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Abstract— This paper presents results on kinematic con-
trollers for the stabilization of rigid body displacements using
dual quaternions. The paper shows how certain results for
quaternion stabilization of rotation can be extended to dual
quaternions stabilization of displacements. The paper presents
a relevant background material on screw motion and the
screw description of lines and twists. Moreover, results are
presented on the computation of the exponential functions for
dual quaternions for use in numerical integration. The paper
presents and analyzes different controllers based on feedback
from dual quaternions, where some of the controllers are known
from the literature, and some are new. In particular, it is
shown which controllers give screw motion, and it is discussed
how this will affect the performance of the controlled system
compared to other controllers that are not based on screw
motion. This analysis is supported by Lyapunov analysis. Also,
certain passivity properties for dual quaternions are presented
as an extension to previously published results on passivity for
quaternions.

I. INTRODUCTION

Quaternions have been studied extensively in the control
community for the last three decades for use in attitude
control and estimation on SO(3). More recently, also dual
quaternions have been studied for control and estimation on
SE(3). Many of the properties of quaternions are transferred
to dual quaternions, and a geometric interpretation based on
a dual angle about a line can be seen as an extension of
the quaternion interpretation in terms of a rotation about
a vector. Still, there are some notable differences between
quaternions on SO(3) and dual quaternions on SE(3) that
have an impact on controller design that will be discussed in
this paper. In particular, a bi-invariant metric on SO(3) can
be described in terms of the rotation angle θ , and Lyapunov
functions can be formulated based on the quaternion. In
contrast to this, there is no bi-invariant metric on SE(3), and
distance measures will be scale-dependent [20]. Moreover,
to formulate norms or Lyapunov functions on SE(3) from
dual quaternions, it is necessary to use inner products on the
Euclidean representation of real and dual parts.

Quaternions were used for attitude control with feedback
from the quaternion vector in [23] using Lyapunov analysis
and in [6] using passivity. In [21] feedback was taken from
the Rodrigues vector and the modified Rodrigues vector. The
need for velocity feedback was eliminated in [15], [1]. More
recent work [17] has used hybrid control as a solution to
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the unwinding problem [2], [3] that appear when feedback
is taken from the quaternion vector. Quaternions have been
used in attitude estimation [14], where an overview is found
in [4]. Dual quaternions have been used for control in [9]
where the controller of [1] was extended to dual quaternions,
and in [10] where an adaptive controller was presented.
A controller based on a small-angle approximation of the
logarithm of the dual quaternion was proposed in [11], [22].
In [16], [13] kinematic control was proposed with feedback
from the vector part of the dual quaternion, and the hybrid
control method of [17] was used to avoid the unwinding
problem.

In this paper, a new kinematic controller with feedback
from a dual quaternion is presented based on controllers for
quaternions [23], [6]. This controller can be implemented
to give a screw motion, or more direct translation. Hybrid
control is not used as the focus is on the kinematic properties
of the dual quaternion feedback, and how this relates to previ-
ous quaternion control methods. The controller does not have
problems with unwinding as there is an unstable equilibrium
at π . Moreover, a solution for efficient computation of the
exponential function for a dual quaternion is presented for
use in numerical time integration that eliminates the need
for normalization of the real term of the quaternions and
projection of the dual term.

The paper is organized as follows: Sect. II presents back-
ground on quaternions, dual quaternions, screws, and screw
motion. Sect. III presents different controllers based on dual
quaternion feedback, and an analysis of the properties of the
controllers, and Lyapunov analysis and passivity properties.
Sect. IV presents the implementation aspects and results
from simulations of the kinematic controllers, while Sect. V
concludes this paper.

II. PRELIMINARIES

A. Quaternions

A quaternion qqq = η +σσσ is written as the sum of a scalar
part η and a vector part σσσ [7], [12]. Conjugation is given
by qqq∗ = η − σσσ , and multiplication with a scalar λ gives
λqqq = λη +λσσσ . Let qqq1 = η1 +σσσ1 and qqq2 = η2 +σσσ2 be two
quaternions. Then the sum is qqq1 +qqq2 = η1 +η2 +σσσ1 +σσσ2,
and the quaternion product is qqq1 ◦ qqq2 = η1η2 − σσσ1 · σσσ2 +
η1σσσ2 +η2σσσ1 +σσσ1×σσσ2. The norm of a quaternion is given
by ||qqq||2 = qqq◦qqq∗ = η2 +σσσ ·σσσ .

A unit quaternion qqq has unit norm which means that
‖qqq‖2 = η2 +σσσ · σσσ = 1. A unit quaternion can be used to
describe a rotation (kkk,θ) by an angle θ about a unit vector



kkk by letting

qqq = η +σσσ , η = cos
θ

2
, σσσ = kkk sin

θ

2

Then if RRR = III + sinθkkk×+ (1− cosθ)kkk×kkk× ∈ SO(3) is the
associated rotation matrix, the rotation of a general vector uuu
can be achieved with the two alternative expressions RRRuuu= qqq◦
uuu◦qqq∗. It is noted that qqq and −qqq describes the same rotation.
The vector eee = 2ησσσ = kkk sinθ will also be used.

B. Kinematic Differential Equation of a Unit Quaternion

Let qqq = qqqab be the quaternion describing the rotation from
a frame a to a frame b. Then the kinematic differential
equation is

q̇qq =
1
2

qqq◦ωωω
b =

1
2

ωωω
a ◦qqq (1)

where ωωωb = ωωωb
ab is the angular velocity of frame b with

respect to frame a in the coordinates of b, and ωωωa = qqq◦ωωωb ◦
qqq∗ is the same vector in the coordinates of a.

C. Dual Vectors, Screws and Lines

A dual real number is written α̂ = α + εα ′ where α and
α ′ are real numbers and ε is the dual unit which satisfies
ε 6= 0 and ε2 = 0 [18]. A real-valued function f (α) can be
extended to a function of a dual number where

f (α̂) = f (α)+ ε
d f (α)

dα
α
′ (2)

It is noted that

sin α̂ = sinα + εα
′ cosα, cos α̂ = cosα− εα

′ sinα

A dual 3D vector is given by ûuu = uuu+εuuu′ where uuu and uuu′ are
3D vectors. Computations on dual numbers and dual vectors
are performed as operations on polynomials in the dual unit
ε . For two dual vectors ûuu1 = uuu1+εuuu′1 and ûuu2 = uuu2+εuuu′2 this
gives ûuu1 + ûuu2 = uuu1 +uuu2 + ε(uuu′1 +uuu′2), ûuu · ûuu2 = uuu1 ·uuu2 + ε(uuu1 ·
uuu′2 +uuu′1 ·uuu2), and ûuu× ûuu2 = uuu1×uuu2 + ε(uuu1×uuu′2 +uuu′1×uuu2).

A screw is a dual vector which satisfies the screw trans-
formation law. Let ŝssa = sssa +εsss′aa be the screw referenced to
frame a and given in the coordinates of a. Then the same
screw referenced to a frame b and given in the coordinates
of b will be ŝssb = sssb + εsss′bb where sss′bb = RRRa

b(sss
′a
a + ttta× sssa).

A line can be described by the screw k̂kk = kkk+ εkkk′, where
kkk is the unit vector along the line, and kkk′ = ccc× kkk is the
moment of the line. Here ccc is the vector from the origin of
the reference frame to an arbitrary point on the line. In the
following the reference frame is the a frame and ccc = kkk×kkk′,
which means that it is the vector to the point on the line that
is closest to the origin. The components of k̂kk are the Plücker
coordinates of the line.

D. Displacement described as Screw Motion

The displacement TTT = TTT a
b ∈ SE(3) from frame a to frame

b can be represented by the rotation matrix RRR = RRRa
b ∈ SO(3)

from a to b, and the translation ttta = ttta
ab from a to b is the

coordinates of a. It is well-known that this displacement can
be described as a screw motion, which is a rotation by an
angle θ about a line k̂kk = kkk+ εkkk′ and a translation d along

Fig. 1. The displacement ttt shown as the sum of the translation uuu generated
by the rotation θ about the screw axis k̂kk, and the translation dkkk along the
the screw axis.

the same line. An illustration is shown in Fig. 1. This can
be described as a motion by a dual angle θ̂ = θ + εd about
the line k̂kk [18]. The displacement can be represented by

TTT =

[
RRR (III−RRR)ccc+dkkk
000T 1

]
∈ SE(3) (3)

where RRR is the rotation matrix corresponding to θ and kkk,
ccc = kkk×kkk′ and d = kkk · ttt. If the motion from frame a to frame
b is done as a screw motion about a fixed line k̂kk, then ω = θ̇kkk,
and the velocity vvvk̂kk of a point fixed in b that is on the screw
axis k̂kk will be vvvk̂kk = ḋkkk.

E. Dual Quaternions

The dual quaternion can also be written q̂qq = qqq+εqqq′ where
qqq and qqq′ are quaternions. The conjugate is given by q̂qq∗ =
qqq∗+ εqqq′∗. Let q̂qq1 = qqq1 + εqqq′1 and q̂qq2 = qqq2 + εqqq′2 be two dual
quaternions. Then the quaternion product is

q̂qq1 ◦ q̂qq2 = qqq1 ◦qqq2 + ε(qqq1 ◦qqq′2 +qqq2 ◦qqq′1)

The norm is ‖q̂qq‖2 = q̂qq ◦ q̂qq∗ = ‖qqq‖2 + ε(qqq ◦ qqq′∗+ qqq′ ◦ qqq∗). A
dual quaternion is called a dual unit quaternion if ‖q̂qq‖ = 1,
which means that qqq is a unit quaternion and

qqq◦qqq′∗+qqq′ ◦qqq∗ = 2(ηη
′+σ ·σ ′) = 0 (4)

A displacement of a vector can be expressed as RRRuuu+ ttt =
q̂qq ◦ uuu ◦ q̂qq∗, while the screw transformation from frame a to
frame b can written [5] ŝssa = q̂qq◦ ŝssb ◦ q̂qq∗.

F. Dual quaternions in terms of screw motion

A dual unit quaternion that represents a screw motion by
a dual angle θ̂ about k̂kk can then be defined as

q̂qq =η̂ + σ̂σσ , η̂ = cos
θ̂

2
, σ̂σσ = k̂kk sin

θ̂

2
(5)

η̂ =η + εη
′, η = cos

θ

2
, η

′ =−d
2

sin
θ

2
(6)

σ̂σσ =σσσ + εσ̂σσ
′, σσσ = kkk sin

θ

2
, σσσ

′ =
d
2

cos
θ

2
kkk+ sin

θ

2
kkk′ (7)

Then q̂qq = qqq+ εqqq′ is a dual unit quaternion since qqq is a unit
quaternion and ηη ′+σ ·σ ′ = 0. It is noted that rotation and
translation commutes for a screw motion.



G. Dual quaternions in terms of translation and rotation

The dual unit quaternion can alternatively be expressed
in terms of a combination of a general translation q̂qqt = 1+
ε(ttt/2) and a rotation qqq. Then the dual quaternion from a to
b will be q̂qq = qqqta ◦qqq if translation is done before rotation, or
q̂qq = qqq◦qqqtb if rotation is done before translation. This gives

q̂qq = qqq+ ε(ttta/2)◦qqq = qqq+ εqqq◦ (tttb/2) (8)

It is seen that rotation and translation will not commute in
general.

It follows that qqq′ = (ttta/2) ◦ qqq = qqq ◦ (tttb/2), which means
that qqq′ can be computed from qqq and tttb, and that

tttb =2qqq∗ ◦qqq′ = 2(−η
′
σσσ +ησσσ

′+σσσ
′×σσσ) (9)

=(dkkk+ sinθkkk′− (1− cosθ)ccc) (10)

It is noted that

qqq′ ◦qqq′∗ = (1/4)ttt ◦qqq◦qqq∗ ◦ ttt∗ = (1/4)ttt · ttt (11)

H. The twist as a dual vector

Let q̂qq be the dual unit quaternion describing the dis-
placement TTT from frame a to a frame b. The twist of the
displacement is a screw given by the dual vector ω̂ωω

b =
ωωωb + εvvvb which is referenced to frame b and given in the
coordinates of b. Then vvvb is the velocity of the origin of
frame b in the coordinates of b. The twist ω̂ωω

b is referred to
as the body velocity in [19].

Consider the case where the frame b moves with respect
to frame a with a screw motion with dual angle θ̂ = θ +
εd about a fixed screw axis k̂kk = kkk+ εkkk′. Then the angular
velocity of frame b is ωωωb = θ̇kkk, and the velocity of a point
that is fixed in b and that is on the screw axis will be ḋkkk.
This means that the twist referenced to the screw axis will
be ω̂ωω

k = θ̇kkk+ ε ḋkkk. This twist can be referenced to frame b
with the screw transformation

ω̂ωω
b =

(
1+ ε

ccc
2

)
◦ ω̂ωω

k ◦
(

1− ε
ccc
2

)
(12)

where ccc is the vector from the origin of b to k̂kk. Insertion of
kkk′ = ccc× kkk gives the following expression for the twist of a
screw motion about a fixed axis k̂kk

ω̂ωω
b = θ̇kkk+ ε(ḋkkk+ θ̇kkk′) (13)

I. Kinematic Differential Equation of a Dual Unit Quater-
nion

The kinematic differential equation is

˙̂qqq =
1
2

q̂qq◦ ω̂ωω
b (14)

which gives

η̇ =− 1
2

σσσ ·ωωωb (15)

σ̇σσ =
1
2
(ηωωω

b +σσσ ×ωωω
b) (16)

η̇
′ =− 1

2
(σσσ · vvvb +σσσ

′ ·ωωωb) (17)

σ̇σσ
′ =

1
2
(ηvvvb +η

′
ωωω

b +σσσ × vvvb +σσσ
′×ωωω

b) (18)

Let
Vσ = 2(1−η), Ve = 2(1−η)2 (19)

Then the time derivatives along the solutions of (14) will be
V̇σ = σσσ ·ωωωb and V̇e = eee ·ωωωb, which means that the mappings
ωωω 7→ σσσ and ωωω 7→ eee are passive [6].

J. Exponentials and logarithms

Suppose that a rotation is described by a rotation θ about
a fixed unit vector kkk. Then the resulting quaternion of the
rotation is qqq = exp[(θ/2)kkk] where

exp
(

θkkk
2

)
= 1+θkkk+

θ 2

2!
kkk ◦ kkk+ . . .= cos

θ

2
+ sin

θ

2
kkk

If the argument of the exponential function is given as a
vector uuu, then kkk = uuu/‖uuu‖ and θ/2 = ‖uuu‖, and it is well
known that the exponential can be computed from

exp(uuu) = cos(‖uuu‖)+ sinc(‖uuu‖)uuu

which can be computed when ‖uuu‖ tends to zero even though
kkk = uuu/‖uuu‖ becomes undefined, which is seen from the Taylor
expansion sinc(x) = sin(x)/x≈ 1− (1/3!)x2 + . . ..

Next, suppose that a displacement is described by a screw
motion with a dual angle θ̂ about a fixed axis k̂kk. Then the
resulting dual unit quaternion is

exp

(
θ̂ k̂kk
2

)
= cos

θ̂

2
+ sin

θ̂

2
k̂kk (20)

The logarithm of a dual quaternion is then seen to be

log(q̂qq) =
θ̂ k̂kk
2

=
θkkk
2

+ ε

(
dkkk
2

+
θkkk′

2

)
(21)

III. KINEMATIC CONTROL WITH DUAL QUATERNION
FEEDBACK

A. Introduction

Kinematic controllers will be presented and analyzed in
the following. These controllers have the twist ω̂ωω

b referenced
to the b frame as the control variable. Moreover, only two
frames a and b will be used in the analysis. The b frame is
the body-fixed frame, while a can be the fixed spatial frame
or the desired frame.

B. Kinematic Control giving Screw Motion

To analyze controllers based on dual unit quaternions, it is
interesting to investigate if a controller gives screw motion
to get insight into the kinematics of the resulting motions. In
addition, Lyapunov analysis is used, and passivity properties
are investigated. It is noted that if the control ω̂ωω

b = ωωωb+εvvvb

is selected as

ω̂ωω
b = αkkk+ ε(βkkk+αkkk′) (22)

where α and β are scalars, then the resulting motion is a
screw motion about the screw axis k̂kk = kkk+ εkkk′.



C. Comments on Existing Kinematic controllers

Consider the kinematic controller ω̂ωω
b = −K(σσσ + εησσσ ′),

which was discussed by [13], who observed that the transla-
tion was unstable when η < 0. The controller does not give
a screw motion as seen from

ω̂ωω
b =−K

(
sin

θ

2
kkk+ ε

(
d
2

cos
θ

2
kkk+ sin

θ

2
kkk′
))

(23)

where it is seen that translation along kkk will be in the wrong
direction if η = cos(θ/2) < 0. A modification in the form
ω̂ωω

b = −K(hσσσ + εησσσ ′) was proposed in [13] where h is a
discrete state variable which is used to generate a hysteresis
in the regions where η = 0 [17]. This modified controller
will not give a screw motion.

The controller ω̂ωω
b = −K(log(qqq) + εtttb) was proposed in

[11], [22], where log(qqq) + εtttb was introduced as a small-
angle an approximation of the logarithm in (21). The con-
troller will be asymptotically stable, but as commented in
[13], the controller will be discontinuous for large angles, as
seen from

ω̂ωω
b =−K[(θ/2)kkk+ ε(tttb)], |θ |< π (24)

The controller ω̂ωω
b = ωωωb + εvvvb is the kinematic controller

corresponding to the controller proposed in [9], where ωωωb

is the vector part of −K(qqq′∗ ◦ qqq′+ qqq∗ ◦ (qqq− 1)), and vvvb =
−Kqqq∗ ◦qqq′ =−(K/2)tttb. The kinematic controller is

ω̂ωω
b =−K[σσσ + ε(tttb/2)] (25)

This controller will not give screw motion.

D. Proposed controllers

Consider the following kinematic controllers that satisfies
condition (22), and gives screw motion about k̂kk.

Controller 1 is new and given by ω̂ωω
b
1 =−2K(ησσσ +εησσσ ′).

This gives the screw motion

ω̂ωω
b
1 =−K

(
sinθkkk+ ε

(
d cos2 θ

2
kkk+ sinθkkk′

))
(26)

Controller 2 is new and given by ω̂ωω
b
2 =−(2K/η)(σσσ +εσσσ ′),

which can be regarded as an extension of the kinematic part
of the controller in [21]. This controller gives the screw
motion

ω̂ωω
b
2 =−K

(
tan

θ

2
kkk+ ε

(
dkkk+ tan

θ

2
kkk′
))

(27)

We will also consider a related new Controller 3, which is

ω̂ωω
b
3 =−2K1ησσσ + εK2tttb (28)
=−2K1ησσσ − εK2(−η

′
σσσ +ησσσ

′+σσσ
′×σσσ) (29)

=−K sinθkkk− εK2[dkkk+ sinθkkk′− (1− cosθ)ccc] (30)

E. Lyapunov Function Candidate 1

Consider the following Lyapunov function candidate

V1 = 2(1−η
2)+2(η ′2 +σσσ

′ ·σσσ ′) (31)

where the first term is the storage function Ve defined in (19).
From (6) and (11) it is seen that

V1 = 2sin2 θ

2
+

1
2

ttta · ttta (32)

The time derivative of V1 along the solutions of the kinematic
differential equations is

V̇1 = 2ησσσ ·ωωωb +2(−η
′
σσσ +ησσσ

′+σσσ
′×σσσ) · vvvb (33)

Then a kinematic controller on the form ω̂ωω
b =−Kγ(η)(σσσ−

εσσσ ′) and (4) will give the time derivative

V̇1 =−2Kγ(η)ηV1 (34)

which implies asymptotic stability when γ(η)η > 0 for all
η 6= 0. This applies for the proposed Controller 1, which
gives V̇1 = −2Kη2V1, and for the proposed Controller 2,
which gives V̇1 =−2KV1.

Controller 3 gives

V̇1 =−2K1η
2(1−η

2)−K2ttta · ttta (35)

F. Lyapunov Function Candidate 2

Consider the Lyapunov function candidate [9], [13]

V2 =2(1−η)+2(η ′2 +σσσ
′ ·σσσ ′) (36)

where the first term is the storage function Vσ defined in
(19). Using (6) and (11), this can also be written

V2 = 4sin2 θ

4
+

1
2

ttta · ttta (37)

The time derivative of V1 along the solutions of the kinematic
differential equations is

V̇2 = σσσ ·ωωωb +2(−η
′
σσσ +ησσσ

′+σσσ
′×σσσ) · vvvb (38)

G. Passivity

From (9) and (33) with eee = 2ησ it is seen that

V̇1 = eee ·ωωωb + tttb · vvvb =

[
eee
tttb

]T [
ωωωb

vvvb

]
(39)

This shows that the mapping [ωωωbT,vvvbT]T 7→ [eeeT, tttbT]T is
passive with storage function V1, which is an extension of
a result for quaternions in [6], and which has interesting
consequences for controller design.

From (9) and (38) it is seen that

V̇2 = σσσ ·ωωωb + tttb · vvvb =

[
σσσ

tttb

]T [
ωωωb

vvvb

]
(40)

which shows that the mapping [ωωωbT,vvvbT]T 7→ [σσσT, tttbT]T is
passive with storage function V2, which is an extension of a
result for quaternions in [6].



IV. SIMULATIONS

A. Numerical Integration of Dual Quaternions

The exponential function can be used in numerical inte-
gration of dual unit quaternions. Then the argument of the
exponential function will given as a dual vector ûuu = uuu+εuuu′.
Then an expression for the exponential can then be found
from (20) using d/2 = uuuTuuu′/‖uuu‖, dkkk/2 = (uuuTuuu′)uuu/‖uuu‖2 and
kkk′ = uuu×(uuu′×uuu)/‖uuu‖3, and the exponential can be computed
from

exp(ûuu) =cos‖uuu‖+ sinc(‖uuu‖)uuu+ ε

(
− sinc(‖uuu‖)uuuT

+ cos‖uuu‖III + ‖u
uu‖cos‖uuu‖− sin‖uuu‖

‖uuu‖3 uuu×uuu×
)

uuu′

(41)

This expression can be computed when ‖uuu‖ tends to zero,
which is seen from the Taylor expansion (xcosx−sinx)/x3≈
−(1/3)+(1/30)x2+ . . .. This result has not appeared in pre-
vious publications. Numerical integration of dual quaternions
can then be done with the time update

q̂qq(tk+1) = q̂qq(tk)◦ exp

(
hω̂ωω

b(tk)
2

)
(42)

where h = tk+1− tk is the time step, and the twist is constant
and equal to ω̂ωω

b(tk) over the time-step. The exponential func-
tion can be computed from (41) where a Taylor expansion
can be used for small arguments so that the solution is well-
behaved also when ωωω tends to zero. Then, if the initial
value q̂qq(tk) is a unit dual quaternion, also the computed dual
quaternion q̂qq(tk+1) will have unit norm. This eliminates the
need for normalization of qqq and projection of qqq′ [8] to ensure
that the solution of the numerical integration satisfies the
conditions qqq◦qqq∗ = 1 and qqq◦qqq′ = 0.

B. Simulations and Discussion

The performance of Controllers 1 and 3 were studied in
simulations. In particular, the screw motion of Controller 1
was studied and compared to the straight-line translation
obtained with Controller 3. The effect on the resulting
motion from changing the controller gains for rotation and
translation was studied using the controller in the form

ω̂ωω
b =−K1ησσσ − εK2ησσσ

′ (43)

Three different cases were simulated with the control law
defined in (43). The initial body frame position was at ttta =
[10,10,3]T m, and the initial rotation was θ = π/2. Fig. 2
shows the case when the controller gains were equal, that
is, K1 = K2 = 1. The screw axis was constant with direction
along the z axis, and the motion of the origin of the b frame
projected to the xy plane was circular. This means that the
motion was a helical screw motion. Fig. 3 shows Controller 1
compared to Controller 3. The parameters are equal for both
cases, that is that K1 = K2. Fig. 5 shows the alignment of the
translation vector to illustrate the differences response-wise.

Fig. 4 shows two different cases of (43). The curves are
shown from a viewpoint perpendicular to the rotation plane.

Fig. 2. System response when the gains K1 = K2 = 1, and the constant
screw axis. The plane of rotation is indicated by the black dots projected
onto the xy-plane, and the cyan colored vector indicates the distance between
b and the screw axis.

Fig. 3. Vector components of dual quaternion versus direct error translation
vector as translational feedback with equal gain factors. The latter generates
a straight trajectory, but acceleration is steep at initiation.

In the first case (shown in black) K1 = 4K2 was used so
that the gain for the rotation was larger than the gain for
translation. Then the path tended to be inside the helix of the
screw motion (illustrated by red dots), and frame alignment
was obtained early in the motion. In the second case (shown
in blue) K2 = 4K1, which means that translation is given the
largest gain. Then the path tends to be outside of the helix of
the screw motion. It was seen in other simulations that if the
initial rotation was close to π then the path would diverge
significantly from the path of the screw motion.

Regardless of the selected pair of gains which are greater
than zero, the system will converge to its desired frame.
The trajectory, however, relies on the tuning of its operator,
and it is obvious that the system will remain inside the
initial cylinder segment spanned by the screw axis at q̂e(t =
0) if K1 ≥ K2. This is a pure geometric interpretation of
a case where the desired frame is static. In general, the
simulated feedback law from Controller 1 appears to be
slower response-wise compared to Controller 3, but this
effect can be reduced by increasing the gain of interest.

An observation regarding Controller 1 is the case when
η → 0 near θ = π , which makes the control vector tend to
zero. This makes This makes η = 0 an unstable equilibrium
of the closed loop system. This issue is handled with a hybrid
control solution in [13] where the unstable equilibrium is at
η =−1.



Fig. 4. System responses viewed perpendicular to the axis of rotation. If
K1 > K2, rotational motion is amplified, meaning that the frame align its
relative attitude, and then translates in a straight path. If K2 >K1, translation
is prioritized, and the system will overshoot (leaving its initial cylinder
segment). For comparison, the dot pattern is when K1 = K2 = 1.
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Fig. 5. Comparison of the translation response when using Controller 1
and 3. The screw motion is shown in black, whereas the straight path is
shown in red.

V. CONCLUSION

Three new controllers have been proposed for feedback
from dual quaternions. The two first controllers use the
vector components of the dual quaternion describing the
relative pose multiplied by the real scalar part η of the dual
quaternion as feedback to generate rotation and translation
to align the body frame with a desired frame. This gives a
screw motion in a stabilization case. As the controller is not
globally asymptotically stable, a discrete controller must act
on the system near η = 0, which means that a screw motion
can only be obtained on some interval θ ∈ [0,π−δ ),δ > 0,
where θ is the angle offset. Another controller has been
proposed with quaternion feedback for rotation and feedback
from the translation vector for translation. This gives a
straight-line motion for the position, and faster convergence
to the desired position. In terms of controller performance,
the controller with the straight-line translation should be
preferred to the controllers giving screw motion, and the
screw motion can give a detour in the motion that may be
undesired if the initial angle offset is large. However, the use
of the screw motion descriptions can be useful to characterize

different solutions as its has features which makes it natural
to classify due to its distinct screw motion property, and to
evaluate the performance of different kinematic controllers.
The results of this paper provide input to future work
involving dynamics, path planning and tracking problems,
and potential tools for describing control of motion in SE(3).
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