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We study the value of deterministic solutions, in particular their quality and upgradability, in addressing

stochastic network design problems, by analyzing their time-dependent formulations known as Scheduled

Service Network Design (SSND) problems in freight transportation planning. We study several problem

variants and models and investigate, for each case, the immediate quality of the deterministic solutions

stemming from the 50th and the 75th percentile of the demand distributions. We then show that for all

models, but in different ways, we are able to make effective use of parts of the deterministic solution,

confirming the value of the deterministic solution in the stochastic environment, even when the deterministic

solution itself performs badly.

We also investigate what makes the optimal stochastic solution better in the stochastic environment than

other feasible solutions, particularly those obtained by addressing deterministic versions of the problem.

We do this by quantitatively analyzing the structures of different solutions. A measurement scheme is

proposed to evaluate the level of potentially beneficial structural properties (multi-path usage and path-

sharing) in different solutions. We show that these structural properties are important and correlated with

the performance of a solution in the stochastic environment.
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1. Introduction

Network design is the methodology of choice to assist for a large gamut of issues related to

the tactical planning of operations for consolidation-based freight transportation carriers.

The so-called Scheduled Service Network Design (SSND) formulations aim at deciding

where, when, and how to offer transportation services to satisfy the demand for movement

among the terminals operated by the carrier, generated by multiple customers with diverse

products. The goal is to decide the selection, routing and scheduling of transportation

services, while balancing the operating costs and service quality. Network design problems

are NP-Hard for all but trivial cases and their combinatorial, mix-integer formulations are

difficult to address.

This is even more so when some parameters of the model are uncertain. In freight trans-

portation problems, the most commonly modeled uncertain phenomenon is demand. Its

uncertainty can be represented by a set of scenarios approximating a “known” demand

distribution (multi-dimensional in the case of multi-commodity or multi-source/sink prob-

lems). When the number of scenarios increases, the uncertainty of the demands is better

represented (assuming the scenarios are well constructed), but the corresponding model

will eventually become numerically unsolvable. One way out of this problem is to solve

the stochastic program heuristically. Examples can be found in, e.g., Hoff et al. (2010) and

Crainic et al. (2011).

In this paper, we do not try to develop another heuristic method for solving stochastic

problems. Instead, we seek to understand the value that deterministic solutions (i.e., solu-

tions from deterministic models) have in the context of stochastic service network design

problems. We believe the insights derived from this study can guide in the construction of

efficient heuristics for stochastic network design problems.

We investigate the quality of deterministic solutions in the stochastic environment, as

well as how such deterministic solutions can be used to construct better-performing solu-

tions to stochastic models. This is motivated by the fact that, compared to the “full”

stochastic model with all scenarios considered, it is usually much easier to solve a deter-

ministic counterpart, where all random elements take some fixed values, e.g., their means.

There are, therefore, situations when an optimal (or near-optimal) deterministic solution

can be found for a service network design problem, while the optimal solution to the

stochastic model cannot for numerical reasons. In these situations, it is useful to know
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whether it is possible to extract valuable information from the deterministic solution, and

how we can make use of such information in finding a good solution to the stochastic case.

We perform the study in the context of the SSND problem settings and formulations,

and aim to provide a comprehensive analysis with regards to the value of deterministic

solutions. Common to all SSND models are the time-dependent characteristics of services

and demands represented by a time-space network. Integer and continuous decision vari-

ables stand for the selection of services at particular time instants and the routing of

demand flows on the resulting network, respectively. We introduce several models with

fixed and variable (integer and continuous) capacity, as well as with and without resource-

management constraints. We investigate, for each model, the immediate quality of the

deterministic solutions stemming from the 50th and the 75th percentile of the demand dis-

tributions. We then explore the possibility of upgrading these deterministic solutions to

good solutions for the stochastic models. Finally, we show that for all models, but in dif-

ferent ways, we can make effective use of parts of the deterministic solutions to arrive at

good solutions to the stochastic models, confirming the value of deterministic solutions in

stochastic environments.

In addition, we seek to understand what structural features should a solution have in

order to perform better in a stochastic environment. We do this by examining the structural

differences between the optimal solutions to the stochastic models and the ones stemming

from their deterministic versions, and try to find out what makes a stochastic solution

behave better than its deterministic counterpart. Lium et al. (2007, 2009) have studied a

version of the stochastic service network design problem with fixed capacity and resource-

management constraints and indicate that certain structural features, such as multi-path

usage and path-sharing, offer better solutions when there are uncertainties in demand.

Inspired by these insights, we summarize and confirm these potentially beneficial features

for all the models introduced in this paper, and propose a measurement scheme to quantify

the level of such structural features for different solutions. Using the measurement scheme,

we may then see how the level of the potentially important structural features of a solution

is related to its performance in a stochastic environment, and thereby understand why and

how a deterministic solution may be upgraded to a good solution for the stochastic case.

The contribution of this paper is to provide a first attempt on a complete and compre-

hensive analysis of the quality and upgradability of deterministic solutions to stochastic
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scheduled service network design problems. Additionally, inspired by the potentially bene-

ficial structural features from Lium et al. (2007, 2009), we present a measurement scheme

to quantitatively show how a deterministic solution may be upgraded. These analyses

provide intuitive and easy to comprehend (and implement) insights that may better the

understanding for stochastic models in the service network design community, e.g., how

much does one lose by not using stochastic models and what kind of beneficial solution

characteristics should one look for when tackling a stochastic problem. For academics,

these insights may be incorporated into the development of a heuristic. For practitioners,

we offer several simple alternative means that decision makers may use to produce good

solutions in real applications where, most of the time, only deterministic models can be

solved.

This paper is organized as follows. In Section 2, some important issues in freight trans-

portation and service network design are reviewed. Section 3 introduces the stochastic

scheduled service network design problem and presents models for several problem set-

tings. We propose in Section 4 a set of comparison tests for the examination of quality and

upgradability of deterministic solutions. Section 5 introduces the problem instances and

presents the computational study. We then conclude in Section 6.

2. Literature Review

Transportation is an important domain of human activity. It supports and enables many

other social and economic activities and exchanges. Freight transportation, in particular,

is one of today’s most important activities. Demand for freight transportation reflects the

need to move goods between producers and consumers and requires a rather complex sys-

tem which derives from the fact that the distances separating them are often significantly

long. Crainic (2003) gives a general presentation of freight transportation players, ques-

tions, and problem classes. In an increasingly competitive environment, carriers seek to

offer reliable, high quality services to their customers at a lowest possible cost, and in the

mean time make a profit.

Transportation systems are often based on consolidation, where one vehicle or convoy

may serve more than one customer. So, in a system where demand for transportation is

represented by origin-destination (OD) pairs, freight of different OD pairs, with different

origins and destinations, are combined into common vehicles. This typically happens with
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railways, Less-Than-Truckload (LTL) motor carriers, container shipping lines and postal

services.

The underlying structure of a consolidation transportation-based system normally con-

sists of a large network of terminals and the transportation operations are hence usually

rather complex. This is in contrast to customized transportation, which provides dedicated

service for each OD pair. Consolidation-based transportation carriers usually operate so-

called hub-and-spoke networks to take advantage of economies of scale. In such systems,

low-volume demands are first delivered to an intermediate terminal or a hub to be grouped

and consolidated. High-frequency, high-capacity services are provided between the hubs,

and can thus allow a much higher frequency of service between all the OD pairs. How-

ever, routing through several intermediate terminals and hubs would inevitably result in

longer transport distances and more time spent at terminals and can sometimes cause

serious delays. There is a great deal of literature on the subject. Surveys are presented by

Christiansen et al. (2004, 2007, 2013) for maritime transportation, Cordeau et al. (1998)

for rail transportation, Crainic and Laporte (1997) and Crainic (2003) for land-based long-

haul transportation, Crainic and Kim (2007) for intermodal transportation, and Crainic

(2000) for service network design in freight transportation.

In order to satisfy the demand of customers more timely and reliably, consolidation

carriers operate a selection of services, each characterized by such as its route, vehicle

type, frequency, and capacity. Internally, services are often collected in an operational plan

(also referred to as load or transportation plan), generally accompanied by a schedule that

indicates departure and arrival times at the terminals of the route (Crainic and Kim 2007).

Service network design formulations are used to build such a (scheduled) transportation

plan for the next operating period.

Service network design problems address a set of major issues and decisions relevant for

consolidation-based carriers: the selection and scheduling of the services to operate, the

routing of freight for each OD pair and the consolidation operations at terminals. The goal

is to achieve profitable operations while providing timely and reliable services according to

customer expectations. The corresponding models usually take the form of network design

formulations. With the complicated interactions among system components and decisions,

as well as the trade-offs between operating costs and service quality, service network design
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models are very difficult to solve, and thus heuristics are usually the solution method of

choice.

Reviews on the formulation of service network design models are presented by Crainic

(2000, 2003), Delorme et al. (1988) and Cordeau et al. (1998). Efforts have been made

towards both static and scheduled service network design formulations. The former assume

a static demand throughout the whole planning period. The time dimension of the

service network design is then implicitly considered through the definition of services

and inter-service operations at terminals. Such models have been proposed for multi-

modal transportation (Crainic and Rousseau 1986, Crainic and Roy 1988); LTL trucking

(Roy and Delorme 1989, Powell and Sheffi 1983, 1986, 1989, Powell 1986, Lamar et al.

1990), express courier services (Grünert et al. 1999, Grünert and Sebastian 2000,

Büdenbender et al. 2000, Barnhart and Schneur 1996, Kim et al. 1999, Armacost et al.

2002), rail (Crainic et al. 1984, Keaton 1989, 1991, 1992, Newton et al. 1998), and shipping

(Christiansen et al. 2004) etc.

Scheduled service network design formulations include an explicit representation of move-

ments of freight in time and usually target the planning of schedules to support decisions

related to when services depart from origins and intermediate terminals. A space-time

network with a scheduling time line is usually used to represent the operations of such

scheduled service network systems. The representation of the physical network is repli-

cated at each time point. Temporal arcs then connect the same or different terminals

within two time-point representations to represent, respectively, holding activities at the

same terminal or actual movements of freight between terminals. The resulting mod-

els are similar to those of the static versions but on significantly larger networks due

to the time dimension. The additional constraints related to scheduling also contribute

to making this class of problems more difficult to solve than static versions. Such for-

mulations have been proposed for, e.g., LTL trucking (Farvolden and Powell 1991, 1994,

Farvolden et al. 1993), express courier services (Smilowitz et al. 2003), rail (Haghani 1989,

Gorman 1998a,b, Andersen et al. 2009a,b, Pedersen et al. 2009, Zhu et al. 2014) and nav-

igation (Sharypova et al. 2012). Meta-heuristics were proposed in most cases.

Another noteworthy issue is the consideration of resource management. In some applica-

tions in the freight transportation industry, the decision maker needs to take into account

resource management at the same time as designing the service network, especially when
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the management, distribution and maintenance of the resources represent a significant

part of the total cost. This might include moving empty vehicles, which follows from the

imbalances between the freight supply and demand in different regions and points of the

systems, resulting in imbalances between vehicle supplies and demands at the terminals.

To address these imbalances, empty vehicles must be delivered to terminals where they

will be needed to satisfy known or forecasted demand in the following time periods. These

repositioning operations usually carry major costs, but are normally dealt with at the

operational level of planning, after the network is decided (e.g., Dejax and Crainic 1987,

Cordeau et al. 1998, Crainic et al. 1989). Efforts have lately been dedicated to consider-

ing asset management requirements, including vehicle repositioning, at the tactical design

stage, in order to improve the overall performance of the system (e.g., Pedersen et al. 2009,

Andersen et al. 2009a,b, 2011, Lium et al. 2007, 2009, Bai et al. 2014).

Service network design problems have mainly been studied under the assumption that all

necessary information, particularly the demand as well as the cost and profit structure, is

available before the design decisions are made. It is a general understanding, though, that

in most cases, at the time when the transportation plan is made, the demand it will later

face is actually uncertain. This is traditionally not explicitly taken into account during

the design phase but postponed to be dealt with at the operational phase. Hence, most

papers use deterministic models. Demand is usually set to some point forecast of future

demand, computed through various forecasting methods or based on historical data (e.g.,

the “regular” demand of a “normal” week obtained by adjusting last-year’s demand with

this year’s input from the sales department).

Under normal circumstances, the expected quality of a solution derived from a stochastic

model is better than its deterministic counterpart when evaluated in the stochastic envi-

ronment. The reason is that, while it is optimal for one specific scenario, the deterministic

solution might be very bad in those scenarios where it is not optimal. See, for example,

Wallace (2000) and Higle and Wallace (2003) for discussions. And in most cases, the deter-

ministic design is feasible, but not necessarily optimal in the stochastic model. This badness

can be measured by “the Value of the Stochastic Solution” (Birge 1982), or VSS, repre-

senting the expected gains obtained from using the stochastic rather than the deterministic

solution in the stochastic environment. Previous studies have also shown that by explicitly

introducing stochastic demand, the solutions produced can be qualitatively different from
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those stemming from deterministic models, see for example Wallace (2000). However, there

are situations where the VSS is high, meaning that the deterministic solution behaves

badly in the stochastic setting, yet the deterministic solution shares some properties with

the corresponding stochastic solution. For example, Thapalia et al. (2011, 2012a,b) show

that for the single-commodity network design problem, certain structural patterns from the

deterministic solutions re-emerge in the stochastic solutions. Similar observations are made

in Maggioni and Wallace (2012) for a series of other problems. Lium et al. (2007, 2009)

also qualitatively study the structural changes in solutions after introducing uncertainty

to a version of the service network design problem, and show that more consolidation is

induced by the need to hedge against demand uncertainty. Traditionally, in consolidation-

based freight transportation, consolidation is seen as a way to accommodate the fact that

most vehicles would not be full with direct deliveries. Lium et al. (2009) show that consol-

idation, in addition, can achieve higher operational flexibility in a dynamic environment

where future demands are unknown, without requiring too much extra services.

3. The Models

In this paper, we consider a stochastic, multi-commodity SSND problem, in which a peri-

odic, cyclic schedule is built for a number of commodities (OD pairs). We present, in

this section, four models with fixed and variable capacity, and with or without resource-

management constraints. Section 3.1 describes the problem and the notation, while Sections

3.2 and 3.3 present mathematical formulations with fixed and variable capacity, respec-

tively. Section 3.4 discusses the resource-management considerations.

3.1. Problem Setting and Notation

The stochastic SSND problem is set up on a space-time network consisting of nodes and

arcs over a given schedule length (e.g., a week), divided into T equal-length time periods

(e.g., a day) starting at time points t= 0, ..., T −1. We denote by T the set of time points.

The schedules are assumed to be cyclic (that is, time period 1 follows time period T ) and

repetitive for a given planning horizon (e.g., a month or a season) for which the current

resource and demand conditions of the system do not change. Such schedule repetition

is quite commonly seen in many types of transportation service networks, such as public

transit, intercontinental liner shipping and inter-modal rail. See Andersen et al. (2009a,b),

Pedersen et al. (2009) and Zhu et al. (2014) for examples of various service network design

problems with repetitive schedules.
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The nodes in the space-time network stand for terminals at different time points and the

arcs represent services for moving commodities between these terminals across time, as well

as activities of holding vehicles and freight at a terminal (the holding arcs). LetN represent

the set of terminals. In a space-time network, these terminals are replicated at each time

point. We denote by A the set of arcs between the nodes among which the selection for

the final network is to be made. An arc a= (i, j; t) represents the service departing from

terminal i at time point t and arriving at terminal j, ∀i, j ∈N , t= 0, ..., T −1, i 6= j; or the

holding activity at terminal i from time point t to the next if i= j. We use lij to represent

the arc length between terminals i and j which can take one or more time periods depending

on the physical distance between the two terminals if i 6= j, and equals one if i = j for

all i ∈ N . Furthermore, it is assumed that the handling of freight at terminals happens

within the time periods, which implies no time delay caused by terminal operations such

as unloading, sorting, consolidation and loading activities.

= T-1 = 1= 0 = 2

Figure 1 An example illustrating possible arcs (represented by dashed arrows) that can be set up at t= T − 1,

i.e., the last time point of the repetitive and cyclic schedule.

Figure 1 shows an example with three terminals and a repetitive and cyclic schedule over

T time periods, and illustrates the possible arcs that can be set up at t= T − 1, i.e., the

last time point of the cyclic schedule. For example, a service departing from Terminal-1

at t= T − 1 takes three time periods and arrives at Terminal-3 at t= 2 of the subsequent

scheduling cycle. Three holding arcs, joining two representations of the same terminals at
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two consecutive time points, are also displayed in the example. Note that the cyclic feature

of the space-time network is illustrated by letting the services leap over the bold division

line in Figure 1.

Let K be the set of commodities (OD pairs) representing the origin-to-destination

demands for transporting a certain quantity of freight between the respective origin and

destination terminals within a certain number of time periods. For each k ∈K, the trans-

port requirements of commodity k are defined by: ok, dk ∈ N , its origin and destination

terminals; σk, τk ∈ T , the time point it becomes available at its origin terminal and the time

point it must be present at its destination terminal; and its demand, which is described

by a continuous distribution. To be able to solve exactly the stochastic problems, the

multi-dimensional demand distribution is approximated by a finite set of scenarios S. A

probability ps is assigned to scenario s∈ S, with
∑

ps = 1. We use δsk to denote the demand

for commodity k in scenario s; thus a scenario is |K|-dimensional and contains one demand

realization for each commodity.

There is a set up cost fij;t associated with opening an arc (i, j; t). Also, we need to pay

for commodity flows, that is, the transportation and storage of the commodities. Thus cost

eij;t;k associated with arc (i, j; t) represents the unit flow cost incurred to move commodity

k or have it wait at the terminal. Additionally, to account for demand not satisfied by the

services, we denote by bk the (usually much more expensive) unit ad hoc handling cost of

commodity k whenever part (or all) of its demand cannot be satisfied by regular services.

Note that such ad hoc handling can represent, depending on the application, outsourcing

the unmet demand to some third-party carrier, delivering it by a different mode (outside the

model), or simply represent a penalty for delaying or rejecting the demand. The additional

capacity provided by ad hoc handling can be represented by ad hoc arcs that do not carry

fixed costs.

The goal is to solve the stochastic optimization problem in order to find a good, if

not optimal, solution that represents a periodic schedule which minimizes the expected

total system cost. This corresponds to a two-stage structure in the decision process. For

a detailed discussion on two-stage settings in modeling with stochastic programming,

see Kall and Wallace (1994) and King and Wallace (2012). The first stage decisions, i.e.,

the selection of services or “the design”, are made before the realization of the random
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demands, where a fixed cost must be paid whenever a service is selected (set up), repre-

senting its make up or maintenance costs. Once these decisions are made, the design is used

repeatedly to satisfy the observed realization of random demands. So the second stage is

characterized by distributing commodity flows using the selected services with additional

capacity described by the ad hoc arcs. The overall objective is thus to minimize the cost

of the first stage design plus the expected operational and ad hoc handling costs when

applying such a design to the demand realizations.

3.2. The Fixed Capacity Model

We first present the formulation with fixed (but not necessarily identical) capacity for every

arc. A fixed capacity hij;t is therefore associated with arc (i, j; t). Let Vij;t ∈ A represent

the {0,1} arc selection decision variables, and Y s
ij;t;k the flow variables representing the

continuous flow of commodity k on arc (i, j; t) in scenario s. Furthermore, let Zs
k represent

the continuous volume of commodity k that uses ad hoc handling in scenario s.

Due to the cyclic nature of the network, the mth time point prior to time t can be

denoted as:

t⊖m= (t−m+T ) mod T (1)

The two-stage fixed-capacity formulation of the stochastic SSND problem can then be

written as:

min
∑

i∈N

∑

j∈N

∑

t∈T

fij;tVij;t+
∑

s∈S

ps

(

∑

i∈N

∑

j∈N

∑

t∈T

∑

k∈K

eij;t;kY
s
ij;t;k +

∑

k∈K

bkZ
s
k

)

(2)

∑

i∈N

Y s
ij;t⊖lij ;k

−
∑

i∈N

Y s
ji;t;k =















δsk −Zs
k, if j = dk and t= τk

−δsk +Zs
k, if j = ok and t= σk

0, other

∀j ∈N ,∀t∈ T ,∀k ∈K,∀s∈ S

(3)

∑

k∈K

Y s
ij;t;k ≤ hij;tVij;t ∀i, j ∈N ,∀t∈ T ,∀s∈ S (4)

Vij;t ∈ {0,1} ∀i, j ∈N ,∀t∈ T (5)

0≤Zs
k ≤ δsk ∀k ∈K,∀s∈ S (6)

0≤ Y s
ij;t;k ≤ δsk ∀i, j ∈N ,∀t∈ T ,∀k ∈K,∀s∈ S (7)
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The objective function (2) minimizes the costs for opening services plus the expected

costs for moving and holding commodities, as well as using ad hoc capacity. Constraints

(3) represent the conservation of flow for commodities. Constraints (4) make sure the

total flow on an arc does not exceed its capacity. Constraints (5) impose the integrality

requirements on the design variables. Constraints (6) limit the use of ad hoc capacity to

the observed actual scenario demand, while constraints (7) limit the flow of a commodity

to its corresponding demand on all arcs.

3.3. The Variable Capacity Model

We also introduce a slightly different model with variable capacity, where every service,

when selected (opened), has a maximum capacity, hij;t, (i, j; t)∈A, limiting the number of

flow-carrying units it may haul. This concerns, e.g., rail cars making up a block or train,

trailers in a multi-trailer trucking service, or barges in a barge-train. For simplicity’s sake,

we assume all units making up a service have equal capacity, uij;t. The cost of adding

one unit of service capacity is represented by cij;t, (i, j; t)∈A. To our best knowledge, this

problem setting has not been studied before.

We define the integer decision variables Xij;t to represent the number of units of capacity

provided on arc (i, j; t) ∈ A. The other decision variables are the same as in the fixed-

capacity model capturing the service selection choices, indicating whether the service is

selected and leaves at the specified time point (Vij;t), the continuous flow of commodity k

on arc (i, j; t) in scenario s (Y s
ij;t;k), and the continuous volume of commodity k that uses

ad hoc handling in scenario s (Zs
k). The formulation then becomes:

min
∑

i∈N

∑

j∈N

∑

t∈T

fij;tVij;t+
∑

i∈N

∑

j∈N

∑

t∈T

cij;tXij;t

+
∑

s∈S

ps(
∑

i∈N

∑

j∈N

∑

t∈T

∑

k∈K

eij;t;kY
s
ij;t;k +

∑

k∈K

bkZ
s
k) (8)

∑

i∈N

Y s
ij;t⊖lij ;k

−
∑

i∈N

Y s
ji;t;k =















δsk −Zs
k, if j = dk and t= τk

−δsk +Zs
k, if j = ok and t= σk

0, other

∀j ∈N ,∀t∈ T ,∀k ∈K,∀s∈ S

(9)
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∑

k∈K

Y s
ij;t;k ≤ uij;tXij;t ∀i, j ∈N ,∀t∈ T ,∀s∈ S (10)

0≤Xij;t ≤ hij;tVij;t ∀i, j ∈N ,∀t∈ T (11)

Vij;t ∈ {0,1} ∀i, j ∈N ,∀t∈ T (12)

Xij;t ∈Z+ ∀i, j ∈N ,∀t∈ T (13)

0≤Zs
k ≤ δsk ∀k ∈K,∀s∈ S (14)

0≤ Y s
ij;t;k ≤ δsk ∀i, j ∈N ,∀t∈ T ,∀k ∈K,∀s∈ S (15)

The objective function (8) minimizes the total cost for offering services and providing

service capacities, plus the expected cost for moving or holding commodities and using

ad hoc handling. Constraints (4) in the fixed capacity model were replaced by constraints

(10) and (11). Constraints (10) make sure the total flow on each arc does not exceed

the provided capacity, which is now also a decision variable. Constraints (11) ensure the

maximum number of units of capacity on each service is respected.

3.4. Resource Management Considerations

The management of resources used in the transport operations, such as the movement of

vehicles, power units and crews, is traditionally not explicitly included in service network

design models. Although the management, distribution and maintenance of the relevant

assets are in their own right important, in the literature, they are usually dealt with in a

separate problem. Furthermore, in some applications, such resources are primarily acquired

from external providers, and their reallocations are therefore irrelevant, e.g., oil/gas com-

panies that plan regular services to ship the products to their customers using external

ships on time or voyage charters.

The simultaneous determination of service networks and resource movements is, however,

receiving more attention in the literature as it can lead to more efficient utilization of

the resources. We therefore introduce asset-balance constraints for the fixed and variable-

capacity models.

The asset-balance requirements in the fixed-capacity case take the form

∑

i∈N

Vij;t⊖lij =
∑

i∈N

Vji;t ∀j ∈N ,∀t∈ T , (16)

where one assumes a single unit of resource required to operate each service (as used, e.g.,

in Lium et al. 2007, 2009).
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When the assets controlled correspond to the number of services (e.g., power units, ships,

etc.), equation (16) may be also used within the variable-capacity formulation. When, on

the other hand, the controlled assets are the units of capacity, the constraints have to be

written in the appropriate units as in equation (17) where, for simplicity of presentation

we assume all units are the same for all services.

∑

i∈N

Xij;t⊖lij =
∑

i∈N

Xji;t ∀j ∈N ,∀t∈ T (17)

4. Comparison Tests

In this section we propose a set of comparison tests, based on solving the deterministic

versions of the presented stochastic models, with the intention of investigating the value

of the deterministic solution in a stochastic setting. Note that the stochastic formulations

may easily be transformed into their respective deterministic versions, by inputting only

one scenario. In particular, we start by evaluating the quality of the deterministic solution

in the stochastic environment. We then seek to construct other solutions, using parts of

the deterministic solution, to see if the performance can be improved.

We first propose two comparison tests inspired by Thapalia et al. (2012b) that apply to

both fixed and variable capacity models. Each comparison test can be seen as a particular

means to use the information obtained from solving the deterministic version, and to arrive

at a solution to the stochastic problem. The results of these comparison tests, i.e., the

performances of the corresponding solutions, can then be benchmarked against the result

of solving exactly the stochastic problem (i.e., the performance of the optimal solution).

These two comparison tests are as follows:

1. Deterministic design used in the stochastic model: (Determ)

This is the standard VSS evaluation (Birge 1982), where the deterministic solution is

directly carried over to the stochastic model and the quality of the deterministic solution

is evaluated. When applied to fixed and variable capacity models, this comparison test is

similar but with some differences:

(a) For the fixed capacity models, we first solve the deterministic version of the

problem and observe which arcs are open. We keep these arcs open and close all other arcs

in the network, i.e., fix the first stage decision variables Vij;t. We then run the remaining

LP (linear program) to obtain the flow variables of the stochastic model.
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(b) For the variable capacity models, the process is similar except that the first stage

design consists of Vij;t as well as the capacities offered on these opened services Xij;t. We

therefore fix both Vij;t and Xij;t, and follow up by solving an LP to set the flow variables

of the stochastic model.

2. Deterministic design with extra services and capacities: (Upgrade)

When applying this comparison test to fixed and variable capacity models, the differences

are:

(a) For the fixed capacity models, we keep those arcs obtained from the deterministic

solution open, but do not close other arcs in the network. We then run the stochastic

problem again to allow new arcs to be set up in addition to those opened in the deterministic

solution.

(b) For the variable capacity models, we view both arcs set up and capacities provided

on these arcs as “invested” and they cannot be undone. However, we still allow more

capacity to be offered on these selected arcs, as long as their corresponding maximum

capacities are respected. Additionally, we also allow extra arcs to be set up apart from the

selected arcs, as in the fixed-capacity case.

The tests of Determ and Upgrade are performed to check the immediate performance

and upgradability, respectively, of the deterministic solution in the stochastic setting. Using

the Upgrade test we try to gain insights with regards to the problem we are investigating:

can the deterministic solution be upgraded (by extra investments) to a reasonably good

solution in the stochastic environment, or are we already lost after implementing the deter-

ministic solution? Both conclusions are possible as demonstrated by Maggioni and Wallace

(2012) for some other types of stochastic problems.

For the variable capacity model, we propose an extra test to try to upgrade the determin-

istic solution in a different way. Different from the fixed capacity model, the information

of a particular deterministic solution to the variable capacity model contains two com-

ponents: the service selection information; and the capacities provided on these selected

services. We use the term skeleton to represent the former component, and therefore the

deterministic skeleton and the corresponding capacities installed on such a skeleton make

up the full deterministic design decisions. We thus propose the following test, extracting

only the skeleton of a deterministic design:
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3. Deterministic skeleton with capacities set by the variable-capacity stochastic model:

(Skeleton)

We start by solving the deterministic problem and observe which arcs are open. We then

only fix the service selection variables Vij;t by keeping these arcs open, and run a MIP

(mixed integer program) to set the capacities Xij;t and the flows.

It is important to notice that the Skeleton tests do not allow extra arcs to be opened

(as tests Upgrade do), but only allow the capacities on the deterministic skeleton to be set

using the stochastic model. The Upgrade is therefore not an efficient numerical procedure

as the second step is to solve a stochastic program of the same complexity as the original

stochastic SSND problem. However, the Skeleton is operated on a reduced network with

all other arcs (apart from the ones on the deterministic skeleton) closed. It is particularly

interesting when capacities are continuous (discussed in Section 5.5), as the stochastic

program used to set capacities will then be a stochastic LP instead of a stochastic MIP.

5. Computational Study

To perform the computational study, we use two sets of problem instances constructed

following a random-based procedure: a Small set of relatively small-size instances and a

Larger set in which problems are larger. We introduce these instances in Section 5.1.

The Small set of instances is such that most stochastic problems, especially in the vari-

able capacity cases, can be solved within 2 hours using CPLEX 12.6.1 without terminating

with large optimality gaps (the gap is at most 5.66%, which occurs in solving one stochas-

tic problem with variable integer capacity). The performances of other approaches, such

as Determ, Skeleton and Upgrade, are therefore well benchmarked for these Small

instances. Sections 5.2 and 5.3 report these results and discuss the value of deterministic

solutions for the fixed- and variable-capacity models, respectively.

Section 5.4 uses a quantitative approach to examine the structural improvements that

take place when upgrading the deterministic solutions. Section 5.5 summarizes the results

for the Small set, including the cases of variable continuous capacities and models with

asset-balance constraints.

In Section 5.6, similar comparison tests are performed on the Larger set of instances,

while increasing the maximal run time to 5 hours. Using instances of larger and various

sizes, we seek to further check the consistency of the insights drawn from the previous

Small set of instances, and to investigate the potential usage of deterministic solution

based methods on larger problems where stochastic programs are not numerically solvable.
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5.1. Test Instances

Table 1 Summary of all problem instances

Set # | N | | K | | T | | S | Demand Distribution

Small 10 6 16 7 30 symmetrical/randomly skewed

Larger 24 6/10 16/20 7/9 40/60 symmetrical/randomly skewed

We first summarize the parameter settings for the two instance sets in Table 1: the

Small set consists of 10 instances with 6 terminals, 16 commodities, 7 time points and

30 scenarios; and the Larger set consists of 24 instances with 6 or 10 terminals, 16 or 20

commodities, 7 or 9 time periods and 40 or 60 scenarios (a complete list of the Larger

instances can be found later in Table 4). In the following, we start with the random-based

procedure that is used to construct the instances. We then introduce and discuss our

scenario generation process: the distributions of the stochastic demands (symmetrical or

skewed), their correlations and the appropriateness of the number of scenarios chosen for

our problem instances.

Given the numbers of terminals, commodities and time points, we start with randomly

generating values for the coordinates of all the terminals, evenly spread inside a square-

shaped area. Direct services are allowed between any two terminals, which indicates a

potentially complete service network. The service length between two different terminals

is decided according to their physical distance, such that for any i, j ∈N and i 6= j, service

length lij is assigned an integer value: 1, 2 or 3 in our experiments. We assume the storage

of a commodity is always possible at no cost in any terminal, i.e., all holding arcs in the

space-time network already exist (Vij;t = 1 for all i, j ∈N and i= j) and are uncapacitated.

For service (non-holding) arcs in a fixed capacity model, their (fixed) capacities are all set

to 6. In the variable capacity models, the maximal capacity hij;t of every service arc is

also set to 6, while one unit capacity uij;t is equal to 1. This setting also means that we

assume there are six levels to which the capacity of a service may be set, where each level

represents around 16% of the total capacity.

The values of the unit flow costs eij;t;k and of the unit ad hoc handling costs bk, associated

with commodity k, are set proportional to the distance between the terminals, with the

latter being eight times as high as the former. This is firstly because ad hoc capacities
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do not incur set-up costs. Secondly, the ad hoc handling costs are carefully set such that

the following two undesirable extreme situations are avoided: if the ad hoc handling is too

expensive, it is as if we do not have ad hoc handling in the first place, and most likely too

much capacity is installed; on the other hand, if the ad hoc handling is too cheap, we may

start to replace regular services with ad hoc capacity, which contradicts the whole idea of

the model. This is discussed further in Section 5.2.

For every commodity, its origin and destination terminals are both selected randomly.

A commodity’s time span (from the time point it becomes available to the time point

it has to be delivered) ranges from 2 to 5, and is not shorter than the service length

between the associated terminals. The stochastic demand of a commodity is either subject

to a symmetrical triangular distribution or a skewed triangular distribution with random

skewness, i.e., it is randomly selected to be left- or right-skewed. In the symmetrical case,

the distribution has a lower limit 0, mode (peak value) b/2 and upper limit b (the resulting

coefficient of variation is 0.4), where b is set to 4 in our instances. Recall that the maximal

capacity of a service is set to 6, hence allowing three commodities with average demand to

pass at the same time. Also, the demand of one commodity will never fill a service. In the

skewed case, the lower and upper limits are always 0 and b, respectively, but the mode is set

at random to b/4 or 3b/4. When constructing the instances, we let half of all instances have

demands that are all symmetrically distributed (common in many applications, such as less-

than-truckload trucking), and the other half have demands with random skewness. More

specifically, for the Small set, in five of the instances all commodities have symmetrical

distributions, whereas in the other five instances each commodity has an either left- or

right-skewed demand distribution. For the Larger set, this is indicated with s or r when

referring to a specific instance later in this paper (see Table 4 for examples), which stand

for symmetrical and random skewness, respectively. Correlation matrices are generated

randomly, of course making sure that they are indeed positive semi-definite, a necessary

condition for a correlation matrix.

We discretize the demand distributions by generating scenarios to represent the stochas-

ticity. The scenario generation process is performed using the moment-matching method

introduced by Høyland et al. (2003). This method takes as input the first four marginal

moments and correlations of the random variables, and generates (if there are enough
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scenarios – and in our case there are) scenarios that replicate all these properties. The

scenarios have equal probabilities, i.e., ps = 1/ | S | for all s ∈S.

The more scenarios, the better the representation of the demand distribution. But as we

increase the number of scenarios, the difficulty of obtaining an optimal solution increases as

well. Our scenario generation method is stochastic (the way sampling is stochastic, though

we are not sampling). Hence, if the procedure is rerun with the same input of marginal

distributions and correlations, the resulting scenario tree will be different. To ensure that

the results are not much affected by the particular scenario trees used, we check the in-

sample and out-of-sample stability (Kaut and Wallace 2007). We generate 20 scenario trees

of the same size and solve the stochastic problem for each of them. In the in-sample stability

test, for 30 scenarios, we observe a difference between the highest and lowest objective

function values of 3.58%. To test for out-of-sample stability, we sample a much larger

scenario tree with 5000 scenarios to represent the uncertainty of the “true” problem. We

calculate the “true” objective function values corresponding to the 20 solutions (design

decisions) coming from the different (smaller) scenario trees, and observe a difference of

3.26% between the highest and lowest. In addition, the average in- and out-of-sample values

are only 0.37% apart. These stability calculations yield acceptable difference values and

confirm that our model using 30 scenarios is in- and out-of-sample stable (at about a 4%

level).

5.2. Value of the Deterministic Solution - Fixed Capacity Model

Based on the fixed capacity model presented in Section 3.2, the first two comparison tests

(Determ and Upgrade) are performed for all Small instances and benchmarked against

solving the stochastic problems exactly. The aggregated results are shown in Figure 2. The

bars show the losses produced by the Determ and Upgrade tests, relative to the optimal

solutions of the stochastic program. The Min.Loss and Max.Loss indicate the best and

worst cases for the two tests across the instances. The Avg.Loss columns show the mean

losses.

From Figure 2 we see that although losses can go as high as 60%, the Determ approach

produces an average loss of around 17%, which is rather small compared with some other

stochastic network design problems reported in the literature (see Thapalia et al. 2012a,

Maggioni and Wallace 2012). But more importantly, with extra services, the deterministic

solutions can be greatly improved as suggested by the dramatic decrease in all three losses
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Figure 2 Comparison of the Determ and Upgrade tests in the fixed capacity model. Results are measured by

minimum, average and maximum losses relative to the stochastic (optimal) solution.

from Determ to Upgrade. In other words, it shows that adding extra services to the

deterministic design is beneficial and effective in most circumstances (loss is under 10%

even for the worst case).

In the tests we characterize demand stochasticity for each commodity using a (sym-

metrical or skewed) triangular distribution, which is replaced by its 50th percentile in the

deterministic case. In those scenarios where some demands cannot be satisfied with the

deterministic design, one must use the expensive ad hoc capacity which translates into the

losses reflected in Figure 2 for Determ: about 17% on average and 60% at the highest.

However, if the deterministic design is allowed to be expanded with extra services, these

unmet demands may use the relatively cheaper extra services instead of ad hoc capacities,

hence the lower losses for Upgrade.

The losses from using the deterministic designs in the stochastic environment are primar-

ily caused by insufficient capacities. We therefore test deterministic designs produced using

the 75th percentile of the demand distributions. This is common practice in many indus-

tries. In this case, the average loss from using the deterministic solution in the stochastic

environment (test Determ) drops from 16.63% to 8.86%. For the Upgrade tests, an aver-

age loss of 2.16% is observed, which is also an improvement compared to the 50th percentile

counterpart, which had an average loss of 4.03%. The detailed results are summarized and

reported in Table 2 in Section 5.5.
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Notice that the absolute values of these losses are affected by the cost structure of

the problem, especially the setting of ad hoc handling costs relative to transportation

costs. This is a problem shared with all stochastic programs using soft constraints, and is

unavoidable unless the penalties are dictated by the problem at hand – something they

rarely are. In this paper, therefore, we do not focus on the absolute values of the losses,

and no general statements should be drawn from these values with regards to the absolute

“badness” of certain designs in a stochastic environment. Instead, we focus more on the

comparison of relative performances, for example when comparing forecasts using the 50th

or 75th percentile of the distribution in the deterministic model.

Mathematically speaking, the difficulty of performing the Upgrade test is on par with

solving the original stochastic problem to optimality. The actual difficulty of course depends

on the specific instance. But on a complete service network, its complexity is not reduced

much by fixing a relatively small number of {0,1} decision variables, as it is still a large

MIP when all the other {0,1} decisions are still to be determined. However, this test is

primarily included for model understanding, not numerical efficiency. The fact that the

deterministic design can be upgraded into a very good solution shows that the investments

in the deterministic design are not wasted. In a highly dynamic transportation industry,

it means that decision makers can sometimes safely invest into some services well ahead of

time, especially if a discount is applicable by doing so. This is also a good way to reduce

risks when the costs of setting up services are highly uncertain in the future, and especially

when such costs are likely to go up closer to the time when one has to make the final

plan. If the investment period is long, it is safe to start by setting up the services from

the deterministic design as they can be expanded later. Also note that if the Upgrade

test shows good results, one may develop constructive heuristcs based on the deterministic

solution rather than starting from scratch.

Similar observations are made with the expected value approach for some other types of

problems; we refer the interested readers to Maggioni and Wallace (2012) for more details.

Note that it is not at all obvious that deterministic solutions are upgradable, which is also

illustrated by Maggioni and Wallace and which underlines the interest of our results.

5.3. Value of Deterministic Solution - Variable Capacity Model

For the model with variable capacity, it is also possible to perform the Skeleton test in

addition to the ones performed in the fixed capacity case. Remember that for such a test,
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we start by solving the deterministic problem; fix the “skeleton” variables Vij;t only; then

solve the remaining MIP to set the capacities Xij;t and distribute the flows Y s
ij;t;k.

The same ten Small instances are used to perform the tests here. We compare the deter-

ministic solution (Determ), the deterministic skeleton with updated capacities (Skeleton)

and the deterministic design with extra services (Upgrade). Note again that in the

Upgrade test for the variable capacity model, we see both services set up and capacities

provided on these services as “invested”. We still allow more capacity to be offered on these

selected services, however, as long as their corresponding capacity limits are respected. We

also allow extra services to be set up apart from the selected services.

Figure 3 Comparison of Determ, Skeleton and Upgrade designs for the variable capacity model. Results are

measured by minimum, average and maximum losses relative to the stochastic (optimal) solution.

Figure 3 shows that the deterministic solution (Determ) is quite bad in the stochastic

setting, while Skeleton behaves much better. Although the maximum loss of Skeleton

is still high (around 52%), its average loss (around 15%) is quite acceptable. On the other

hand, in the Determ tests, the average loss goes over 50%, and even the minimum loss

is around 30%. Again, the Upgrade results show that deterministic solutions can be

upgraded to very good solutions for the stochastic models. Again, this is useful information

about the models, even though, numerically, this is not an efficient procedure.

These results show that, in general, the deterministic solution does not handle demand

uncertainty well when capacities are not fixed a priori. Using the skeleton, however, is

beneficial in most circumstances. This is very well illustrated by comparing the Determ
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performances in Figures 2 and 3. It may be explained by the possibility in the variable-

capacity model to closely adjust the supplied capacity to demand. This capability is very

useful for a deterministic setting but not when evaluating the deterministic solution in a

stochastic setting. Indeed, adjusting the capacity to the estimated demand results in little

extra capacity available when the observed demand is higher than the prediction, which

comes at the price of much ad hoc capacity. The results reported later in Table 2 in Sec-

tion 5.5 are extremely telling in this context, the performance of the Determ approach

improving dramatically (more than fourfold) when the 75th percentile of the demand dis-

tribution is used as forecast. The performance of the skeleton-based solution is still better,

but the two approaches are more at par in the 75th situation, as the improvement of Skele-

ton is smaller. Notice that the last observation points to the fact that the Determ 75th

approach could be more “forgiving” of a bad demand estimation. On the other hand, the

performance of Upgrade is fundamentally constant, with small differences between 50th

and 75th percentile cases. Also notice that the relative values of fixed set up costs fij;t and

capacity costs cij;t are important drivers in the differences between Determ and Skeleton

in Figure 3. Consider an extreme situation where all cij;t are zero, implying that capacities

on the opened services are provided at no charge. In that case, the variable-capacity model

can, for all practical purposes, be considered a fixed-capacity model, and the Skeleton

approach is identical to Determ in the fixed-capacity case.

5.4. Structural Differences

We now investigate the structural differences between solutions obtained in the different

tests and try to find out if any systematic “structural improvements” can be observed as

the solutions get better. This is in order to gain insights into why and how the deterministic

solutions may be upgraded and therefore of value to the stochastic problems.

Inspired by the beneficial features discovered by Lium et al. (2009) where, in particu-

lar, more hub-and-spoke structures were observed after demand stochasticity was explic-

itly considered, we have also observed in our experiments more consolidation activities

in stochastic solutions than in their deterministic counterparts. Therefore, if the level of

consolidation in any particular solution can be measured quantitatively, we may find a

correlation between the solution’s consolidation level and its performance (in terms of

total costs) in the stochastic setting. For example, we may compare these two measures
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(consolidation level and performance) of the Determ, Skeleton, Upgrade and optimal

solutions, and see if some trend shows up.

However, to precisely define the “the level of consolidation” allowed by a design is dif-

ficult. We therefore propose a scheme to measure two substitute phenomena: the levels of

multi-path usage and path-sharing when the design is used in a stochastic environment.

If more commodities are using multiple paths to reach their respective destinations, and

more services in the network are shared by several commodities, then, most likely, more

consolidation activities have taken place.

We start by measuring the levels of multi-path usage. For a given solution, we record

the highest number of paths each commodity uses across all scenarios and then produce a

histogram to display the frequencies (in terms of number of commodities) with all instances

added up. For example, we say that a commodity uses two paths if this commodity travels

on, at the most, two paths in at least one of the scenarios; and if we have ten instances,

each with 16 commodities, we count this as 160 commodities in the statistics. We then

count how many of these commodities travel on one, two, three, and so on, paths.

Figure 4 presents the level of multi-path usage measured by commodity counts, in the

Determ, Upgrade and Stoch (optimal stochastic solution) cases, for the fixed capacity

model. In the Determ case, i.e., Figure 4a, there are 152 commodities using only one

path, seven commodities using two paths, and one commodity using three paths to reach

their respective destinations. In the Stoch case, i.e., Figure 4c, the number of commodities

using two paths rises to 39, and there are 14 commodities using three paths and even two

commodities using four paths while the number for a single path has dropped from 152 to

105. For the Upgrade case, as shown in Figure 4b, we can also see a significant increase

in the number of commodities using multiple paths compared to the Determ case, yet

lower compared to the Stoch case.

If we study the levels of multiple-path usage for Determ, Upgrade and Stoch and

compare those with their respective performances we see a trend (see Figure 2 for the

performances of Determ andUpgrade; Stoch, as the optimal solution, will of course pro-

duce 0% losses). That is, the better the solution performs the higher the level of multiple-

path usage it has. Considering the great improvement in performance from Determ to

Upgrade, this also indicates that with some new arcs opened, the deterministic design
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(a) Determ (b) Upgrade

(c) Stoch

Figure 4 The level of multi-path usage for the fixed capacity model.

is able to evolve to a structurally different design that allows a higher level of multi-path

usage and becomes very competitive for the stochastic problem.

Similar insights can be drawn when measuring the levels of path-sharing. We do this by

counting the number of commodities routed through each opened service (not including

the holding arcs). Note that a commodity may be routed though a number of services to

reach its destination. We thus say that if two commodities have at least one service in

common, they are sharing paths.

Path-sharing measurements for the fixed capacity model are displayed in Figure 5. In

the Determ case, 141 arcs are shared by two commodities and 46 arcs are shared by three

commodities. These two counts increase to 148 and 78 in the Upgrade case. In the Stoch

case, the number of arcs shared by two commodities stays at a similar level (136) while

the number of arcs shared by three commodities increases further to 87, and the number

of arcs shared by four commodities reaches 60. In general, we can see a right shift of the

frequency curve, from Determ to Upgrade and then to Stoch, while the performance
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(a) Determ (b) Upgrade

(c) Stoch

Figure 5 The level of path-sharing for the fixed capacity model.

of the corresponding solutions improve in the stochastic environment, indicating that the

better the solution performs the higher level of path-sharing it has.

The above results confirm two structural features for the fixed capacity model: it is

potentially beneficial to have a design structure that allows high levels of multi-path usage

and path-sharing. Furthermore, with some extra services, the deterministic solution can be

structurally changed in terms of its potential to allow higher levels of these two phenomena,

and become much better suited to handle the stochastic demands. So how many extra

services are required to make the change?

First of all, our results show that 70%-90% of the arcs selected by the deterministic

solutions reappear in the corresponding stochastic solutions. It means that the stochastic

solution shares with its deterministic counterpart most of the service selection decisions,

but the stochastic solution also includes some unique arcs to obtain a structure with much

higher flexibility to handle demand variations through higher levels of multi-path usage

and path-sharing.
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Our numbers also show that, on average, around 15% extra arcs are added to the deter-

ministic design in the Upgrade test. Therefore, by adding a limited number of extra arcs,

the deterministic design can become structurally different, and much better suited for the

stochastic environment. So what can we do to find the right extra arcs? As mentioned

earlier, on a complete network, the difficulty of finding these extra arcs numerically are on

par with solving the original stochastic program. However, this idea of trying to find the

“correct” extra arcs based on the deterministic solution can be used in the development

of a heuristic approach, for example by targeting those arcs that are likely to increase the

levels of multi-path usage and path-sharing in the network.

(a) Determ (b) Skeleton

(c) Upgrade (d) Stoch

Figure 6 The level of multi-path usage for the variable capacity model.

Following a similar thinking, we also apply the measurement scheme to the variable

capacity model, with the extra test Skeleton. Similar conclusions may be drawn from the

results displayed in Figures 6 and 7: the better the solution performs, the higher levels of

multiple-path usage and path-sharing it has. This is clearly visible from the charts and the

numbers.
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(a) Determ (b) Skeleton

(c) Upgrade (d) Stoch

Figure 7 The level of path-sharing for the variable capacity model.

But if we consider the changes from Determ to Skeleton (they have the same service

selection decisions, but provide different capacities), we can see some interesting similar-

ities, in contrast to the updates from Determ to Upgrade in the fixed capacity model.

Rather than allowing other services to be opened, Skeleton merely changes the capacities

provided on the already selected services. It still brings out similar structural improve-

ments, allowing higher levels of multi-path usage and path-sharing. We conclude that a

design based on the deterministic skeleton is able to adapt itself structurally to uncertainty

even when its options are highly limited.

In Skeleton, capacities are only allowed on the deterministic skeleton. So, essentially, the

original complete network is “shrunk” to a smaller skeleton network. Then, the possibility of

finding a new path for a given commodity depends on whether there is another combination

of services (apart from the deterministic one) on the reduced network to take it from its

origin to its destination. If yes, then in those scenarios where the commodity’s demand is

very high, it might use the new path as long as there is free capacity. In Figure 6, we see

the number of commodities using two paths more than doubled, from nine to 20.
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A noteworthy observation is that while the better the solution performs, the higher the

levels of multiple-path usage and path-sharing are; the reverse is not always true. There is

an obvious counter-example. If we enforce very tight capacity limits on all possible services,

we can obtain a solution with an extremely high level of multiple-path usage and path-

sharing, as all the commodities would have to find many paths trying to avoid expensive

ad hoc handling. This might result in opening a large number of services, and very poor

performance.

5.5. Summarizing the Comparison Tests on the Small set

The Determ, Skeleton and Upgrade approaches represent different ways of using the

information obtained from the deterministic solution in the stochastic environment. In this

section, based on the ten instances in the Small set, we compare the average loss of these

three approaches applied on all models introduced in this paper, including those with and

without asset balance considerations.

In addition, we include results for the variable capacity models, where we relax the

integrality constraints on the capacities, i.e., constraints (13) in Section 3.3. This may

correspond to an approximation of actual integer capacities (could be appropriate when

capacities are large and their integrality is less important) or to applications in some fields

where capacities are actually continuous, e.g., in bulk shipping and railways where the

capacity is often in meters/feet or tons. The computational effort to perform the Skeleton

test is much lower if the capacity variables Xij;t are continuous. Given the deterministic

solution, the Skeleton method fixes the service selection variables Vij;t and determines

the capacities by solving a stochastic LP. Therefore this approach can be seen as a viable

heuristic if the results are strong.

The performances of the Determ, Skeleton and Upgrade approaches for the variable

capacity model with integer and continuous capacities, together with the results from the

fixed capacity model, are displayed in Table 2. Test results with deterministic demands

set at the 50th and 75th percentiles of their corresponding distributions are shown. Asset-

balance constraints are not included in the models tested here. The same instances are

used for every row in the table.

When comparing the average losses for the designs corresponding to the 50th and 75th

percentile deterministic demands, we see that the 75th percentile designs always perform

better. This of course depends on problem parameters, in particular, how much more
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Table 2 Comparing different ways of using deterministic information in the stochastic environment (without

asset balance) for the Small cases

Model and Parameter Setting
Average Loss

Determ Skeleton Upgrade

Fixed Capacity, 50th 16.63% 4.03%

Fixed Capacity, 75th 8.86% 2.16%

Variable Integer Capacity, 50th 51.71% 15.28% 3.73%

Variable Integer Capacity, 75th 11.46% 6.41% 2.34%

Variable Continuous Capacity, 50th 49.76% 15.82% 3.90%

Variable Continuous Capacity, 75th 11.22% 5.67% 2.48%

expensive the ad hoc capacity is. This approach is in line with what is done in many

industries, where demands well above the mean are used as forecasts.

Table 3 Comparing different ways of using deterministic information in the stochastic environment (with asset

balance) for the Small cases

Model and Parameter Setting Average Loss

(with asset balance) Determ Skeleton Upgrade

Fixed Capacity, 50th 15.21% 3.83%

Fixed Capacity, 75th 9.28% 2.39%

Variable Integer Capacity, 50th 30.81% 13.85% 3.32%

Variable Integer Capacity, 75th 9.92% 5.20% 2.88%

Variable Continuous Capacity, 50th 27.08% 11.51% 3.24%

Variable Continuous Capacity, 75th 9.35 % 6.09% 3.12%

Table 3 displays the corresponding results for the cases with asset-balance constraints,

as introduced in Section 3.4. Again, using the 75th percentile of the demand distribution

is a better choice when obtaining the deterministic solution. For the fixed and the variable

capacity models, with both integer and continuous capacity settings, Determ (75th) pro-

duces average losses that are all less than 10%. The Skeleton method can further improve

the performance of the deterministic solution with not much computational effort: a much

smaller MIP in the integer capacity case and an LP in the continuous capacity case, both

on a reduced skeleton network.
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By comparing the numbers in Tables 2 and 3, we observe that, in general, the aver-

age losses for models with asset balance (Table 3) are lower. Such a significant drop in

losses (especially for the cases “Variable Integer Capacity, 50th” and “Variable Continuous

Capacity, 50th”) actually represents the difference between two situations in real applica-

tions: the situation where the resources are booked from elsewhere, and the situation where

the decision maker owns the resources and thus needs to manage also the empty moves.

In the latter situation, the movements of empty vehicles typically leads to an increase in

the expected transport capability on the space-time network (considered by the decision

maker) in a stochastic setting. For example, in many applications within maritime trans-

portation the ships are owned by the decision maker and therefore ballast sailings need to

be performed in order to reposition the empty ships. Then there is a chance that the ballast

leg of one ship may be able to pick up the unmet demand of some commodity serviced by

another ship, in some scenarios where there is a surge in demand of that commodity.

5.6. Performance of Deterministic Approaches on Larger Instances

We now perform similar comparison tests on the Larger set of instances while extending

the maximal run time to 5 hours. Using instances of larger and various sizes, we seek to

further check the consistency of the insights drawn from the previous Small set of instances,

and to investigate the potential usage of deterministic solution based methods on larger

problems where stochastic programs are not numerically solvable.

Table 4 displays the comparison, for all instances in the Larger set, between CPLEX and

the best-performing deterministic based approach (according to Table 2) for each model:

the Determ 75th approach for the fixed capacity model, and the Skeleton 75th approach

for both variable integer- and continuous capacity models. The Upgrade approaches are

excluded here since they are not numerically efficient, as discussed in previous sections.

The size of an instance is indicated by the number of terminals (N), commodities (K), time

periods (T) and scenarios (S), and the “r/s” column indicates whether the demands are

with random skewness (r) or all symmetrical (s). We record the optimality gaps between

the best found solution and best bound reported by CPLEX under the “Gap” columns,

and, compared with these best found solutions, the relative loss of deterministic based

approaches under the “Loss” columns. Also note that the times recorded for Determ 75th

and Skeleton 75th approaches include the time for solving the deterministic problem (also

with 5 hours time limit) as well as the time taken for the improvement afterwards.
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Table 4 Comparing selected approaches and CPLEX on the Larger instance set

Instance Fixed Capacity Variable Integer Cap. Variable Continuous Cap.

CPLEX Determ 75th CPLEX Skel. 75th CPLEX Skel. 75th

N K T S r/s Gap Time Loss Time Gap Time Loss Time Gap Time Loss Time

(%) (min) (%) (min) (%) (min) (%) (min) (%) (min) (%) (min)

6 16 7 40 r 0.01 35.4 +6.0 0.01 2.14 300.0 +3.7 11.7 1.02 300.0 +1.8 0.02

6 16 7 40 s 0.00 22.7 +8.8 0.01 6.87 300.0 +1.0 6.6 4.08 300.0 +1.7 0.01

6 16 7 60 r 0.00 5.9 +9.3 0.02 6.70 300.0 +1.9 2.0 2.46 300.0 +4.0 0.02

6 16 7 60 s 0.01 2.4 +17.2 0.01 2.01 300.0 +3.9 0.6 0.00 232.5 +4.2 0.01

6 16 9 40 r 1.62 300.0 +8.5 0.02 6.22 300.0 +2.6 32.7 4.91 300.0 +2.6 0.03

6 16 9 40 s 0.01 60.6 +7.2 0.02 1.52 300.0 +4.2 47.1 1.55 300.0 +2.4 0.02

6 16 9 60 r 0.01 98.5 +10.3 0.02 4.60 300.0 +4.3 34.6 1.51 300.0 +4.6 0.02

6 16 9 60 s 0.99 300.0 +7.3 0.02 4.12 300.0 +2.3 115.4 7.52 300.0 -2.6 0.02

6 20 7 40 r 0.01 4.6 +5.0 0.02 2.56 300.0 +2.6 64.0 0.82 300.0 +4.2 0.02

6 20 7 40 s 0.01 52.9 +6.2 0.05 4.95 300.0 +4.5 81.1 7.64 300.0 +0.0 0.06

6 20 7 60 r 1.06 300.0 +8.6 0.03 9.62 300.0 +1.7 62.0 12.90 300.0 -3.2 0.04

6 20 7 60 s 0.01 51.8 +5.1 0.05 4.57 300.0 +4.5 101.7 3.17 300.0 +6.2 0.04

6 20 9 40 r 0.25 300.0 +1.9 0.02 9.09 300.0 +1.6 301.9 17.36 300.0 -5.9 0.11

6 20 9 40 s 0.01 63.7 +6.8 0.04 4.39 300.0 +5.6 92.9 2.49 300.0 +2.9 0.05

6 20 9 60 r 0.47 300.0 +6.7 0.03 37.99 300.0 -31.2 300.1 30.75 300.0 -9.6 0.03

6 20 9 60 s 0.01 287.4 +7.7 0.11 21.25 300.0 -16.2 300.2 14.17 300.0 -4.1 0.12

10 16 7 40 r 0.01 44.0 +11.8 0.02 6.42 300.0 +4.8 188.1 6.01 300.0 -1.3 0.03

10 16 7 40 s 0.01 92.9 +5.4 0.02 1.40 300.0 +3.7 231.6 0.30 300.0 +2.9 0.03

10 16 7 60 r 0.41 300.0 +12.3 0.02 48.52 300.0 -41.6 300.1 76.95 300.0 -73.4 0.03

10 16 7 60 s 0.87 300.0 +3.8 0.04 38.11 300.0 -32.3 300.8 76.97 300.0 -75.0 0.05

10 16 9 40 r 0.00 5.0 +4.8 0.02 4.67 300.0 +2.3 69.3 2.02 300.0 +4.2 0.03

10 16 9 40 s 0.00 8.5 +7.0 0.03 34.11 300.0 -25.2 21.8 74.74 300.0 -66.7 0.03

10 16 9 60 r 0.02 300.0 +5.5 0.05 53.73 300.0 -48.7 300.0 79.20 300.0 -72.4 0.05

10 16 9 60 s 0.02 300.0 +2.9 0.04 27.37 300.0 -17.1 300.1 27.13 300.0 -12.9 0.04

Average 0.24 147.3 +7.3 0.03 14.29 300.0 -6.5 136.2 18.99 297.2 -11.9 0.04

For the fixed capacity model, Table 4 shows that CPLEX manages to solve or find near-

optimal solutions to all stochastic problems within 5 hours. In contrast to CPLEX, the

Determ 75th approach produces on average a loss of 7.3%. However, it takes no more than

10 seconds for each instance, which is a fraction of the time needed by CPLEX.

For the variable integer capacity model, the Skeleton 75th approach provides solutions

with good quality, some greatly outperform the best solutions found by CPLEX (hence

with significantly negative losses), especially on the instances with larger size (such as
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instance “10 16 9 60 r”). Additionally, this is achieved within much shorter time (136.2

minutes on average), which is in fact primarily spent on solving the deterministic versions

of the problems; by contrast the resolving part of Skeleton 75th (based on fixed service

selections and adjusting the capacities) only takes a few minutes. When the size of the

instance increases, CPLEX starts to struggle with solving the deterministic problems to

optimality (with gaps up to 4.89%), and hence uses up the 5 hours limit for some instances,

e.g., instance “10 16 7 60 s” where the total run time is 300.8 but the resolving part only

takes 0.8 minutes. This is also an indication that we can speed up the Skeleton 75th

approach by reducing the time limit for solving the problem deterministically.

For the variable continuous capacity model, Table 4 shows that the Skeleton 75th

approach is far superior. It manages to obtain solutions with 11.9% improvement on aver-

age relative to the best solutions found by CPLEX after 5 hours, all finished within one

minute. Also note that in this case where capacity is continuous (compared to the inte-

ger capacity case), solving the deterministic versions of the stochastic problems become

very fast; the stochastic problems themselves, on the other hand, are equally hard to solve

numerically.

In Table 5, we further show the relative (average) performance of different determin-

istic solution based approaches, i.e., Determ 75th, Skeleton 50th and Skeleton 75th,

benchmarked against Determ 50th. The results for both the Small and Larger sets are

shown. Consistent with the observations made on the Small set of instances, we see sig-

nificant improvements from using the 75th percentile rather than the 50th percentile of the

demand distributions, and that the Skeleton approaches in general perform better than

the Determ ones.

Table 5 Comparing different approaches on both sets of instances

Fixed Capacity Variable Integer Cap. Variable Continuous Cap.

Sets Det.50th Det.75th Det.50th Det.75th Skel.50th Skel.75th Det.50th Det.75th Skel.50th Skel.75th

Small 0.0% -5.8% 0.0% -24.0% -26.2% -29.4% 0.0% -22.8% -23.3% -27.1%

Larger 0.0% -6.7% 0.0% -26.4% -29.8% -33.0% 0.0% -23.7% -26.1% -30.2%

Average 0.0% -6.2% 0.0% -25.2% -28.0% -31.2% 0.0% -23.2% -24.7% -28.6%
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6. Conclusion

In this paper, we have discussed the value and the upgradability of deterministic solutions

in scheduled stochastic service network design problems, for fixed and variable capacity

models with both integer and continuous capacity settings. In those situations where deter-

ministic solutions can be found, optimally or heuristically, we may upgrade these solutions

into well performing solutions to the corresponding stochastic problems.

For the fixed capacity model, by adding a limited number of extra services, the deter-

ministic design can become structurally different, and much better suited for the stochastic

environment. For the variable capacity model, this can also be achieved by using part of

the deterministic design information (the skeleton) and also with not much computational

effort. In particular, when the capacities are continuous or when the integrality of the

capacities can, for all practical purposes, be relaxed, the Skeleton method becomes an LP

on a reduced skeleton network. We also show that it is a better practice for our problems

to use the 75th percentile of the random demands when obtaining the deterministic solu-

tions. Note that this also depends on problem parameters, in particular, how much more

expensive the ad hoc capacity is.

To quantitatively investigate the structural improvements from the deterministic design

to better performing solutions in the stochastic environment, a measurement scheme has

been used to evaluate the level of the potentially beneficial structural features: multi-path

usage and path-sharing. It was concluded that, in general, the better the solution performs

in the stochastic environment, the higher the levels of multiple-path usage and path-sharing

it displays. The reverse is not true, but still, this might lead to possible ways to develop

heuristic approaches for the stochastic problem.

Therefore, an interesting direction of future research may be to explore whether we

find the “correct” extra services based on the deterministic solution (or even a feasible

solution), using the beneficial structural features confirmed in this paper. For example, if

certain services increase the level of multi-path usage and path-sharing in the network,

then these might be the potentially “correct” extra services for the stochastic problem.

Another research avenue is to investigate the existence of similar upgradability of deter-

ministic solutions in other network design problems. As mentioned earlier, such upgradabil-

ity is not obvious at all in some other stochastic problems (Maggioni and Wallace 2012).

We may be able to determine under what circumstances the deterministic solution is useful
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in the stochastic environment, and to see if a certain modeling factor is found to have great

impact on the upgradability of the deterministic solution.
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