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Abstract: This paper presents a moving horizon estimator (MHE) for estimating pose (attitude
and position) of a dynamic system where pose measurements are available in the form of unit
dual quaternions. A unit dual quaternion is an 8 parameter nonsingular representation of pose
and has previously been used for pose estimation with Kalman filters (KF). We formulate a
cost function in terms of the quaternion product and propose a MHE that includes the N latest
measurements in the estimation. In addition, we suggest a measurement relation based on the
Cayley transform of the noise, where the noise has a Gaussian distribution about the z-y-z
and roll-pitch-yaw parameters of the pose. The MHE is compared against the dual quaternion
multiplicative extended KF (DQ-MEKF) and the twistor-based unscented KF (T-UKF) through
100 Monte Carlo simulations, where the simulated data is generated according to the defined
system dynamics. It is found that the MHE gives more accurate pose estimation results.
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1. INTRODUCTION

Relative pose estimation of systems with six degrees of
freedom has broad application in relative navigation, 3D
mapping and robotics. Traditionally, pose estimation has
been divided into two problems of estimating position and
attitude. The attitude is represented by a 3 x 3 rotation
matrix R € SO(3) and the position by a 3 dimensional
Euclidean vector t € R3. In state estimation, the state
can only contain column vectors, therefore the attitude
is usually parameterized using Euler angles, Rodrigues
parameters (RP), Modified RP (MRP) or a unit quater-
nion (Chaturvedi et al., 2011). By considering unit dual
quaternions, it is no longer necessary to divide the pose
estimation problem into two separate estimation prob-
lems. Unit dual quaternions provide a global nonsingular
representation of pose with 8 parameters and are well
suited for simultaneous attitude and position estimation.
Kalman filtering (KF) techniques for pose estimation using
dual quaternions has been developed in the recent years
with good results (Goddard, 1997; Bayro-Corrochano and
Zhang, 2000; Zu et al., 2014; Filipe et al., 2015; Deng et al.,
2016). These estimators consider only the most recent
measurement in the update and assume that all previous
measurements are optimally accounted for in the current
state, which for extended KFs (EKF) and Unscented KFs
(UKF) are approximations, as these filters are not optimal
due to linearization.

Moving Horizon Estimation (MHE) is a state estimation
method that uses the NV most recent measurements, con-
taining noise, and optimizes the state estimate about the
defined system dynamics such that the noise is minimized.
MHE has been used in combination with model predictive
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the Norwegian Research Council, SFI Offshore Mechatronics, project
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control for process control problems (Kristoffersen and
Holden, 2018) and has also been applied to the problem of
pose estimation (Geebelen et al., 2013; Poldni et al., 2015).
In Vandersteen et al. (2013) the attitude of a spacecraft is
estimated with a MHE, where the attitude is represented
with a unit quaternion. The unit constraint of the quater-
nion is enforced by including it as an explicit constraint of
the optimization problem.

In this paper, we extend the method in Vandersteen
et al. (2013) to pose estimation using unit dual quater-
nions. We formulate a cost function in terms of the quater-
nion product so that the unit constraint of the unit dual
quaternion will be satisfied. In addition, we use the Cay-
ley transform (Selig, 2010) for dual vectors to model the
effect of noise in the unit dual quaternion measurements.
This ensures that the measurement dual quaternion has
unit length and we avoid projection and normalization.
Furthermore, we show that our proposed measurement
model generate pose results that are Gaussian distributed
about the roll-pitch-yaw and z-y-z parameters. Lastly, we
compare the dual quaternion multiplicative EKF (DQ-
MEKF) (Filipe et al., 2015) and the twistor-based UKF
(T-UKF) (Deng et al., 2016) with our proposed MHE
using simulated data and find that the MHE is the most
accurate. This can be explained by the fact that the MHE
includes several previous measurements in the estimation
and does not assume that all previous information is fully
accounted for in the current state, which is a key assump-
tion in Kalman filtering.

The paper is organized as follows: Sect. 2.1 and Sect. 2.2
presents notation and preliminary results of quaternions
and dual quaternions. Sect. 2.3 present the continuous
quaternion kinematics, which describes the dynamics of
the considered system and Sect. 2.4 show how this sys-
tem can be discretized using the Cayley transform (Selig,
2010). Sect. 3 introduce the MHE problem and the formu-
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lation of the cost function in terms of the system dynamics.
Sect. 4 show the simulations and results, while Sect. 5
concludes the paper.

2. PRELIMINARIES
2.1 Quaternions

A quaternion can be represented as a sum q = n+o of a
scalar n € R and a vector o € R?. The quaternion can also

be represented as a column vector [q] = [n o '] " Conju-
gation is given by q* = n — o, and multiplication with a
scalar A gives A\q = An + Ao. Addition of two quaternions
qi = m + o1 and q2 = 1 + o2 is done component-wise
and gives Q1 + q2 = (m + 72) + (61 + 02). The subtrac-
tion of two quaternions is analogous to the addition. The
quaternion product is denoted with ® and is defined by
qQ®qe = (MmN —01-02) + (Mo2+1m201+ 01 X 02). A
vector v can be treated as a quaternion with zero scalar
part, and the quaternion product between a vector and a
quaternion is then q ® v = —o - v + (nv + o x v). The
magnitude of a quaternion is ||q|”> = q® q* = [q]T[q] =
n? + o - o and the inverse is given by q~! = q*/||q||’.

A unit quaternion g has unit magnitude ||q|® = 1
and is used to represent attitude for objects and moving
vehicles (Lefferts et al., 1982). Given a rotation 6 about
an axis given by the unit vector k through the origin,
the unit quaternion describing the rotation is given by
q= cosg + sin gk. This unit quaternion is also given by
the exponential function

o %) (2)3(2) - o

where (-)? denotes the quaternion product of order i.
The corresponding rotation matrix R € SO(3) is given
by R(q) = I+ 2no™ + 20*0*, where (-)* denotes the
skew symmetric matrix and I is the identity matrix. For
—m < 0 < 7 the scalar part of a unit quaternion can be

recovered through the relation n = /1 — ||o||*.

2.2 Dual Quaternions

A dual quaternion is given by q = q+¢eq’ where the real
part q and the dual part q’ are quaternions (Filipe et al.,
2015). Here, € is the dual unit and is defined by € # 0
and €2 = 0. The dual quaternion can also be represented
by the column vector [q] = [[q]" [q/]"]". Conjugation is
given by q* = q* + eq’*, and multiplication with a scalar
A gives Aq = Aq + eAq’. Addition of two dual quaternions
Q1 = qi+eq) and g2 = q2+eq; gives 1 +q2 = (qi+q2)+
e(q}+4d5). The quaternion product of two dual quaternions
is given by 1 ® @2 = q1 ® q2 + £(q1 ® g5 + g} ® q2). A
dual vector v = v + ev’, where v and v’ are vectors, can
be treated as a dual quaternion with zeros scalar parts,
and the quaternion product is q® vV = q® Vv +&(q ®
v/ + q ®v). The dual magnitude of a dual quaternion is
lal’ =a®a* =q®q* +e(q®@q* +q ®q*) and the
inverse is ¢! = q*/ [|al”.

The unit dual quaternion is subject to the constraint
llall = 1 and is used to describe the pose or displacement
of a rigid body (McCarthy and Soh, 2010). A displacement
can be described as a screw motion, which is a rotation by
an angle 6 about a line k = k + ¢k’ and a translation d
along the same line. The dual angle is written as 0 = 0+-&d.

The unit dual quaternion describing the motion is then
q = cos g + sin gk. The unit dual quaternion is also given
by the exponential function

~n ~n ~~\ 2

where ()’ denotes the quaternion product of order i.
The corresponding homogeneous transformation matrix
T € SE(3) is given by
- R(q) 29’ ® q*
T - | P, ®)

2.8 Continuous Quaternion Kinematics

Consider the body frame B and a reference inertial
frame I. The attitude of B with respect to the reference
frame I is described with the unit quaternion qp,; = q.
The angular velocity of the body frame with respect to the
reference frame described in the body frame is denoted
with the vector w? = wB. The kinematic differential

equation describing the system is
. 1
4=599 w?. (4)
Consider the displacement of B described by the unit

dual quaternion qp,; = q, then the twist of the displace-

ment is a screw given by the dual vector @% = wP + evP

given in the body frame B. Here, v? is the linear velocity
of the body frame. The kinematic differential equation
describing the displacement of the system is given by

P S
q=§q®w3. (5)

2.4 Discrete Quaternion Kinematics

In the discretization of the kinematic differential equa-
tion (4), it is possible to use a formulation that that will
ensure that the algebraic constraint of the unit quaternion
will be satisfied. Such an integrator could be the exponen-
tial function (1), which gives the discrete-time system

h
Qit+1 = Qi ® exp <2ka) ; (6)

where h is the time step and the subscript k£ denotes the
time instance t;. Then qg41 will be the result of a rotation
with constant angular velocity ka over the time interval
h from qg.

We will use another geometric integrator based on the
Cayley transform (Selig, 2010), which has a simple solution
with exact results and an exact inverse. The Cayley
transform of a vector u is defined as

cay (u) = (1+u) ® (1 —u)~L. (7)
Using the definition of the inverse quaternion gives
(l+uw®(1l-u) 1-u? 2u
T (l-w@(l-u*) 14+uz 1+u?
From this it is straightforward to show that ||cay (u)|| = 1,

and it is concluded that cay (u) is a unit quaternion. From
standard geometric identities it follows that

0 o .0 0k
cay (ktan 4) =cos 3 + ksin 5 = exp (2> . (8)

The approximation tan# = 6 can be used for small angles
and the Cayley transform is therefore an approximation of
the exponential function for small angles

cay (u)
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w () e (%),

The Cayley transform of a twist 1 = u + eu’ is defined
similarly to (7) as

cay (i) 2 (1+a)® (1— )" (10)
Then
(l+w)e(l-u*) 1-—a’ 21

T(l-)e(1-u*) 1402 1+a?’

cay ()

from which it is straightforward to show that ||cay ()| =
1. This means that cay (@) is a unit dual quaternion.
Because the standard trigonometric identities also applies
for trigonometric functions of dual angles, it follows that

= exp <02k> . (11

Because tanf =~ 6 for small dual angles 6, it follows
that the Cayley transform is an approximation of the
exponential function

16k Ok
cay 5 7 ~ exp 7 5

where the rotation is about the same axis k, while the
angle of rotation is a first-order approximation. The dis-
crete kinematics of a system describing displacement can,
therefore, be approximated by

N D™

. ] 0 -
cay (ktan 4) = cos 3 + ksin

(12)

Qrk+1 = gk @ cay <Z‘;’E) : (13)
Then qg41 will be a unit dual quaternion whenever qy is
a unit dual quaternion.

It is noted that the inverse Cayley transform of a unit
dual quaternion q is a dual vector representing a twist,
which is given by

cay (@) =(a-1)®@(G@+1)" (14)

3. ESTIMATION PROBLEM

The MHE problem is formulated with a cost function
that is solved with nonlinear programming solvers. The
formulation of the cost function can be ad hoc and not
necessarily justified. It is therefore up to the designer
to formulate a reasonable cost function, and this can be
done even for highly nonlinear and constrained problems
(Rawlings and Mayne, 2015). The MHE reduces to the
linear KF when the system is linear, unconstrained and
the noise is Gaussian. Moreover, the MHE produce optimal
results even when the system is nonlinear and constrained,
contrary to recursive filters such as the EKF and the UKF,
which approximates the estimates through linearization.

Consider the discrete nonlinear system

(15)
(16)

X1 = f(Xk) + Wi
yi = h(xx) + vy,
where xy, is a vector describing the state, y is a measure-

ment of x; and wj and v are Gaussian noise. Then the
MHE problem can be defined as follows:

Yk—N Yk
Tk—N Tk

Moving horizon

Full horizon

0 thn 1

Fig. 1. Moving horizon estimation problem.

k—1

1
minimize — E WZ-TQ_lwi
Xk—Ns-- Xk 2
Wk—N-yWk—1 §=k—N

Vk—N;--, Vi

1 v, R v, (17)
R
+%($£_N — ap-n) TP @y — 2k-N)
subject to
Xit1 = f(x;)+w; fori=k—-N,....N—1 (18)
yvi=h(x;)+v;fori=k—N,....k (19)
li(x;)=0fori=k—N,... k. (20)

Here, Q is the process noise covariance and R is the
measurement noise covariance. The estimate at the first
time instance in the horizon is x,_, with covariance
P, thus the third term in the cost function describes
the arrival cost. The MHE minimizes a weighted sum of
the noise over a moving time horizon which is shifted
every time a new measurement is available as illustrated
in Fig. 1. Substituting for (15) and (16) into (17) and
adopting the notation a' Ba = HaHzB gives the alternative
formulation

k-1
o1 2
miinizes 3. e = SGxillg-
1 & (21)
2
+3 > llyi = hxi)llg
i=k—N
1, _ 2
+5 %y = xen 5o
subject to
li(Xi)ZOfOriZk—N,...,k. (22)

We aim to estimate the pose of a body following ran-
dom walk dynamics, meaning that the velocities of the
body are modeled as a first-order Markov process. This
dynamic system is formulated and applied for spacecraft
pose estimation with dual quaternions using EKF in Filipe
et al. (2015) and applied in Deng et al. (2016) to formulate
an UKF with dual quaternions. Note that these dynamics
can also be used to describe the motion of drones, aircraft,
ground vehicles and marine vessels and may also have ap-
plication in visual tracking and handheld camera mapping.
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3.1 Velocity Measurement

Consider the discrete dynamic system in (13), a mea-

surement cbfhk of the dual velocity of the body @p is

modeled as

@b = @F by + Wor,  [Wor] ~N(0,Qy)

- - ~ ~ (23)

by k1 = by k + hwyp i, [Wik] ~N(0,Qs),
where w,,  is the measurement noise and B%k is the dual
bias driven by zero-mean Gaussian white noise wy 5. Note
that the dual measurement vector d:ﬁyk = %k + €VZ7,€
consist of an angular velocity measurement wf;y &> that can
come from a body-fixed gyroscope, and a linear velocity
measurement vﬁ_’ . that can come from a vision- or GPS-
system. Inserting for (13) into (23) and isolating the noise
gives the cost

5 e - -2
Jo = 1 ki:l Opyi — geay (4 ® Qit1) — buy
Q2 Bt + (buit1 — by, o
(24)

where Q = diag (Qu, Qo).
3.2 Pose Measurement

A pose measurement g, ; of q; can come from a vision
based system or a system of combined sensors, including
GPS and inertial measurement systems. For simplicity, we
assume that the noise coming from the different sensors
involved in the pose measurement can be modeled as
Gaussian white-noise acting on the roll-pitch-yaw angles
and z-y-z position parameters of the pose, which gives
a physical interpretation of the noise. It is, however, not
straightforward to model the relation of the measurement
dm, and such noise due to the unit constraint of the dual
quaternion. Enforcing the unit constraint may alter the
distribution of the noise.

First, we consider the approach presented in Filipe et al.
(2015), where Gaussian noise is added to the vector parts
of the unit dual quaternion and then the scalar parts are
recovered such that a unit dual quaternion is obtained.
Recalling that

A,k = Mk T Omk + € (n;n,k + U;n,k) ) (25)
the measurement relation using additive noise is
Om,k + €o’lm/,k = (Uk + 50.2:) + W‘Ivk (26)

[Wq,k] ~N (0’ R) :
where Wy is a dual noise vector. The full unit dual
quaternion q,, ; can be recovered through the relations

1— o> +o
—o'o’ R it o|* <1
+e| ——+0o
2
1—|lo||
q= 1 i o (27)
2 2
Vitlel? ielelr
_ , if |lo||” > 1.
—o'o ,
te| ———+o
L/y/1+llo]?

Fig. 2 shows histograms of 100000 simulations of (26)
where the dual noise vector [wg ;] ~ N (0,0.2I) is gener-
ated with the built-in MATLAB function normrnd. The

z-Y-z roll-pitch-yaw T-y-2 roll-pitch-yaw

(a)[@=[10000000]T (b)[@=[00010000]T

Fig. 2. Histograms showing position and attitude param-
eters after 100000 simulations of (26) for two cases of

q.

z-y-z roll-pitch-yaw T-Y-z roll-pitch-yaw

(a) [@=[10000000]" (b)[@=[00010000]T

Fig. 3. Histograms showing position and attitude param-
eters after 100000 simulations of (28) for two cases of

q.

full unit dual quaternion is recovered through (27), then
the z-y-z positions and roll-pitch-yaw angles are extracted
through (2) and plotted in the histograms. In Fig. 2a the
true pose is [ = [L 00 00 00 0]" and it can be
seen that all parameters are normally distributed about
the true value. In Fig. 2b the true pose is set to [q] =
[00010000]T such that ||o||* = 1, which corresponds
to the yaw parameter being equal to w. Here it can be
seen that the yaw parameter is not normally distributed
about +7 and that the other parameters also are affected.
This occurs due to the normalization when ||c'1'||2 >1in
(26). The normalization causes the distributions to become
less Gaussian as ||o||> approaches 1. These effects are
minimized in Filipe et al. (2015) by ensuring that ||o|?
is close to 0 by formulating error dynamics.

Next, we propose an approach where the dual noise vec-
tor Wy i, represents a twist, and the unit dual quaternion
of the twist is found using the Cayley transform. The mea-
surement relation can then be modeled with multiplicative
noise as

- - 1.

Q. = Qi ® cay <2Wq,k) : (28)
The simulated noise vectors in Fig. 2 are applied to (28)
and the same histograms are generated in Fig. 3. It can
be seen in Fig. 3a that the parameters are normally
distributed about the true value and produce similar
results as in Fig. 2a. In Fig. 3b however, it can be seen
that the yaw parameter is normally distributed about
47 and that the other parameters and not affected, even
if |o||* = 1. This shows that this approach generates
Gaussian measurements and are valid for all poses.
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The cost of the pose measurements is found by isolating
for the noise in (28)

k
1 L
Jr = 3 Z ||2cay—1 (a; ® qmﬂ-)Hiﬁ1 . (29)
i=k—N

3.8 Arrival Cost

The arrival cost describes the confidence of new data
versus old data. It is obtained by time propagating the
last state before the start of the window to the first
state of the window and comparing the difference between
propagated and observed data. The time propagated states
are denoted q,_ and by, and obtained through the

expectations of (13) and (23) as

o _ N h_ (.
Ay = E{Qr-~N} = Qr-~N-—1 ®cay (4E {ka—N—1}> ;

(30)
where
E {d’kB—N—l} = ‘:’ﬁ,k—N—l —byr-nN_1 (31)
and ) i )
b, N = {bw,k—N} = by k-N-1- (32)

The difference between unit quaternions or unit dual
quaternions can be obtained through simple subtraction
as suggested in Vandersteen et al. (2013). However, this
approach will violate the unit constraint and the subtrac-
tion will give no physical meaning. We consider the pose
represented by q,_, and qi—u, if they are similar then

Aoy @q_n =1 (33)
The arrival cost may then be formulated as
- - 2
1 ||a;. v —1
o= Ry G
2 bw,k—N —buk-N p-1

where P describes the weight of the arrival cost. The bias
state represent velocities and may be subtracted without
loss of physical meaning.

We can now formulate the full MHE problem in terms
of unit dual quaternions by combining the costs (24),(29)
and (34) to the cost function J as

J=Jq+JIr+Jp (35)
and perform the constrained minimization
minimize J (36)
_Ak-N;--9k
bu k-~ sbw ke
subject to
Q4 ®q—-1=0,fori=k—N,... k. (37)

The constraints of the optimization ensures the algebraic
constraint of the unit dual quaternion.

4. SIMULATION RESULTS

The proposed MHE was verified with simulated data
and compared against the DQ-MEKF and the T-UKF.
We considered the case where pose measurements were
available as unit dual quaternions q,,, and angular velocity
measurements were available as vectors w?. The angular
velocity measurements was represented as dual vectors
@B = w8 + evB where the dual part representing linear
velocity was set to zero, i.e @2 = wB. This is the case
for many inertial navigation applications where angular
velocity may come from body fixed gyroscopes, while the
linear velocity measurements may be unavailable.

S -
-1
2 0 20 40 60

0 20 40 60

,g, W .
—0

2 i
0
0 20 40 60§ mw\\\\’/
2 0 20 40 60
E w 1
0

0 20 40 60 0 20 40 60

Time [s] Time [s]

Fig. 4. Generated true pose (blue) and generated mea-
surements (red). The dual values are converted to
Euclidean position for physical interpretation.

The true velocities of the systems were generated ac-
cording to the random walk process GJEH = P +
Wy, where [Wy ;] ~ N (0,107°I). The true pose, true
bias, velocity measurements and pose measurements were
then generated according to (13), (23) and (28) over a
time interval of 60 s and a frequency of 5 Hz using the
Gaussian number generator normrnd in Matlab. For the
data generation, the process covariance Q. was set to
Q. = diag(10 ' I3xs3, 107 "I3.3), Qp was set to Qp =
1073I5x¢ and the measurement covariance was set to
R = 10~%I5.6. The data generation was initialized with
(@8] ~ N (0,0.251), g9 = cay (1a) , where [a] ~ N (0,T)
and bp = [00000 O]T. An example sequence of the
generated true pose and pose measurement with the given
parameters is plotted in Fig. 4.

To make a fair comparison between the three estimators,
the measurement relations suggested in the DQ-MEKF
and the T-UKF were replaced with (28). The continuous
process dynamics are similar for all three estimators and
the discrete dynamics was implemented with (13) and (23).
For the filtering, the process covariance of the bias state
was increased to Qp = diag(1073I3x3, 1071 I343) to com-
pensate for the missing linear velocity measurements, this
was also suggested in Filipe et al. (2015). The covariance
tuning parameters Q. and R were known from the data
generation process. For generating sigma points in the T-
UKF, the tuning parameter x was set to kK = 3 — n® as
suggested in Deng et al. (2016), where n® is the dimension
of the augmented state. The initial state estimates of the
DQ-MEKF and the T-UKF were set equal to the true ini-

tial states from the data generation, éo = qp and by = by.
The initial state covariance were set to Py = 1079T 9512
for both the DQ-MEKF and the T-UKF.

The proposed MHE estimator was implemented in Mat-
lab using the numeric optimization library CasADi (An-
dersson, 2013) and solved with the NLP method from
CasADi. We allowed full convergence for each prob-
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Attitude [rad]

Position [m]

0 16 26 36 46 56 66
Time [s]
Fig. 5. RSS error for 100 simulations. The solid line is the
mean of the error while the shaded area represent the
standard deviation.

lem and the horizon included N = 7 pose measure-
ments. The weighting matrix for the arrival cost was
tuned through trial and error and was set to P =
diag (OOI4><4, 41444 5 X 1074I6><6)

We compared the performance of the three estimators
with 100 Monte Carlo simulations where a new data
sequence were generated for each simulation. The error in
attitude was computed as 2arccos(ns), where §5 = (:1’,2 ®
ar = 15 + 05 + €(ns+ o) and the error in position
was computed as [|ry — || where ry = 2qj, ® qj. The
accumulated root sum squared (RSS) errors are plotted in
Fig. 5, while the mean and standard deviation of the RSS
error after 60 s are shown in table 1.

From Fig. 5 it can be seen that the DQ-MEKF and T-
UKF produce similar results, which is consistent with the
results presented in Deng et al. (2016). The MHE does
not give any advantage in the attitude estimates when
angular velocity measurements are available, however, it
performs significantly better for the position estimation.
Certainly, the performance of the MHE is affected by the
tuning parameters N and P, and the MHE may perform
worse if these are neglected.

Table 1. RSS error for 100 simu-
lations after 60s.

DQ-MEKF T-UKF MHE
mean s.d. mean s.d mean s.d.
Attitude [rad] 5.149  0.067 4.883 0.070 4.850 0.067
Position [m] 4.470 0.071 4.383 0.079 3.729 0.081

It is noted that the MHE have to solve an optimization
problem every time a new measurement is available, which
is computationally costly. Also, UKF's are in general more
computationally costly than EKFs, due to the propagation
of multiple sigma points. This indicates that the accuracy
of the estimation comes at the expense of computation.

5. CONCLUSION

We have formulated a moving horizon estimator (MHE)
for pose estimation with unit dual quaternions, where
the suggested cost function is formulated in terms of the
quaternion product so that the unit constraint of the dual
quaternion is satisfied. In addition, we have suggested a

measurement model where the noise represents a twist
that is mapped to a unit dual quaternion using the Cayley
transform. The proposed MHE was compared with the
DQ-MEKF and the T-UKF through simulations and the
MHE produced more accurate results for the position
estimation.

Finally, it is noted that the MHE also estimates the
angular and linear velocity of the system in the bias state,
which may be required when implementing a control law.
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