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Abstract

Physiological and pathological aspects of soft biologitsdues in terms of, e.g., aortic dissection,
aneurysmatic and atherosclerotic rupture, tears in tesidad ligaments are of significant concern in
medical science. The past few decades have witnessed atcadvances in the fundamental under-
standing of the mechanics of soft biological tissues. Farrttore, computational biomechanics, with an
ever-increasing number of publications, has now becoméd pillar of investigation, next to theory
and experiment. In the present chapter we provide a briégdwegf some constitutive frameworks and
related computational models with the potential to pretiietclinically relevant phenomena of rupture
of soft biological tissues. Accordingly, Euler-Lagrangpiations are presented in regard to a recently
developed crack phase-field method (CPFM) for soft tissSiestheoretical framework is supplemented
by some recently documented numerical results, with a foausvolving failure surfaces that are pre-
dicted by a range of different failure criteria. A peel teftaderial tissue is analyzed using the crack
phase-field approach. Subsequently, discontinuous mofléilssue rupture are described, namely the
cohesive zone model (CZM) and the extended finite elemeritodgXFEM). Traction-separation laws
used to determine the crack growth are described, togetitietire kinematic and numerical founda-
tions. Simulation of a peel test of arterial tissue is theespnted for both the CZM and the XFEM.
Finally we provide a critical discussion and overview of goopen problems and possible improve-
ments of the computational modeling concepts for soft &@ssipture.

Keywords: rupture, fracture, crack phase-field, cohesive zone meddinded finite element method,
failure criteria, soft biological tissue, aortic dissecti

1 Introduction

Physiological and pathological aspects of soft biologitsasues in terms of rupture are of fun-
damental interest in medical science. In fact, aortic digse, aneurysms, atherosclerosis, tears
in tendons and ligaments and interventional treatments asiballoon angioplasty are common
cases where rupture phenomena, mainly driven by changhs iniamechanical environment,
are encountered (Lee et al. [40], Holzapfel et al. [32], Btemand Maffulli [61], Katayama et al.
[38], Criado [12], Humphrey and Holzapfel [33] and Kim et[&9]). This has rendered compu-
tational mechanics very important to guide and improve gadnonitoring and preoperative
planning. Although a relatively large number of fracturedals have hitherto been proposed in
a diverse range of fields in mechanics, the current reviewsl@afocuses on those which have
been implemented to predict the rupture of soft biologisaltes, including the cohesive zone
model (CZM), the extended finite element method (XFEM) arel dhack phase-field model
(CPEM).

1To whom correspondence should be addressed. Email adde@ssipfel@tugraz. at
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Fracture mechanics was pioneered by the works of Griffith, [@Zstergaard [70] and Irwin
[36]. That happened in the first half of the last century whendoncepts of energy release rate
and the stress-intensity factor were established as memesONs of crack growth in solids
within the context of linear elastic fracture mechanics FMp. In the 1960s, however, re-
searchers turned their attention to crack-tip plasticiherein significant plastic deformations
precede failure. During this time, Dugdale [15] and Barattij4], among others, studied yield-
ing of materials at the crack tip. Later, Rice [59] used a limtegral, which became known as
the J-integral, to express crack initiation and growth which &sically evaluated along an ar-
bitrary contour near the crack tip. Subsequently, Hutamr{85] and Rice and Rosengren [60]
managed to relate th&integral to the crack-tip stress fields which indicate$ tha./-integral
can be perceived as a nonlinear stress-intensity parameteell as an energy release rate.
Much of the theoretical foundations of fracture mechanies ¥ormulated byi980. A more
elaborate historical account and details of the conceptdedound in the book by Anderson
[1]. With the recent advances in computer technology, cdatmnal mechanics has assumed
an increasingly significant role in the modeling of matefiatture.

CZMs, introduced by Barenblatt [3] and Dugdale [15], coesiffacture as a separation of
two bulk materials which takes place on a cohesive surfaaeepl in between the bulk ele-
ment boundaries. The resistance to separation is spedifiedgh a cohesive law (traction-
separation law). In fact, tractions vanish when the semargbpening displacement) reaches
a critical value. This method became particularly appgalor problems where the extent of
crack growth or the size of the yielding zone are unknownpnetletermined. Later on, Needle-
man [55], Xu and Needleman [72] and Camacho and Ortiz [11prapseveral others, modeled
cohesive zones pertaining to the irreversible cohesive,ladaptive insertion of surface ele-
ments, and the dynamic fracture, respectively. The CZM ywasied to the fracture of a stenotic
artery by Ferrara and Pandolfi [16] using an anisotropicresita of the irreversible cohesive
law, as proposed by Ortiz and Pandolfi [56]. Later on, Feraaré Pandolfi [17] simulated a
peel test of a dissected aortic medial strip based on theriexgeatal work of Sommer et al.
[66]. The main problems regarding CZMs are the mesh depeydanthe results, which can
only be resolved through an increase in the finite elemeat aiad the necessity of remeshing
in cases when the crack path is not kncavpriori.

XFEM, developed by Belytschko and co-workers [5, 54], is@teque to deal with fracture
without (or with minimal) remeshing. The hallmark of XFEMlies on the local enrichment
functions with additional degrees of freedom on the basiganfition of unity finite elements
(PUFEM), which resorts to Melenk and Babuska [45]. Moéalef54] also incorporated dis-
continuous displacement fields by using Heaviside funstibater, Moés and Belytschko [53]
combined the CZM and XFEM approaches, whereby the prewamployed stress intensity
factors and the/-integral methods were replaced by the cohesive laws. Titer lamodality
was then adopted by Gasser and Holzapfel [21] to simulasedi®ns in a strip of an aorta.
The main problem associated with XFEM is that it is rathefialift to predict complex crack
patterns, e.g., a crack subject to branching.

In contrast to CZMs and XFEM, CPFM utterly bypasses the mndelf discontinuities as the
2D crack surface smears out in a volume domaiBDn as determined by a specific field equa-
tion alongside the balance of linear momentum describiegetastic mechanical problem in
solids. The well-known limitations, e.g. curvilinear ckagaths, crack kinking and branching
angles, emanating from the classical theory of fracturelvaeics are alleviated through a vari-
ational principal of the minimum energy (see Francfort aratilgo [19]), which was followed
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by a numerical study (Bourdin et al. [8]) using theconvergence, see Braides [10] and Bour-
din et al. [9]. In addition, a Ginzburg-Landau type of phéiséd evolution was used by Hakim
and Karma [26]. The thermodynamically consistent and @lgmically robust formulations of
CPFM were introduced by the seminal works of Miehe and cokers, [52, 49], and were suc-
cessfully applied to several coupled multi-field problemsging from thermo-elastic-plastic
fracture to chemo-mechanical fracture (Miehe et al. [51,443). The application of CPFM in
biomechanics dates back to Gultekin [23] which was latgliad by Gultekin et al. [24, 25]
and Raina and Miehe [57] using anisotropic failure critefihe numerical aspects of aortic
dissections in regard to the experimental study of Sommak. 6] were also investigated by
Raina and Miehe [57] and Gultekin et al. [25].

This book chapter is organized as follows. Section 2 outlihe basics of the variational setup
of the coupled mechanical-fracture problem in the sensd*6iN, featuring the Euler-Lagrange
equations, from which emerge the quasi-static force balahmomentum and the evolution of
the phase-field. Therein, both rate-independent and egterdient formulations are presented.
Subsequently, a brief account of anisotropic failure datés provided. Next, an overview of
numerical examination of the phenomena of aortic disseaiging CPFM is presented. Sec-
tion 3 is concerned with models that introduce a discontisudomain due to fracture, namely
CZMs and XFEM. A short summary of the traction-separatiovslased to determine the crack
growth is provided together with the key aspects of the kiagcrand numerical foundations. A
numerical example of a dissecting aorta is demonstrateddtr the CZM and the XFEM. Fi-
nally, Section 4 provides a critical discussion and ovemaésome open problems and possible
improvements in modeling concepts for soft tissue rupture.

2 Crack Phase-Field Modeling of Failure in Soft Tissues

This section deals with the CPFM to model fracture of soliti§irate strains featuring the
primary field variables, namely the crack phase-fielahd the deformation map in relation

to the evolution of the crack and the balance of linear moomantespectively. An anisotropic
arterial tissue comprised of two families of collagen fibersised as the material. A mixed
saddle point principle of the global power balance thendg@e¢he Euler-Lagrange equations of
the multi-field problem.

2.1 Primary field variables of the multi-field problem

Let us consider a continuum bo#lyc R? attimet, € 7 Cc RandS c R? attimet € 7 C Rin
the Euclidean space. The finite macroscopic motion of thg ocharacterized by the bijective
deformation map, i.e.

BxT — S,
@(X) : (1)
(X.t) = x=p(X.1),
that transforms a material poiXte B onto a spatial point € S attimet C R*, see Fig. 1. Asa
second primary field variable we introduce the basic geameiapping for the time-dependent
auxiliary crack phase-field such that

{BXT — [0,1],
d: 2)
X,t) = d(X, 1),
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Figure 1:Nonlinear deformation of an anisotropic solid with the refece configuratio3 ¢ R? and
the spatial configuratios € R3. The nonlinear deformation map¢s: B x R — R?, which transforms
a material poinX € B onto a spatial poink = (X, t) € S at timet. The anisotropic micro-structure
of the material poinX is rendered by two families of fibers with unit vectdvsandM’. Likewise, the
anisotropic micro-structure of the spatial painis described byn andm’, as the spatial counterparts of
M andM’ (adopted from Giltekin et al. [25]).

which interpolates between the intadt€ 0) and the rupturedd(= 1) state of the material.

2.2 Kinematics

We start with the description of the deformation gradiesmt, i
F=Ve, 3)

transforming the unit Lagrangian line elemetX onto its Eulerian counterpartx = FdX
(for the relevant nonlinear continuum mechanics used i ¢chapter see, e.g., the books by
Holzapfel [29] and de Souza Neto et al. [14]). Note tR4s] and V. [e| denote the gradient
operators with respect to the reference configuration amgphtial configuration, respectively.
The determinant oF, the Jacobiay/ = defr > 0, characterizes the map of an infinitesimal
reference volume element to the associated spatial volleneat. Furthermore, in this chapter
we adopt the formalism in the sense of Marsden and Hughesfigquip the two manifolds
andS with the covariant reference metric tensdand the spatial metric tensgtransforming
the co- and contravariant objects in the Lagrangian andrianlenanifolds. As a next step, we
exploit the multiplicative split of into volumetricF,,; and isochorid parts, as introduced by
Flory [18], and write

F=F,,F  with Foo = JY and F=J'°F, (4)

wherel is the second-order identity tensor. Subsequently we ddfmenimodular part of the
left Cauchy-Green tensbras

b—=FG'F, (5)

which is a strain measure in terms of spatial coordinates. éifergy stored in a hyperelastic
isotropic material is characterized by the three modifiedriants

I, = tib, hzém_uﬁﬂ, T, = detb. (6)
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The anisotropic structure of biological tissues makesaessary to consider additional invari-
ants. Therefore, we introduce two reference unit vedtbandM’ representing the mean fiber
orientations, see Fig. 1, and their spatial counterparts as

m = FM, m' = FM’, (7)

which idealizes the micro-structure of the tissue. Subsetly; we can express the related Eu-
lerian form of the structure tensofs, andA,, as

An=m®m, Apy =mem. (8)
Finally, we introduce the (physically meaningful) additab invariants
]429:(m®m)7 ]ng:(m/@)m/)v (9)

which measure the squares of stretches along each fibetidlirec

2.3 Field equation for crack phase-field in a three-dimensioal setting

The multi-dimensional problem of fracture consists of sod@fable mechanical domain and a
non-deformable domain of the phase-field, as depicted ifite 2(a) and (b), respectively. A
sharp crack surface topology at timean be denoted by(¢) C R? in the solid body3, with
the definition’(d) = [, dA. In contrast, a diffusive crack simply approximates thergltaack
surface by a volume integral in the form of a regularized kiagface functional as

1
Iy(d) = / 1(d, V)V, where (d, V) = (¢ + P|VdP) (10)
B

denotes the isotropic volume-specific crack surface wWistands for the length-scale parameter.
This can be extended to a class of anisotropic materialsheiantroduction of an anisotropic
volume-specific crack surfaceup to first order, i.e.

v(d,QxVd) =~(d,Vd), VYQeGgc O(3), (11)

whereQ denotes the rotations in the symmetry gréy@a subset of the orthogonal grodji3)
containing rotations and reflections, andenotes an operator. The anisotropic structure is then
considered by a second-order structure tessuch that

L:lz[l —i—wM(M ®M)—|—WM/(M/®M/)], (12)

which aligns the evolution of the crack according to the miaéion of fibers in the continuum

using the anisotropy parameterg andw,;-, which regulate the transition from weak to strong
anisotropy. The anisotropic volume-specific crack surfarenow be represented by the alter-
native form )
21
We can now state the minimization principle

v(d,Vd; L) = —(d* + Vd - LVd). (13)

d(X,t) = Arg {deiﬁmpl(d)} : (14)
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Vd~N—0/§/y

(@) Deformation field (b) Crack phase-field

Figure 2:Multi-field problem: (a) mechanical problem of deformatidin) evolution of the crack phase-
field problem (adopted from Gultekin et al. [25]).

subject to the Dirichlet-type boundary constraifit ;) = {d|d(X,t) = 1 atX € I['(¢)}. The
Euler-Lagrange equations of the above stated variatianagiple are then

d—V-(LVd)=0 inB and LVd-N=0 onoB, (15)

where the non-local effects are considered by the diverytarm. In (15) N is the unit surface
normal oriented outward in the reference configuration fderivation of the Euler-Lagrange
equation see Giltekin [23]).

2.4 Constitutive modeling of artery walls

The effective Helmholtz free-energy function describihg tocal anisotropic mechanical re-
sponse of the intact solid assumes a specific form compribmgffective volumetrid/y(J),
the isotropic¥° and anisotropid@g™ parts, i.e. (Dal [13])

Uo(g, F, Am, Am) = Us(J) + ¥5°(9, F) + 5(9, F, Am, Any). (16)

It needs to be emphasized that in (16) the multiplicativeodgmosition of the deformation
gradientF is only used for the description of the ground matrix of theegr wall; in other
words, we dispense with the multiplicative decompositionthe fiber response. The effective
volumetric part in (16) is defined as

Uo(J) = #(J — InJ — 1), (17)

while the effective isotropia@is® and the effective anisotropi3™ parts are functions of the
invariant arguments. Thus,

\11680(97 t) = \il%]S()(jl)u \Ilgni<g7 F7 Am7 Am’) = \ilgni<l47 IG)7 (18)

which takes on the neo-Hookean and the exponential fornwdiog to Holzapfel et al. [30],
Tiso/ T Ko7 T,ani k

V(L) = 50 =3), ) = 2_1@12 i;{exp[k:g(li —1)2] -1}, (19)

representing the elastic (and isotropic) response of thangt matrix and the two (distinct)
families of collagen fibers, respectively. To give an accamfrthe parameters; denotes the
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penalty parameter enforcing the quasi-incompressiblemahtehavior in (17), whilg: indi-
cates the shear modulus in (19)he parameters, andk, in (19), denote a stress-like material
parameter and a dimensionless parameter, respectivedyaiiisotropic part contributes to the
mechanical response only when a family of fibers is undemsib@, that is when the invariants
I, > 1 (and/s > 1). Otherwise the relevant part of the anisotropic functioowdd be excluded
from (19),. For the derivations of the corresponding constitutivepoese, i.e. the effective
Kirchhoff stress tensor, and the effective elastic moduly see Gultekin et al. [25].

2.5 \Variational formulation based on power balance

We hereby establish the theoretical edifice based on thedsiaddle point principle of the

global power balance engendering the coupled Euler-Lagraguations governing the evo-
lution of the crack phase-field in (i) a rate-dependent anda(rate-independent setting, in
addition to the balance of linear momentum and the volumenstraints. For a degrading
continuum the Helmholtz free-energy function becomes

\Il(gv FaAmaAm’Qd) = g(d)\IIO(gv FvAmaAm’)v (20)

whereV, is the effective Helmholtz free-energy function of the hifpically intact solid ac-
cording to (16). The explicit form of the monotonically deasing quadratic degradation func-
tion g(d) is given by

g(d) = (1 —d)*. (21)
The function (21) describes the degradation of the tissubeasrack phase-field parametér
evolves, with the following growth conditions:

g'(d)<0 with g(0)=1, g(1)=0, g¢'(1)=0. (22)

Degradation is ensured by the first condition, whereas tbengeand third conditions set the
limits for the intact and the ruptured state of the matefiide final condition indicates a satu-
ration asd — 1. Hence, the volumetric, isotropic and the anisotropicgafithe free-energy
function¥ = U + W' + Ui for a degenerating material become

U(J.d) = g(d)Us(J), W*(I1;d) = g(d)W§°(I1), W™ (14, Ig;d) = g(d) W3 (14, Ig), (23)

respectively. In the subsequent treatment, we write the sathe energy storage functional
by considering the time derivative of the isotropic and thesatropic contributions of (23},
which integrated over the domain gives

£, d: . d) = / (r:9V.p — fd)dV. (24)
B

Therein, we have defined the Kirchhoff stress temsand the energetic forcgsuch that
T=g(d)(T5° + 7, [ =—0uU(J;d) + U(L;d) + (I, I d)]. (25)

The Kirchhoff stress tensar is essentially obtained via the effective isotropic andattbpic
Kirchhoff stress tensorsis® andr3™, respectively. Meanwhilef, can be interpreted as the work
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conjugate ofi. The external action on the body leads to the external pawetional described
by
P@) = [ v v+ [Tpda (26)
B 0Bt

where py, 4 andt represent the material density, the prescribed body foncetle spatial
surface traction, respectively. In what follows, the crdidsipation functionaD accounting for
the anisotropic dissipated energy in the body is introdwased

D) = [ gulon(d, Ve )ddV, 27)
B

whered, defines the variational derivative of the anisotropic vatuspecific crack surface
according to (Gultekin et al. [24])

Sy = %[d _ V- (LVa), (28)

andg. indicates the critical fracture energy (Griffith-type w#l energy release rate), see Miehe
et al. [52, 49] and Gultekin et al. [24, 25]. Concerning thedynamics, the dissipation func-
tional has to be non-negative for all admissible defornmapoocesses¥ > 0), a primary
demand of the second law of thermodynamics. This inequialiypriori fulfilled by the local
form of the dissipation functional (27) featuring a posatand convex propensity (Miehe et al.
[52] and Miehe and Schanzel [50]). The local form of (27) ceedily be stated by the principle
of maximum dissipation via the following constrained optiation problem

9e[0av(d, Vd; £))d = sup3d, (29)
BeEE

which can be solved by a Lagrange method yielding

9c[6av(d, Vd; £)]d = sup[Bd — M.(B; d, Vd)), (30)
B,A>0

where( is the local driving force, dual td, and )\ is the Lagrange multiplier that enforces the
constraint. In addition, the threshold functiQrdelineating a reversible domakhis given by

E(B) = {8 € R|ic(8;d, Vd) = B — gc[0ay(d, Vd; L)] < 0}. (31)

Finally, the extended dissipation functional reads

Dy(d .3 d) = [ 160 = el 35, Vv (32)
B

2.5.1 Mixed rate-independent variational formulation basd on power balance

The functionals (24), (26), and (32) are brought togethetHe description of a rate-type po-
tentialIT, giving rise to the power balance, i.e.

I, =&+ Dy — P. (33)
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On the basis of the rate-type potential (33), the mixed sapdint principle for the quasi-static
process states that

L _ inf inf suplI
{807 d7 57 )‘} - Arg {¢€W¢ der 5,)\2% A} ’ (34)

with the admissible domains for the primary variables
W,={¢|p=0 on 9B}, W;={d|d=0 on 0By} (35)

By considering the variation dil, we obtain Euler-Lagrange equations describing the mixed
multi-field problem for the rate-independent fracture ofamsotropic hyperelastic solid, i.e.

1 Jdiv(J'r) + poy =0,
20 p—f=0, (36)
3 d—\A=0,

along with the Karush-Kuhn-Tucker-type loading-unloadaonditions ensuring the principal
of maximum dissipation for the case of an evolution of theknahase-field parametér i.e.

A>0, <0, M.=0. (37)

The elimination ofs and A through (36) ; and the explicit form of the threshold functian
results in

d>0, f—gba7(d,Vd; L) <0,  [f— gebay(d,Vd;L)]d = 0. (38)

The first condition ensures the irreversibility of the evwuo of the crack phase-field parameter.
The second condition is an equality for an evolving crackiciiis negative for a stable crack.
The third condition is the balance law for the evolution & timack phase-field subjected to the
former conditions.

2.5.2 Mixed rate-dependent variational formulation basedn power balance

In this section we deal with the viscous extension of theatemnal approach. To this end, we
introduce a Perzyna-type viscous extension of the digsip&inctional, i.e.

D0, Bid) = [ 19d = 5 (0(5: 4, V) av: (39)
B

where the viscosity determines the viscous over-force governing the evolwifeh In (39) the
positive values for the threshold functionare always filtered out owing to the ramp function
(x) = (z + |z|)/2. The corresponding viscous rate-type potential reads

11, =&+ D, — P. (40)

On the basis of (40), we establish a mixed saddle point gri@or the quasi-static process, i.e.

(..} — Arg { o, nf supll, | “
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with the admissible domains for the primary state variabegiven in (35). One can retrieve
the coupled set of Euler-Lagrange equations for the rapement fracture by simply taking
the variation ofil,, which gives

1: Jdiv(J ') + poy = 0,

2: p—f=0, (42)

3 d— %(tc(ﬁ; d,Vd)) = 0.

The explicit form of the threshold functian recasts the equality (42)n the form
f = nd+ g:day(d, Vd; L), (43)

The rate-independent setting is recoveredjfes 0.

2.6 Crack driving function and failure Ansatz

Focusing on the rate-independent case in (43)pfes 0, we elaborate on the energetic force
(25),. Accordingly, we substitute the equations (21) and (23) (86), to arrive at

f=2(1—d)(Up + Wk 4 an) = 2(1 — d) W, (44)
Combining (43) and (44), and considering the rate-indepehdase together with (28), the

following relation holds
o

2(1—d =d—V-(LVd). 45
(-7 (£Vd) (45)
With this notion at hand, one can define the dimensionleskataving function
_ 0,
H= : 46
ge/l (40)

As discussed by Miehe et al. [51] the dimensionless chaiatits of 7{ allows the incorpora-
tion of different failure criteria. Subsequently, we pdata that a particular form of the failure
Ansatz in accordance with two conditions, i.e. (i) irrevieitgy of the crack and (ii) positiveness
of the crack driving function ensuring that the crack growtiely takes place upon loading.
Thus,

H(t) = max [(H(s) —1)]. 47)

The above ramp-type function reckons on the positive vaioie®/(s) — 1 and keeps the solid
intact below a threshold value, i.e. until the failure so€fés reached; therefore, the crack phase-
field does not evolve fok (s) < 1. We also note that (47) always considers the maximum value
of #(s) — 1 in the deformation history thereby ensuring the irreveligjof cracking. With
these adjustments, (45) now takes on the form

201 —dyH =d— V- (LVd), (48)
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where the right-hand side of (48) is the geometric resigtdmcrack whereas the left-hand side
is the local source term for the crack growth (Miehe et al])J3®earing this in mind, we recall
the rate-dependent case fp¢£ 0, i.e.

21 —d)H =d—V - (LVd) +nd, (49)

which compares to (43) with the replacement of the dimeradienergetic force by the dimen-

sionless failure Ansatz, the cornerstone of the crack phakkemodel. It needs to be highlighted
that the use of a free energy is intrinsic in the phase-fieldehdherefore the variational for-

mulation does not apply to cases apart from an energy-bagedan. Hence, a stress-based
criterion can only be incorporated into (48) or (49) on aeatd hocbasis.

2.7 Anisotropic failure criteria

The dimensionless crack driving function stated in (46@adly reflects an energy-based crite-
rion for a general isotropic material. However, it is wellokyn that most soft biological tissues
exhibit an anisotropic morphology thereby an anisotropgzhanical response to loading. We
herein give a short description of the anisotropic failureeda which may manifest the rupture
phenomena in coherence with clinical observations. Fopkaity the ensuing formulations are
established according to the assumption that the prineipas of anisotropy lie on the axes
of reference. Nonetheless, transformation of stress caemgs can be achieved without much
effort. For more details the reader is encouraged to lookidte®in et al. [25].

2.7.1 Energy-based anisotropic failure criterion

Two distinct failure processes are assumed to govern thekioga of the ground matrix and
the fibers, as suggested by Giiltekin et al. [24]. Accordgintjle energetic force in (44) can be
additively decomposed into an isotropic p#tt and an anisotropic pafft.,; such that

fio =201 = d)(Up + UE°),  fumi = 2(1 — d) U3 (50)

which, in their turn, modify (45) into two distinct fractuprocesses which are superposed to
give the following relation

—-— 1 . — ——iso ——ani
(1-—dH=d- iv-(cw), with H=H +H , (51)
where the dimensionless crack driving functions are defased

ﬂiso _ (U() _'_ \i]bso> —ani _ \ilg.ni .
g/l gem /1
Therein,g*° /I and g2 /I are the critical fracture energies over the length scal¢hferground
matrix and for the fibers, respectively. Finally, we mentiane the modified forms of the rate-
dependent and rate-independent cases of the crack evplugio

(52)

(1= dyH = d— %v (LY, (—dH=d— V(YD) 4nd (53)
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2.7.2 Stress-based anisotropic Tsai-Wu failure criterion

Composed of a scalar function of two strength tensors,jmeat and quadratic forms, the Tsai-
Wu criterion (Tsai and Wu [68]) recasts the dimensionleaskcdriving functionH in (46) in
regard to the effective Cauchy stress tensgin the following form

ﬂ:TIO'O—l-O'(]ITIO'(), (54)

whereT andT denote the second- and fourth-order strength tensorsgetggly. Through a
series of assumptions and simplifications introduced bynsgtry relations we end up with the

following expression
1

(07')?
for the diagonal terms of the fourth-order strength tenstated to ultimate normal and shear

stresses, wheriec {1, ..., 6}. For a comprehensive analysis of the simplifications andraps
tions the reader is referred to Tsai and Wu [68] and Tsai artthHgv7].

Ty = (55)

2.7.3 Stress-based anisotropic Hill failure criterion

Considered as an anisotropic extension of the von MisesHriterion, the Hill criterion (Hill
[28]) is based on a quadratic form of the dimensionless cdaskng function? in (46) such
that

H=0c™:T: o™, (56)
whereo ™ represents the effective von Mises stress tensor. The coemp® ofoj™ can be
defined in terms of

vim vin __ vim __
09, = 001 = 00 Op,” = 00y — 003, Ops = 003 — 001
(57)
vim vin __ vim __
0'04 0'04, 0'05 = 0'05, 0'06 0'06

The fourth-order strength tens@rpertains to the effective normal stresses and shear sitesse
as described in Gultekin et al. [25]. The Hill criterion essally admits a surface of von Mises-
Huber-type along the isotropic directions.

2.7.4 Principal stress criterion

Developed on the basis of principal stresses the criteridRaina and Miehe [57] reports on
the spectral decomposition of the effective Cauchy stierssar and takes the positive principal

stresses into account, i.e.
3

of => (oo @n;, (58)
=1
whereo, denote the effective principal stresses, andre the corresponding eigenvectors for
i € {1,2,3}. Accordingly, the dimensionless crack driving functighin (46) is rewritten in
the following format

H=0of:T:0f, (59)
where the fourth-order strength tengbis presented as
1
(T)ijr = (AiAj + AuAji) (60)

2
4O-crit
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Therein,o.;; denotes the reference critical stress associated withiahlaading in a certain
axis that can be conceptually replaced by an ultimate stfégssecond—order anisotropy tensor
A is expressed in index notation forj, k, [ € {1, 2, 3}. Details can be found in Raina and Miehe
[57].

2.8 Finite element formulation

By considering a discrete time increment t,,.; — t,,, wheret,, . ; andt,, stand for the current
and previous time steps respectively, we carry out a deacwypf the sub-problems, namely the
mechanical and the crack phase-field by appealing to a os®q@erator-splitting algorithm,
le.

ALGOCM = ALGOC e} ALGOM. (61)

Here, such an algorithm yields a decoupling within the timienval and results in parti-
tioned symmetric structures for the two sub-problems. Adicmly, the algorithm for each
sub-problem is obtained as

) Jdiv(J~ ) + pey =0, ) =0, (62)

d=0, d—V - (LVd) —2(1 — d)H + nd = 0.

The algorithm(M) is the mechanical predictor step which is solved for thedroerack phase-
field parametedl = d,, while the algorithm(C) is the crack evolution step for the frozen
deformation mag = ¢,,. The remainder of the formulation is summarized in Table $tay-
gered solution procedure is implemented based on a onespasator-splitting of the coupled
Euler-Lagrange equations on the temporal side whereasexrksatype weak formulation on
the spatial side furnishes the finite element formulatimmglwith the rate-dependent setting
of the phase-field. Such a solution algorithm successivatiates the crack phase-field and the
deformation map in a typical time step by means of a NewtophRan scheme. For an elabo-
rate treatment of discretization methods and a staggetetisoprocedure based on a one-pass
operator-splitting, the reader is referred to, e.g., Miptd, Wriggers [71], Miehe et al. [49]
and Gultekin et al. [24, 25].

2.9 Representative numerical examples

We now demonstrate the performance of the proposed modk¢dpp rupture of soft biolog-
ical tissues. The other aim is to investigate the failureega introduced in Section 2.7 from a
numerical point of view. In particular, the failure surfaaed the crack propagation associated
with distinct failure criteria are compared with each ottoerather simple numerical examples.

2.9.1 Numerical investigation of the failure surfaces

We provide an insight to the initiation of the crack with redjo different failure criteria. The

example, taken from Gultekin et al. [25], deals with a hoeragpus problem with a unit cube
discretized by one hexahedral element resolving the @nalwolution for the deformation and
stress via discarding all non-local effects due to the @gnatdof the crack phase-fieNd, see



A Brief Review on Computational Modeling of Rupture in SofoB®gical Tissues 14

Table 1.General algorithm for the multi-field problem in,[ ¢, 1 1].

1. Initialization — Attimet, given: deformation map, phase-field, history figid, d.., .,
2. Update — Update the prescribed loagis® andt at current time,,
3.Computep,, ;, — Determinep,,, from the minimization problem of elasticity
ALGOy o G¥= /[sz(&p) c7)dV — /5go - poydV — /550 tda =0
B B oB
4. Compute history — Check crack initiation/propagation condition, updat&dny
o Hlthi) H(tn) it H(tnr1) < Htn)
H(tnt1) else
5. Computed,, 1 — Determinel,,,1 from the minimization problem of crack topology
d (d — dn)
ALGO¢ o G%= [ddld—2(1—d)H+n 1dV 4+ [ V(6d) - LVddV =0
T
B B

z
. x*. .I
@ ®) © )

Figure 3:(a) Unit cube of a transversely isotropic tissue consisthgne family of fibers with ori-
entationM parallel to thex-direction, initially subjected to uniaxial deformatiois the z-, y-, and
z-directions followed by a series of planar biaxial deforimas (b) in thery-plane; (c) in thecz-plane;
(d) in theyz-plane (adopted from Gultekin et al. [25]).

Fig. 3(a). As a loading protocol, we first consider uniaxibasion tests along the, y- andz-
directions with a stretch ratid, = A\, = A\, = 2 which is followed by a series of planar biaxial
deformations in they-plane with stretch ratios, : A\, =2 :1.1,2:1.25,2:1.5,2: 1.75,
2:2,1.75:2,1.5:2,1.25:2,1.1: 2. Stretch ratios in thez- andyz-planes for\, : A, and

Ay @ A, are applied in an analogous manner asXpr ), see Figs. 3(b),(c) and (d). The tissue
is regarded as transversely isotropic consisting of ondyarhfibers with orientatiorM along
the z-direction, and it is embedded in the ground matrix. Thetelasaterial parameters and
the crack phase-field parameters are listed for each fahitexion in Table 2 (for more details
see Giltekin et al. [25]).

Figures 4(a),(b) and (c) illustrate the resulting failuuefaces at the instance whén# 0 for

the energy-based criterion, the Tsai-Wu criterion and tivecjpal stress criterion, respectively.
The results conspicuously retrieve ellipsoidal failurefaces. It needs to be emphasized that
one can envisage a zone between the macroscopic ahget)and the completiond(= 1) of

the crack in the context of diffusive crack modeling suchhasdrack phase-field. This example
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Table 2:Elastic material parameters and crack phase-field parasfetea transversely isotropic mate-
rial studied in Section 2.9.1.

Elastic uw = 10kPa
kit =20 kPa
ka =1
Crack phase-field Energy-based criterion gis° = 5kPamm g2 = 15kPamm
Tsai-Wu criterion oy =140kPa oy =o}=20kPa
Principal stress criterion o= 140kPa  a; = ag =az="7
Hill criterion o) =30kPa o, = oy=20kPa

Figure 4:Failure surfaces in regard to Cauchy stressgs o,, ando. in kPa at which the failure
conditions are satisfied, leading do> 0 for (a) the energy-based; (b) the Tsai-Wu; (c) the maximum
principal stress; (d) the Hill failure criterion (adoptedr Gultekin et al. [25]).

points out the associated macroscopic onset of the cragtrds 4(d) shows the failure surfaces
obtained atl # 0 for the Hill criterion (Section 2.7.3). In fact, these criteinduce surfaces
diverging from being ellipsoidal. In particular, the ismpic failure envelope on thgz-plane
eventually becomes discernable, see Fig. 4(d), which s¥sdhe von Mises-Huber criterion,
as expected.
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Mises

(b)

Figure 5:(a) Geometry of the strip with a single family of fibers withemtationM in the y-direction,

corresponding to the collagenous component of the matdiie strip is torn apart by means of a dis-
placement., applied at the two arms in the positive and negatiwdirection; (b) finite element mesh of
the corresponding geometry. Dimensions are provided ilimaters (adopted from Gultekin et al. [25]).

2.9.2 Peel test numerically analyzed with different failue criteria

Peel tests bear an immense resemblance to the physicalpbea®f, e.g., aortic dissections
and allow a numerical investigation of the dissection pgapi@n in terms of various failure
criteria mentioned in Section 2.7. The benchmark with atiahtear models a hypothetical
artery comprised of a single family of fibers with orientatil. The geometric and discrete
descriptions of the problem are illustrated in Figs. 5(a) @m), respectively. The strip was
discretized with2 640 mixed Q1P0 eight-node hexahedral elements. Nodes on the plane at
y = 0 are fixed in all directions and a horizontal displacement= 4 mm is incrementally
applied at the arms on the top plane in thdirection. Plain strain conditions are considered in
the z-direction. The elastic material parameters are accotdiigasser and Holzapfel [21]. The
penalty parameter and the length-scale parameter arerchsse= 1 000 kPa and = 0.05 mm,
respectively. The viscosity parameter is adjusted tg bel kPa s for the energy-based criterion
andn = 10kPas for the stress-based criterion while the anisotropgrpaters are selected as
wy = 1.0 andwyy = 0 fulfilling weak anisotropy. The other phase-field paranetee taken
from Giltekin et al. [25].

The analyses are performed according to the energy-bdsed,skti-Wu, the principal stress

and the Hill criterion while the two arms of the strip sepadhby an initial tear are being pulled

in opposite directions, see Fig. 6. It has been observeditkalse of stress-based criteria, in
general, leads to a crack propagation susceptible to boyietfacts not observed in the case of
the energy-based criterion.

We close this section by providing a short discussion on tingysby Raina and Miehe [57] in
which the phase-field of fracture is used to simulate therdiglation of the aortic media with the
principal stress criterion imparted in Section 2.7.4. Aligh the overall problem setup is akin to
the one explained in this section, the finite element mestpasges of7 000 displacement-based
four-noded quadrilateral elements2D. The selected material parameters agree favorably with
the parameters identified by Gasser and Holzapfel [21].rEBiqushows the contours of the
phase-field parametefr at different stages of the deformation, while Fig. 8 prosidee load
per unit width on one side of the pre-crack at the top line wernhe displacement. A good
agreement of the plot with the average experimental cureetified by Sommer et al. [66] is
discernable.
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(d)

Figure 6:Evolution of the crack phase-fieltifor (a) the energy-based; (b) the Tsai-Wu; (c) the principal
stress criterion; (d) the Hill criterion, as the arteriastie with an initial tear is being pulled in two
opposite directions (adopted from Gultekin et al. [25]).

Figure 7:Contours of the crack phase-fieldllustrate the crack propagation in the deformed configu-
ration (adopted from [57]).

3 Discontinuous Models of Rupture in Soft Biological Tissug

Endeavors were made to obtain a variational framework ferXBREM and the CZM. In the
XFEM, cracks are represented by the enriched nodes enaiymgptotic and discontinuous
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Figure 8:Plot of load per unit width on one side of the pre-crack at theline against the applied

displacement, which is compared with the average expetahdata from Sommer et al. [66] (adopted
from [57]).

fields through additional degrees of freedom. CZMs are, hewelescribed by (surface-like)
interface elements compatible with general finite elemésdrdtization. The concept of cohe-
sive law and XFEM are combined in Moés and Belytschko [53fjh& tractions on the crack
surface are governed by a traction-separation law. Thisthooncept was implemented to
model the dissection of an aorta in Gasser and HolzapfeldRitjg with the PUFEM. In the
forthcoming sections we describe this approach and exipleimixed saddle point principle.
Model implementations are verified by finite element anaysean abdominal aortic media
subject to delamination (mode-I), in accordance to GasséHvlzapfel [21] and Ferrara and
Pandolfi [17].

3.1 Discontinuous kinematics

Let us assume a continuum boByC R? attimet, € 7 C RandS c R? attimet € T C Rin
the Euclidean space. In view of the entire domain, we asswstreiag discontinuity surface,
and oS, in the reference and the spatial configuration, see Fig. 8.discontinuity separates
B into two subdomain$, and5_ located in the reference configuration rendering the featur
OBy NBy = 0,08, NB. = 0 anddBy U B, UB_ = B. Their spatial counterparts are
delineated byS,y, S_ andS, . The orientations of a material poit; and the related spatial
pointx, located on the discontinuous surfaces are characterizéuebynormal vectoN, and
ng, respectively. The essential and the neutral boundaryittons with respect to the reference
and spatial configurations are shown in Fig. 9.

Next, we rephrase the deformation map and introduce anieglgplit of ¢ into a compatible
partep,. and an enhanced pagt, see Simo et al. [65] and Armero and Garikipati [2]. Thus,
¢ =¢.+Hep, (63)

whereH denotes the Heaviside function, with valuesnd 1 associated wittX € B_ and
X € B, respectively. The assumption thiat, is the map o5, enables the introduction of
an average deformation gradié¢ht which resorts to Wells [69], i.e.

1
Fd = VLPC + 5900 ® Nd7 (64)
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0S;

Figure 9:Discontinuous kinematics representing the reference garaiiondB, U B, U B_ = B and

the spatial configuratiofSy U S, US_ = S of a body subject to the essential and the neutral boundary
constraints with the associated deformation gradiegt$. andF.. Surface tractions on the body surface
are denoted by (spatial) andT (referential) with respect to the Cauchy stress temsand the second
Piola—Kirchhoff stress tens@ along with the unit normal vectons (spatial) and\ (referential). The
cohesive tractions on the cohesive surfaces are relategd the unit spatial normal 08Sg.

where the spatial discontinuity norma), is defined by a contravariant push-forward of the
normal vectoMN, such that

_ Fi'Ng
RNl
which gives the preferred direction for anisotropic trantseparation laws. Additionally, we
define the compatible deformation gradiéntas

Ng (65)

F.=Vep. from B_ to S_, (66)
and the enhanced deformation gradients

F.=Ve.+ Ve, from B, to S.. (67)

3.2 Traction-separation law

The theory of standard dissipative solids treated via gatebased models are well-established
by Biot [7] and Halphen and Nguyen [27], among others. Actwly, Ortiz and Pandolfi [56]
postulated the general form of an objective free-energwitieper unit undeformed areds,
which can be interpreted as a cohesive potential or elastigy stored in the cohesive surfaces,
see, e.g., Xu and Needleman [72]. The constitutive law ferdbhesive surface is conjectured
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to be a phenomenological relation between the traction bedlisplacement jump across the
surface. The general form reads

¢ = p(ug,d), (68)

whereu, is referred to as the discontinuous displacement repriesgthie displacement jumps,
while d is an internal scalar variable accounting for damage. Nawive an account for two
particular forms of this cohesive potential.

3.2.1 Isotropic cohesive law

Gasser and Holzapfel [21] uses an isotropic particulddnaif the cohesive potential according

to
“ t .
6 = 0(ir,d) = S Zexp(—ad")i, (69)
wherei; = Uq - Uq defines the first invariant, denotes the cohesive tensile strength whetieas
andb are non-negative parameters which retrieve the softemsgonse of the material based

on mode | fracture. Then the cohesive tractigis defined by

t
tq = Oy, ¢ = %exp(—adb)ud. (70)

Details about the calculation of the cohesive traction awl to extend it to the anisotropic case
can be found in Gasser and Holzapfel [20, 21].

3.2.2 Anisotropic cohesive law

Ferrara and Pandolfi [16] implement cohesive laws by postigiapecific forms of the cohesive
potential as, e.g.,

o= Qg(ud,la Ud,2, Ud,n, d), (71)
where the opening displacements are introduced as

Uq,p = Ug-M,  ug2 = Uq - m’, Udn = Ug - My. (72)
Therein,m andm’ designate the unit vectors representing the mean fibertatiens onoS,
(compare with (7)), with their normal component, = m x m’. Then, the cohesive tractidp
is given by R A R
ta = 0uy@ = Oug, @M + Oy , &M’ + Oy, PM,. (73)
For further simplifications on the cohesive tractions ther@sted reader is encouraged to see
the papers by Ortiz and Pandolfi [56] and Ferrara and Pandélfi |

3.3 Finite element formulation

The above elucidated mixed modeling (XFEM/PUFEM and CZMdohesive crack growth)
requires that the discontinuities at the crack tip are adtdydescribed by enriching functions
such asH. The displacement field is, e.g., interpolated as

Nelem Nelem

u=> Nul+3> Nuf (74)

I=1 I=1
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whereN! denotes the standard (polynomial) interpolation functiwith the index! running
from 1 to neem, the number of nodes per element. Thereinandu, indicate the matrix no-
tation of the associatecbmpatible andenhanced nodal displacement vectors. An important
aspect is that the sum of the shape functions must be unityylséenk and Babuska [45]. What
follows is a standard Galerkin procedure of the problem atifzand the corresponding lineariza-
tion. It should be noted that as the element stiffness mganerally becomes non-symmetric,
the application of appropriate solvers are indispensdbdequadratic rate of convergence is
sought. Details in regard to finite element formulations #&dr implementations can be found
in Gasser and Holzapfel [20, 21].

3.4 Representative numerical examples

For the sake of comparison, numerical examples handlingdle¢ test, based on the experi-
mental data of Sommer et al. [66], are presented.

3.4.1 Analysis of a peel test according to Gasser and Holzagf[21]

The contribution [21] uses both XFEM and CZM in order to mod&D medial aortic strip
with geometry and boundary conditions by analogy with Figlvo families of collagen fibers
oriented by an angle af5° with respect to the circumferential direction manifestsmorphol-
ogy of the tissue. The finite element mesh consist$f3 standard tetrahedral elements and
involves a refinement around the regions where the cracktgrisvexpected.

The required elastic parameters are accommodated fronapfelzt al. [31], whereas the cohe-
sive materials are identified according to the experimetddtd by Sommer et al. [66]. Therein,
the dissection failure response of the media, albeit stibjeg rather large standard deviation,
is found to be anisotropic as the load required to dissedi@istthe longitudinal direction is
higher than that in the circumferential directidgdv (0 + 16.0 mMN/mm vs23.0 + 3.0 mMN/mm).
The cohesive law used here, see Section 3.2.1, delineatsstampic failure where only the
tensile strength normal to the cohesive surface is takeraiotount.

Computations are performed by using approxima2élydisplacement increments and the non-
symmetric system of algebraic equations are monolithidadindled by a direct solver. The
distribution of the radial component. = r - o - r of the Cauchy stress, with being the
spatial radial direction vector, is demonstrated in Fig. Tiereby five different stress states
are illustrated which are labeled as (a)—(e). The corredipgrioad-displacement response is
provided via Fig. 11. Upon exceeding a threshold value ofdhad, the response starts to exhibit
an oscillatory behavior followed by a gradual degradatitera gap displacement dimm. The
plateau region obtained through numerical analysis iséo@@nce with the experimental data.

3.4.2 Analysis of a peel test according to Ferrara and Pandbl[17]

The study [17] applies the cohesive zone approach to hamtileraedial aortic strip with ge-
ometry and boundary conditions by analogy with Fig. 5. Thigo sepresents a specimen cut
out in the circumferential direction with two families of éls defined by an angle 5° with
respect to the circumferential axis. In order to study theotof the mesh size, the geometry is
discretized by a coarse, a medium, and a fine meshiwiiode standard tetrahedral elements,
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Figure 10:Spatial distribution and evolution of the radial Cauchgs$r, during the propagation of a
dissection within a strip of an aortic media (adopted frons$&a and Holzapfel [21]).
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Figure 11:Comparison of the (average) experimental load/width viithdcomputed load/width required
to propagate a dissection in an aortic human media (adopiadGasser and Holzapfel [21]).

respectively. The material parameters for the hyperelastidel and the anisotropic cohesive
law can be found in Ferrara and Pandolfi [17]. Although thes@inopic cohesive law is em-

ployed according to Section 3.2.2, problems related to hdrigegree of anisotropy occurred
which resulted to a breakage of the arms due to bending. Tiuesired behavior can only be
evaded by restricting the crack path along the middle sarfdéi¢he3D model.

Figure 12 shows the deformed configurations of three snapsisahe two arms are stretched
apart, and the contour levels indicate (a) the first and (&)sécond principal Cauchy stress,
respectively. As a matter of fact, the second principal Ggustress represents the normal
component of the stress to the dissecting plane. Figure d®8ssthe relationship between the
force/width and the total separation of the two arms. Themggtic behavior of the numerical

results is verified through the implementation of three $ations with three different mesh

sizes. It is found that the remarkable decrease in the amdglibf the oscillations upon reaching
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(@) (b)

Figure 12:Evolution of the dissection at three different stages: bos¢he dissection? and4 mm of
imposed displacement. Contour levels in MPa refer to (afiteeand (b) the second principal Cauchy
stress. With reference to the arterial geometry, the sepandipal stress corresponds to the radial com-
ponent (adopted from Ferrara and Pandolfi [17]).
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Figure 13:Effects of the mesh size on the numerical simulation of theradissection, and comparison
with the experimental data from Sommer et al. [66] (adoptethfFerrara and Pandolfi [17]).

the plateau region is achieved with the finer mesh which vesdhe characteristic length scale.
Besides, the average pulling force per unit widtl2®mN/mm falls in the range described by
experimental data.

4 Discussion

Apart from the traditional finite element method relying oesh-based discretization of the
spatial domain, other methods that do not rely on finite elgndescretization such as mesh-
free methods based on peridynamic models (Silling [63] afithand E. Askarib [64]), the
element-free Galerkin method (Belytschko et al. [6]), antbsthed particle hydrodynamics
(Libersky and Petschek [42]), have recently been appliesdtotissue mechanics, see, e.g., Jin
et al. [37] and Rausch et al. [58]. The study of Rausch et 8].¢bnulated the delamination of
an aortic strip according to the experiments performed byi8er et al. [66], and demonstrated
a qualitative agreement of the numerical results with erpemtal data. Nonetheless, it is also
worth mentioning that meshless methods, when utilizedaerfitiite strain context, may require
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several expedients to suppress non-physical results|@cgl viscosity augmented to hypere-
lasticity models to help stabilize the solution, or tragkiof free surface particles in order to
impose traction-free responses.

Ferrara and Pandolfi [17] adjusted the cohesive law in ordgrévent the breakage of the
arms and to capture a physically relevant peeling which iscatithe middle of the pre-cracked
region. It is worth mentioning that such interventions aoé required for the CPFM when an
energy-based failure criterion is used. Apart from thalbath CZM and XFEM, due to their dis-
continuous setting, the allowed crack paths are presctibbd along the middle surface of the
geometry which render these approaches impractical foptmageometrical and morpholog-
ical situations as, e.g.,3D model of dissection propagating through an ascendingalbidlso
needs to be emphasized that the presented approaches figos the mechanical fracture of
solids/tissues, and they completely ignore the intricagalfback mechanism between the me-
chanical and the biochemical environment of tissues whialy evoke bio-chemo-mechanical
fracture.

The mechanical behavior of arterial walls before and aftaclc initiation is very much de-
pendent on the local variability of collagen, and on the @neg of micro-defects and micro-
calcifications, see, e.g., Marino and Vairo [43] and Hutomest al. [34]. On the top of that,
the hierarchical structure of collagen fibers, the mainutor of the mechanical response of
soft tissues, is evident from morphological investigasigBherman et al. [62]). Hence, multi-
scale approaches to rupture of soft tissues may provide ptoysically relevant and holistic
approximations than the above-stated macro models.

There is a pressing need for more advanced computationatlsitdtht can predict the prop-
agation of cracks and the ultimate rupture of soft biologissues resulting from atheroscle-
rotic plagues, aneurysms, aortic dissection etc. basedimigatly available patient-specific
data. Such models should also be informed by the underlyiaghanobiology of, e.g., the
lipid absorbing leukocytes (Libby et al. [41]), matrix-rafloproteinases, Marfan’s syndrome,
to name but a few (Humphrey and Holzapfel [33]). Growth anuiadeling of lesions trig-
gered by mechanobiology should also be taken into accotetfdcus of modeling and simu-
lation should be more on the tissue structure rather tharpheaomenological description, and
should move towards personalized data, ultimately leatbripe establishment of soft tissue
rupture simulation as a key tool in medical monitoring arahpiing of surgical intervention.
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