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Introduction 1

1 Introduction

In the development of a petroleum reservoir, seismic data and observations
in wells are two types of data giving information about the rock proper-
ties and the fluids present in a reservoir. To integrate the information in
these observations with general geological knowledge and estimate the reser-
voir properties, it is natural to adopt a Bayesian formulation. Each type of
observed data is modeled by a likelihood function while the general geolog-
ical knowledge about the characteristics of the reservoir is quantified in a
prior distribution. The likelihood function is typically constructed by laws of
physics or other natural sciences. Seismic data are noisy and heavily blurred
in the vertical direction, and well observations are sparse in an early phase of
a reservoir development. This implies that the formulation of a realistic prior
distribution is crucial, as the information content in the available data is not
sufficient to dominate the properties of the posterior distribution. This is in
contrast to the typical situation in image analysis applications, where token
priors with totally unrealistic large scale properties often produce satisfactory
estimation results.

Ideally, we want to derive the properties of the posterior distribution in
an analytical form, but this is usually impossible in the case of reservoir
modeling. Therefore, we need to address this by numerical techniques, i.e.,
estimating properties of the posterior distribution by stochastic simulation.
The forms of the prior and likelihood models must therefore be chosen to
make sampling from the resulting posterior distribution possible.

For the specification of a prior, it has over the past years become common
to estimate a prior model for the spatial distribution of reservoir properties
from one or several training images. A training image can be outcrop data
from an area of a similar geological origin as the area under study, or it
can be hand drawn or computer-generated scenes believed to have similar
statistical properties as in the reservoir in focus for the study. The most
popular alternative for prior modeling is multiple-point statistics (MPS), see
for example Strebelle (2002) and Journel and Zhang (2006). MPS mod-
els aim at bridging the gap between physical realism and spatio-temporal
stochastic modeling and they are algorithmically defined. The distribution
of the estimated prior model is typically only implicitly defined through a
simulation process in which the nodes are visited and simulated in a random
order. Thus, it is infeasible in most cases to sample correctly from the re-
sulting posterior when using such a prior model. The literature regarding
MPS is focused on how to construct simulation algorithms that can repro-
duce observed data, but without conditioning on the data probabilistically
correct. This is not going along with the manner that can be used for the
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Bayesian setup with conditioning on observed data. To get a posterior that
we are able to sample from, we need to come up with prior models ensuring
an explicit expression is available for the posterior distribution, at least up
to a normalizing constant. Then Markov random fields (MRFs) and Markov
mesh models (MMMs) are two useful tools, see for example Kindermann and
Snell (1980) and Hurn et al. (2003) for introductions to MRFs, and Abend
et al. (1965) and Cressie (1993) for introductions to MMMs. Discrete MRFs
can be used to model available prior information about unobserved data of
a discrete variable. This prior is integrated with a likelihood function de-
scribing the relation between the unobserved and observed variables into a
posterior distribution, and this posterior is fundamental for making infer-
ence about the unobserved variables. However, the usefulness of discrete
MRFs is restricted by a computationally intractable normalizing constant.
This makes any likelihood-based parameter estimation difficult, and a fully
Bayesian approach where a prior is specified for the MRF parameters also
becomes computationally intensive. In contrast, the normalizing constant for
an MMM is computationally available, which makes the likelihood-based pa-
rameter estimation and a fully Bayesian approach for this model class much
easier than for MRFs. In the following, we discuss MPS, MRFs and MMMs
in more detail, and in particular express mathematically why we claim that
MMMs are the preferred prior in the situation discussed above.

2 Multiple-point statistics

Multiple-point statistics (MPS) are used to describe the relation between
multiple, spatially located points. In the relevant literatures, MPS is firstly
introduced by Guardiano and Srivastava (1993) and then developed by Stre-
belle (2002) for a more detailed simulation process. Caers (2001) and Ortiz
and Deutsch (2004) also propose variations of the MPS algorithm. There are
a number of different MPS techniques that have been proposed, but they own
an algorithmic core in common. In the following we introduce this common
essence in general.

Consider an m × n (m,n ≥ 1) lattice χ = {(i, j) : i = 1, . . . ,m; j =
1, . . . , n} and let v ∈ χ denote a node in this lattice. We associate a discrete
value xv to each node v ∈ χ. For an arbitrary set A ⊆ χ, we define xA to be
the set of values at the nodes corresponding to the elements of A, i.e., xA =
{xv : v ∈ A}, and use x = xχ for the values in the whole lattice.To simulate x,
MPS first draws a random visiting order of the nodes, (v1, . . . , vK) say, where
K = mn. Except for the first node v1, the value of node vk, 1 < k ≤ K can
be simulated if the values of all previous nodes v1, . . . , vk−1 are known. An
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?

Figure 1: Illustration of MPS simulation based on a template neighborhood
τ . The left figure shows one template neighborhood τ = {(i, j)| − 3 ≤ i, j ≤
3} \ {(0, 0)}, where the node (0, 0) is represented with � and all other nodes
are the elements of τ . The right figure shows the resulting MPS simulation
after 10 iterations in a 8 × 10 lattice where v11 = (5, 5) is the node with ?
and v1, . . . , v10 are represented by the nodes in gray. The black thick lines
are the borders of the translation of τ .

MPS neighborhood νvk with respect to a node vk ∈ χ is defined to be a subset
of the nodes simulated before v, i.e., νvk ⊆ {v1, . . . , vk−1}. It is common to
assume that the MPS neighborhood νvk is generated by a translation of a
template neighborhood τ by

νvk = (τ ⊕ vk) ∩ {v1, . . . , vk−1}, (1)

where τ ⊕ (i, j) = {(l + i, h+ j) : (l, h) ∈ τ)}. An example of τ and MPS
simulation process is illustrated in Figure 1. The figure on the left depicts a
template neighborhood τ = {(i, j)| − 3 ≤ i, j ≤ 3} \ {(0, 0)}, where the node
(0, 0) is represented with � and all other nodes are the elements of τ . The
right figure shows the resulting MPS simulation after 10 iterations in a 8×10
lattice where v11 = (5, 5) is the node with ? and v1, . . . , v10 are represented
by the nodes in gray. The black thick lines represent the boundaries of the
translation of τ , so there are six nodes in νv11 .

The values in x are simulated by firstly simulating xv1 from a p(xv1 |xνv1
),

then simulating xv2 from a p(xv2 |xνv2
), next simulating xv3 from a p(xv3 |xνv3

)
and so on until xvK is simulated from a p(xvK |xνvK

). Thereby, the joint
distribution in the whole lattice χ is given by

p(x) =
1

K!

∑
(v1,...,vK)

[
K∏
i=1

p(xvi |xνvi
)

]
, (2)
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where the sum is over all possible visiting orders for the nodes and the factor
1
K!

comes from the random visiting order. The next step is to decide, for an
arbitrary node v ∈ χ, the conditional probability distribution

p(xv|xνv), v ∈ χ. (3)

In MPS it is common to define (3) by scanning a training image for replicates
of xνv . This can be done under a prior assumption of stationarity. Let η
denote the set of all nodes in the training image and zu the value associated
to node u ∈ η. Note that the size of the training image can be the same
as that of the lattice χ or not. To estimate (3), the number of replicates of
xνv , denoted by n1, in η needs to be counted. A replicate should have the
identical geometric configuration and the same values, i.e.,

n1 =
∑
u∈η

(νv�v⊕u)⊆η

I (xνv = zνv�v⊕u) , (4)

where I(·) is the identity function and ν� (i, j) = {(l − i, h− j) : (l, h) ∈ ν}.
From the previous n1 replicates, the number of replicates n2 with zu equal
to xv also needs to be counted, i.e.,

n2 =
∑
u∈η

(νv�v⊕u)⊆η

I
(
xνv = z(νv�v⊕u)∩η, xv = zu

)
. (5)

Then the probability (3) is defined as

p(xv|xνv) =
n2

n1

. (6)

One should notice that the larger the size of νv is, the more specific the
configuration xνv is, and thereby we can find less number of replicates over
the training image for estimating (6). In addition, the distribution (3) may
be too specific to be estimated from the training image if νv is too large.
Therefore, some articles define modifications of the procedure above, see for
example Strebelle (2002) and Ortiz and Deutsch (2004).

If we use (2) as a prior and adopt the Metropolis–Hastings algorithm to
simulate from the resulting posterior distribution, it becomes computation-
ally infeasible to evaluate the acceptance probability. When putting (2) into
the expression for the Metropolis–Hastings acceptance probability, there will
be a ratio of the prior for the original value x to the prior for the proposed
value x′, i.e.,

p(x′)
p(x)

=

∑
(v1,...,vK)

[∏K
i=1 p(x

′
vi
|x′νvi )

]
∑

(v1,...,vK)

[∏K
i=1 p(xvi |xνvi

)
] , (7)



Markov random fields 5

where both of the sums are over all possible permutations of the nodes in χ.
This ratio does not cancel when computing the acceptance probability. Note
that in (7) the number of terms in the summation in the numerator equals
K! as well as that in the denominator. This number increases very fast as
K increases, so it is computationally intensive or infeasible to evaluate this
ratio in general cases. In the next section, we discuss the effect of using a
Markov random field prior in the same Bayesian formulation.

3 Markov random fields
In this section we introduce Markov random fields (MRFs) and discuss the use
of MRFs as prior in a Bayesian model. For general theory and applications
of MRFs, see for example Hammersley and Clifford (1971), Kindermann and
Snell (1980) and Hurn et al. (2003).

Markov random fields are a collection of undirected graphical models fre-
quently used in spatial statistics. We assume an undirected graph G = {χ, E}
where χ is defined as in Section 2 and E is a set of edges E ⊆ {{u, v}|u, v ∈
χ, u 	= v}. To each node v ∈ χ it is associated a discrete value xv. Following
the notation in Section 2, we let xA denote the vector of values for an arbi-
trary set A ⊆ χ and set x = xχ for all nodes in χ. The neighborhood with
respect to a node v ∈ χ, denoted by νv, in MRF is a set of nodes directly
connected to v in E , i.e., νv = {u : {u, v} ∈ E}. An element of νv is called a
neighbor of v. If all pairs of the nodes in a subset W ⊆ χ are neighbors, then
W is called a clique. A maximal clique ω is a clique that is not a subset of
another clique, and we denote by Ω the set of all maximal cliques of G. Based
on these concepts, x is an MRF with respect to G if the joint distribution
parameterized by θ, p(x|θ), fulfills the positivity condition p(x|θ) > 0 and
has the local Markov property

p
(
xv|xχ\{v}, θ

)
= p (xv|xνv , θ) , ∀v ∈ χ. (8)

The Hammersley-Clifford (1971) theorem states that an x that has a prob-
ability distribution p(x|θ) is an MRF with respect to G if and only if it can
be factorized over the maximal cliques of G, i.e.,

p(x|θ) = 1

C(θ)
· exp

{
−
∑
ω∈Ω

Φω(xω; θ)

}
, (9)

where C(θ) is a normalizing constant and Φω(xω; θ) a clique potential func-
tion for the maximal clique ω. In other words, the Hammersley-Clifford
theorem is equivalent to a sufficient and necessary condition with which a
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positive probability distribution can be represented by a Markov random
field.

Letting U(x; θ) =
∑

ω∈Ω Φω(xω; θ), the normalizing constant is expressed
as

C(θ) =
∑
x

exp {−U(x; θ)} , (10)

where the sum is over all possible scenes x. The number of terms in the sum
is thereby exponential in the number of nodes. In most cases C(θ) is therefore
not computationally available. When it comes to an MRF being used as a
prior, if we adopt the Metropolis–Hastings algorithm to simulate from the
resulting posterior distribution, the ratio of the normalizing constants will
cancel. Thereby,

p(x′|θ)
p(x|θ) =

exp {−U(x′; θ)}
exp {−U(x; θ)} , (11)

where x and x′ represent the current and potential new values, respectively,
is simple to evaluate. However, fitting an MRF to a given training image
is computationally intractable. The normalizing constant, C(θ), is a func-
tion of the parameter vector θ, so using the maximum likelihood principle
to estimate θ is computationally intractable. To resolve this problem, one
may estimate C(θ), as a function of θ, via Markov chain Monte Carlo simu-
lation, see for example Geyer (1991) and Tjelmeland and Besag (1998). Also
this process is, however, computationally intensive for models with large and
complex interaction structures and many model parameters. To be able to
fit also the neighborhood and interaction structure to a given training im-
age, not only the values of the model parameters, a Bayesian formulation
may be adopted. A prior for θ, and potentially also for the neighborhood
and interaction structure of the MRF, can be formulated. Considering the
training image as a sample from the MRF, one may fit the MRF to the train-
ing image by simulating from the resulting posterior distribution. However,
if adopting a Metropolis–Hastings algorithm for this one runs into trouble.
The Metropolis–Hastings acceptance probability will include a ratio of two
normalizing constants,

C(θ′)
C(θ)

, (12)

where C(θ) and C(θ′) are the normalizing constants of the current and po-
tential new MRFs, respectively. Standard Markov chain Monte Carlo can
therefore not be used to simulate from such a posterior distribution. Møller
et al. (2006), Murray et al. (2006), Walker (2011) and Lyne et al. (2015) de-
vice how to circumvent this problem by including an auxiliary variable and
Arnesen and Tjelmeland (2017) propose to obtain an approximate solution
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to the problem by replacing the MRF with a Markov mesh approximation.
All these procedures are, however, computationally intensive and to the best
of our knowledge it has not yet been demonstrated to work within reasonable
computation time when the training image requires a large neighborhood and
a complex interaction structure.

4 Markov mesh models
The class of Markov mesh models (MMMs) was introduced already in Abend
et al. (1965) and was later generalized by Cressie and Davidson (1998). An
example about how to fit an MMM is discussed in Stien and Kolbjørnsen
(2011). We introduce MMMs in this section and show that this type of models
can overcome the problems in the estimation of models and the simulation
conditional on data that we have mentioned in Sections 2 and 3.

We assume an m×n lattice with the same definition as in Section 2. For
MMMs, we assume a lexicographical numbering order of the nodes in the
lattice χ, from one to mn. To each node v ∈ χ it is associated a discrete
value xv. Following the notation in Sections 2 and 3, let xA denote the vector
of values for an arbitrary set A ⊆ χ and set x = xχ for all nodes in χ. For
each node v = (i, j) ∈ χ, the predecessor set ρv is defined to be

ρv = {(k, l) ∈ χ : nk + l < ni+ j}. (13)

The MMM is then based on the distribution of x given by

p(x) =
∏
v∈χ

p(xv|xρv). (14)

In addition, the MMM adopts the Markov assumption that

p(xv|xρv) = p(xv|xνv), (15)

where νv ⊆ ρv is called the sequential neighborhood. We assume that the
sequential neighborhood νv is a translation of a template sequential neigh-
borhood τ given by

νv = (τ ⊕ v) ∩ χ, (16)

where the operator ⊕ is the same as in Section 3. In the following assume
that the MMM in (14) is a binary model i.e., xv = 0 or 1 for all x ∈ χ, and
that the model is parameterized by θ = {θ(xνv) : v ∈ χ}. Without loss of
generality, the right-hand side of (15) can then be expressed as

p(xv|xνv , θ) =
exp{xv · θ(xνv)}
1 + exp{θ(xνv)}

, (17)
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where θ(xνv) is a parameter value depending on the configuration of xνv .
Note that we substitute p(xv|xνv) with p(xv|xνv , θ) in order to represent that
the model is parameterized by θ. Combining (14) with (15) and (17), the
expression for the MMM becomes

p(x|θ) =
∏
v∈χ

exp{xv · θ(xνv)}
1 + exp{θ(xνv)}

. (18)

When using an MMM as a prior, conditioning on data in the Bayesian set-
ting and adopting the Metropolis–Hastings algorithm to simulate from the
resulting posterior distribution, the acceptance probability will include the
ratio

p(x′|θ)
p(x|θ) =

∏
v∈χ

[
exp{x′v · θ(x′νv)− xv · θ(xνv)} ·

1 + exp{θ(xνv)}
1 + exp{θ(x′νv)}

]
, (19)

where the current and potential values are denoted by x and x′, respectively.
The product in (19) is over all the nodes in χ, so it is computational available
to evaluate it. When it comes to fitting an MMM to a training image, we can
first choose a prior distribution for the parameters θ and let (18) be the likeli-
hood function in the Bayesian setup, and then adopt the Metropolis–Hastings
algorithm to simulate from the resulting posterior distribution. Assume that
we choose a suitable prior p(θ) for θ so that when evaluating the acceptance
probability it is valid to compute the ratio of the prior for the potential new
MMM to that for the current MMM. The ratio of likelihoods is given by

p(x|θ′)
p(x|θ) =

∏
v∈χ

[
exp{xv · [θ′(xνv)− θ(xνv)]} ·

1 + exp{θ(xνv)}
1 + exp{θ′(xνv)}

]
, (20)

where θ and θ′ are the parameters for the current and potential new MMMs,
respectively. This ratio is feasible to compute since (20) has only one factor
for each node v ∈ χ.

5 Summary of papers
The ultimate goal of my Ph.D. work was to construct a stochastic spatial
model as prior when conditioning on real seismic data in the Bayesian setting
and to simulate from the resulting posterior distribution. For the reasons
discussed above we ended up using a Markov mesh prior. To focus mainly on
the methodological aspects and to simplify implementation and simulation,
we limited the attention to the binary case. We present our work in three



Summary of papers 9

papers. The papers can be read independently, but we recommend reading
paper I before papers II and III. The thesis is organized as follows.

In paper I, "Prior specification for binary Markov mesh models", we use
the Bayesian framework to fit a Markov mesh model (MMM) to a given
training image. We develop two equivalent parameterizations for the class
of MMMs and use these to formulate a prior distribution for all parts of
the specification of an MMM, namely the sequential neighborhood, the in-
teraction structure and the parameter values. Assuming the given training
image to be a realization generated from an MMM, we fit the MMM to the
training image by simulating from the resulting posterior distribution. To
sample from the posterior distribution we construct a reversible jump Markov
chain Monte Carlo algorithm, where we propose to add or remove one inter-
action in each step. We test the fitting procedure on two training images,
one with a very noisy pattern and the other with a more complex pattern.
When simulating realizations from the posterior models, the spatial patterns
in the training images are to a large degree reproduced. Not surprisingly, the
generated posterior models have larger sequential neighborhoods and more
complex interaction structures when using the training image with a more
complex pattern than when using the more noisy training image. The com-
putation time to generate one posterior model is acceptable for both training
images, but to explore the whole state space is computer intensive. It is
therefore of interest to consider how parallel computing can be used to make
the process more effective.

In paper II, "A multiple-try Metropolis–Hastings algorithm with tailored
proposals", we propose a novel Metropolis–Hastings (MH) algorithm with
multiple proposals tailored to the target distribution. The algorithm is based
on a directed acyclic graph in which one node, k say, represents the current
state and the remaining nodes represent proposed states. In this algorithm,
several new states are proposed in parallel and each of them is generated by
using the identical proposal distribution tailored to the target distribution.
Note that the new states are generated in parallel, so we use computing in
parallel implemented on the multiple cores of CPU. The MH algorithm is
based on two types of updates. The first type of update is generating new
states for all nodes except node k. The second type of update is generating a
new value of k. These two updates alternate in the algorithm. Experimental
tests are carried out based on the training images also used in paper I. The
simulation results involving the burn-in period and mixing for both training
images are promising, and the result for one training image is clearly better
than the corresponding result in paper I.

In paper III, "A Bayesian model for lithology/fluid class prediction using
a Markov mesh prior fitted from a training image", we construct a Bayesian
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model for the inversion of observed seismic data to lithology/fluid classes,
and study how the choice of prior distribution for the lithology/fluid classes
affects the inversion results. We compare two different prior choices. One
is a Markov random field prior with a first order neighborhood while the
other one is the Markov mesh prior, as discussed in paper I and paper II,
with a much larger neighborhood estimated from a training image. We use
the same linearized Gaussian distribution for the likelihood in both cases
and estimate the resulting posteriors by the Metropolis–Hastings algorithm.
The advantage of adopting the Markov mesh prior on the marginal posterior
probabilities for the lithology/fluid classes is modest, but observable. The
effect of the prior on the connectivity properties in the posterior realizations
is however much more larger. The larger neighborhood of the Markov mesh
prior enables us to identify connectivity better than the first-order neighbor-
hood Markov random field prior.
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