dynamics
converge to the origin.

I. INTRODUCTION

Cranes are used in various hoisting operations both on-
shore and offshore. The motion of the crane and external
forces, such as waves and wind, induce payload oscillations.
The motion of the payload can be classified into sway oscilla-
tions and torsional oscillations. The torsional oscillations are
also referred to as skew motion in recent publications ([1],
[2], [3], [4]). The growth of both types of oscillations causes
great risk for the safety of personnel and other equipment. In
order to facilitate safe and efficient crane operations several
researchers have focused on the control of the sway and skew
motion of crane payloads. In this paper we model the payload
as a bifilar pendulum and derive a control law for the sway
and skew motion.

A mass suspended by two cables is known as a bifilar
pendulum. In 1967 Kane derived a full nonlinear dynamical
model of a bifilar pendulum [5]. Similar bifilar or extended
four-cabled pendulum models are used for the dynamic
modeling of crane payloads. In practice a payload is often
suspended by two cables running through a sheave block or a
spreader with the sheaves attached to the payload, see Fig. 1.
This bifilar arrangement allows for a lower capacity winch,
which reduces the cost of the crane. The field of dynamics
and control of cranes with a payload is well-presented in
the review paper [6]. A typical assumption in the literature
is that the bifilar pendulum can be modeled as a simple
spherical pendulum with a lumped mass, which means that
the skew dynamics are not included. Based on [6], it can
be concluded that the research on crane payloads modeled
as a simple spherical pendulum is dominating in the field.
However, in [7] the authors model a planar Maryland Rigging
system and derive a control law for the sway motion. A
Maryland Rigging system is a crane payload configuration
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Fig. 1. An underactuated bifilar cart-payload system. A spreader with
sheaves is rigidly attached to the payload. The red arrows indicate actuated
DOFs and the black arrows indicate unactuated DOFs.

where the payload is modeled as a double pendulum. The
top pendulum is bifilar with a sheave at the bottom end of
the cable as in Fig. 1. The lower pendulum in this system
is planar or spherical. In such configuration the length of
each cable is dependent on the payload sway angle (see
[7]). Control of the spatial sway motion of the lumped mass
in a Maryland Rigging configuration is investigated in [8].
Another configuration of a bifilar payload with parallel cables
is presented in [9] and [10], where the authors model the
skew dynamics and derive a controller for the skew motion,
using a skew actuator device located in the spreader. In [1]
a similar actuator device in the spreader (as in [9]) for a
bifilar payload with parallel cables is modeled. The authors
derive a controller for skew orientation adjustment during
the container hoisting operations in harbours. An alternative
crane configuration is a container gantry crane with a payload
suspended by four cables. This system is dynamically similar
to a bifilar pendulum. The importance of the skew and sway
motion coupling for container crane systems is highlighted
in [11] and [12], where the authors derive a kinematic and
dynamical model of the container crane payload. A model-
based PID controller for the container crane payload is
presented in [13] and a fuzzy control strategy for the similar
configuration is presented in [2]. An input shaping technique



for controlling the skew motion, based on the 3D dynamics of
the payload, is proposed in [3] and [14]. The authors utilize
a separate actuator to control the length of each of the four
cables. A gantry crane with two carts, each hoisting one end
of the container, for the simultaneous sway and skew control
is presented in [4].

An energy-based approach is often used for the control of
pendulums or other underactuated systems. Often researchers
use this approach for the stabilization of a pendulum at
the unstable equilibria, for example [15], [16], [17], [18].
Alternatively, a passivity-based controller minimizing the
oscillations around the stable equilibria of a planar pendulum
is presented in [19]. In [20] several passivity-based con-
trollers that asymptotically regulate the planar gantry position
and the payload angle are derived. In the field of robotics
an energy-based control approach is used for asymptotic
stabilization of robotic manipulators with flexible joints [21],
[22]. It might not be obvious, but a mathematical model of
a manipulator link with a flexible joint is similar to the one
of a pendulum attached to an actuated cart. The link motor
resembles the cart (actuated part), while the link itself re-
sembles the pendulum (unactuated part). The flexible spring
element in the joint has the same role as an equivalent spring
stiffness of the pendulum due to the displacement from the
vertical position. Flexible joint manipulators are discussed in
[21] and [22], where the authors derive simple PD controllers
with gravity compensation for a manipulator with flexible
joints. The derived controller only needs feedback from the
motor to asymptotically stabilize the link about the desired
position.

As it has been discussed in [1], [9] and [10], for some
applications of the bifilar payload configuration it is im-
portant to consider the skew dynamics. In the case when
there is a demand for faster hoisting operations, a moving
crane will also induce the sway motion of the payload. A
control problem of such combined sway and skew motion has
been highlighted and discussed for the container payloads
suspended by the four cables [11], [12]. However, to the
best of our knowledge, this problem for the bifilar payload
configuration has not been discussed in the literature before.
Therefore, we want to address the control problem of the
combined sway and skew motion for a bifilar payload
configuration.

In this paper we present a mathematical model of the cart-
payload system, where the payload is modeled as a bifilar
pendulum. The physical payload configuration is similar to
the upper pendulum of the Maryland rigging system [7],
where a cable can run over the sheave. We consider a case
when a sheave block is attached to the payload (Fig. 1).
Additionally, we include the skew dynamics, which is mod-
eled based on the method proposed in [9]. We also present
an energy-based control law asymptotically stabilizing the
origin of the system. The derived PD controller with gravity
compensation only needs a feedback input from the cart.

This paper is organized as follows. In Section II the
model assumptions, kinematic and dynamical modeling of
the system are presented. In Section III we present derivation
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Fig. 2. To the left: The origin of Frame 1 is attached at the center of
gravity (CoG) of the cart . The origin of Frame 3 is attached at the CoG
of the payload. Both frames follow motion of the bodies. To the right: the
spherical sway of the payload is given by the angles φ and ψ . The skew
rotation of the payload is given by the angle ϑ .

of the control law and the stability proof. In Section IV we
show the results of the numerical simulations and in Section
V we provide the conclusions.

II. DYNAMIC MODELLING

In the first part of this section the kinematics of the
system is defined. Then the dynamical equations of motion
are derived using the Euler-Lagrange equation.

A. Kinematic modeling

As shown in Fig. 2 and 3, the crane system consists of
two bodies: a gantry crane cart and a crane payload with the
sheaves attached. The cable goes down from the cart towards
the payload, where it bends around the sheaves and then goes
back to the cart, where it is anchored. The sheave block is
rigidly attached to the payload.

The payload can be modeled as a rectangular beam with
the cross-sectional area ap and the length lp. The center of
gravity (CoG) of the payload is located in the point E (Fig.
2). The cart can also be modeled as a rectangular beam with
the cross-sectional area ac and the length lc. The CoG of the
cart is located in the point B (Fig. 2).

The position of the CoG of the cart is described by
three orthogonal translations, given by the coordinate vector
r∈R3. The orientation of the cart is described by the rotation
angle α about the z axis. The motion of the payload is
described by the sway angles: ψ about the y1 axis, φ about
the x2 axis and the skew angle ϑ about the z2 axis. The
following coordinate frames are used in the model: the fixed
inertial frame is defined as Frame 0, the cart fixed body frame
is Frame 1, the intermediate frame rotated by φ and ψ from
the cart fixed body frame is Frame 2 and the payload fixed
body frame is Frame 3. The rotation matrix from Frame 0
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Fig. 3. Kinematic definitions

to Frame 1 is given by

Rr = R0
1(α) = Rz(α). (1)

The rotation matrix from Frame 1 to Frame 2 is given by

R1
2(φ ,ψ) = Ry(ψ)Rx(φ). (2)

The rotation matrix from Frame 1 to Frame 3 is given by

Rθ = R1
3(θθθ) = Ry(ψ)Rx(φ)Rz(ϑ). (3)

The matrices Rx(·), Ry(·) and Rz(·) are the orthogonal
rotation matrices about the x, y and z axes respectively.
The position of the CoG of the cart is given in the inertial
frame as

r =
[
x y z

]T
. (4)

The vector of pendulum rotations is given by

θθθ =
[
φ ψ ϑ

]T
. (5)

The total vector of generalized coordinates is then given by

q =
[
θθθ

T rT α
]T

. (6)

In practice the crane will not be operated under the conditions
where the sway or the skew becomes too large, as this may
cause damage to the payload or risk of personnel injury.
Therefore, a reasonable domain of interest for θθθ could be
limited to Dθ = {θθθ ∈ T3| |φ | ≤ π

6 , |ψ| ≤
π

6 , |ϑ | ≤
π

2 }, where
T3 = S1×S1×S1 is a Cartesian product of three circles.

The spatial position of an arbitrary point on the payload
in the inertial frame is given by

p1 = r+Rr(p1
m +Rθ p3

01), (7)

where the vector p3
01 defines the position of an arbitrary point

on the payload with respect to the payload CoG in Frame 3.
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Fig. 4. A displacement ed caused by the rotation of the payload is
negligible when h01 � h02, as the global x,y,z position of the payload is
still described with sufficient accuracy. The CoG of the payload is assumed
to be located between the sheaves in the point E.

The spatial position of an arbitrary point on the cart in the
inertial frame is given by

p2 = r+Rrp1
02, (8)

where the vector p1
02 defines the position of an arbitrary point

on the cart with respect to the cart CoG in Frame 1.
An exact mathematical model of a bifilar pendulum with

a sheave block could be rather complicated as it involves
modeling of the contact between the sheaves and the cable.
We propose a simplified model which is defined in a compact
matrix form, such that it is convenient to apply Lyapunov’s
stability theory for the design of an energy-based controller.
The assumptions in the derived model are based on the
discussion in the next paragraph.

As the sheave block is mechanically a hinge, an additional
payload rotation about the sheave block is possible (Fig.
4). When the length of the cable h01 is much larger than
the distance h02, then the global displacement ed caused
by the additional payload rotation will be relatively small,
compared to the displacement due to the sway. We can
simplify the equations of motion significantly by neglecting
this payload rotation, while the global position of the payload
is still described with sufficient accuracy. The assumption is
implemented by assuming that the payload always remains
perpendicular to the line BE (Fig. 4). Furthermore, the CoG
of the payload is assumed to be located between the sheaves
in the point E (Fig. 4). The list of the other assumptions is
presented below.
• If the pendulum is rotated by the angle ψ in the x1z1

plane (Fig. 3(a)), then the exact geometrical path of the
point E is an ellipse. However, when the focal length
of an ellipse AC is smaller than the minor semi-axis h0,
then for the small ψ values the elliptical path can be
quite accurately represented by a circle;

• When a cable runs over a sheave, the length of each
cable in the bifilar pendulum is different (Fig. 3). We
assume that both cables are attached to the sheave and
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Fig. 5. The variation of the distance DF due to δi angles is neglected, as
it is minor and has no significant influence on the dynamics.

the length of each cable l1, l2 is given by the function
of ψ;

• In Fig. 5 the distance DF = 2b is dependent on at
which angle the cable leaves the sheave. The variation
is assumed insignificant for the small sway angles.
Therefore, for any value of the angles δ1 and δ2 it is
assumed that DF = D′F ′ = 2b, where b is defined in
Fig. 3(a).

For the notations in the following derivations we refer to
Fig. 3. The distance a = BD = BF is given by

a =
√

h2
0 +b2. (9)

The angle β is given by

β = arctan
h0

b
. (10)

The cable lengths are given by the cosine rule as

l2
1 =a2 + c2−2accos(β −ψ),

l2
2 =a2 + c2−2accos(β +ψ).

(11)

The plane P (Fig. 3) is always normal to z2 axis (or, in the
other words, parallel to the x3y3 plane). The projection of c
on the plane P is given by

cp = cos(ψ)c. (12)

The cable projections on the plane P are given by

d2 = b2 + c2
p−2bcp cos(ϑ). (13)

The height projections of the skewed cables are given by

h1 =
√

l2
1 −d2, h2 =

√
l2
2 −d2. (14)

The mean of the hi values gives the distance from the point
B to the payload CoG

h = 0.5(h1 +h2). (15)

Then the position of the payload CoG is expressed in Frame
2 by

p2
m(θθθ) =

[
0 0 −h

]T
. (16)

Note that a superscript (·)2 in p2
m denotes that coordinates

are given in Frame 2. The vector p2
m can be transformed to

Frame 1 by
p1

m(θθθ) = R1
2p2

m. (17)

Note that if θθθ = 0, then p1
m(0) =

[
0 0 −h0

]T.

B. Differential kinematics and equations of motion

Both sway and skew motion contribute to the kinetic
energy in the system. The governing source of kinetic energy
of the skew motion is the rotation ϑ . The linear velocity of
the payload along pm due to the skew motion is relatively
small and the kinetic energy of that motion can be neglected.
The same assumption was made by the authors in [1] and
[9]. Mathematically this can be implemented by assuming

p2
m(θθθ)' p̃2

m =
[
0 0 −h0

]T
, (18)

and
p̃1

m(θθθ) = R1
2p̃2

m. (19)

Note that this assumption is only used for the calculation of
the kinetic energy. The potential energy is calculated using
the expressions given by (16) and (17).
The velocity of an arbitrary point on the payload is derived
by differentiation of (7) with respect to time

ṗ1(q, q̇) = ṙ+Rr(P+B)θ̇θθ +Br(p̃1
m +Rθ p3

01)α̇, (20)

where the new matrix notations are introduced as

P =
∂ p̃1

m

∂θθθ
, B =

∂ (Rθ p3
01)

∂θθθ
, Br =

∂Rr

∂α
. (21)

The velocity of an arbitrary point on the cart is derived by
differentiation of (8) with respect to time.

ṗ2(q, q̇) = ṙ+Brp1
02α̇. (22)

Equation (20) can be written in the matrix form as

ṗ1 =
[
L I N

]
q̇, (23)

where the matrices L and N are defined as

L = Rr(P+B), N = Br(p̃1
m +Rθ p3

01) (24)

and I is the identity matrix.
Equation (22) can be written in the matrix form as

ṗ2 =
[
0 I H

]
q̇, (25)

where the matrix H is defined as

H = Brp1
02. (26)

For the sake of simplicity the payload and the cart are
modeled as a slender rod. The mass of the cable is relatively
small and is neglected. The mass of the payload m1 is
uniformly distributed along the x3 axis. The mass of the cart
m2 is uniformly distributed along the x1 axis. The rotational
inertia of the payload about the x3 axis and the rotational
inertia of the cart about the x1 axis is equal to zero. In
the case when this inertia is significant it is straightforward
to extend the presented procedure for a 2D or 3D body
representation. As the payload is a slender rod, then p3

01 =

[x3 0 0]T. This leads to Rθ p3
01 = R〈1〉

θ
x3 and the matrix B

from (21) can be simplified to

B = B̄x3 =
[

∂R〈1〉
θ

∂φ

∂R〈1〉
θ

∂ψ

∂R〈1〉
θ

∂ϑ

]
x3, (27)



where the operator (·)〈i〉 defines the i-th column of a matrix.
As the cart is also modeled as a slender rod, then p1

02 =
[x1 0 0]T and the matrix H from (26) is simplified to

H = B〈1〉r x1. (28)

The kinetic energy of the payload is given by

T1 =
1
2

ρp

∫
V1

ṗT
1 ṗ1 dV1 =

1
2

q̇TM1q̇, (29)

where ρp is the payload material density and

M1 =ρpap

∫ 0.5lp

−0.5lp

LTL LT LTN
L I N

NTL NT NTN

 dx3. (30)

The kinetic energy of the cart is given by

T2 =
1
2

ρc

∫
V2

ṗT
2 ṗ2 dV2 =

1
2

q̇TM2q̇, (31)

where ρc is the cart material density and

M2 =ρcac

∫ 0.5lc

−0.5lc

0 0 0
0 I H
0 HT HTH

 dx1. (32)

The potential energy of the payload is given by

V1 = m1ge3(r+Rrp1
m) = m1ge3(r+p1

m), (33)

where e3 =
[
0 0 1

]
. Pre-multiplication of a column vector

with e3 returns the last element of the column vector.
The potential energy of the cart is given by

V2 = m2ge3r. (34)

The total kinetic, potential energy and the Lagrangian of the
system are given by

T =
2

∑
i=1

Ti, V =
2

∑
i=1

Vi, L = T −V . (35)

The Euler-Lagrange equation of motion is

d
dt

(
∂L

∂ q̇

)T

−
(

∂L

∂q

)T

= τττ, (36)

where τττ is the vector of input forces. By substitution of (35)
into (36) and performing derivations we get the equations of
motion, which are written as

M(q)q̈+C(q, q̇)q̇+G(q) = τττ, (37)

where M(q)=M1+M2, and the elements Ci, j of C are given
by

Ci j = ∑
k

∂Mi j

∂qk
q̇k−

1
2

∂Mk j

∂qi
q̇k. (38)

The vector of conservative gravitational forces is given by

G(q) =
(

∂V

∂q

)T

. (39)

The vector of input forces is given by

τττ =
[
0 0 0 τ1 τ2 τ3 τ4

]T
=
[
0T τττT

a
]T

. (40)

Note that only 4 of 7 states are actuated, so the system is
said to be an underactuated dynamical system.

III. ENERGY-BASED CONTROL

In this section we derive a controller using Lyapunov’s di-
rect method. The controller takes the form of a PD controller
with gravity compensation.

A. Controller design

The control task is to make the origin of the closed-loop
system an asymptotically stable (AS) equilibrium point.

The vector of generalized coordinates is partitioned into
actuated and unactuated parts as

q =
[
qT

u qT
a
]T

, (41)

where
qu =θθθ , qa =

[
rT α

]T
. (42)

The mass matrix and the matrix C are partitioned accordingly

M =

[
Muu Mua
Mau Maa

]
, C =

[
Cuu Cua
Cau Caa

]
, (43)

where Mau =MT
ua. The vector of gravity forces is partitioned

as
G =

[
GT

u GT
a
]T

, (44)

where the vector Gu has the property Gu(0) = 0 and the
vector Ga is constant and is given by

Ga =
[
0 0 g(m1 +m2) 0

]T
. (45)

We choose a Lyapunov function candidate (LFC) in the form

V (q, q̇) = T +
1
2

kPqT
a qa +Vu, (46)

where kP is a positive constant and T is defined by (35).
The function Vu is the potential energy of the pendulum due
to the displacement from the equilibrium, it is defined as

Vu(qu) = m1g(e3p1
m +h0), (47)

where e3 =
[
0 0 1

]
. From (16) and (17) we get that

e3p1
m(0) = −h0. For qu ∈ Dθ , where Dθ = {qu ∈ T3| |φ | ≤

π

6 , |ψ| ≤
π

6 , |ϑ | ≤
π

2 }, the function e3p1
m(qu) = −h >

−h0 ∀qu 6= 0. This shows that the function Vu is positive
definite. Consequently, the LFC is a positive definite function
with a defined minimum at the origin. As for the control of
flexible-joint manipulators in [22] the LFC is composed of
three components: the total kinetic energy of the system,
the re-shaped potential energy of the actuated part, and the
potential energy of the unactuated part.

Substitution of (35) and (47) into (46) gives

V =
1
2

q̇TMq̇+
1
2

kPqT
a qa +m1g(e3p1

m +h0). (48)

The time derivative of V along the trajectories of (37) is

V̇ = q̇TMq̈+
1
2

q̇TṀq̇+ kPq̇T
a qa + q̇T

u Gu, (49)

where
dVu

dt
=

∂Vu

∂qu
q̇u = q̇T

u Gu, (50)



given that from (33), (34), (35) and (47) we obtain

∂Vu

∂qu
=

∂V

∂qu
. (51)

Substitution of Mq̈ from (37) into (49) leads to

V̇ =q̇T(−Cq̇−G+ τττ)+
1
2

q̇TṀq̇+ kPq̇T
a qa + q̇T

u Gu. (52)

Using the skew-symmetric property of the matrix (Ṁ−2C),
(52) is simplified to

V̇ = q̇T(−G+ τττ)+ kPq̇T
a qa + q̇T

u Gu. (53)

From (39), (41) and (44) it follows that

q̇T
a Ga =q̇TG− q̇T

u Gu (54)

and from (40) and (41) it follows that

q̇T
τττ =q̇T

a τττa. (55)

By substitution of (54) and (55) into (53) we get

V̇ = q̇T
a (−Ga + τττa + kPqa). (56)

The control input τττa is chosen such that

−Ga + τττa + kPqa =−kDq̇a, (57)

where kD is a positive constant. By substitution of (57) into
(56) we get

V̇ =−kDq̇T
a q̇a ≤ 0. (58)

Equation (58) shows that the time derivative of the Lyapunov
function is negative semi-definite, thus the origin of the
closed-loop system is a stable equilibrium point. From (57)
the control input is expressed in the form of a PD controller
with gravity compensation

τττa =−kDq̇a− kPqa +Ga. (59)

From (58) it follows that the inequality V ≤ V (t = 0)
holds. That is the upper bound on V depends on the initial
conditions. From (46) it is noted that if V is upper bounded,
then (T +Vu) and qa are upper bounded.

B. Stability analysis

Asymptotic stability of the origin of the closed-loop sys-
tem is now proven using LaSalle’s invariance principle and
Corollary 4.1 in [23].

Theorem 1: Define D = {q ∈ R7 | qu ∈ Dθ}. Let Ω ⊂ D
be a compact bounded positively invariant set with respect to
(37) with the control law (59) and let the origin be the only
equilibrium point in D. Then every solution of the closed-
loop system (37), (59) started in Ω will approach the origin
as t→ ∞.

Proof: Define a compact positively invariant bounded
set Ω such that Ω = {D | V (q, q̇)≤V (t = 0)}. Define S such
that S = {Ω | V̇ (q, q̇) = 0}.

From (58) it follows that q̇a = 0 in S, consequently q̈a = 0
and qa = q̃a, where q̃a is a constant.

Provided that q̇a = 0, qa = q̃a and Ga are constants, from
(59) it follows that the input τττa = −kPq̃a +Ga is constant

in S. The force Ga (45) is a constant vertical force, which
exactly compensates the gravity force.

Assume that q̃a 6= 0 in S, then from (59) τai 6= 0 for i =
1,2,4 and τai 6= Gai for i = 3, which leads to a contradiction,
as a constant input will result in the motion of the cart. If
the cart moves, then q̇a 6= 0 and a solution trajectory leaves
S. Hence, the only case when a solution trajectory remains
in S is q̃a = 0.

We use the result qa = 0, q̇a = 0, q̈a = 0 and substitute the
values into (37). Then the first three equations of the system
in S are written in the matrix form as

Muu(qu)q̈u +Cuu(qu, q̇u)q̇u +Gu(qu) = 0 (60)

and the last four equations are written in the matrix form as

Mau(qu)q̈u +Cau(qu, q̇u)q̇u = 0. (61)

One can verify that the same equation as (60) can be derived
by following the procedure from Section II for a single-
mass system consisting of a bifilar pendulum without a cart
and without any nonconservative forces. This way it can
be shown that (60) has the properties: Muu is a symmetric,
positive definite matrix and the matrix (Ṁuu−2Cuu) is skew-
symmetric. Stability properties of (60) are analyzed using
Lyapunov’s direct method. We select the LFC as

V1(qu, q̇u) =
1
2

q̇T
u Muuq̇u +Vu, (62)

where Vu is given by (47). The derivative of (62) with respect
to time along the trajectories of (60) is

V̇1 = q̇T
u (Muuq̈u +

1
2

Ṁuuq̇u +Gu). (63)

Substitution of Muuq̈u from (60) into (63) and using the
skew-symmetric property of the matrix (Ṁuu−2Cuu) leads
to

V̇1 = 0. (64)

Equation (64) shows that the system (60) is conservative, so
the solutions of (60), started outside the equilibria, will be
periodic.

The system of all equations in (60), (61) will have a
nontrivial solution only if the solutions of (60) are also the
solutions of (61) and vice versa.

The first row of (61) can be explicitly written as

−cos(ψ)ψ̈ + sin(ψ)ψ̇2 =0,

For 0 < ψ ≤ π

6
: ψ̈ = k1ψ̇

2,

For − π

6
≤ ψ < 0 : ψ̈ =−k2ψ̇

2,

(65)

where k1,k2 > 0. One can verify that the solution of (65) is
nonperiodic, thus it is not a solution of (60). Consequently
the only solution satisfying both (60) and (65) is ψ(t) ≡ 0.
Now we substitute this result into the second row of (61)
and after the derivation we obtain

cos(φ)φ̈ − sin(φ)φ̇ 2 =0,

For 0 < φ ≤ π

6
: φ̈ = k3φ̇

2,

For − π

6
≤ φ < 0 : φ̈ =−k4φ̇

2,

(66)



where k3,k4 > 0. As the solution of (66) is also nonperiodic,
thus it is not a solution of (60). Consequently the only
solution satisfying both (60) and (66) is φ(t) ≡ 0. Now we
substitute this and the previous results into the fourth row of
(61) and after the derivation we obtain

ϑ̈ = 0. (67)

The solution of (67) is nonperiodic, thus it is not a solution
of (60). Consequently, the only solution satisfying both (60)
and (67) is ϑ(t)≡ 0.

From the conclusions followed by (64), (65), (66) and
(67) the only solution of the closed-loop system that can
stay identically in S is a trivial solution. Thus the solution
trajectories of the closed loop system (37), (59) approach the
origin as t→ ∞.

IV. SIMULATION RESULTS

In this section the performance of the closed-loop system
(37), (59) is studied in the simulations. The results for two
cases with different system parameters are presented.

A. Simulation Case I

In the first simulation case the load is initially displaced
by the angles φ = 0.16 rad and ψ = −0.24 rad. Note
that no initial skew rotation is applied, however the sway
motion eventually excites the skew motion. The other system
parameters are given in Table I. The simulation results
without active control (when kP = 0, kD = 0) are presented in
Fig. 6. The simulation results of the closed-loop system with
kP = 1400, kD = 7000 are presented in Fig. 7. The simulation
results show fast convergence to the origin of all the states
of the system with active control.

TABLE I
SYSTEM CONSTANTS FOR CASE I

Constant h0 b c m1 m2 lp lc
Value 10 m 0.25 m 1.0 m 10 t 1.0 t 2.0 m 2.0 m

B. Simulation Case II

In the second simulation case the load is also initially
displaced by the angles φ = 0.16 rad and ψ = −0.24 rad.
The only difference from Case I is that the payload rotational
inertia is much larger (note that lp = 6.0 m). The other system
parameters are given in Table II. The simulation results of the
closed-loop system with kP = 1200, kD = 9000 are presented
in Fig. 8. The simulation results show fast convergence to
the origin of the sway states and slower convergence of the
skew states of the system with active control. This behavior
is reasonable taking into account that the skew stiffness is
relatively low.

TABLE II
SYSTEM CONSTANTS FOR CASE II

Constant h0 b c m1 m2 lp lc
Value 10 m 0.25 m 1.0 m 10 t 1.0 t 6.0 m 2.0 m

The simulation results demonstrate fast convergence of
the sway states in both simulations with active control.
In Case II, where the rotational inertia of the payload is
larger, convergence of the skew states takes longer time. A
larger distance between the cables (parameters b,c) would
increase the skew stiffness in the system. This way the
convergence time for Case II could be improved. To support
the conclusions, the simulation results for Case II with the
larger cable distance and kP = 1200, kD = 9000 are given in
Fig. 9. The payload is again initially displaced by the angles
φ = 0.16 rad and ψ =−0.24 rad. The only difference from
Case II and the data given in Table II is that b = 2.5 m and
c = 5.0 m. As expected, the skew angle ϑ converges to zero
faster compared to the results in Fig. 8.

V. CONCLUSION

We have derived a simplified mathematical model of a
bifilar pendulum with a sheave block and we have derived an
energy-based controller, which asymptotically stabilizes the
origin of the system. A Lyapunov function was chosen based
on the system kinetic and potential energy, such that it has
a defined minimum at the origin. The stability analysis was
based on the LaSalle’s invariance principle and Corollary 4.1
in [23]. We have proven that all the states of the closed-loop
system approach the origin as the time goes to infinity.

Fig. 6. Simulation results for Case I without active control (kP = 0, kD = 0).
The pendulum is displaced by initial conditions φ = 0.16 rad and ψ =
−0.24 rad. The sway motion excites the skew motion ϑ and all the system
states continue to oscillate.

Fig. 7. Simulation results for Case I with kP = 1400 and kD = 7000. The
pendulum is displaced by initial conditions φ = 0.16 rad and ψ =−0.24 rad.
The skew motion ϑ is excited by the sway motion, however the proposed
controller ensures fast convergence of all states. The system kinetic energy
T and the value of the Lyapunov function V converge to zero.



We presented simulation results for two different cases.
The results showed fast convergence to the origin for the
payload with relatively low rotational inertia (Case I). Fast
convergence of sway states was also observed in the case of
the payload with larger rotational inertia (Case II), however
convergence of the skew state took longer time. If fast sway
and skew convergence is demanded for the payloads with
larger rotational inertia, then the skew stiffness should be
increased by increasing the distance between the cables.

A similarity between the presented system and a robotic
manipulator with flexible joints was noted. As in the ma-
nipulator case, the derived PD controller only required the
feedback input from the actuated part and ensured conver-
gence of all states. This similarity can give an indication
on which control methods can be applied for solving the
tracking problem.

Fig. 8. Simulation results for Case II with kP = 1200 and kD = 9000. The
pendulum is displaced by initial conditions φ = 0.16 rad and ψ =−0.24 rad.
The skew motion ϑ is excited by the sway motion. The proposed controller
ensures fast convergence of sway states and slower convergence of the skew
states. The system kinetic energy T and the value of the Lyapunov function
V converge to zero.

Fig. 9. Simulation results for Case II with the larger cable distance and
kP = 1200 and kD = 9000. The pendulum is displaced by initial conditions
φ = 0.16 rad and ψ =−0.24 rad. Compared to the results in Fig. 8, larger
distance between the cables gives faster convergence of the skew states.
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