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Abstract—As subsea production of oil and gas reaches deeper
and more remote waters, the need for more compact separation
equipment arises. The gas liquid cylindrical cyclone (GLCC) is
a widely used separation device in topside facilities, but has yet
to reach the same popularity subsea. The GLCC separates gas
and liquid by inducing a swirl on the multiphase flow. Because
of its small size, the GLCC is sensitive to flow variations which
may reduce separation performance. The performance of the
GLCC can be improved by control. In this paper we consider
a nonlinear dynamic model of a GLCC containing unmeasured
variables and states. We present an adaptive feedback lineariz-
ing controller and prove that the origin of the gas pressure and
liquid level error systems are locally asymptotically stable in
the sense of Lyapunov on a specified domain. The model and
controller are implemented in Simulink and simulations show
that the controller works very well, even with uncertainties in
assumed known parameters, and measurement noise.

I. INTRODUCTION

The gas liquid cylindrical cyclone or GLCC is a widely
used separation device and is currently installed in over 6000
onshore gas production and processing plants around the
world [1]. While popular in onshore production, the GLCC
has yet to reach the same popularity in subsea and offshore
production and processing facilities.

Subsea separation and gas-liquid separation in particular
is described by [2] as an enabler for (i) more efficient liquid
boosting, (ii) longer range gas compression from subsea to
onshore, (iii) cost efficient hydrate management, (iv) more
efficient riser slug depression and (v) access to challenging
field developments. Subsea separation is also considered one
of the main enablers for what is referred to as Subsea Factory,
an all subsea oil and gas production facility concept able to
produce and deliver oil and gas directly to customers without
sending the produced fluids topside for processing [3].

The offshore oil and gas industry is currently relying
on large vessels for separation. These vessels, commonly
referred to as gravity separators, are robust and have high
performance, but their use are limited by their size. In ultra
deep waters (≥ 3000 m), the required size of the gravity sep-
arators makes the installation and maintenance economically
challenging [2]. When the size of gravity separators increases,
so does their weight and there is a limited amount of ships
available for installation of such large vessels [1]. This is
why the offshore and subsea industry is leaning towards more
compact separation technology such as the GLCC.

Fig. 1. Schematic of a GLCC.

The GLCC is equipped with a downward inclined tan-
gential inlet and two outlets. It separates gas and liquid by
inducing a swirl on the multiphase flow. The difference in
density between the phases and the centrifugal forces induced
by the swirl will cause the liquid to migrate to the walls and
the gas to the center. The migration of the liquid creates a
falling and swirling liquid film along the walls and the liquid
accumulates at the bottom of the GLCC, establishing a liquid
level. The swirling gas creates a gas core that penetrates the
liquid level. A schematic of a typical GLCC is shown in
Fig. 1.

The GLCC has many applications, e.g, multiphase meter-
ing, slug dampening and bulk separation [4]. When used as a
bulk separator, the operational objective is to keep the gas and
liquid quality within some specified requirements as well as
minimizing downstream flow variations. Because of its small
volume, the GLCC is sensitive to inlet flow variations. These
variations are always present and may cause a significant
reduction in separation performance. This directly affects
downstream equipment like pumps and compressors and may
cause economic loss.

The performance of the GLCC can be improved by control.
In [5], a dynamic model of the GLCC is derived and PI and
PD controllers are used to stabilize the pressure and liquid



Fig. 2. Cascade control structure. The adaptive feedback linearizing con-
troller calculates desired flows of liquid and gas and the PI controller adjusts
the valves so the correct flows are reached.

level, respectively. The model used does not account for
imperfect separation. In [6] a control strategy that provides
unique valve positions for given flow conditions is presented.
This strategy is similar to a gain-scheduling strategy and
is able to stabilize the liquid level with different inflow
conditions. In [7], a feed forward control scheme is combined
with traditional feedback control to counteract the effect
variations in the inlet flow has on the liquid level. Results
show a significant decrease in level fluctuations when using
the feed forward controller. An adaptive control method is
presented in [8] where an adaptive tuning algorithm run on a
microcontroller is used to reduce the movement of the liquid
control valve while maintaining the desired liquid level.

A common factor in [5]–[8] is that the model used only
considers the liquid level and gas pressure and does not take
the separation dynamics into account; they assume perfect
separation.

More recently, a control-oriented model of a GLCC in-
cluding the phenomena of liquid carry over (LCO) and gas
carry under (GCU) has been developed [9]. This model used
empirical data for GCU and LCO calculations and thus gave
a more correct representation of the dynamics of a GLCC.
A feed forward control strategy was implemented and it was
shown that the GCU or LCO can be limited, but the control
strategy induced oscillations in the control valve and outlet
flows that may damage the valve and cause problems for
downstream process equipment like compressors and pumps.

In this paper we consider the model derived in [10].
This model is based on the physical mechanisms of GCU
and LCO, includes more dynamics and hence enables
model-based controller design. The model has been used to
derive a feedback linearizing controller [11] and in this paper
we relax some of the assumptions and requirements of [11]
and derive an adaptive feedback linearizing controller.
Local asymptotic stability, in the sense of Lyapunov, of the
liquid level and gas pressure is proven and the results are
verified in simulations. These also show that the controller
is robust to parameter uncertainty and measurement noise.
Our proposed controller provides us with desired outflow of
liquid and gas which are used in a cascade control structure.
The desired outlet flows are sent to a PI controller that
operates the outlet valves for gas and liquid. See Fig. 2.

The paper is divided into the following sections: Section
II describes the model. The proposed controller is derived
in Section III. Section IV presents the results and Section V

concludes the paper.

II. DYNAMIC MODEL

The dynamic model of the GLCC separator used to study
control was presented in [10] with only immediate separation
of the inlet flow. The model was later extended to also
describe continuous separation [12]. The following section
provides a brief summary of this model.

The model consists of four mass balances and includes
separation performance. The separation performance is de-
scribed by four nonlinear separation factors; two describing
immediate separation of the inlet gas-liquid flow and two
describing the continuous separation between the gas and
liquid volumes inside the GLCC separator.

The incomplete separation of the gas-liquid inlet flow
results in a gas volume containing liquid droplets and a liquid
volume containing gas bubbles. Therefore, the gas volume is
called wet gas (WG) and the liquid volume is called light
liquid (LL).

The dynamic model is on state-space form with the fol-
lowing states:
• mLL,L: accumulated liquid in LL [kg]
• mLL,G: accumulated gas in LL [kg]
• mWG,L: accumulated liquid in WG [kg]
• mWG,G: accumulated gas in WG [kg] .
The ordinary differential equations describing the dynam-

ics are given by

ṁLL,L = win,L − wim,L + wL2LL − wLL,L (1)
ṁLL,G = wim,G − wG2WG − wLL,G (2)
ṁWG,L = wim,L − wL2LL − wWG,L (3)
ṁWG,G = win,G − wim,G + wG2WG − wWG,G, (4)

where ṁLL,L and ṁLL,G are the time derivatives of liquid
and gas in the LL, respectively, ṁWG,L and ṁWG,G are the
time derivatives of liquid and gas in the WG, respectively,
win,L and win,G are the inlet mass flows of liquid and gas,
respectively, wLL,L and wLL,G are the outlet mass flows of
liquid and gas from the LL, respectively, wWG,L and wWG,G
are the outlet mass flow of liquid and gas from the WG,
respectively.

The immediate separation (the mass flows wim,L and wim,G)
describe the separation of the inlet liquid to the WG and inlet
gas to the LL, respectively, while the continuous separation
is described by the mass flows wL2LL and wG2WG describing
the continuous separation of liquid from the WG to the LL
and of gas from the LL to the WG, respectively.

Gas mass fractions are generally defined as

βx =
mx,G

mx,L +mx,G
, (5)

where βx ∈ [0, 1] is the gas mass fraction of x where x can
represent either inlet, LL or WG.

The definition (5) is used to divide the multiphase flows
into separate gas and liquid flows yielding

wx = wx,L + wx,G = (1− βx)wx + βxwx. (6)



The separation performance is determined by the amount
of LCO and GCU that occurs at any given time. These
phenomena are described by nonlinear separation factors
resulting in highly nonlinear dynamics. The separation flows
are described as

wim,y = εim,ywin,y (7)
wy2z = εyβzmz,y (8)

where εim,y ∈ [0, 1] is the immediate separation factor of y
from the inlet flow and εy ∈ [0, 1] is the continuous separation
factor of y to z. The subscript y represents either gas or liquid,
while z represents either LL or WG. The separation factors
are highly nonlinear functions of the states and not further
described this section. The interested reader is referred to [10]
and [12] for details.

The liquid level hL and gas pressures pG are given by

hL =
mLL,L +mLL,G

a
(9)

pG =
bmWG,G

aH − (mLL,L +mLL,G)
, (10)

where H is the total tank height and a = ρLA > 0 and
b = ρLRT

MWG,G
> 0 are model parameters. We assume that the

liquid level and gas pressure are available as measurements
and thus, these variables constitute the controlled variables.

III. CONTROL

A. State transformation

The following state transformation was first presented
in [11], but is repeated here for completeness. The dynamics
of the liquid phase is governed by the liquid and hence is
described by the state x1. Since the weight of the liquid is
much higher than the weight of the gas, the gas dynamics
are considered as a coupling of the liquid and gas dynamics
and hence it is separated into two states, x2 and x3. The new
states are

x ,

x1x2
x3

 =

mLL,L +mLL,G
mWG,L
mWG,G

 (11)

Differentiating (11) with respect to time gives

ẋ1 = ṁLL,L + ṁLL,G = f1(·) + f1,s(·)− wLL (12)
ẋ2 = ṁWG,L = f2,s(·)− wWG,L (13)
ẋ3 = ṁWG,G = f3(·) + f3,s(·)− wWG,G (14)

where

f1(·) = win,L (15)
f1,s(·) = −wim,L + wL2LL + wim,G − wG2WG (16)
f2,s(·) = wim,L − wL2LL (17)
f3(·) = win,G (18)
f3,s(·) = −wim,G + wG2WG (19)

where wLL = wLL,L + wLL,G. Function arguments will be
left out for the rest of this paper. The inlet mass flow is

described by f1 and f3 and the immediate and continuous
separation is described by f1,s, f2,s,f3,s. We assume these
functions to be slowly time-varying. We assume that the
system is designed such that ||wLL||∞ > ||f1 + f1,s||∞ and
||wWG,G||∞ > ||f3 + f3,s||∞, i.e., the possible outflow is
always higher than the highest possible inflow and separation
flow (this allows draining the tank no matter the inflow). The
inlet functions f1 and f3 are assumed to satisfy the following
conditions

0 < δ1 ≤ f1 ≤ δ2wLL,max (20)
0 < δ3 ≤ f3 ≤ δ4wWG,max (21)

with δ1, δ3 > 0, δ2, δ4 ∈ (0, 1) and wLL,max and wWG,max
are the maximum possible outlet mass flows of liquid and
gas respectively, giving well defined minima and maxima of
the functions f1 and f3. Furthermore, wLL ∈ [0, wLL,max] and
wWG,L + wWG,G = wWG ∈ [0, wWG,max].

We want to control the liquid level and the gas pressure.
In the transformed state-space, these variables are given by

y1 = hL =
1

a
x1 (22)

y2 = pG =
b

aH − x1
x3 . (23)

The physical domain of the system is defined by the opera-
tional limits for liquid level and gas pressure, namely hHAL,
hLAL, pHAL and pLAL where HAL refers to the high alarm
limit and LAL to the low alarm limit. Reaching any of these
limits would initiate system shut down. Thus the operating
domain is defined as

O1 =
{
y∈ R2

∣∣hHAL> y1> hLAL, pHAL> y2> pLAL
}
. (24)

Differentiating the outputs y1 and y2 gives

ẏ1 =
1

a
[f1 + f1,s − wLL] (25)

ẏ2 =
b

aH − x1

[
f3 + f3,s −

x3
x2 + x3

wWG

+
x3(f1 + f1,s − wLL)

aH − x1

]
. (26)

The input appears in the first derivative of both outputs, hence
each output has a relative degree of 1, summing up to a
total relative degree of 2. Since the system has 3 states the
transformed system has 1 internal state and 2 external states.
The state transformation is given by

z = T (x) = [η, ξ1, ξ2]
T (27)

where ξ = y = [y1, y2]
T is the external state and η = φ(x)

is the internal state. It is shown in [11] that by choosing the
internal state as η = x2

x3
and extending the physical domain

O1 to

O2=
{
z ∈ R3

∣∣η > 0, hHAL > ξ1 > hLAL, pHAL > ξ2>pLAL
}

(28)

we can apply the state transformation

T (x) =

[
x2
x3
,
x1
a
,

bx3
aH − x1

]T
(29)



which is a diffeomorphism on

I =

{
x ∈ R3

∣∣x1 > 0, ahHAL > x2 > ahLAL,

aHpHAL

b
> x3 >

aHpLAL

b

}
(30)

because both T (x) and T−1(x) exist and are continuously
differentiable on the domain. The resulting transformed sys-
tem is given as

η̇ =
b

aξ2(H − ξ1)
[f2,s − η(f3 + f3,s)] (31)

ξ̇1 =
1

a
[f1 + f1,s − wLL] (32)

ξ̇2 = F
[
f3+f3,s−

1

η + 1
wWG+

ξ2
b

(f1 + f1,s − wLL)

]
(33)

where F = b
a(H−ξ1) .

B. Adaptive feedback linearizing controller

In the following we will assume that the system parameters
a and b are known as well as the total tank height H .

We want the external states to track the constant references
ξ1,d and ξ2,d, which are the desired liquid level and gas pres-
sure, respectively. We define the error variables ξ̃1 = ξ1−ξ1,d
and ξ̃2 = ξ2 − ξ2,d.

To ensure local asymptotic stability when tracking a refer-
ence, the input to the system must be allowed to take negative
values. This is impossible if we consider the outflows wLL
and wWG as inputs, since wLL, wWG ≥ 0. Instead, we consider
the net flow ∆wLL = wLL − f1 as input to system (32) and
the net flow ∆wWG = wWG − f3 as input to system (33).
These inputs satisfy

wLL ≤∆wLL ≤ wLL (34)
wWG ≤∆wWG ≤ wWG (35)

where wLL = −δ2wLL,max < 0, wWG = −δ4wWG,max < 0,
wLL = wLL,max − δ1 > 0 and wWG = wWG,max − δ3 > 0.

The error dynamics are given by

η̇ =
b

a(ξ̃2 + ξ2,d)(H − ξ̃1 − ξ1,d)
[f2,s − η(f3 + f3,s)]

(36)
˙̃
ξ1 =

1

a
[f1,s −∆wLL] (37)

˙̃
ξ2 = F

[
f3,s −∆wWG + σwWG +

ξ2
b

(f1,s −∆wLL)

]
(38)

where σ = 1− 1
η+1 .

The error systems (37) and (38) are written in linear
parameterized form as

˙̃
ξ1 = φ1(θ1 −∆wLL) (39)

˙̃
ξ2 = θT

2φ2 −F(∆wWG +
ξ2
b

∆wLL) (40)

where φ1 = 1/a, θ1 = f1,s, θ2 =
[
f3,s σ θ1

]T
and

φ2 =
[
F FwWG

Fξ2
b

]T
. We assume that the unknowns,

θ1 and θ2 are small (|θ1| � |wLL|, ||θ2||2 � |wWG + wLL|)
and constant or slowly varying with θ̇1 = θ̇2 = 0.

Theorem 1. Choosing

∆wLL = θ̂1 +
1

φ1
k1ξ̃1 (41)

∆wWG = −ξ2
b
θ̂1 −

ξ2
bφ1

k1ξ̃1 +
1

F

(
k2ξ̃2 + θ̂T

2φ2

)
(42)

where k1, k2 > 0, as input to (39) and (40), respectively and
using

˙̂
θ1 = γ1Proj(θ̂1, φ1ξ̃1) (43)
˙̂
θ2 = Γ2Proj(θ̂2, φ2ξ̃2) (44)

where γ1,Γ2 > 0, as update laws for the estimated param-
eters θ̂1 and θ̂2 renders the origin of the error systems (39)
and (40) locally asymptotically stable.

Proof. Inserting (41) into (39) gives
˙̃
ξ1 = −k1ξ̃1 + θ̃1φ1 , (45)

where θ̃1 = θ1 − θ̂1. Inserting (41) and (42) into (40) gives
˙̃
ξ2 = −k2ξ̃2 + θ̃T

2φ2 (46)

where θ̃2 = θ2− θ̂2. Consider the positive definite Lyapunov
function candidate

V =
1

2
ξ̃21 +

1

2
ξ̃22 +

1

2γ1
θ̃21 +

1

2
θ̃T
2Γ−12 θ̃2 (47)

where γ1 > 0 and Γ2 = ΓT
2 > 0 are adaptation gains.

The time derivative of (47) along the trajectories of the
system (45), (46) is given by

V̇ = −k1ξ̃21 − k2ξ̃22 + θ̃1φ1ξ̃1 + θ̃T
2φ2ξ̃2

+
1

γ1
θ̃1

˙̃
θ1 + θ̃T

2Γ−12
˙̃
θ2 (48)

= −k1ξ̃21 − k2ξ̃22 + θ̃1

(
φ1ξ̃1 +

1

γ1

˙̃
θ1

)
+ θ̃T

2

(
ξ̃2φ2 + Γ−12

˙̃
θ2

)
. (49)

The projection operator in (43) and (44) ensures that the
estimates θ̂1 and θ̂2 are bounded and prevents windup issues
due to the bounds on the control inputs ∆wLL and ∆wWG.
The projection operator is defined in [13, App. B] as

Proj(θ̂, y) ,

{
y if g(θ̂) < 0 ∨ g(θ̂) ≥ 0 ∧∇gTy ≤ 0

y − ∇g∇g
Tyg(θ̂)

||∇g||2 , if g(θ̂) ≥ 0 ∧∇gTy > 0

(50)

where the logic symbols ∨ and ∧ represents or and and,
respectively, and g(θ̂) is a smooth function

g(θ̂) =
(εθ + 1)θ̂Tθ̂ − θ2max

εθθ2max
(51)



with εθ > 0 as the projection tolerance bound, ||θ||22 ≤ θ2max

and gradient ∇g(θ̂) = 2 εθ+1
εθθ2max

θ̂.

We choose a set Ω0 such that θ1 ∈ Ω0 ⊂ Ω1 and θ̂1 ∈ Ω1

and a set Ω2 such that ||θ2||2 ∈ Ω2 ⊂ Ω3 and θ̂2 ∈ Ω3.
Inserting the update laws (43) and (44) into (49) and

utilizing the fact that θ̇1 = θ̇2 = 0, ˙̃
θ1 = θ̇1 − ˙̂

θ1 = − ˙̂
θ1

and ˙̃
θ2 = θ̇2 − ˙̂

θ2 = − ˙̂
θ2, gives

V̇ = −k1ξ̃21 − k2ξ̃22 + θ̃1(φ1ξ̃1 − Proj(θ̂1, φ1ξ̃1)) (52)

+ θ̃2(φ2ξ̃2 − Proj(θ̂2, φ2ξ̃2))

≤ −k1ξ̃21 − k2ξ̃22 ≤ 0 ∀ ξ̃1, ξ̃2 . (53)

where [13, Property B.2] ensures that θ̃1(φ1ξ̃1 −
Proj(θ̂1, φ1ξ̃1)) ≤ 0 and θ̃2(φ2ξ̃2 − Proj(θ̂2, φ2ξ̃2)) ≤ 0.

This implies that V (t) ≤ V (0) and that the origin of the
systems (45), (46), (43), (44) are stable [14, Th. 4.1]. We
assume that the initial errors ξ̃1(t0), ξ̃2(t0) are bounded, and
hence ξ̃1(t) and ξ̃2(t) are bounded.

The time derivative of V̇ is

V̈ = −2k1ξ̃1
˙̃
ξ1 − 2k2ξ̃2

˙̃
ξ2 (54)

where all signals are bounded and consequently V̈ is bounded
and V̇ is uniformly continuous. By application of Barbǎlat’s
lemma in the same manner as in [15], convergence of V̇
to zero and consequently asymptotic convergence of ξ̃1, ξ̃2
to zero is guaranteed. From (43), (44), this in turn implies
that ˙̂

θ1 and ˙̂
θ2 converge to zero asymptotically. Combining

the proof of convergence with the proof of stability, we have
proof of asymptotic stability in the sense of Lyapunov of the
origins of the systems (39) and (40).

In the error system (45), we are in fact guaranteed conver-
gence of θ̃1 → 0. We have shown that ξ̃1 → 0 =⇒ ˙̃

ξ1 → 0
which is only true if θ̃ → 0. In the error system (46), it is
required that φ2 is a persistently exciting (PE) signal in order
to guarantee parameter convergence [16, Ch. 4.2]. Having
this signal be sufficiently PE, however, is not desired, as the
manipulated variable in φ2 is the gas flow wWG and enforcing
PE on this signal would cause significant wear and tear on
the valve controlling the gas flow. Since the focus of the
controller is stabilization, not parameter estimation, having
the φ2 signal be sufficiently PE is not considered necessary.

Parameter convergence is not guaranteed when the con-
troller is implemented on the more accurate model described
in Section II, since our assumptions are not necessarily
satisfied and we include valve dynamics in the simulations
which alters the total dynamics of the system.

By replacing θ1 and θ2 with estimates θ̂1 and θ̂2, we relax
the assumptions from [11], where these are assumed known.

The internal state η enters system (33) and it is important
that this state is upper bounded and not equal to −1. It is
shown in [11] that 0 < |η| ≤ h(|η(t0)|, t− t0) <∞ where h
is a class KL function, if certain inlet conditions are satisfied.
We use the same system and inlet conditions in this paper
as described in [11] and hence, the conditions are satisfied.

The interested reader is referred to [11] for the full proof of
boundedness of η.

C. Cascade control

In the stability analysis in the previous section, we defined
the inputs to the error systems as ∆wLL and ∆wWG. Since
the actual inputs to the GLCC are the valve openings of the
liquid and gas valves, we need to transform this signal to
a corresponding valve opening. This is done by a cascade
control structure, as shown in Fig. 2.

We define the desired outlet flows of liquid and gas as
wLL,d = ∆wLL + f1 and wWG,d = ∆wWG + f3 for the liquid
and gas outlet, respectively. These flows are used as refer-
ences to a PI controller that determines the corresponding
valve opening. The PI controllers takes the form

uL =−kL

(
(wLL −wLL,d)+

1

τL

∫ t

0

(wLL − wLL,d) dt
)

(55)

uG =−kG

(
(wWG −wWG,d)+

1

τG

∫ t

0

(wWG−wWG,d) dt
)

(56)

where wLL and wWG are the actual mass flows through the
valves. The PI controller parameters kL > 0, τL > 0, kG > 0
and τG > 0 are the proportional gain and integral time for
the liquid and gas flow controllers.

IV. RESULTS

A. Simulations of the simplified system

We first simulate the system (36)–(38) in Simulink to
verify that the controller works on the system for which it is
designed. We do not consider the dynamics of the separation
factors or the uncertainty of the system parameters, i.e., the
separation mass flows f1,s, f2,s and f3,s are constants and
the system parameters a, b and H are known exactly. We
use ∆wLL and ∆wWG as inputs without considering valves,
but using the bounds. The controller parameters used in this
simulation is listed in Table I. As can be seen in Fig. 3, the
controller is able to bring the states to the desired references
as expected. We also see that the unknown parameter θ1 is
estimated correctly, but the parameter vector θ2 is not correct
as this would require a PE signal in the update law (44).

B. Simulations of the full system

We also simulate the closed-loop system on the more ac-
curate model described in Section II, with varying inlet flows
which in turn induces changes in the separation flows. The
simulations are run for 3600 seconds and we use the variable-
step ode15s solver. We assume a constant backpressure of 48
bar and a constant temperature of 60◦C. We also introduce
the cascade controller and send the generated valve signals
through a low-pass filter h(s) = 1

2s+1 to emulate the valve
dynamics seen in Fig. 2.

The inlet liquid mass flow changes between nominal
(∼ 9.5 kg/s), high (∼ 19 kg/s) and low (∼ 4.8 kg/s). The
same goes for the inlet gas mass flow. This also changes
between nominal (∼ 2.4 kg/s), low (∼ 1 kg/s) and high



TABLE I
PARAMETERS USED IN SIMULATION 1

Parameter Value Description
γ1 1 Adaptation gain
Γ2 5× 10−5I3×3 Adaptation gain
k1 25 Feedback gain level controller
k2 5 Feedback gain pressure controller

TABLE II
PARAMETERS USED IN SIMULATIONS 2 AND 3

Parameter Value Description
γ1 5 Adaptation gain
Γ2 20× 10−5I3×3 Adaptation gain
k1 250 Feedback gain level controller
k2 10 Feedback gain pressure controller
kL, kG 10 Cascade controller P gain
τL, τG 100 Cascade controller time constant

(∼ 3.4 kg/s). This results in 3 different inlet conditions,
namely nominal, low gas / high liquid and high gas / low
liquid. The inlet conditions are shown at the bottom of Fig. 4.
We also introduce changes in the desired liquid level and gas
pressure.

As bound on θ1 we choose θ1,max = wLL = 22 [kg/s] and
for θ2 we choose ||θ2,max||2 = θ1,max + wWG = 27 [kg/s].
The projection tolerance bound is chosen as εθ = 1 for both
projection update laws.

As can be seen in Fig. 4, the controller performs very
well. The states quickly converges to their desired values
and the disturbances caused by the changes in inlet flows are
attenuated. The desired outlet flows are tracked very well by
the cascade controller. The controller parameters used in the
simulation are listed in Table II.

To demonstrate the robustness of the controller we intro-
duce an error to the variable φ2, which is used in ∆wWG
and in the update law for θ̂2. More specifically, we multiply
the values of a and b by 0.5 and 0.7, respectively. We also
add white noise with a sample time of 1 second and a
power of 0.0001 to all measurements. The results of this
simulation are shown in Fig. 5. We see that even under these
conditions, the controller performs well. The performance is
of course limited by the dynamics of the valves and the fact
that the noisy measurements are not filtered. We use the same
controller parameters as in Simulation 2.

V. CONCLUSIONS

In this paper we have proposed an adaptive feedback
linearizing controller for gas liquid cylindrical cyclones ca-
pable of asymptotically controlling the liquid level and gas
pressure. The dynamics of the liquid level and gas pressure
are affected by the nonlinear separation factors which cannot
be measured. By applying a state transformation and using
a Lyapunov approach we derived control laws for the liquid
and gas outflows as well as update laws for the unknown
parameters. We used a projection-based adaptation law pre-
venting windup issues related to limitations of the control
input.
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Fig. 3. The behaviour of the liquid level and gas pressure error systems
with constant separation flows f1,s, f2,s and f3,s and no valve dynamics.

The origins of the transformed system error dynamics were
proven to be locally asymptotically stable in the sense of
Lyapunov. We verified the theoretical results in three different
simulations; one on the nominal system and two on a more
complex model. In the first simulation scenario, the results
match those expected from the theoretical results. In the
two other simulation scenarios, in addition to using a more
complex plant model, the calculated desired outflow was used
in a cascade control setting with PI controllers as secondary
controllers.

Simulations were carried out with and without measure-
ment noise and parameter uncertainties. In both cases the con-
troller is capable of tracking the desired references, indicating
robustness of the controller. Parameter tracking, however, can
not be guaranteed. The mathematical proof of boundedness
of the error systems (39) and (40) under the presence of
measurement noise is left as future work.

As future work we also recommend designing observers
for the liquid level and gas pressure, as these measurements
may not be available or they may be highly contaminated by
noise and delays.
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