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Summary

Work in the polar regions of our planet is unavoidably linked with hazards
such as drift ice. Increased presence, fueled by economic interests in the
Arctic, has for several decades called for research in the field of ice man-
agement. The field deals with the detection, tracking and forecasting of
ice, but also the physical actions taken to avoid collisions. Managing ice
is of great importance to polar ventures but predicting ice movement has
proven difficult, concluding that observations are essential for tracking.

Ice management is applicable not only for stationary installations, but
has also been studied for the protection of ship routes in the Arctic. A
moving object may be not be able to rely solely on satellite imagery, as
these generally have limited availability and coverage, with sample times
in the order of days. Recent studies have introduced the use of Unmanned
Aerial Systems (uas's) as a supplement to local sensors such as ship- or
ground-based radar.

This thesis aims to provide a detailed insight into the design of a scalable
sea ice tracking system with components ranging, from data collection,
classification and tracking, to the feedback of previous tracking results
into the formation of new paths for multiple uvas agents to collect new
observations. Beyond applying the uas as a sensor platform, examples
are also given in this thesis of the use of machine learning algorithms
and background modeling to extract and classify sea ice detections from
Synthetic Aperture Radar (sar) and ground-based radar.

In the business of tracking ice objects in the Arctic, objects are tracked
over a geographically vast area. While each observation covers only a rel-
atively limited area, a complete system needs to handle large number of
ice objects. Commonly, Multiple Target Tracking (mrT) algorithms scale
poorly with target numbers, which poses a problem to the large scale of our
scenario. This thesis goes into detail on selected approaches for enabling
large-scale mrT. First, we introduce spatial indexing for a fast partition-
ing scheme for the Multiple Hypothesis Tracker (muT) and Labeled Multi-
Bernoulli (Lms) algorithms. Further, we propose a novel formulation of the
LmB filter designed to simplify its implementation. The resulting filters are
detailed, implemented and applied to sea ice tracking scenarios.

To utilize the information available from the tracker, we explore two
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applications in particular. First, we study probabilistic modeling of current
and wind velocities based on tracker data and Gaussian fields. Second, we
propose the use of the Probability Hypothesis Density (puD) for informed
planning of uas flight paths. The pHD — the density of expected number of
tracked objects — can be efficiently extracted from the same data structures
used in e.g. the Lms filter, and is thus used to form a common “language”
between the two algorithm families of target trackers and path planners.
A proof of concept multi-agent path planner is developed and published
open-source along with implementations of the mur and Lms filters.
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Introduction

The countries of the European Union share an interest in the waters to
which it borders. The care for marine resources and natural environment
is becoming an increasingly pressing issue, while economic interests at the
same time call for cost efficiency and increased exploitation. Monitoring the
coastal regions of the European Union is a vast operation which in recent
years have started to benefit from the advances in technology of unmanned
systems. Collaborative technology utilizing buoys, autonomous ships, un-
derwater vehicles, satellites and unmanned aerial systems is quickly be-
coming a reality, enabling new possibilities in e.g. marine transport. For
example, by mitigating dangers posed by drift ice in the Arctic transporta-
tion route north of Russia, the Northern Sea Route, it could be possible to
use new shipping routes, effectively halving the distance between Europe
and Asia.

Predicting ice movements have proved difficult however, and today’s
practice of manned flights by e.g. the Canadian Ice Service are expensive
and — compared to potential autonomous solutions — ineffective. In this
thesis, we aim to explore the groundworks of a full scale sea ice tracking
system and propose methods to make use of the possibilities of the new
technologies and close the loop by exploiting the information collected
by all the system’s agents. As we seek to track a very large amount of
targets, we also explore ways of increasing the scalability of Multiple Target
Tracking (mTT) algorithms.

1.1 Research Applications

To exemplify the potential application of the research presented in this
thesis, two initial scenarios may be studied:

—— Scenario 1.1: Protection of Arctic Ship Routes
Shipping routes in the Arctic is inherently associated with risk of sea ice col-
lisions. A globally available early warning system would be able to mitigate
those risks and increase the safety of Arctic transports. Satellite imagery is
available with Arctic coverage. However, with satellite observation as the
only source of information, such a system would only be able to issue very
broad warnings.
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In this scenario, visualized in Figure 1.1, an Unmanned Aerial System
(uas) could be carried on-board a container ship and be launched to main-
tain a highly updated regionally detailed view to complement the overview
satellites are able to provide. It would also be able to actively look for ice
objects that may have impact on the safety of the shipping route. With de-
tections sent to a global service, ships can take advantage of data collected
from nearby ships.

The varying scales and the moving area of interest puts requirements
on the partitionability and scalability of the algorithms used for tracking
the ice. This would also apply to any active route planning employed to
optimize the paths for active agents searching for sea ice hazards.

Figure 1.1: Illustration of the ship route protection scenario, where the
black ellipse symbolizes the position of a container ship, and the white
ellipses symbolizes tracked ice objects. The crossed ellipses symbolizes a
uas that has been launched from the ship to maintain overview and look
for ice in the area. The more red in the background, the more important it
is considered for continued surveillance

The idea of a global early warning system based on the combination of
all available sensors warrants the following questions:

Q1 | How can we track large amounts of sea ice globally?




1.1. RESEARCH APPLICATIONS 3

Q2 | How can we combine large scale (global) and small-scale
(local) tracking?

Q3 | How can we make sure only the relevant parts of the
tracker is updated with new measurements?

Today, it is reasonable to assume that a map is available of all static
landmasses in the region of interest. Satellite imagery provides a good
foundation for ice monitoring, but can provide neither the high resolution
which is desirable for detecting smaller objects, nor the sample rate required
for reliable tracking. Other applicable sensors include stationary marine
radars, which may provide high resolution measurements with high sample
rate, but is restricted to the line-of-sight of the sensor.

Note that detected objects may be associated with motion models and
properties such as

e position, velocity, mass;
e uncertainty of the measurements; and
e risk / assessed damage of impact.

All these properties changes over time, and the only way to find out
how is to take new measurements.

—— Scenario 1.2: Protection of Static Assets in Sea Infested Areas ———
Another fueling factor for presence in the Arctic waters is the availability
of oil in the region. Like all other Arctic operations it is exposed to the
hazards of sea ice, butin the sensitive Arctic environment it has the potential
of catastrophic impact in case of an incident. It is therefore of utmost
importance in such operations to maintain monitoring of the surrounding
sea ice conditions.

In this scenario, a system is studied which tracks and detects moving
drift sea ice around a stationary protected asset. A visualisation of the
scenario is provided in Figure 1.2.

Radar sensors around the installation will provide an overview of the
region, but for closer inspection a sensor may need to be brought closer.
However, local observations entails that only a limited part of the region
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can be observed with limited time and resources, and there is a need to
prioritize which area to observe. From the available data about wind and
currents, we assume in the scenario that drift ice is most likely to approach
from the north-east, and so dispatch a vas in that direction to gather more
data.

Figure 1.2: Static rig protection. In this image, the cross indicates the
position of e.g. an oil rig, and the white ellipses tracked ice objects. The more
red in the background, the more important it is considered for continued
surveillance

The need to prioritize time and resources, especially with regards to
a limited set of uas agents with limited flight time, raises the following
questions:

Q4 | How can we maximize the relevance of future acquired
data?

Q5 | How is the route affected if a hazard is found? How is
the route affected if a hazard is not found?
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Q6 | How is the expected value of exploration affected by the
modeled motion of objects?

These questions can be studied as an optimisation problem with the
goal of retrieving a search pattern — optimal in some sense — with restric-
tions such as end position (landing site), start position (current location)
and (remaining) length of flight. Further, during the flight, any number
of objects may be found and require recalculation of the proposed flight
path.

1.2 Objectives

With an increasing range of sensors and data available to gather informa-
tion on sea ice, we have studied the application of sensor fusion to this
collected intelligence. Theory and practical implementation have been pur-
sued for a system for probabilistic data fusion and decision support for ice
management.

Given the questions stated in Section 1.1, the main objectives we wish
to address in this thesis are to:

I. Research scalable multi-target, multi-sensor methods for global track-
ing of ice objects.

II. Explore the use of machine learning to make use of the information
in the tracking data.

II. Improve the predictive capabilities through integrated mapping of
currents.

IV. Develop a statistical representation of the geographical distribution
of exploration value.

V. Optimize information acquisition through the exploitation of tracker

data and statistical models.

1.3 Publications

The following list of publications contribute towards the purpose of this
thesis, grouped by type and listed in chronological order of publication.
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For all publications included in this thesis, the thesis author is the principal

author.

Conference Papers

Paper A:

Paper B:

Paper C:

Olofsson, J., Brekke, E., Fossen, T. 1., and Johansen, T. A. (2017a). Spa-
tially indexed clustering for scalable tracking of remotely sensed drift
ice. In IEEE Aerospace Conference Proceedings, Big Sky, MT, USA. © 2017
IEEE.

This paper, forming the base for Chapter 5, explores the appli-
cation of spatial indexing to the Multiple Hypothesis Tracker (MHT)
algorithm. The author contributed with the idea, writing of the arti-
cle, implementation and application examples.

Olofsson, J., Brekke, E., and Johansen, T. A. (2017b). Cooperative re-
mote sensing of ice using a spatially indexed labeled multi-Bernoulli
filter. In International Conference Unmanned Aircraft Systems (ICUAS),
Miami, USA. © 2017 IEEE.

This paper introduces the pyrHoN Labeled Multi-Bernoulli (LmB)
implementation and discusses how spatial indexing can be applied
in the clustering process. Further, it presents a simulated scenario
with combined satellite and uas measurements of sea ice. The author
contributed with the idea, writing of the article, algorithm implemen-
tation and simulated application examples.

Olofsson, J., Veibdck, C., and Hendeby, G. (2017d). Sea ice tracking
with a spatially indexed labeled multi-Bernoulli filter. In 20th Interna-
tional Conference on Information Fusion (FUSION), Xi’an, China. © 2017
IEEE.

The contributions of this paper are twofold. First, we introduce
a reformulation of the Lwms filter, better suited for implementation.
This is condensed into a simple algorithm which simplifies the cal-
culation of the filter’s probabilities. Second, the filter is applied to
a sea ice tracking scenario using a dataset sampled by a Terrestrial
Radar Interferometer (TrI) sensor stationed by Kongsfjorden, Sval-
bard. The author contributed with the idea, writing of the article and
the algorithm implementations.
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Paper D:

Paper E:

Olofsson, J., Flaten, A. L., Veibdck, C., and Lauknes, T. R. (2017¢).
Gaussian field current estimation from drift sea ice tracking with
the labeled multi-Bernoulli filter. In Proceedings of OCEANS 2017
MTS/IEEE, Anchorage, Alaska, USA. © 2017 IEEE.

Here, we extend the results of Paper C, applying the result of
the tracking scenario to form a velocity map of the tracked region,
using Gaussian Fields. The results from this paper are presented
in Chapter 7. The author contributed with the idea, writing of the
article, implementation and application examples.

Olofsson, J., Veibdck, C., Hendeby, G., and Johansen, T. A. (2017e).
Outline of a system for integrated adaptive ice tracking and multi-
agent path planning. 2017 Workshop on Research, Education and Devel-
opment of Unmanned Aerial Systems, RED-UAS 2017. doi: 10.1109/RED-
UAS.2017.8101636. © 2017 IEEE.

This paper outlines the principles and components used to for-
mulate the work that has resulted in this thesis. The article presents
combined results of previous papers, and present an overview of how
they connect in the bigger picture. The author contributed with the
idea, writing of the article, implementation and application examples.

1

Journal Articles

Paper F:

Olofsson, J., Hendeby, G., Lauknes, T. R., and Johansen, T. A. (2018).
Multi-Agent Informed Path-Planning Using the Probability Hypoth-
esis Density. Autonomous Robots, (Submitted, Aug 2018). © 2017
IEEE.2018 IEEE

In this paper, we propose a multi-agent metric for path plan-
ning, using the Probability Hypothesis Density (puD) to optimize the
expected number of detected targets along the route. The paper de-
rives the metric and applies it to propose paths for multiple agents,
in a setting based of two datasets recorded by Trr and vas respec-
tively. The author contributed with the idea, writing of the article,
implementation and application examples. |

Additionally, the following paper has been co-authored by the author
of this thesis, although it is not included in the thesis:
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e Veibdck, C., Olofsson, J., and Hendeby, G. (2018). Learning Target
Dynamics While Tracking Using Gaussian Processes. Transactions on
Aerospace and Electronic Systems, (Under review, June 2018)

Open-Sourced Software
For the papers above, four Free and Open Source Software (ross) libraries
were developed and published by the author of this thesis.

MHT A pytHON library demonstrating the integration of spatial indexing
and the mar algorithm.
The library is available at https://github.com/jonatanolofsson/
mht

PYLMB This pytHON library is a reference implementation for the reformula-
tion of the Lwms filter proposed in Chapter 6.
The library is available at https://github.com/jonatanolofsson/
1mb

CLMB This is a C++ library with pyrHON bindings developed as a successor
for the Lms library above, optimized for computational efficiency and
improved parallelization.

The library is available at https://github.com/jonatanolofsson/
clmb

PPL In Chapter 8, a multi-agent planner based on the pHD is proposed.
This pyrHON library provides the implementation of the Monte Car-
lo/ genetic optimization routine used for evaluation.

The library is available at https://github.com/jonatanolofsson/

ppl

1.4 Structure of the Thesis and Main Contributions

The thesis is structured into three main parts.

In PartI, we present the background to the thesis along with an overview
of our proposed structure for a system for large scale tracking of sea ice in
Chapter 2. The major components of this system have been the foundation
for the research presented in this thesis and are, as such, reflected in the
structure of the subsequent chapters of the thesis. In Chapter 3, we also
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present the equipment and data sets which have been used to evaluate the
research, as well as elaborate on the properties of sea ice relevant to its
detection and tracking.

The contributions of Chapter 2 include:

e an overview of a modern scalable design for sea ice tracking.
The contributions of Chapter 3 include:

e astudy of the use of machine learning segmentation for the extraction
of detections from Synthetic Aperture Radar (sar) satellite imagery.

InPartIl, we present our research on scaling mrt algorithms by proposing
data structures and optimizations which enable our applications to track
thousands of targets and more. In Chapter 4 we lay the groundwork by
presenting the concepts of mrT and spatial indexing, the combination of
which is explored in Chapter 5 and Chapter 6. In Chapter 5 the discussion
is focused on the application of spatial indexing to the mur algorithm,
whereas Chapter 6 introduces the spatially indexed Lwms filter, along with
other proposed improvements to the filter. Details to Foss implementations
of said algorithms and improvements are also given in their respective
chapter.
The contributions of Chapter 5 include:

e adetailed description of a Foss MHT implementation which uses spatial
indexing;

e a comparative study of the scalability improvements from clustering
and spatial indexing; and

e an application of the tracking algorithm to real satellite imagery with
added simulated movements.

The contributions of Chapter 6 include:

e a novel simplifying reformulation of the Lwms filter better suited for
implementation;

e asimulated example of the collaboration of multiple types of sensors,
with different sampling rates and Field-of-View (rov);
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e a tracking scenario from TrI data; and

e adescription of the open-source algorithm implementation in PyTHON
and C++ respectively.

InPartIII, we present two utilizations of the statistics that can be extracted
from the target tracking described in Part II. Chapter 7 describes the ap-
plication of Gaussian Fields to the target track data, showing how velocity
estimates can be used to predict the motion profiles of other sea ice ob-
jects. This can be used to improve the estimates e.g. through improved
instantiation of new targets.

For the purpose of collecting more information about the area of interest,
in Chapter 8 we propose how the measure of the pHD — a central concept
in the emerging class of mTT algorithms of which the Lwms filter is a part of
— can be employed as a common language in the interface between target
tracking and path planning. Easily extracted from the statistics kept by e.g.
the Lms tracker, the chapter describes how the pHD can be used to close the
information gathering loop by proposing flight paths for the very agents
responsible for collecting the data used by the tracker.

The contributions of Chapter 7 include:

e a description of Gaussian Fields and its application to velocity field
mapping from tracking data; and

e a velocity field mapping application from Trr data.
The contributions of Chapter 8 include:

e a novel pHD based reward function for Informed Path Planning (ipp)
for the static and dynamic cases;

e adecoupled approximative reward function that allows for computa-
tionally efficient multi-agent 1pp;

e a suggestion of how to solve the obtained optimization problem by
sampling full path proposals; and

e a description of how to apply the method in two applications, which
is also used to evaluate the method.

Finally concluding comments are given in Chapter 9.
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Sea Ice Tracking System Design

This chapter presents a background and an outline of the system whose
components are presented throughout this thesis. The outline is based on
the work in

Paper E: Olofsson, J., Veibdck, C., Hendeby, G., and Johansen, T. A. (2017¢).
Outline of a system for integrated adaptive ice tracking and multi-
agent path planning. 2017 Workshop on Research, Education and Devel-
opment of Unmanned Aerial Systems, RED-UAS 2017. doi: 10.1109/RED-
UAS.2017.8101636. © 2017 IEEE.

The contributions of this chapter include:
e an overview of a modern scalable design for sea ice tracking.

Drift sea ice awareness is essential to enable safe operations in Arctic regions.
Recent years have seen the rise of Unmanned Aerial System (uas) as a platform
for geoobservation, and so too for the tracking of sea ice. Being a mobile platform,
the research on uas path planning is extensive and usually involves an objective-
function to minimize. For the purpose of observation however, the objective-
function typically changes as observations are made along the path. Further, the
general problem involves multiple uas and — in the case of sea ice tracking — vast
geographical areas.

In this chapter we discuss the architectural outline of a system capable of fusing
data from multiple sources — uAas's and others — as well as incorporating that data
for both path planning, sea ice movement prediction and target initialization. The
system contains tracking of sea ice objects, situation map logic and is expandable,
as discussed, with path planning capabilities for closing the loop by optimizing
paths based on previous observations for the purpose of continued information
acquisition.

13
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Figure 2.1: Outline of a system for global sea ice monitoring and manage-
ment

2.1 Introduction

Drift sea ice is a major limiting factor in regions with Arctic conditions, often
restricting the operational season to a few months of the year (Hnatiuk,
1983). Through planning and organization however, it is possible to extend
the season and to perform safe operations in Arctic waters. Ice management
is the field encompassing all activities to reduce or avoid impact from ice
features (Eik, 2008). In general terms, this includes detection, tracking and
forecasting of ice features but also the threat evaluation and the physical
management of breaking or towing ice objects (Eik, 2008). Traditionally,
ship-mounted radars and visual detection from e.g. manned flights have
been used to detect potential threats, to aid in the manual decision process
to launch countermeasures (Wright, 2000; Eik, 2008). Also, in severely ice-
plagued operations, ice-breakers have been used to pre-emptively break
down large upstream ice floes to manageable pieces (Moran et al., 2006).
Recent years have seen increased availability of new types of sensor plat-
forms —autonomous unmanned systems under [Autonomous Underwater
Vehicle (auv)] and over [Unmanned Aerial System (uas)] water (Haugen,
2014) — capable of aiding in the situation awareness of the operation. Not
only are these new classes of platforms capable of operating with greater
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availability than previous sensors, but potentially also at a reduced cost.

With a limited Field-of-View (rov), sensors rely on moving to cover
larger areas. Whereas traditionally sensors have been attached to man-
controlled vessels, the development of autonomy for these sensors involve
the automated planning of new routes (Albert et al., 2017; Leira et al.,
2017; Olofsson et al., 2018) which the carrier should follow autonomously
to acquire relevant sensor data. As data is acquired, the planning relies
on the feedback of findings into the consideration of route re-planning.
This has been studied for single-uas optimal control in e.g. Leira et al.
(2017). In Leira et al. (2017), the proposed framework is an optimal-control
scheme generating uas intermediate-level guidance, whereas the proposed
approach in this thesis is to provide high-level agent-generic paths which,
for each agent, can be converted locally to low-level control signals. Further,
ice tracking and path planning using occupancy grids have been explored
in e.g. Hals and Skjenhaug (2017); Langeveld (2017).

In this chapter we wish to focus on the bigger picture and put each of
the central subsystems of a modern scalable tracking system in context.
In Figure 2.1, an outline is presented with the overview of a system for
the continuous integration of sensor input and situation awareness into the
optimization problem of assigning sensor paths which maximize the utility
of each sensor. As reflected in Figure 2.1, the general tracking problem
formulation is that of multi-agent, multi-target tracking. On a sensor level,
expanded upon in Section 2.2, many sensors of varying types can contribute
to the full image of the situation.

In our proposed architecture, the data from each sensor is fed into a
central controller — see Section 2.3 — which summarizes the information
for both user presentation and optimization of paths for future data acqui-
sition. For this purpose, we also discuss — in Section 2.3.2 — a set of factors
available for consideration in a path planning optimization problem.

2.2 Sensor Level

A wide variety of sensors can be of use in the process of detecting and
tracking sea ice, and a comprehensive summary can be found in Haugen
(2014). Sensors with varying rov are mounted to a carrier — a movable
sensor platform, such as a ship or a uas. One way to categorize the sensors
and sensor platforms is as
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stationary sensors with known, fixed position and rov, such as ground-
based radar;

traceable sensors with known but not fixed position and rov, albeit not
controllable, such as satellites; and

controllable sensors with known position and rov, with the ability to be
commanded to new locations, such as vas’s.

Whereas all above types of sensors are compatible with the system in
Figure 2.1, the feedback from the system can only be applied to controllable
Sensors.

Each sensor has different ways of measuring the presence of ice, and a
sensor platform can be equipped with several types of sensors simultane-
ously. In the example of Figure 2.2, detections are extracted from infrared
imagery (Leira, 2017), although more ways are presented in Chapter 3.
Each type of detection has unique characteristics in terms of e.g. noise and
error covariance (Gustafsson, 2018). For the purpose of forming a generic
situation awareness map, it may be beneficial to standardize the report-
ing format for measurements — for example by transformation to geodetic
coordinates — although for some sensors this may lead to loss of informa-
tion as e.g. error statistics may be distorted by transformations (Gustafsson,
2018).

Other considerations for the sensor—controller interface involve the in-
clusion of other properties of the ice, such as — as available in imaging sen-
sors — shape-describing Hu moments (Hu, 1962) of each detection. These
added properties might be used to improve association of measurements
from consecutive sightings.
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Figure 2.2: Detections of ice extracted from infrared imagery from UAS-
carried cameras. Left: Raw thermal image; Middle: Enhanced features;
Right: Segmented detected sea ice (Leira, 2017). Image courtesy of Frederik
S. Leira.
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Figure 2.3: Drift sea ice tracks over time, showing the land mask in blue
and stationary detections in green. Tracks and targets retain an individual
randomly assigned color over time.

2.3 Centralized Controller

In the proposed architecture, from Figure 2.1, sensor reports are fed to a
central controller, responsible for data fusion, situation map and high-level
path planning. While its purpose is introduced here, the chapters in Part II
and Part III especially focuses on the possibilities of this subsystem.

2.3.1 Data Fusion

The first role of this controller is the fusing of the information from all
sensor sources into a combined map of ice objects and ice coverage. The
geographical bounds of this map are not necessarily defined, but can span
the entire globe with varying resolution. This means consideration has to
be taken to the scalability of the map and to the algorithms employed, and in
particular to the possibility of performing local updates to a global filter. At
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the heart of this fusion is a Multiple Target Tracking (mrT) algorithm, where
tracks are maintained of each observed ice object. Sea ice coverage mapping
can be performed using occupancy grids (Leira, 2017) whereas identifiable
individual objects are tracked with sparse target tracking (Haugen, 2014;
Olofsson et al., 2017b,d,a). In the former case, scalability can be achieved
through variable resolution, whereas in the latter, objects can be stored in
efficient data structures (Olofsson et al., 2017a,b) to limit the number of
objects involved in each update. mTT and improvements to the scalability of
MTT algorithms is discussed in Part II. An example result of the data fusion,
from Olofsson et al. (2017d), is found in Figure 2.3 and detailed upon in
Chapter 6.

Each choice of map coordinate system will have its advantages and
disadvantages due to nonlinearities and discontinuities. As ice tracking is
constrained to the water surface, our coordinate system of choice for global
tracking is by Latitude-Longitude-Altitude (LLa). Since the problem is con-
strained to the sea surface, this naturally devolves to a two-dimensional
Latitude-Longitude (rr) system. The details on tracker coordinate transfor-
mations, and how they have been applied in implementations, are given in
Section 4.7.

2.3.2 Situation Map

Another role of the central controller is to form what we call a situation
map. The map of tracked objects in Section 2.3.1 is one of the components
of this map; other examples include

e sensor locations;

e traffic information;

e weather conditions; and
e information quality.

The main objective of the proposed system is to provide good situational
awareness of where the relevant ice objects in the region are, as well as
where there are no ice objects. To achieve this the system should reward
behaviours resulting in large amounts of high-quality information.

The tracks from the centralized tracking algorithm naturally provide
information on where the sea ice is, as well as a metric of the quality of that
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information — quantified as the inverse of the estimation uncertainty/co-
variance at each point. This could directly be used to build an information
quality map. However, a disadvantage of only considering the resulting
tracks from sparse tracking is that no information is available to discern
whether an area is empty or simply unobserved — a lack of detections in a
region also provides information on the situation that should be incorpo-
rated into the map. One aspect that is handled by the tracking algorithm
naturally is that information quality of track information degrades over
time without further observations.

Another option to the information quality estimated by the tracking
algorithm — which mainly focuses on information gathered on the tracked
targets — is to directly consider the full, dense, map of where information
has been collected by the sensors. This is done in Skoglar (2012) where the
information in each point over a grid is estimated using a large number
of extended information filters. This can be rather costly for large high-
resolution grids, but intrinsically handles the difference of no detections
versus no observations. The choice of a scalar comparable metric of the
information amount is a relevant issue for both approaches, also discussed
in Skoglar (2012). Relevant choices include e.g. the trace of the information
matrix, as a function of map coordinates. This would be used to simplify
the evaluation of the quality of information at each point.

Weather and oceanic conditions (METOCEAN data) can be incorporated
into the situation map in order to allow the motion planner to, for example,
account for winds, and to avoid hazardous situations for the vehicles. In
Arctic conditions, icing and severe winds is a real problem which need to
be managed either through mitigation, as in e.g. Serensen et al. (2015), or
through temporary cancellation of flight operations.

In addition to the awareness of the physical properties in an area, the
situation map should also take into account user priorities. This can be
provided either by an operator or by some other source, such as traffic
information. For example, it is more useful to have high-quality information
in regions with heavy traffic than in those in lack of human activity. Besides
constructing the information used by the subsequent agent path planner,
the same data can be used to create other situation maps, tuned for example
for presentation to operators.
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2.3.3 Path Planning

Since uas's are mobile sensor platforms they need to be controlled. Control
of an aircraft is a multi-level control problem, and whereas low-level control
is assumed to be handled locally by each agent, the situation awareness of
the centralized controller can be used to provide each uas with a high-level
path to follow. This path could in the simple case be a pre-determined
route to scout along, but in the more advanced case, feedback control for
the data acquisition is possible.

A desirable objective of the path planning is to provide good situational
awareness of the relevant ice objects in the region, as well as where there
is open water. To achieve this the objective function should reward paths
resulting in larger amounts of information of high user relevance. A model
of this quantity, given the path, can be obtained using the information
quality map discussed in Section 2.3.2.

Formulations and solutions to problems of this form are discussed in
Skoglar (2012), including constraints such as dynamics of the vehicles and
field of view. A concern with the solver algorithm used in Skoglar (2012),
namely receding horizon, is that it quickly becomes very costly. Mitigat-
ing solutions often include finding sub-optimal paths by reducing the time
horizon. Other path planning methods, such as Multiple-shooting meth-
ods (Bock and Plitt, 1984), Rapidly-exploring Random Tree (rrt) (LaValle,
1998, 2006) and Monte Carlo (Hollinger and Sukhatme, 2014; Olofsson et al.,
2018) can also be considered. For Chapter 8, a Monte Carlo-based plan-
ner was implemented and used to demonstrate multi-agent Informed Path
Planning (1pp).

A path planner generally generates paths for its agents by trying to
optimize an objective function, and one approach is to leverage a combined
function of the maps discussed in Section 2.3.2 by weighted summation.
Conceptually, the local value can then be calculated as

m(x) = Z wim; (x). (2.1)

for maps m; (x) (each of which are functions of respective inputs, such as
previous observations) and their weights.

This general metric yields a two-dimensional landscape which can be
navigated to find an optimal path. For example, an applied metric —
shown in Figure 2.4 — can be constructed to minimize the uncertainty (as
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Figure 2.4: Information metric example using Gaussian field covariance

determined by the trace of the covariance) of expected velocity estimates
in a Gaussian field, constructed by the tracker velocity estimates. Another
metric — the maximization of the expected observed Probability Hypoth-
esis Density (PHD) — is proposed in Chapter 8. Note that the execution of
the plan to follow the path will yield information which possibly warrants
re-planning.

Further, note that the summation in (2.1) implies that to form a two-
dimensional map {m (x)},cy over region X, information is only needed
from the individual maps {m; (x)},cx, i.e. the cut-outs from the same
region of each map. This means that not only can we partition the map into
independent parts for storage and evaluation, it also trivial to for example
assign different areas to different groups of agents.

Besides optimizing the objective function, the optimization routine
should also take into account other limitations of the problem, such as
the maximum total (remaining) range of an agent. In the path planning,
multiple agents can be planned for simultaneously, to collaborate towards
a common goal.

In Chapter 8, a path-planner is proposed which is specifically con-
structed to optimize the expected number of detections throughout its
flight. This optimization is based on the metric of the observed puD, which
is derived from a staple metric of an emerging class of mrr algorithms, with
algorithms such as the pHpD filter (Mahler and Zajic, 2001) and the Labeled
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Multi-Bernoulli (Lms) filter presented in Chapter 6.

2.4 Conclusions

In this chapter we have discussed the high-level design of an ice manage-
ment system capable of tracking ice and feeding back the information it
collects to the optimization of paths for future data acquisition. The prin-
ciple is based on a feedback loop with information from tracker-generated
high-level paths as the interface to the moving agents. The overview in
Figure 2.1 also serves to outline the structure of this thesis.

Section 2.2 introduced the three types of sensors used in this thesis
— stationary, traceable and controllable. These are represented in the
continued thesis by the Terrestrial Radar Interferometer (tri), Synthetic
Aperture Radar (sar) sensors and the uas platform, respectively.

The requirements of a central controller module capable of fusing data
from all these sources were discussed in Section 2.3, with particular focus
on sensor fusion capabilities, a situation awareness map and the capability
of utilizing the data from the tracker to propose future actions and flight
paths.

Importantly, all the algorithms of the proposed system can be parti-
tioned to deal with only relevant separable parts of each problem. This is
essential to scaling their applicability up to the challenge of handling the
large amounts of sea ice in the geographical expanse that is the Arctic.



Detecting Ice in the Ocean

The central application discussed in this thesis is the tracking of sea ice
and utilizations of said tracking. This chapter introduces properties of ice
relevant for detection and tracking, as well as the main sensors and datasets
used in the applications of later chapters.

The contributions of this chapter include:

e astudy of the use of machine learning segmentation for the extraction

of detections from Synthetic Aperture Radar (sar) satellite imagery.

As indicated in Figure 3.1, and relating to the system outline presented
in Chapter 2, this chapter covers the main parts of the sensor level, detailing
both sensor platforms, sensing technologies and the analysis of the output
to extract detections of sea ice targets.

Satellite Ship
UAS SAR Radar
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with classification Q
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Figure 3.1: Ice-monitoring sensors in context of the system from Chapter 2
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3.1 Introduction

Sea ice tracking has been carried out in polar regions since the aftermath of
the infamous sinking of the RMS Titanic in 1912. The incident led, as part
of the implementation of the International Convention for the Safety of Life at
Sea, to the foundation of the International Ice Patrol (1p). This organization
has since monitored and reported on the ice conditions in the Atlantic and
Arctic oceans.

In the early 20th century, almost none of the modern technological
sensing abilities of today were available. Today, satellite data can provide
a general overview, although manned flights and manual observations still
represent the primary reconnaissance work of the mp.

Ice can be detected using a number of sensors and sensor platforms.
In this chapter, we summarize the satellite-carried sar, the ground-based
Terrestrial Radar Interferometer (tr1) and electro-optical cameras carried by
a Unmanned Aerial System (uas) platform. An overview including other
sensors available for sea ice monitoring is given in e.g. Haugen (2014) and
Lubin and Massom (2006).

Following this introduction, the chapter continues — in Section 3.2
— with an introduction to sea ice and, in Section 3.3, ice management. A
background on radar imagery is then given in Section 3.4 before the sensors
and datasets used in this thesis are presented in Section 3.5.

Section 3.6 then goes on to introduce detection and classification as
exemplified from the perspective of the sar sensor. The principles, how-
ever, extends to the other sensors described in this chapter as well. In
Section 3.7, a study is conducted using sar data provided by the European
Space Agency (esa) to test and demonstrate the extraction of ice objects
from both Single Look Complex (sLc) and Ground Range Detected (GrD)
products, using methods from the field of machine learning (Bishop, 2006).
Conclusions from the chapter are offered in Section 3.8.

For the recording of most of the datasets used in this thesis, operations
were carried out on Svalbard, at the Kongsfjorden test area in Ny-Alesund,
seen in Figure 3.2. One of the major contributors to sea ice in the fjord is
the Kronebreen glacier, shown in Figure 3.3.



3.2. SEAICE 25

Figure 3.2: The village of Ny-Alesund, with one of the nearby glaciers in
the background

Figure 3.3: The Kronebreen glacier is one of the major contributors of ice of
land origin to the Kongsfjorden test area

3.2 Sealce

Floating ice can be found in all bodies of water in the polar regions of our
planet. As the life of an ice object progresses, it evolves through freezing,
melting and snow buildup as well as mechanical wear and tear. Further, a
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free-floating object will — as the center of mass changes and waves push it
around — tumble and may completely change appearance depending on its
three-dimensional orientation. For tracking, as discussed later in this thesis,
this limits the capabilities of e.g. recognizing previously known objects by
their shape. In this section, we give a brief background on the classes of ice
which are our main interest for this thesis. For a more thorough treatment
of the topic, we refer to e.g. Leppéranta (2011).

3.2.1 Ice Classification

There are several ways to categorize ice — by March 2014, the standard for
sea ice nomenclature, WMO (2014), contained 220 terms and definitions
in 13 sections. The major classifications include by age (e.g. first-year ice,
multi-year ice depending on how many annual melts it has survived) and by
origin. The World Meteorological Organization (wmo) defines the following
types of floating ice (WMO, 1970, 2014):

sea ice Any form of ice found at sea which has originated from the freezing
of sea water.

ice of land origin Ice formed on land or in an ice shelf, found floating in
water. The concept includes ice that is stranded or grounded.

lake ice Ice formed on a lake, regardless of observed location.
river ice Ice formed on a river, regardless of observed location.
WMO (1970) further defines discrimination of ice based on size,

iceberg A massive piece of ice of greatly varying shape, protruding more
than 5m above sea-level, which has broken away from a glacier, and
which may be afloat or aground. Icebergs may be described as tabular,
dome-shaped, sloping, pinnacled, dry-docked, blocky, weathered or
glacier bergs in addition to having a size qualifier.

ice island A large piece of floating ice protruding about 5m above sea-
level, which has broken a way from an Arctic ice shelf, having a
thickness of 30 m to 50 m and an area of from a few thousand square
meters to 500 km? or more.
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bergy bit A large piece of floating glacier ice, generally showing less than
5m above sea-level but more than 1 m and normally about 100 m? to
300m? in area.

growler A piece of ice smaller than a bergy bit and floating less than
1m above the sea surface, a growler generally appears white but
sometimes transparent or blue-green in color. Extending less than
1m above the sea surface and normally occupying an area of about
20m?, growlers are difficult to distinguish when surrounded by sea
ice or in high sea state

Another common classification is based on its position,
coastal ice isice that is fixed to the coast, even during the tidal cycle.
fastice shifts vertically with the tide, but is locked to the coast.

shear zone is the transition zone between fast and drift ice (Leppéranta,
2011).

drift ice moves with wind and currents.

marginal ice zone constitutes the transition into open water, and is affected
by the waves of the ocean.

The properties and distributions of floating ice are well covered by e.g.
Leppéranta (2011). In regions partially covered with ice, we define the ice
concentration as the fraction (in percent) of the area that is covered by ice.

Depending on the scenario, each of the ice classes presents different
problems to polar operations but in this thesis, the focus is mainly on ice in
open ocean or the marginal ice zone.

3.2.2 Drift Ice Motion

The motion of ice objects floating in open water — unaffected by the forces
involved when icebergs collide or otherwise interact — is governed by a
number of forces which act up the sea ice itself and its surrounding body of
water. The resulting velocity is, characteristically, in the order of 0.01 ms™
to 1ms™! (Leppédranta, 2011). In Figure 3.4, a cross-section of an iceberg is
sketched with some definitions of parts of the object most affected by forces
— the sail (above sea-level) and the keel (below sea-level).
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Sail

Keel

Figure 3.4: Ice in the water

Formulations of Newton’s second law of motion, ma = }, f, as ap-
plied to ice drift, differs mainly in the choice of notation and the choice
of forces to include. Using the formulation of e.g. Eik (2009); Andersson
(2018); Mountain (1980); Johannessen et al. (1999) we identify the following
expression:

= fort ot o ot 6

where a is the acceleration, f,;o , is the Coriolis force, j?u is the air drag force,
fc is the water (current) drag force, fr is the wave radiation force and fp
is the pressure gradient force. m is the total ice mass, which is the sum of
the ice mass (mp) and the added mass due to the surrounding water field.
This is often written as m = mg (1 + Cy,); C,, is usually taken to be 0.5 (Eik,
2009).

In particular; with drag coefficients (C(,), medium densities (p(.)) and
velocities (%)) for air and water respectively, as well as keel surface area A
and sail surface area A;, we define the forces

- 1 ) . .
fe = E‘DwaAk |%. — x| (%, — X), (3.2)
fo = %paCaAs %0 — %] (0 — %). (3.3)

where x is the velocity vector of the ice object.
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For the purpose of this thesis, we defer the detailed discussion of each
force (and the omitted force definitions) to Eik (2009); Andersson (2018) or
Leppéranta (2011) with the following comments

the main two forces acting upon the ice object are the wind and the
current;

the Coriolis, wave radiation and pressure gradient forces are, for our
purposes, negligible in comparison to air and current forces (Lep-
paranta, 2011);

the wave radiation force can, for waves parallel with the wind, be
included in the f, parameter;

both the major forces are functions of velocity difference to the speed
of water and air respectively.

the uncertainty of the parameters — especially in weight and three-
dimensional shape — will in many cases render the uncertainty of
the simulations beyond what is acceptable for creating relevant pre-
dictions (Eik, 2010);

parameters are subject to change as the shape or orientation of the ice
changes; and

with large uncertainties in the parameters, the benefits of an advanced
(physical) motion model diminish, and the model can be replaced by
a simpler one with fewer parameters — such as the Nearly Constant
Velocity (Nncv) model, detailed in Chapter 4.

Regardless of the choice of model, predictions need to be supplemented

with observations for accurate tracking, for all but short time horizons.

3.3

Ice Management

Following the definition from (Eik, 2010):

Ice management is the sum of all activities where the objective is to
reduce or avoid actions from any kind of ice features. This will include,
but is not limited to:
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e Detection, tracking and forecasting of sea ice, ice ridges and
icebergs;

o Threat evaluation;

e Physical ice management such as ice breaking and iceberg towing;
and

e Procedures for disconnection of offshore structures applied in
search for or production of hydrocarbons.

Ice management can further be split into passive and active ice man-
agement. Passive ice management is mainly due to actions taken in the
constructions of an installation, such as the use of tilted foundation sur-
faces to break oncoming ice (Wright, 2000; Marchenko, 2010) or the use
of steel pile barriers (Evers and Weihrauch, 2004). In contrast, active ice
management requires online monitoring and response to detected threats
and will, in general, include marine vessels with ice breaking- or ice towing
capabilities on active duty to handle detected threats.

Ice management operations have been successfully carried out for sev-
eral decades (Eik, 2010), mainly driven by the search and extraction of oil in
Arctic regions. Until recently, the main sources of data has come from satel-
lites and the icebreakers performing the physical ice breaking and towing.
Due to the variability of the ice threats, no single source will be sufficient
to detect all hazards. Thus, as concluded by Eik (2010) and illustrated in
Figure 3.5, future operations are likely to include a range of sensors and
sensor platforms, such as Autonomous Underwater Vehicles (auvs), sonar,
ice drift buoys and uas's. The decreased cost and increased availability
has spurred an increased movement of research towards the application of
uas's in the Arctic (Eik, 2010; Haugen, 2014; Leira, 2017) as well as of the
complications involved (Serensen, 2016).
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Figure 3.5: Ice management in the future is likely to be a connected setup of
many agents for sea ice detection and many stakeholders of their collected
data. Sensors include satellites, auvs, uas's, marine radar etc. Stakeholders
include marine transport, oil rigs and earth scientists.

3.4 Radar Imagery

Two of the three sensors employed to record the datasets used in this
thesis are based on radar technology. Therefore, we here provide a brief
introduction to the sensors, and to the radar measurement principles, as
well as a discussion on the radar properties of the intended target — sea
ice.

The technical core of the radar is an instrument which measures electro-
magnetic (em) reflectivity of an observed object by active illumination with
EM waves of a set interval of wavelengths. In each measurement, a region
is illuminated with an em pulse, and the response is recorded as a sam-
pled em signal. From this, measurements of the amplitude of a reflected
signal as well as its phase, based on the signal return delay (Richards,
2009), can be extracted. These two numerical entities can be interpreted as

JARNE STENBERG/ N TN U
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complex valued measurements. The sampled signal is the sum of all reflec-
tions on the illuminated surface as well as unwanted noise and interference
phenomena — speckle. The raw measurements thus have to undergo sig-
nificant signal processing to make the relevant information accessible as
imagery (Richards, 2009).

The reflectivity of a material is related to its complex dielectric constant;
a lower real part gives a higher penetration depth and lower reflectivity.
A target’s ability to reflect radar signals back to the receiver is measured
as the Radar Cross-Section (rcs) o. This measure describes how much
power of the incoming signal is extracted by the target. It is measured
in square meters, although it is not easily related to any physical area of
the target (Richards, 2009). The rcs is a strong function of the incidence
angle (Haykin, 1994). Various methods exist to deal with normalization of
this data, as studied in e.g. Mladenova et al. (2011). The radar cross-section
of sea ice can, within the diffuse scattering region, be well modeled by an
affine model as a function of the incidence angle (Haykin, 1994, p. 589).

A polarimetric radar measures the Em backscatter in both polarization
directions — horizontal (1) and vertical (v) as seen from the sensor. Since
the signal can be transmitted in either of those directions and measured in
either or both, four possible modes of measurements are possible: HH, HV,
vv, vH. Here, the first letter indicates the polarization of the transmitted
wave, and the other that of the received ditto. The two most used modes of
polarimetric operation are quad-pol — measuring all four of these — and
dual-pol — where only two are measured. Commonly in the latter case,
one polarization is transmitted and both are measured, resulting in either
HH-HV O VV—VH measurements.

Measurements from two main categories of radar were considered in
this thesis; a fixed-aperture ground-based radar and satellite-borne sar.

3.4.1 Satellite-borne SAR

Satellite imagery enables observation of large areas with high detail. How-
ever, as the satellites follow their predefined orbits, the revisit time to the
same area is in the order of days. The observed regions — as seen in Fig-
ures 3.6-3.7 — can contain a large number of ice objects worth tracking.
The main satellite imaging technique used for sea ice tracking is the sar.
Its prevalence is perhaps most importantly due to its ability to see through
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Figure 3.6: Sample SENTINEL 1 satellite observation areas in the Arctic. Each
square represents a sampled area distributed as one image.

clouds and deliver consistent imagery regardless of weather conditions or
daylight (Richards, 2009).

The sensor, as illustrated in Figure 3.8, is often carried by a satellite or
airplane and the measurements are transmitted to a recipient on the ground.
Akey in the sar principle is that it uses the forward linear motion, illustrated
in Figure 3.9, of its platform to synthesize an apparently long antenna
through repeated sampling. This also leads to the remarkable result that,
at the cost of a more advanced post-processing than fixed-aperture radar,
the attainable resolution is independent of operating altitude and even
increases with smaller antennae (Richards, 2009). This makes spaceborne
operation acceptable.

3.4.2 Ground-based Radar

Ground-based radar has, compared to satellite- or aircraft-borne radar,
a capability of repeated observations over large spans of time. Further,
it is possible to further improve Signal-to-Noise Ratio (snr) as multiple
observations can be carried out with little delay from exactly the same
position (Werner et al., 2012).
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Figure 3.7: Region with ice coverage from sar imagery
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Figure 3.8: sar measurement principle

3.4.3 Radar Properties of Sea Ice

Sea ice is an inhomogeneous radar target with variations of the complex di-
electric constant on all spatial scales. Nevertheless, characteristic signatures
have been observed which allow for classification of the different stages of
sea ice formation (Haykin, 1994). With only limited sensing penetration
depth, the radar sensor foremost provides data about the Em scattering at
the ice surface. This is subject to significant seasonal variations, including
seasonal melt which can lead to flooding and pooling difficult to discern
from free water (Haykin, 1994).
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Figure 3.9: Satellite direction of motion and sampling

In general, water reflection is dominated by Bragg- and diffuse surface
scattering, yielding backscatter to the radar sensor (Thenkabail, 2015) which
is generally weak, but much depending on wind/sea roughness (Arkett
et al., 2006; Johannessen et al., 2007). Correspondingly, sea ice scattering
properties vary greatly with ice type and season (Onstott, 1992), but are
often characterized by a stronger reflection due to its crystalline structure
and volumetric scattering (Haykin, 1994), despite a much lower dielectric
constant than the surrounding water (Hallikainen, 1992). Its lower dielec-
tric constant also allows for deeper penetration by the em waves, enabling
sub-surface ice properties to be sensed to some extent (Onstott and Shuch-
man, 2004). Different radar wavelengths excel at detecting different ice
properties, due in part to different penetration depth (Dierking and Ped-
ersen, 2011). Accurate separation of rough water and certain ice types is
not always possible, but research suggests it can be improved with the
combination of co- and cross-polarized data (Arkett et al., 2006).
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Figure 3.10: sar level-1 processing steps (ESA, 2013)

3.5 Sensors for Sea Ice Detection

This section introduces the sensors and their respective datasets that were
used in this thesis — the sar, the Trr and the infrared (1r) imagery captured
using the uas platform.

3.5.1 Sentinel1 SAR

The principles of sar image acquisition were introduced in Section 3.4.
For convenience of use, the provider of sar imagery processes the raw
reflection measurements provided by the sensor. Here, we briefly outline
the Esa process, using their terminology; the raw (level-0 data) is transmitted
to the ground for processing, analysis, distribution. The initial steps of the
data processing are shared by most applications of the data, and the result
of these are therefore provided as a set of level-1 products. These steps are
summarized in Figure 3.10 and detailed in ESA (2013); Thain (2014).

The level-1 products from the SEnTINEL 1 satellite are distributed in
two data formats: Single Look Complex (sLc) and Ground Range Detected
(crD). As the name implies, the sLc data is an image with the complex
property of the data preserved. Unlike Grp data, it has not been projected
to the earth surface but is calibrated and focused using the orbit data from
the satellite (ESA, 2013). crp data is, in contrast, projected onto the was-
84 earth ellipsoid (ESA, 2013) and averaged — multi-looked — to provide
approximately square pixels with reduced noise. The phase information is
lost in the GrRD processing.

sAR images taken with the SENTINEL 1 satellite pair are made available
by Esa online at https://scihub.copernicus.eu/dhus.
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3.5.2 GAMMA Portable Radar Interferometer

In April 2016, the partners of the Norwegian Centre for Integrated Remote
Sensing and Forecasting for Arctic Operations (cirra) conducted a field
campaign in Kongsfjorden on Svalbard, where ice breaks off the nearby
glaciers and flows towards the ocean. One of the collected datasets is from
a GAMMA Portable Radar Interferometer (Gpri)! (Werner et al., 2012), a
fixed-aperture ground-based Tr1 sensor shown in Figure 3.11. This sensor
primarily monitors sea ice drift in the fjord. An illustration of the Kongs-
fjorden test area is given in Figure 3.11, with the surrounding glaciers and
other features of the region. It also shows the Tr1 sensor setup and location.
An example image is shown in Figure 3.12, giving a general overview of
the area. In a long-term monitoring effort, a second similar dataset was
gathered in spring 2018.

Images in the first dataset was sampled with a 3 min interval, whereas
the second dataset was gathered with images taken in 15 min intervals.

A image of the geocoded data is shown in Figure 3.12, overlaid with
the sensor position and an illustration of the nature of the untransformed
measurements. The radar is located at the central red dot and images
are detected in a range-angle coordinate system. Unlike the sar images,
the Tr1 images are available at a controllable — and much higher — rate,
simplifying the use of correlations between consecutive images. As such,
it is possible to extract ice objects and have them tracked continuously, as
demonstrated e.g. in Chapter 6.

For ease of use, the raw data from each Trr image was transformed
to geocoded Cartesian images with 5m X 5m resolution. The series of
images were then processed using the OpenCV moG2 background subtrac-
tor (Zivkovic, 2004) and detections were extracted from foreground objects
with a minimum size of 10 connected pixels.

Two types of ice are considered; i) large regions of stationary sea ice
with high ratio that can be segmented independently for each scan; and
if) drift ice with low snr that requires pre-processing over several scans for
detection. A land mask was applied to the images to ensure that detections
were only obtained in water regions.

1https ://www.gamma-rs.ch/rud/microwave-hardware/gpri.html
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Figure 3.11: Illustration of the Kongsfjorden test area, its surroundings and
the setup of the TrI sensor

Detection of Stationary Sea Ice Large areas of stationary ice are visible in
the water, in particular in proximity to land. However, due to speckle
noise and varying intensity over the image, a simple threshold results
in poor performance. To improve the sngr, a sequence of standard image
segmentation methods (Gonzalez and Woods, 2008) were applied (Olofsson
et al., 2017d) to average, filter and extract areas considered stationary over
an extended period of time.

Detection of Drift Ice Drift ice is generally small and often difficult to dis-
tinguish in the speckle noise. In the datasets, a background model was
estimated in water regions, modeling each pixel as a mixture of Gaussian
distributions (Kaewtrakulpong and Bowden, 2001; Stauffer and Grimson,
1999). A simplified expectation-maximization method (Dempster et al.,
1977) was then used to continuously estimate the means and covariances in
the model over time. For an incoming scan, all pixels that are significantly
different from their background models are segmented as foreground. This
results in many false detections, which was mitigated by extracting con-
nected components of a minimum rcs of 150m?. The reports are then
obtained as the centroid of each connected component.
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Figure 3.12: Example of a radar scan from the Tr1 sensor, with brighter
areas of sea ice and an overlaid illustration of the radial nature of its raw
measurements

3.5.3 Unmanned Aerial Systems

While uas's have been imagined and constructed since ancient Greece and
China (Valavanis, 2007), the field of study took its first major leaps dur-
ing the first and second world war, illuminating the dominant role that
the military has played in its developments. The digital age has brought
new opportunities and a whole new level of autonomy. While a common
alliteration for uas is that they can operate missions too “Dull, Dirty and
Dangerous” for human beings, recent years have seen their use in a grow-
ing range of civilian applications, such as traffic monitoring and rescue
scenarios.

The Arctic has proved a harsh frontier for uas's, with a cold operating
environment — for both the machines and their operators — and with often
high wind speeds. Among other problems, this can lead to aerodynamical
problems due to icing (Serensen, 2016; Hann et al., 2017), which is attributed
as the main cause for the loss of uas's in cold regions.
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Figure 3.13: The CryoWing Scout, developed by Norut was flown to collect
imagery of sea ice in Kongsfjorden

The uas datasets used in this thesis have been collected in collaboration
with Norut in Tromse, Norway. The datasets were collected in Kongsfjor-
den Ny-Alesund, Svalbard, during a campaign in April-May 2016. The
Kongsfjorden test area, the drone launch site and its relation to the location
of the Tr1 dataset is illustrated in Figure 3.15.

The datasets were collected using the CryoWing Scout drone — shown in
Figure 3.13 and Figure 3.14 — developed by Norut. The CryoWing Scout has
a maximum take-off weight of 9 kg, and a wingspan of 2.5m. It has a range
of appropriately 120 km and a two-hours flight-time. Apart from telemetry
sensors and radio equipment for communication, the uas was also equipped
with a downwards facing infrared camera, with images taken every third
second of the flight. Together with speed of flight, Field-of-View (rov)
and mission altitude, this entails that a detected object is within rov for an
approximate maximum of three frames. The object detection algorithm is
performed online and the results stored in an soL database from which the
flight can be replayed. Apart from optical imagery, the recorded flight data
includes position data and other telemetry, as well as Fov. The captured
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Figure 3.14: Preparation for launch of the uas on Svalbard

imagery is exemplified in Figure 3.16, and the detection procedure — as
detailed by Leira (2017) — is summarized in Figure 3.17.
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Figure 3.15: Illustration of the Kongsfjorden test area, the drone launch
site (at drone) and its relation to the Trr data capture (red semicircles) and
surrounding area

Figure 3.16: Example image from one of the captured uvas datasets
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Figure 3.17: Detections of ice extracted from infrared imagery from UAS-
carried cameras. Left: Raw thermal image; Middle: Enhanced features;
Right: Segmented detected sea ice (Leira, 2017). Image courtesy of Frederik
S. Leira.

3.6 Detection and Classification

A fundament to this thesis is the availability of detections of sea ice. This
section presents relevant background, to Section 3.7 in particular, to how
images can be processed to extract and classify detections from the avail-
able raw imagery. The processing is centered around the calculation of
features, numerical metrics to help distinguish each sought class. At the
level presented in this section, classification is performed individually for
each pixel and each processed image.

The family of classification algorithms may be categorized in four cat-
egories from their requirements of training data and knowledge of feature
probability distributions, as shown in Table 3.1 with example algorithms.

In the following, the k-means?, clustering algorithm as well as the Sup-
port Vector Machine (svm) algorithm are briefly presented, along with
a mention of features suitable for Bayesian classification. The topic of
Bayesian classification has been studied further in e.g. Zakhvatkina and
Bychkova (2015).

3.6.1 k-means Clustering

The k-means algorithm is an iterative clustering method, which makes
hard classification assignments to exactly K classes. The algorithm is based

2This k, and the index k used in this section, is unrelated to time-index k, used in the
rest of the thesis
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Table 3.1: Example of classification algorithms, categorized by require-
ments

TRAINING DATA?

Yes No
&
n
E N Bayesian classifier Clustering
o
G Z| 5™ Neural Networks ?

around the minimization of the distortion measure

N K
J= Z Z T'n,k |xn - [Jk| (3.4a)

n=1 k=1

for feature vectors x, and class mean pj for class k, through the selection
of

K
{rn,k Pk € {0,1},2 rax=1 Vnell,... ,N]}. (3.4b)
k=1

The iteration scheme is otherwise equivalent to that of the Expecta-
tion Maximization algorithm (Bishop, 2006) and yields a set of multi-
dimensional centroids. For any given point, the closest (generally in the
Euclidean sense (Bishop, 2006)) centroid represents the point’s class assign-
ment. Briefly; starting from a (random) initial set of centroids, the following
two steps are repeated until convergence:

E) Each datapoint is assigned to its nearest centroid,

M) Given the set of assigned datapoints, each centroid is moved to the
set’s mean.

As a preprocessing step, the classified feature set should be
whitened (Coates and Ng, 2012).

While the k-means algorithm is easily applied, the result is sometimes
considered indiscriminatory, because of its naive assumption of nearest-
neighbor class assignment. Therefore, it is often applied to initiate more
advanced classification algorithms (Bishop, 2006), such as a svm.
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3.6.2 Support Vector Machines

The Support Vector Machine (svm) algorithm is, at its core, a linear classifier
which uses optimization techniques to find the linear (hyper)plane which
separates the feature space with the largest possible margin (Bishop, 2006).
The intuition here is that the wide margin should minimize the risk for
future misclassification. In its basic formulation, the svm is a two-class
classifier, but extensions exist to the multi-class case (Bishop, 2006).

The separating plane can be expressed as

wTPp(x)+b=0 (3.5)

where ¢ (x) denotes the feature vector given the state x, w the feature
weights, and b the plane constant.

With the margin given by the perpendicular distance to the closest point
in the dataset, the training consists of solving

arg max {L min [c, (w7 ¢ (x,) + b) | } (3.6)
w,b lw]| "n

where c,, denotes training sample n and t,, € {—1, 1} specifies its class. The
optimization, detailed in e.g. Bishop (2006), yields that only a very limited
set of the training samples — the ones closest to the margin — will affect
the classification of new data. This set is called the Support Vectors.

While the discrimination is linear by default, the distance measure used
in the algorithm is often transformed using kernel functions to create non-
linear decision boundaries, as in Figure 3.18. By the selection of kernel
functions, features can be mapped to a space where the classes are linearly
separable, and the standard formulation applies with the modified distance
measure (Fletcher, 2009). Notably, kernel functions allow a mapping to a
higher, even infinite, dimensional space while also reducing computational
complexity (Ng, 2015). Common kernels are listed in Table 3.2.

The svmis a decision machine, meaning that once trained, it will produce
hard classifications, similar to the k-means algorithm (Bishop, 2006). A
related algorithm, based on a Bayesian formulation, is the Relevance Vector
Machine which is described in e.g. Bishop (2006) but not further discussed
here.
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Table 3.2: Common kernels

Kernel (hyperparameters) Expression
Linear (x,x")

Polynomial (y, r, d) (v (x, 2"y + r)d
RBF ()) exp (—y|x - x’|2
Sigmoid (y, 7) tanh (y (x,x") + 1)

© By ALISNEAKY, SVG VERSION BY ZIRGUEZI
[CC BY-SA 4.0], via WikimMepiA COMMONS

Figure 3.18: Linear decision boundaries can still be applied to nonlinear
problems using kernel functions to transform the problem into linear space.

3.6.3 SAR Classification Features

Classification algorithms depend on numerical metrics — features — which
separate the different classes by expressing distinguishing information.
Common features include pixel intensity and, in the case of polarimet-
ric radar, the relation of measurements between the different polarizations.
Relevantly, cross-polarized data — nv and vH, respectively — has been
proposed to be relevant to the distinction between sea ice and open wa-
ter (Scheuchl et al., 2004; Dierking and Pedersen, 2011).

As objects of significant size occupy multiple pixels, one may also con-
sider the corresponding metrics from neighboring pixels, as neighboring
pixels often share the same class.

In polarimetric sLc imagery, where the complex representation of the
pixels preserve the phase of the return pulse, several alternative decompo-
sitions are also available (Richards, 2009; Cloude and Pettier, 1996), often
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derived from the complex scattering matrix S. This matrix relates the tar-
get’s incident and scattered em fields, and is formed from the complex
measurements (Anfinsen et al., 2007; Oliver and Quegan, 2004) Sgs for re-
ceived polarization R € {H, V'} and transmitted polarization 7~ € {H, V'}:

SHH Shv

S =
Svu Svv

. (3.7)

Extracting the terms, and assuming Syv = Syp, it is common to form
the scattering vector, k, or its Pauli representation, k:

k= [SHH/ V2Syv, SVV]T/ (3.8)
1 SHH + Svv
ky, = — |Spm - Svv| . (3.9)
p
V2 25y

Inherent speckle noise in the image data advocates the study of the
(multilooked) covariance of these vectors, as locally averaged in a pixel
neighborhood to form the covariance matrix C, and the coherency matrix
T;

C. = E[kk'], (3.10)

T =E [kyk,'|, (3.11)

where * denotes the complex conjugate transpose.

Different methods of analysis of these matrices have been proposed. A
commonly employed decomposition is the so called Entropy/Anisotropy-
/Alpha (H/A/a) decomposition — see e.g. Cloude et al. (2002); Richards
(2009) — in which the properties of the coherency matrix’ eigenvalues are
used to form the features that give the decomposition its name. This feature
space has proved useful for scattering type separation (Richards, 2009), and
has also been used for initialization and automation of other classification
methods, such as the Complex Wishart Classifier (Lee et al., 1999; Anfinsen
et al., 2007).

The Wishart classifier, and variants thereof, assumes a complex Gaus-
sian distribution to the elements of the scattering matrix, yielding a com-
plex Wishart distribution of the coherency (Anfinsen et al., 2007) or covari-
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ance (Doulgeris et al., 2011) matrix. Properties derived thereof may be used
e.g. in a modified k-means classifier to obtain a family of spectral Wishart
classifiers (Anfinsen et al., 2007).

While the above equations assume the full quad-pol S-matrix to be avail-
able, extensions exist for dual-pol data, which is more generally available
in remote areas typical to ice surveillance (Cloude, 2007).

3.6.4 Point Representation of Non-Point Objects

The k-means and the svm algorithms described above can be used to provide
pixel-wise classification of sea ice objects, contrasted by surrounding water.
To distinguish and represent separate objects, it is necessary to cluster the
classified pixels e.g. based on pixel connectivity. This process is called
labeling, see e.g. Kong and Rosenfeld (1996).

Once labeled, the extent and position of each object can be represented
by any sufficient statistic. Variants include fitting a Gaussian, or simply
representing its position by the mean of the associated pixels” positions.
While in some cases over-simplistic — e.g. it sometimes results in mean
positions outside the actual object — it has the advantages of being simple
and invariant to scale.

3.7 SAR Ice Extraction Study

In this section, we apply two machine learning algorithms to extract sea
ice object detections from sar images. While the study presented here
is performed using sar data, a similar process could be applied to other
imagery, such as that from ground-based radar or optical cameras.

3.7.1 Method

The analysis was performed from two different types of sar data — Grp
and src. The two types carry different types of data, which yield separate
sets of available features. Given that those features have been extracted
however, the subsequent algorithms for segmentation and classification
are independent of data type. Thus, as a delimitation, only the Grp image
was used for the evaluation of classification algorithm below.
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The images used in the analysis, Figures 3.19-3.20, were captured on
2016-03-11 (crp) and 2015-10-12 (src), respectively®. The significant dom-
inance of yellow in both images shows a likeness between the HH (red)
and v (green) bands, which is consistent with the conclusions of other
studies (Arkett et al., 2006). The origins of these datasets are detailed in
Section 3.5.1.

Feature Extraction

The sample images were exported as GEOTIFF rasters from the original

sare* format using the Esa sNap tool for SENTINEL 1 data analysis. Further

processing and classification was performed in a PYTHON environment.
The following properties were exported for the Grp image:

e HH amplitude;

e nv amplitude;

o latitude;

e longitude; and

e incidence angle.

The following properties were exported for the sLc image:
e HH complex amplitude;

e Hv complex amplitude;

latitude;

longitude;
e incidence angle; and

e entropy/alpha decomposition (Cloude et al., 2002).

3Full names of the datasets are:
GrD: S1IA_EW_GRDM_1SDH_20160311T082543_20160311T082643_010319_00F469_A99F,
sLc: ST1A_IW_SLC__1SDH_20151012T033833_20151012T033846_008114_00B612_C893.

4Standard Archive Format for Europe: http://earth.esa.int/SAFE/
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Figure 3.19: Sample Grp image Figure 3.20: Sample sLc image
used for sea ice extraction. Red used for sea ice extraction. Red
= uH; Green = HV = |uH|; Green = |uv|

The pyrHON packages scipy and scikit-learn provided implementations
of the k-means and the svm algorithm, respectively, while the gdal package
was used to access the exported rasters.

Simplifying Assumptions
Lacking ground truth, three simplifying assumptions were made
e every pixel is either water, or ice (of any type);

e the incidence angle can be considered constant in the image subset;
and

o the lowest intensity pixels are water.

The first assumption is justified by the selection of a relevant image,
whereas the second is justified by the choice of a narrow subset of the full
dataset. The true variation of incidence angle in the data is less than 4.1°.
The third assumption is in fact not necessarily a good one, as the backscatter
of open water is much depending on the wind and may be difficult to
discern from e.g. new ice (Johannessen et al., 2007). Nevertheless, it is a
reasonable assumption for our examples, and the separation of classes from
the image data.

Clustering and Labeling

In the GrD case, only the multilooked pixel intensities are available as fea-
tures, to be combined in any number of ways. Here, the logarithmic vr &
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Hv amplitudes of each individual pixel were used, as well as those same
metrics from neighboring pixels. To reduce image noise, the image was
convoluted with a 3-by-3 smoothing kernel.

Two different clustering algorithms were employed: k-means and svm.
The k-means algorithm was run with two and three centroids respectively,
with initialization in the feature space (2-norm) min, max and — in the
triple-centroid case — mean. While the k-means algorithm requires little
initialization, the svm needs a training set to form its decision boundaries.
Therefore, a random subset of k-means-classified feature vectors was sam-
pled to form the svm training set. A training-set size of 100 samples was
concluded to be of sufficient size. The svm algorithm was evaluated by the
comparison of different kernels and settings, when applying the trained
classifier to the full image. Since no ground truth was available, only visual
confirmation could be applied.

Since the pixel-wise classification may produce “holes” in the detected
object — either actual holes or through misclassification — a hole filling
algorithm was applied prior to the labeling. 4-connected labeling was used
to cluster neighboring pixels classified as ice.

3.7.2 Results

Data from both Grp and sLc imagery was processed for feature extraction.
In the GrD case, the pixel intensity is the main source of information. The
“rawer” nature of the sLc image allows for more complex features to be
extracted, e.g. through H/A/a-decomposition as in Figure 3.21. This comes
with the added cost of the decomposition, and very large datasets to deal
with. Being the more informative and accessible dataset available, the Grp
image was selected for further classification.

Unless otherwise noted, classification plots are displayed with separate
colors for each separate detected cluster of ice (as determined by the labeling
algorithm); open water is displayed with white, and a red cross is used to
mark the mean position of each detection. The different feature sets that
were used are described in Table 3.3.

k-means Clustering

The first algorithm to be applied was k-means. As displayed in Figure 3.22a,
the naive approach to classify “ice” vs. “noice” clearly fails to appreciate the
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Figure 3.21: sLc dual-pol H/A/a decomposition. Red = H; Green = A; Blue
=q

Table 3.3: List of feature sets

ID Description

A HH, Hv. HH, HV of edge-connected neighbors
B HH, HV

C uH

D wnv

Table 3.4: Number of detections for different k-means variants/feature sets

K Feature set Targets Found

2 A 2052
3 A 907
3 B 1221
3 C 539
3 D 2727

different types of ice, leading open water to be put in the same class as the
less reflective ice regions. This motivates the addition of a third centroid to
represent low-scattering ice, as displayed in Figure 3.22b. The classification
results for different feature sets/settings are displayed in Table 3.4.

SVM Clustering

The svm algorithm was initiated using a random set from the triple-centroid
k-means classification, where the two classes representing different ice
types were grouped together in a single svm class. The result from the
comparison of different kernel methods are displayed in Table 3.5 and Fig-
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ure 3.23.

Table 3.5: Number of detections for different svm variants

Kernel Ft.set Targets found
Linear A 855
Linear B 1038
Linear C 839
Linear D 2199
Poly, (y,d,r)=(1,2,0) A 1038
Poly, (y,d,r)=(1,2,0) B 1213
Poly, (y,d,r)=(1,2,0) C 1412
Poly, (y,d,r)=(1,2,0) D 2041
Poly, (y,d,r)=(1,5,0) A 955
Poly, (y,d,r)=(1,5,0) B 1740
Poly, (y,d,r)=(1,5,0) C 976
Poly, (y,d,r)=(1,5,0) D 2179
Poly, (y,d,r)=(3,3,0) A 947
Poly, (y,d,r)=(3,3,0) B 1368
Poly, (y,d,r)=(3,3,0) C 1413
Poly, (y,d,r)=(3,3,0) D 2135
RBF, Y =1 A 911
RBF, Y =1 B 1145
RBF, Y =1 C 964
RBF, Y =1 D 2079
RBF, Y =5 A 1730
RBF, ) =5 B 1136
RBF, Y =5 C 1553
RBF, ) =5 D 2125

Some brief comments;

53

e Studying the decision boundaries in Figure 3.23; in the Hu/HV do-
main, the ice is not not clearly separable from the open water — the

intensity limits seem quite arbitrary in view of the data.

e In Figure 3.23e, it is evident that two of the most intense pixels are

misclassified as open water, due to the mismatch of a radial kernel

and the nature of the classes.

e Despite the lack of separability in the HH/HV domain, visual inspec-
tion of the data in Figure 3.23a and Figure 3.23c reveals a seemingly



54

CHAPTER 3. DETECTING ICE IN THE OCEAN

adequate accuracy.

e InTable 3.5; the inclusion of neighboring pixels clearly have a smooth-
ing effect, leading to fewer (mis?)detections. Also, there is a distinct
difference between the detections from HH and Hv data respectively.
This would seem to imply a certain unreliability in the use of nv data
as a detector.
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(b) 3 centroids

Figure 3.22: k-means classification. Each cluster of ice is displayed with a
unique color. White is the background (water).
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(c) Polynomial kernel (d) Decision boundary, polynomial
kernel

(e) rBF kernel (f) Decision boundary, rr kernel

Figure 3.23: svm classification with various kernels. Each cluster of ice is
displayed with a unique color. White is the background (water).
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3.8 Conclusions

While the major currents of the ocean are well studied, the complexity at a
small scale is far too great to practically consider in real time applications
today. Accurate prediction of ice movements further require exact knowl-
edge of e.g. shape parameters of each ice object, interaction with other
objects etc., making pure simulations futile. Hence, and by the principle of
Ockham’s razor, a simpler model is needed. This is found in the ncv model,
a standard model for linear motion. Without an exact model, observations
are necessary.

Three of the major sensors used for sea ice monitoring is presented in
this chapter: satellite-borne radar, ground (or ship-) based radar and —
as an emerging new class — vas-carried electro-optical sensors. The harsh
conditions of the Arctic present a challenging environment far beyond what
most research normally consider suitable for uas use, which makes the field
of research even more interesting.

In the continued thesis, detections from each of the sensors are used in
tracking problems. The extraction of detections from the raw sensor data
varies slightly. In this chapter, a representative example of how extractions
can be made from imagery was presented, for the example of sar imagery
but with a generic procedure. In many cases, such as was discussed for the
TRI data, model-based imaging techniques such as background modeling
can be employed to improve the snr ratio.

Retrieving ground truth data is a recurrent problem in Multiple Target
Tracking (mtT), and no less so when observing remote areas in the Arctic.
This makes the extracted data from Section 3.7 approximate at best. The
separability of the detection problem from the tracking problem ensures,
however, that this has little impact on the continued use of the data for
evaluation of the tracking algorithms, as long as detections are made con-
sistently. Of course, this does not apply to actual use of the data, such as in
a commercial application.
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Concepts in Target Tracking

This chapter introduces some of the concepts of target tracking, as back-
ground to the following chapters in this part. The content is primarily
based on pieces previously published in

Paper A:

Paper B:

Paper C:

Olofsson, J., Brekke, E., Fossen, T. 1., and Johansen, T. A. (2017a).
Spatially indexed clustering for scalable tracking of remotely sensed
drift ice. In IEEE Aerospace Conference Proceedings, Big Sky, MT, USA.
© 2017 IEEE.

Olofsson, J., Brekke, E., and Johansen, T. A. (2017b). Cooperative
remote sensing of ice using a spatially indexed labeled multi-Bernoulli
filter. In International Conference Unmanned Aircraft Systems (ICUAS),
Miami, USA. © 2017 IEEE.

Olofsson, J., Veibdck, C., and Hendeby, G. (2017d). Sea ice tracking
with a spatially indexed labeled multi-Bernoulli filter. In 20th Interna-
tional Conference on Information Fusion (FUSION), Xi’an, China. © 2017
IEEE.

As outlined in Figure 4.1, the tracking of sea ice has a central role in
the context of the system described in Chapter 2. This forms the basis
for the awareness not only of the individual ice objects, but also of joint
characteristics such as velocity fields, and of the statistics used to find

regions with particular risk of hazards. To enable global sea ice tracking,

it is essential that the algorithms can be partitioned with respect to each

individually observed area.
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Figure 4.1: Multiple Target Tracking in system context

4.1 Introduction

The modern field of target tracking has evolved from signal filtering theory
pioneered during World War II (Wiener, 1965). Through a series of evo-
lutionary steps it has seen the development of the indisputably significant
Kalman filter (Kalman, 1960) and later the Particle Filter (Gordon et al.,
1993). Further, it has extended into the exploration of scenarios with sen-
sors that can detect multiple sources but not distinguish their identities,
giving rise to the subfield of Multiple Target Tracking (mTT).

Commonly, an mTT algorithm does not only have to deal with the track-
ing of targets, but also with the presence of false reports, new targets and
disappearing (“dying”) targets. An mrT algorithm also has to deal with the
assignment problem, the problem of deducing which report comes from
which target. In fact, with no uncertainty in the assignment, the mtT prob-
lem naturally collapses into multiple Single-Target Tracking (stT) problems.
Considering that any report could either be false, be a new target, or stem
from any of the previously known targets, this is a combinatorially expand-
ing problem. Attempting all possible assignments is therefore prohibitively
computationally expensive, and approximations range from taking the clos-
est match to each target (Bar-Shalom, 1987) to generating a limited number
of best assignments ordered by probability of correctness (Murty, 1968).
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In Section 4.2, the foundations of tracking is summarized for the single
target case. Section 4.3 then introduces Random Finite Sets (rRrs's) and the
measure of the Probability Hypothesis Densities (PHDS) — concepts which
have been popularized in the mrr field only in the past decades (Mahler
and Zajic, 2001) and are central in the Labeled Multi-Bernoulli (Lms) algo-
rithm used in Chapter 6. In Section 4.4, the multi-target case is properly
introduced by expanding upon the assignment problem and details on the
algorithms used to generate valid assignment hypotheses.

In the following chapters, a technique called spatial indexing is applied
to both the Multiple Hypothesis Tracker (mur) and Lms algorithms. Thisisa
technique which can be used for quickly finding intersecting squares — here
used to find which clusters and targets are affected by sensor updates. The
base for the application of spatial indexing is the clustering of the tracking
problem into smaller problems, presented in Section 4.5. In Section 4.6
we review algorithms for spatial indexing — Rectangle trees (r-TREES) in
particular — and how it can be applied to the target tracking algorithms
to index the tracker storage such that the relevant potential targets can be
loaded quickly upon the arrival of new data.

Global tracking of ice objects requires the tracker to handle a range of
coordinate systems. These include both the ice’s geodetic — latitude/lon-
gitude — positions, as well as the local Cartesian coordinate systems in
which prediction- and measurement updates are performed. Section 4.7
presents the coordinate systems and transformations considered in the im-
plementations developed for the purpose of this thesis. Finally, conclusions
are offered in Section 4.8.

4.2 Single Target Tracking

At the core of most mrT algorithms is a set of st filtering problems. In fact,
the underlying srt algorithm for the tracking of each individual target in
an MT1T can generally be exchanged for other ones or can even — technically
— be independently chosen for each target. This entails that advances in
the field of stT are easily translatable and applicable in mTT.

This section presents a selection of st filtering algorithms which have
been used in this thesis, starting with the general Bayesian formulation in
Section 4.2.1. In the sections that follow, we detail the algorithms and their
corresponding assumptions to each of the filtering algorithms used in this
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thesis — the Extended Kalman Filter (exF) in Section 4.2.2 and the particle
filter in Section 4.2.3. The Gaussian mixture representation is introduced
in Section 4.2.4 both for its application as a method for st filtering, but also
as a general representation of continuous numerical distributions, such as
a PHD.

Implementation of said algorithms entails further considerations, such
as numerical issues, filter restarting, distribution degeneration and memory
management, although none of these issues are discussed here.

4.2.1 Bayesian State Estimation

The statistics that describe the estimated state of a tracked target can be
represented by a Probability Density Function (ppr). This pPpr is often
described by a state-space model, with the target state variables x € R"
— the essential parameters which we want to estimate. These include the
parameters needed to describe the ppF but also those aiding in the modeling
of the evolution of the ppf, and the measurement model.

The filtering problem then consists of following the evolution of the
target with the goal to continually improve the quality of the estimated ppr,
p (x), to follow the “true” state distribution as closely as possible. This is
performed with the aid of measurements of related properties, z. While a
true state generally is continuous in time, the estimate thereof is generally
estimated at discrete points in time, t;, k € [0, ..., K].

—— Example 4.1: Target state and measurements

A target tracked in a two-dimensional Euclidean xy-plane is often
parametrized by its position and velocity in each dimension, giving the
following state vector (for dimensional positions py, py, and their deriva-
tives):

x = [px, Py, Ux, vy] T (4.1)

The goal for the target state estimation algorithm — also known as a
filter — is to estimate those parameters as accurately as possible.

As is the case with all sensors described in Section 3.5, many types of
sensors employed in tracking of external objects provide images of various
types to be interpreted. Knowledge of where the image was taken allows
for the extraction of positions, which can be taken as measurements. This
yields measurements of the type

z= [px, py]T (4.2)
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For a state x, with components as in (4.1), we can create a model, h(x),
of what the measurement would be if a target with said state were to be

observed:
z=h(x)=Hx (4.3)
1 000
Hk_[o Lo 0]. (4.4)

In Bayesian state estimation, efforts are focused on finding a tractable
solution to the general Bayesian recursion (Mahler and Zajic, 2001). That
is, we are interested in finding the following distributions:

Predicted prior: x| Zvk-1 ~ p (x| Z1k-1) (4.5a)
Corrected posterior: xi|Zix ~ p (xk|Z1:k) - (4.5b)

Here and below, zj; is the measurement at time k, and Z;.» the set of all
measurements registered up until, and including, time k’. Likewise, Xo.r/
is the set of target states xj until time k’.

To solve (4.5), a general Probabilistic State-Space Model (pssm) further
defines the following distributions (Sarkka, 2013):

Transition model:  xi|x_1 ~ p (xk|xk-1), (4.6a)
Measurement model: z|xx ~ p (zk|xk), (4.6b)
Initial state: x0 ~ p (x0) . (4.6¢)

An initial state distribution guess, p (xp), can e.g. be inferred from the first
measurement, or from prior information. Note that in the formulation
of (4.6a) the Markovian property — p (xx|Xo:xk-1) = p (xk|xx—1) — has been
implicitly used, implying that all relevant information for the evolution of
the model can be induced from the previous state alone. While the general
Bayesian update equations below do not require this property, it is often
assumed in practice.

The distributions of the pssm are updated through the Bayesian recur-
sion:

Prediction update

p (xk| Zik-1) = /P (xk|xx-1) p (X1 Z1k—1)d x5 (4.7a)
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Measurement update

P (zklxk) p (k| Zrx-1)

p (xklZik) = ) (4.7b)

The raw formulation of (4.7) is rarely used directly, but are the expres-

sions from which all other related algorithms can be derived by applying

a specific set of assumptions. As discussed in Chapter 6, even the mrr fil-

ter can be formulated using the same equations, albeit with an extended
meaning to the variables.

When applying Bayesian state estimation, the pprs of (4.6) are generally

chosen such that the choice of distribution of x is preserved through the
updates, i.e only the parameters of the distribution are updated. To model
this update, we define the state transition function f, as

xp = f (xk-1) + wy, (4.8)

where wy is introduced as additive noise describing the uncertainty in the
prediction model. The equations of (4.7) do not explicitly require linear
additive noise (it may enter nonlinearly through f), although it is a com-
mon assumption to which we restrict the discussion. In the measurement
update (4.7a), the choice of measurement model p (zi|xx) determines how
measurement noise enters the estimate. Similarly to (4.8), it is often defined
with additive noise, yielding the measurement model

zx = h (xg) + vg. (4.9)

The noise variables wj and vy are often modeled as zero-mean Gaussian
distributions (see Definition 4.1):

wi ~ N(0,Qx), (4.10a)
v ~ N (0,Ry), (4.10b)

where Qj and Ry are positive definite, symmetric covariance matrices of
dimensions Ny X Ny and N, X N, respectively.

In this thesis, the motion of each individual sea ice object is modeled
according to the Nearly Constant Velocity (ncv) model, as defined in Defi-
nition 4.2.
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Definition 4.1 (Gaussian Distribution).
The Gaussian distribution ppF, parametrized by its mean vector y and covariance
matrix IT is given by

N (x|, II) = |2rI1| " exp —% (x-p) I (x-p)|. (4.11)
O

Definition 4.2. Nearly Constant Velocity (ncv) model
The ncv model (Li and Jilkov, 2003), defines the state transition function,

xk = fi (xk-1) + wi = Fexg- + wy, (4.12a)
10 AT, 0
o1 0 AT
=1y 0 1 ol (4.12b)
0 0 0 1
ATy =t — tr_q. (4.12¢0)

This model also entails the transition model noise covariance, for velocity
covariance o%, to be

AT} /3 0 AT o 0
0 AT} /3 0 AT} 2
AT; 0 ATy 0
0 AT} )2 0 ATy

Qi = 0> (4.13a)

4.2.2 The Extended Kalman Filter

The single most prevalent method for Bayesian state estimation is the family
of Kalman filters, introduced by Kalman (1960).

The derivation of the linear Kalman filter (Kalman, 1960) assumes a
linear system, although the theory can be extended to nonlinear systems
through the assumption that the system can be “sufficiently” described by
a linearization in a large-enough neighbourhood around the current state.
The linear Kalman filter is an exact solution to the recursion of (4.7) in the
case of linear transition and measurement models, with additive zero-mean
Gaussian noise. Even for non-Gaussian noise (albeit still zero-mean), the
linear Kalman filter is proved to be the Best Linear Unbiased Estimator
(sLUE) (Anderson and Moore, 1979), although the generalization — the ExF
— provides no such guarantees. The equations for the exr are given below.
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A detailed description of the algorithm can be found in e.g. Jazwinski (1970);
Smith et al. (1962).

Below, we use the notation that the subscript k|k” for the variables X and
P denotes the parameter’s value at time k, given measurement until time
k’. If the times are equal, i.e. from the measurement update, only one is
typed out, as the subscript k.

Prediction update

p (k| Zik-1) = N (xk| &k k-1, Prix-1) (4.14a)
Xik—1 = f (Xx-1) (4.14b)
Pyjg-1 = FxPr-1Fr ™ + Qx (4.14¢)
af
Fi= = (4.14d)
ox ey

Measurement update

p (x| Z1x) = N (x| Rk, Prik) (4.15a)
2 = h (®p1) (4.15b)

e = zk — Zk (4.15¢)

Sk = HkPr-1H| + Ry (4.15d)

Ky = Py Hi S} (4.15€)

R = Ryt + Kel (4.15f)

Py = Pyjg—1 — KxHy Pyp—1 (4.15g)

Hy = oh (4.15h)

X=%

In (4.15), 1 is referred to as the innovation, which in the linear Gaussian
case is distributed according to:

Lk ~ N(O, Sk). (4.16)

4.2.3 The Particle Filter

A more generic representation of a ppr can be constructed using a weighted
summation of particles — discrete points in state space, each with an indi-
vidual weight after their probability of correctly corresponding to the true
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state. For a set of N, particles:

NP
P~ D widy (xi), (4.17a)
i=1
{(wi) + ie[n... N, (4.17b)
NF’
Z wi = 1. (4.17¢)
i=1

Here, 62;‘( (x) is the Dirac delta function — zero everywhere but at x = 92;(

whereitintegrates to 1. The mean and covariance of the particle distribution
can be calculated as:

R = Zp: w; X}, (4.18a)
i=1

cov () = Zp: w! ((xk - aek) (xk - aek)T). (4.18b)
i=1

Note however that unlike the Gaussian distribution assumed in the
Kalman filter, a particle distribution can approximate any distribution, even
multi-modal ones where the terms mean and covariance are less relevant.

There are numerous ways to use the particle distribution in Bayesian
filtering. The one presented here, is sometimes known as the Bootstrap
filter. The initialization, prediction, and measurement update is defined as
follows:

Initialization

jéfvp(xo),w;{:Ni Vi e [1,...,Np] (419)
p

Prediction update

#o~p(wdty) Vie[l..,N)] (4.20)
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Measurement update

W} o w;_,p (zk|32,i|k_l) Vie[l,...,Ny|, (4.21a)

Ny i _
Z wi =1 (4.21b)

i=0 k7
For practical purposes, as first proposed by Gordon et al. (1993), a
resampling step (Hol et al., 2006; Gustafsson, 2018) needs to be added
to the algorithm to maintain sample diversity. This algorithm reselects
particles from the particle distribution based on their relevance. Different
resampling strategies are discussed in, e.g., Hol et al. (2006).

4.2.4 Gaussian Mixtures

A Gaussian mixture is a numerical representation similar to the particle
distribution, but instead of the discrete point values of particles, Gaussian
mixtures form a continuous measure evaluated as the sum of Gaussian

components:
M={(wl, 3, P) o ie[L N (4.22a)
NP
p(x) = GM (il M) = )" wiN (xkpz;‘c,p,i), (4.22b)
i=1
NP
Dwi=1, wiz0vie[l,... N, (4.22¢)

For filtering purposes, each weighted Gaussian component can be han-
dled in independent exrs, with the weights being adjusted in the measure-
ment update according to (4.21) (Anderson and Moore, 1979). The mean
and covariance of the mixture can be calculated as:

wi (4.23a)

wh (Pf+ (2] - &) (% - %)), (4.23b)
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For further treatment of Gaussian mixtures for stT, see e.g. Anderson
and Moore (1979); Wills et al. (2017).

By removing or appropriately adjusting the constraint of Zi”l w}( =1,
the representation can be used to approximate any continuous function,
such as the pHD of a tracking problem (Vo and Ma, 2006). In essence, the
PHD is a weighted sum of pprs (Mahler, 2007b) and notably, the weighted
sum of Gaussian mixtures is again a Gaussian mixture,

Nm Nm
> wigM M) = gM|x | (0wl 5 PY) o ie [N},
j=t j

(4.24)
for mixture weights w; and mixture size N, ; for mixture j of the sum of
N pm mixtures.

4.3 Random Finite Sets and Probability Hypothesis
Densities

As proposed by Mahler (Mahler and Zajic, 2001), the variables of target
tracking — and mTT in particular — can be expressed as Random Finite Sets
(rRrs's) — sets which not only contain objects with statistical properties but
are themselves of randomly distributed cardinality. In an res, each potential
element is included in the set with a given probability. Specifically, a
Bernoulli rrs is a random set which is empty with probability 1—r, and with
probability r a singleton. For an element x with an associated distribution
p (x), the poF for the Bernoulli r¥s x is given by (Mahler, 2007b)

1=, if x =0,
m(x) = {r_p(x)/ £y = (x). (4.25)

A multi-Bernoulli res is the result of the union of Ny, independently
Bernoulli-distributed res's ), given by x = Ui”f’ xD. Consequ}e\]ntly, the
multi-Bernoulli rFs can be parametrized by the set {(r), p¥)} "

each member of x, p (x) can be updated as individual, although possibly

For

interdependent, targets according to the single-target interpretation of (4.7).
The Labeled Multi-Bernoulli (LmB) rFs is obtained by augmenting each
Bernoulli rrs with a unique label, £ € £, in the set of all labels, £ — one
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label for each potential object in the set. The rrs can thus be described by
the set

{(r“), p© (x)) }M. (4.26)

Using Finite Set Statistics (risst) (Mahler, 2007b), the Bayesian filtering
equations (4.7) can be generalized to the mMTT case by reconceptualizing
the meaning of the involved terms. Just as a single-target distribution
can be described by its moments, so can a multi-target distribution. This
introduces the question of the interpretation of a multi-target moment. The
definition of the first moment employed in risst is known as the Probability
Hypothesis Density (pup) (Winter and Stein, 1993) and corresponds in each
point to the density of expected set objects at that point. This density, v(x)
is often integrated over a region S, giving the expected number of objects
within that region:

V(S)=E[|lxNS[] = /Sv(x)dx, (4.27)

where x is the rrs of all targets — stochastic in cardinality and content. This
set may or may not be explicitly known, as the measure here is the set’s
expected cardinality, not contents. The intersection operator indicates the
windowing of each target’s poF — limited by a given minimum probability
— with the region of interest. The pHD of a LMB RFs can be calculated by

v (x) = Z re - pe (x). (4.28)

teL

4.4 Hypothesis-based Multi-Target Tracking

The terminology often employed in common wmrr literature, and conse-
quently here, is based on the following definitions.

At any given time instance, a sensor delivers a scan (see Figure 4.2) —
an unordered set of reports, all detected at the same instance. This list
is exhaustive, i.e. it contains all reports from that sensor from that time!.
However, the reports cannot be tied to a target identity with certainty. The
scan set Zy contains all reports (indexed by r), zi , for time k whereas

IThe scan can however be subdivided for each cluster in the mrr, as described in
Section 4.5.
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Figure 4.2: A scan is an unordered collection of measurements from the
same time instance and sensor.

Zik = Zik—1 Y {Z} (4.29)

is the, recursively defined, collection of all scans up until and including time
k. Note that in this syntax, time of observation is considered to be available
for each zj, through its subscripted time-index, meaning that each Zj
added to the collection can be subsequently individually extracted.

The purpose of an mrT algorithm is to estimate a list of tracked targets.
In hypothesis-based mrtT, each target is associated with a set of hypothet-
ical tracks — st filters, each of which is the result of a unique sequence
of hypothetical assignments to the target. These assignments can indi-
cate association with a specific report, but also missed detections or even
assignments under alternative motion models (Kurien, 1990).

In this thesis, we make considerable use of indicator functions — binary
functions to select between cases. For example, AZQH ¢ is the assignment
indicator function, defined as

(4.30)

0 a {1, if assignment O assigns target ¢ to report z,
ze0 T

0, otherwise.
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4.4.1 Assignments and Hypotheses

In hypothesis-based mrr, tracks commonly start with the event of a report
that is not unambiguously originated from a previously known target. A
track evolves as reports are assigned to it under the assumption that they
are originated from the same target, and as the number of tracks grows,
the number of possible assignments grows combinatorially. The problem
of connecting the reports with targets is known as the Linear Assignment
Problem (rapr) (Kuhn, 1955). Since the chances of correctly assigning all
targets are slim, multiple hypothetical assignments are often considered,
along with their likelihood of being correct. Given multiple hypotheti-
cal assignments, the hypothetical tracks of a target can be visualized as a
tree (Kurien, 1990), as displayed in Figure 4.3 where each graph leaf track
is reached via the “path” of assignment choices that lead to it. Each track is
updated under the assumption that its history of hypothetical assignments
is correct. A set of tracks as updated by assignments over time is an hy-
pothesis, and the hypothesis containing the tracks up until the previous
time step is called the parent hypothesis.

In an assignment, a report can either be associated with a track, or be
considered extraneous, meaning that it is considered to be either from a
new (previously unknown) target, or to be a false report. The two cases
can generally not be distinguished with a single observation, and so are
treated jointly. Such an assignment can be used to initiate a new target
to be considered in the tracker (Bar-Shalom et al., 2007), awaiting further
observations to confirm its actual existence.

With the definition employed in this thesis, an assignment

i) assigns all reports of a scan to either pre-existing or new tracks; and

ii) assigns a “missed”, null assignment to any track which is present
in the parent hypothesis but not associated with any of the scan’s
reports.

Since multiple assignments O are formed at each timestep, we use index 9
to designate a specific assignment or hypothesis.

Hypotheses, again as defined in this thesis, are sets containing tracks
resulting from assignments from one or more of consecutive sets of scans.
Hypotheses can either be generated anew for each incoming scan (Popp
et al., 2001) or be formed as a continuation based on an existing hypothesis
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Figure 4.3: The different hypothetical tracks ((plgl.) of a target ¢ can be vi-
sualised as a tree (Kurien, 1990), with branches indicating that multiple
options exist, e.g. for which report to assign to the target. Each vertical
level indicates a timestep, and the leaves point to the latest hypothetical
state estimate for each target. Global hypotheses @l‘? are formed as combi-
nations of compatible leaves. New hypotheses are formed by extending the

hypotheses from the previous timestep, @Q(}g), with assignments of new

reports, 0 g.

from the previous timestep. The latter can be expressed mathematically by
that each hypothesis G)’f9 from time k fulfills

®f = 055, U {65}, (4.31)

for an assignment 0%, and the mapping Q (9) that links assignment 6@ to
the hypothesis of time k —1 from which it was extended, and thus describes
the historical assignments which when generating the new assignment are
assumed true.

—— Example 4.2: Conteptual Contents of a Single Assignment———
A selected parent hypothesis contains two targets, each with a track selected
among each target’s hypothetical tracks — (Plf, and q02 1, respectively ,
where track (plgl‘jl is the j’th of the target {’s hypothetical tracks at time k —1.
A scan is received with a single report z;; and a new assignment Qg is
generated that

i) assigns report zx 1 to track ¢1,1, but
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if) finds no matching report to ¢2,1.

The resulting new assignment contains the following pairs of association:

Gg = {(Zk,lr (Plf,l) ’ (0’ (Plé,l)} ’

where () denotes the null assignment of a track without an associated report
at time k.

Different reports assigned to the same target will each result in a new hy-
pothetical track being created. If different hypothetical assignments assign
the same report to different targets, the resulting tracks will be incompati-
ble. Hypotheses of compatible tracks are called global hypotheses. Targets
that do not share any assignments, in any hypothesis, at any point in his-
tory (or, approximately, as far back as we care) are independent, and can be
treated in separate independent clusters — groups of targets which share
ambiguous reports. The purpose is to reduce the computational complexity
by limiting the size of the multi-hypothesis assignment problem.

It is assumed that each track can be modeled as a standard single-
target state estimation problem, conditioned on the validity of its history of
hypothetical assignments.

4.4.2 Hypothesis Generation

Since all incoming reports theoretically can be assigned to any existing
track, the set of possible hypotheses grows exponentially with time. An
effective way to limit the complexity of an hypothesis-based mrT algorithm
is to focus on generating and evaluating only the most relevant assignments,
such as the ones most likely to be true. The generation of the single best
possible assignment is known as the Lap. The problem can be formulated
by defining a cost matrix C € R"™", with matrix elements c;; from row
i€ll,...,n]and columnj € [l,...,m]:

minZ CijSij
ij

Disij=1, Vi, Ylsi<1, VY] (4.32)
j i
Sij € {0,1}
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The gist of this problem is to achieve the lowest total cost selecting,
from an assignment cost matrix C, exactly one value in each row and at
most one value in each column. The resulting 1-valued elements s;; is a
binary selection of one unique column per row. In an implementation, this
result can be represented either as a binary matrix, or as a vector of column
indices — one for each row. One LaP, with separate C matrices, is set up for
each prospective parent hypothesis. Thus, the solution of the assignment
problem is conditioned on the assignments of the parent hypothesis that C
is based upon.

Given what we put into the C-matrix, the interpretation of the result
differs, as shown by Examples 4.3 and 4.4.

—— Example 4.3: Assigning reports to tracks
Given reports {z1, zo} and tracks {(pl, (p2} we define the C matrix as

Z]/\(p1 — mA(pl Zl/\(‘a2 _ mAgDz Zl[\5 [o%)

C =
ZZA(Pl - mA(Pl ZzAfpz - mA@z oo g

Here, and as further defined in Chapter 5,
i) *\y, is the cost of assigning report z; to track ¢;
ii) "Agp, is the cost of considering the target of track ¢; missed; and

iif) %A,y is the cost of considering the report z; extraneous, i.e. either a
new target, or a false detection.

An example solution s12 = sp4 = 1 (all other s;; = 0) would generate
the hypothesis that report z; is associated with track ¢;, and report z; is
considered extraneous.

Report-track assignment is used in the muT implementation described
in Chapter 5.

—— Example 4.4: Assigning targets to reports
Given reports {z1, zo} and targets {{1, {2} we define the C matrix as

F
C= Ny PNy "Ny 0 Ay 00
21/\52 ZZA[Z fo%e) I’lA{z 00 FAfz s
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where */A, is the cost assigned to associating target £; to report z;. "Ay,
and fA, ; is the cost associated with assigning the target as non-associated
or false, respectively. These constants are further discussed in Chapter 6.

For example, solving (4.32) may yield that s1; = s26 = 1 (all other s;; = 0),
indicating that report z; is associated with target {1 and that target ¢{; is
considered a false target.

Target-report assignment is used in the LmB implementation described
in Chapter 6.

Each solution that fulfills the constraints put up in (4.32) corresponds to
a hypothetical assignment, and the “cheapest” assignment is the best guess
of assignment of the reports received for this given timestep, for the given
parent hypothesis. Several algorithms exist to solve the Lap problem — the
auction algorithm (Bertsekas, 1988), the Hungarian algorithm (Kuhn, 1955)
and Jonker-Volgenant (Jonker and Volgenant, 1987) being notable mentions.

The task of finding the single best assignment was extended in an al-
gorithm due to Murty (1968) to that of finding the Nj best assignments,
for a given assignment cost matrix C, i.e. for a single parent hypothesis.
However it is also necessary to compare the assignments from different
parents, as illustrated in Figure 4.4. Doing so, for each incoming scan, the
N}, best assignment hypotheses can be selected without full enumeration,
effectively limiting the exponential growth of assignment hypotheses. Note
that removing tracks that are not selected for any of the N, best global hy-
potheses decreases the need for post-update pruning techniques, such as
reviewed by e.g. Blackman (2004).

The Murty algorithm, with the underlying Lap solver, is of polynomial
complexity in the number of tracks with which the reports can be associ-
ated (Cox and Hingorani, 1996), and it is therefore of interest to limit the
number of tracks considered for assignment. By applying gating, we can
limit the number of tracks that are considered for association, and thus
reduce the size of the C-matrix to include only those.
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91; 1 912 1 @I; 1
' ' '
1.6180 3.14159 1.414
. @i o 0.7071
o

New hypotheses:

Order Score Name Parent
1 0.7071 ok k!
2 1414 e} oyt
3 1.6180 ok et
4 314159 e ok!

Figure 4.4: Here, hypotheses from a given parent are illustrated as an or-
dered deck of hypothesis cards. To draw hypotheses from multiple parents
(and thus multiple Laps), a single iteration of Murty’s algorithm is per-
formed for each parent, generating the top cards of the decks. The best
hypothesis of those is selected and removed from the deck, and a new
Murty iteration for that LaP generates the deck’s next top card. This is
repeated to draw Nj hypotheses of decreasing probability.

4.5 Gating and Clustering

Clustering is the grouping of targets, such that no target in any cluster
shares a report, by assignment in any hypothesis, with a target in another
cluster (Kurien, 1990). As no information is shared, all clusters are inde-
pendent of each other and can be updated separately. Theoretically, any
report can be assigned to any track, but in practice many of the possible
assignments are very unlikely. That is to say, tracks and reports which
are unlikely to be associated are approximately independent. We therefore
define a gate as a function of a report—track pair such that if the function
is below a given threshold, the assignment need not be considered (Reid,
1979; Blackman, 2004). Targets whose tracks have at any point been as-
signed the same report share a connection, and connected targets belong to
the same cluster — independent from the other targets, but not from each
other.



80 CHAPTER 4. CONCEPTS IN TARGET TRACKING

If a report falls outside the gate for all tracks in a cluster, the report will
not be associated with that cluster. If a report is associated with several
clusters, these need to be merged such that each report is associated with
only a single cluster (Reid, 1979). Note that this can have a “snowballing”
effect, leading to seemingly unrelated targets belonging to the same cluster,
as they are indirectly connected by ambiguous reports.

4.5.1 Association Probability Bounds and Overlap Gating

For reports and tracks with Gaussian distributions, the probability of associ-
ation is proportional to the overlap integral of their respective distributions.
This is proportional (Collins and Uhlmann, 1992) to the probability of the
innovation, (4.16), itself a Gaussian.

As a general result, the area bounded by an iso-probability limit corre-
sponds, for any Gaussian N ( K, H), to an ellipse, which can be written as
the set

{x + (x—p) IO (x-p) <y} (4.33)

The covariance-normalized boundary-distance used, dI%/Iah
(x — u) O (x — p), is known as the squared Mahalanobis distance (Ma-
halanobis, 1936). The squared Mahalanobis distance is, for a random
Gaussian vector of size Ny, distributed according to the chi-squared
distribution of Ny degrees of freedom. Hence, ). can be selected for a
desired gating probability. The size and orientation of the ellipse can be
calculated from the covariance matrix IT and the error ellipsoid parameter
ve (Ribeiro, 2004).

Because of its geometrical interpretation, gating through a limit of the
association probability is referred to as ellipsoidal gating. For a report-track
pair (both with Gaussian distribution), the corresponding ellipse is

{z . (z-2,)T(P+R) " (z-2,) Syg}. (4.34)

where 2, = h (%,) for track estimate %, of track ¢; P = HP,H], all with
time indices dropped. If a report z fulfills the criterion (i.e. is within the
ellipse), it is positively gated. Collins and Uhlmann (1992) shows that a
necessary condition for (4.34) is that

Ty - {(x —2p) TP (x— 2p) < Ve

(x-2) R x-2) < 7. (435
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That is the ellipses, inscribed respectively by the covariances of the state
estimate and the report, overlap. This motivates the use of intersections as
a method for gating. Further, since the ellipsoids of the tracks and reports
are independent, the gate equation in (4.34) does not need to be recomputed
for each association pair.

To further simplify the gating, we find the axis-aligned bounding box
of the ellipse in (4.33), yielding, for track ¢ and a given vy,

BY, = [ vl wi- pl. (4.36)

for minimum (-) and maximum (+) box corner positions in the x and y
dimension, respectively, as defined in Lemma 4.1. Unless needed, the y,
index may be dropped.

Lemma 4.1 (Axis-Aligned Bounding Boxes). For a two-dimensional Gaus-
sian distribution N (u, I1), the axis-aligned bounding-box for the ellipse inscribed
by the iso-probability limit for an error ellipse limit of 'y is given by

Bﬁ:[Pf—, Per Py-s Pf+]- (4.37)

Pa = Hq £ ,/aﬁ + bs. (4.38a)

T ol T [l

le1]

for the eigenvalues {A1, A2} and eigenvectors {e1, e} of the covariance matrix
IT (Ribeiro, 2004).

where (for d € {x, y})

Proof: Consider the parametric ellipse equation:
£(w)=p+acos(w)+bsin(w) (4.39)

where w is the angle parameter. The ellipse is related to the Gaussian dis-
tribution through the mean p, and the vectors a = [ax, ay] Tb= [bx, by] T
that describe the ellipse axes of symmetry — the eigenvectors of the covari-

€1 (%)
a= V%Mm, b= V)/e/\zw (4.40)

for the eigenvalues {11, A2} and eigenvectors {e;,e2} of the covariance
matrix IT (Ribeiro, 2004).

ance:
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The axis-aligned bounding box of the ellipse is defined between the min-
imum and maximum extent in each dimension. Thus, setting the derivative
of (4.39) to zero in each dimension provides the minimum/maximum in
each respective dimension, below for the x dimension;

— 41 =cos?(w)ay + cos(w)by =0 =
Ay

©) n (@) by (4.41)
cos ) = ———, sin(w) = ——
az + b2 \az + b2

Finally, insertion into (4.39) yields

az + b2 [
Px = Ux £ \/2:192 = Ux £ ﬂ% + b% (4:42)
ay + 0%

(4.41)-(4.42) is repeated for the y dimension to find the values for the bound-
ing box B,

By, = [px-s Pxss Py-r Pyt]- (4.43)

O

Since the association probability at the square bounds of the ellipses
in (4.35) is lower than or equal to that at the ellipsoid edge, the intersection
of their bounding boxes is a conservative estimate of (4.35): if the bounding
boxes do not overlap, the ellipses do not either.

By gating based on ellipse or bounding-box overlap instead of the Ma-
halanobis distance of the innovation, the bounds for each report and target
can be precomputed. Thus, instead of creating — for Nz reports and
N, tracks — Nz X N, gates (including matrix inversions for each pair),
the complexity is reduced to creating Nz + N, gates, and performing a
O (Nz - log N¢) search for matching all reports to any of N¢ clusters, given
an efficient indexation of clusters, as described in Section 4.6.

The concept of overlap gating may be extended to other unimodal distri-
butions, as well as mixtures and clusters by using the minimum bounding
box of their respective components. If wanted, a finer, e.g. elliptic, gat-
ing can be performed in a second pass to potentially further reduce the
considered associations.

For a cluster C, containing tracks ¢, we define the axis-aligned bounding
box, B¢ as the minimum axis-aligned box to contain the bounding boxes of
all its tracks (see Figure 4.5),

B¢ = [minp?_, maxp?,, minp;)_, maxp%]. (4.44)
peC peC peC peC
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Figure 4.5: Cluster bounding boxes

Thus, a report bounding box may — but will not necessarily — intersect any
of a cluster’s tracks if and only if it also intersects the containing bounding
box. Analogously, the same applies to single-target mixture distributions
and their components.

4.5.2 Cluster Separation

From the matching of reports to tracks, a connection graph (visualized in
Figure 4.6) can be formed by connecting pairs of targets which both are a
potential match for a common report. The resulting graph will contain one
or more groups of connected components which represent the targets that
must be kept in the same cluster. Algorithms for finding graph connected
components are studied in e.g. Tarjan (1972); Pearce (2005).

Hence, for each closed group of connected targets, the set of all targets
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Figure 4.6: Allnodes reachable from a node form its connected components.
In clustering, a link represents a shared report between targets.

L hypothesized at time k is correspondingly partitioned into disjoint sets,

Nt
L= (4.45)
c=1

with Ll(f) N L,(Cm) = ( for C # m. Similarly, the set of reports in the scan Zx
can be partitioned into the corresponding clusters

Nt
Ze=zul JZ¥ (4.46)
=1

with Z,EC) n Z,Em) = for C # m, and ZIEO) is the set of measurements not
associated with any previously known target.

A notable difference between the mHT filter in Chapter 5 and the Lms
filter in Chapter 6 is that the targets in the Lms filter are not connected
to each other through restrictions of track history compatibility — each
target is assumed independent following each update, and consists of only
a single merged track. This means that for an incoming scan it can easily
be determined, on a target-level, which targets that fall in the sensor Field-
of-View (rov) and thus will be affected by the measurement update, simply
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by finding which of the target gates intersect with the rov. Similarly, the
possible associations between reports is a trivial matching process between
the gate of each report and that of each target. Conversely, the clusters in
MHT persist over time, adding complexity to the clustering process. Separate
clusters whose targets come to share reports must be joined into a single
larger cluster and ambiguities which are indubitably resolved can cause
clusters to split into smaller ones. The smaller the cluster, the cheaper the
updates.

Axis-aligned bounding boxes are well suited for fast intersection
lookups, especially when stored in structures suitable for spatial index-
ing such as the r-TRee (Guttman, 1984). When in database storage, targets
and clusters lie dormant, meaning that access to exact calculations — es-
pecially involving their distributions — are unavailable without loading
them into memory, which is an expensive operation. However, select pre-
computed numbers can be stored along the object in the database, accessible
for database search. Overlap gating through intersection of pre-computed
axis-aligned boxes requires only the four numbers in (4.36) and can thus
be made available in the database lookup. This means that by storing the
targets and clusters in a database with their bounding-boxes, the affected
targets of each scan can efficiently be selected, leaving all other targets
unloaded from the database.

4.6 Spatial Indexing for Matching and Storage

In global tracking of objects, observations are generally performed in
bounded areas at a time, such as when a satellite image is processed, or an
image from an Unmanned Aerial System (uas) flight is processed. As the
processed data contain no information about the area outside the boundary,
it is warranted to ensure that the processing algorithms can be partitioned
online to update only the relevant parts. This online partitioning is a nat-
ural match to spatial indexing — the organisation of spatial objects into
data structures which can be efficiently queried for e.g. intersections and
overlap. Common indexing techniques include

e K-Dimensional trees (xp-TrEES) (Bentley, 1975),

e Local Split Decision trees (Lsp-TrEEs) (Henrich et al., 1989),
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e Rectangle trees (r-TREES) (Guttman, 1984; Sellis et al., 1987).

In this section, a method is motivated and described for the use of prob-
ability bounding boxes for screening of possible report-cluster associations,
as well as for report-track gating.

4.6.1 Online Partitioning of MTT based on Field-Of-View

The ability of position-reporting sensors to observe targets is limited to
targets within the sensors Fov. A sensor rov is exemplified in Figure 4.7.
We note the following;:

Negative data Absence of reports is relevant to the filter. Thus, clusters
within the rov without report assignments need to be included in the
update.

New clusters Because of the assumption that any target yield only a single
report, reports with no associations to prior targets (in any hypothesis)
will each form a new cluster, even if they would all overlap a potential,
not yet detected, target.

Bordering clusters Tracks with a non-zero intersection with the rov have
a non-zero probability of being within the active area, and must be
considered. This means their entire cluster should be updated. In
such clusters, occlusion of tracks outside the rov is obtained with
track-individual probabilities of detection.

Outside information No information, negative or positive, is available on
clusters outside the rov. Thus, no measurement update should be
performed on such clusters. This is essential to the scalability of the
tracker.

Given the sensor’s current rov, we thus wish to extract from the filter
only the clusters and/or targets which intersect with the rov. For axis-
aligned bounding boxes a and b, overlap between can be determined by the
following logical expression (with +— denoting the boxes” maximum and
minimum in the x and y dimension respectively);

overlap(a,b) = (ax+ > by_) A (ay— < by_) (4.47)
Aay+ > by-) A(ay- < by). '



4.6. SPATIAL INDEXING FOR MATCHING AND STORAGE 87

Figure 4.7: rov example. Previous single-track clusters in yellow; reports
in red; Fov in green. Note that the report in the upper right might originate
from a target with a mean estimate outside the rov, which must still be
included in the update. Each of the three lower left reports will initiate
separate new clusters.

A naive method to exclude clusters and tracks outside the sensor rov
would be to perform the test of (4.47) on all clusters and tracks in the
filter, for each report. However, as we — at least for coarse selection —
approximate rovs and bounding boxes as axis-aligned, intersections can
be efficiently computed trough spatial indexing of the cluster and track
storage.

4.6.2 Spatial Indexing with R-Trees

The r-TREE, short for rectangle tree, was introduced by Guttman (1984), and
has formed the basis for several extensions. One of those is the R*-TREE,
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Figure 4.8: r-TREE example. Objects are stored in the leaf nodes R8-R19, and
indexed using the non-leaf entries R1-R7.

which is used e.g. in the SQLiTE database?.

The basic idea of r-TrEEs is exemplified in Figure 4.8, where the objects

are stored in the records R8-R19 of the tree. The r-TREE satisfies the following
properties (Guttman, 1984):

1.

2.

All leaves contain between m and M records unless it is the root.

All non-leaf nodes contain between m and M children, unless it is the
root.

. The root node has at least two children, unless it is a leaf.

. A leaf record contains the minimum bounding box of the object, and a

pointer to the stored object.

A non-leaf entry contains the smallest rectangle which contains all rect-
angles of the child node, and a pointer to said child.

All leaves are on the same level.

thtps ://www.sqlite.org/rtree.html


https://www.sqlite.org/rtree.html
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When a node becomes under-/over-full during deletion/insertion, the
tree is rebalanced (Guttman, 1984) to maintain the properties above. Dif-
ferent versions differ in the choice of heuristics in the choice of new nodes
when rebalancing the tree (Beckmann et al., 1990). Specialized implemen-
tations also exists e.g. for indexing based on geodetic distance (Schubert
et al., 2013).

Searching the tree for intersections is then performed recur-
sively (Guttman, 1984), recursing only into nodes whose bounding box
intersect with the query. Searching an r-TREE can be optimized to reach
O (log N) complexity (Gobel, 2007) for N nodes, reducing the search for
report-cluster matches to a potential O (N7 log N¢) or report-track matches
to O (Nz1log N,,). Combinations of indexing is also possible, e.g. through
separate indexation of clusters and tracks.

4.7 Coordinate Systems

To facilitate storage and handling of ice objects on a global scale, multiple
coordinate frames of reference are used. Primarily, three coordinate systems
are used in this thesis and its associated implementations:

o Latitude-Longitude-Altitude (LLa) or, in 2D, Latitude-Longitude (LL);
e Earth-Centered, Earth-Fixed (EceF); and
e North-East-Down (NED), or in 2D, North-East (NE).

The above coordinate systems are visualized in Figure 4.9 (with “up”
being shown as the negative of “down” for clarity).

4.7.1 Transformations

Coordinates expressed in one coordinate system can be — linearly or non-
linearly — transformed to another via transformation functions (from frame
a to frame b):

xb — fba (xa) )

The transformation between ecer and NeD (and the reverse) is an affine
transformation — a translation and a rotation. To move to LLa (or LL, by
additionally discarding the altitude), the transform is nonlinear however,
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Zecef

A

Figure 4.9: Coordinate frames used in the thesis. “down” in the NED system
is the negative of the shown “up”; ¢ and A is the latitude and longitude,
respectively.

and poses a larger problem. The transformation from rra to ecer fol-
lows trigonometric equations outlined in Hofmann-Wellenhof et al. (1997),
whereas the more intricate ECEF-to-LLA transform has been a subject for op-
timization research, but can be performed e.g. as per Olson (1996). Trans-
formations between NED and LA is performed via the Ecer frame, forming
the chain LL¢>LLA¢>ECEF¢>NED<>NE.

4.7.2 Storage and Updates

In implementations presented in this thesis, the targets and/or clusters
are stored in rL coordinates. This, as can be seen in Figure 4.11, is not an
Euclidean system, making it a less suitable coordinate frame for handling
tracking. Instead, all measurement and prediction updates are performed
in a local Euclidean NE coordinate frame. This is made possible by the
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Figure 4.10: Cluster coordinate transformations

process described in Figure 4.10. The transformation sequence begins when
reports — in the LL coordinate frame — are received and matched against
existing targets, also in the LL frame as they are stored. Having extracted the
matches, the clusters are formed and can be treated independently and in
parallel. The cluster measurement update starts by finding a suitable origin,
x, around which to perform the transform to Euclidean space. Relevant
choices include the center of the region, and — as used here — the cluster’s
center of mass,
o= > wE[x]. (4.48)
teL©
Having determined a suitable origin, the clusters” reports and targets
are transformed to a NE frame fixed there, and a standard mrT measure-
ment update can be performed in Euclidean space. The prediction update
is performed analogously, although for algorithms where the targets are
considered independent between updates — such as the Lwms filter — each
target forms their own cluster, making the search for an origin trivial.
Spatially indexed objects that move must be handled appropriately, as
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>
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Figure 4.11: Global storage of targets is done in LL coordinates, indexed as
rectangular sections in the LL frame.

their search index will change after the update. A common way to solve
this is to remove the object from the storage data structure prior to update,
and the re-insert it after the update has been performed.

After the update, the targets are returned to the LL frame and subse-
quently stored in the database, until the next update.

4.8 Conclusions

This chapter introduced the essential concepts which are used in the con-
tinued thesis to explore the field of mTT. This started with a basic overview
of stT, which is still an essential base when the problem formulation is ex-
tended to the mTT case. In the problems associated with mrT, particular focus
was given to the association (in Section 4.4) and clustering (in Section 4.5)
which forms the bases for some of the algorithm improvements studied
later in this part. These are inherently difficult problems to which many
solutions have been proposed and discussed, yet still allows for further
optimizations. Often, the solution to these problems are implementation
specific, and is dependent e.g. on the exact definitions used of the terms
assignments, hypotheses, targets, tracks and clusters. One take on the op-
timization of clustering is presented in Chapter 5 through the combination
of the muT algorithm and the r-TREE spatial indexing technique.
Hypothesis-based mrr is further put to use in Chapter 6, where a novel
reformulation is proposed to the LmB algorithm, in which the results of the
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Murty algorithm is mapped into a matrix representation to simplify the
implementation of the algorithm.

Further, risst, rRFs's and the pHD were introduced in Section 4.3, as they
form not only the foundation for the Lms filter of Chapter 6, but also further
lends their applicability, as proposed in Chapter 8, to the formation of flight
plans for controllable uas agents.






Spatially Indexed Multiple
Hypothesis Tracking

In this chapter, we explore the Multiple Hypothesis Tracker (muT) algo-
rithm, and describe the implementation of a tracker with spatially indexed
cluster association, in efforts to apply it to the large-scale application of sea
ice tracking, as performed by the tracking module in the sytem overview
of Figure 5.1. The contents of this chapter were first published in

Paper A: Olofsson, J., Brekke, E., Fossen, T. L., and Johansen, T. A. (2017a).
Spatially indexed clustering for scalable tracking of remotely sensed
drift ice. In IEEE Aerospace Conference Proceedings, Big Sky, MT, USA.
© 2017 IEEE.

The contributions of this chapter include:

e adetailed description of a Free and Open Source Software (Foss) MHT
implementation which uses spatial indexing;

e a comparative study of the scalability improvements from spatial
indexing; and

e an application of the algorithm for sea ice tracking, using real Syn-
thetic Aperture Radar (sar) imagery with added simulated motion.

For operations in the Arctic, drift ice can be a major hazard. To be able to mitigate
this, it is essential to know the position of viable threats. Many sensors can be
employed, such as satellite sAR, marine radar, air surveillance et cetera. At the core
of the fusion of this sensor data is a Multiple Target Tracking (mtT) problem. This
problem is studied in this chapter through the implementation and application of
the mMHT algorithm.

A major limiting factor of the applicability of MHT is scalability. A common method
of handling the scaling is clustering, which separates the MHT filter into smaller
independent parts. However, with growing scale, the association of sensor data to
the “right” cluster can become resource intensive in itself. A method is explored,
based on rectangular lower probability bounds, to efficiently index the clusters
and compartmentalize the measurement update of the maT. The method uses the
bounding box of a lower probability bound of tracks and reports respectively, to

95
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perform an intersection lookup against the sensor Field-of-View (Fov), efficiently
selecting clusters of relevance.

The method, as well as the MHT algorithm, has been implemented and published
online under an open-source license. In this chapter, the implementation is described
and tested on simulated data for statistics. Further, it is tested against data extracted
from the polarimetric classification of ice using satellite imagery of the Arctic.
Results show that computational speed improvements can be achieved compared
to the linear complexity of a naive search or, to a lesser extent, standard database
lookups.
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Figure 5.1: Multiple Target Tracking in system context

5.1 Introduction

The mHT tracker, as the name implies, makes heavy use of the concept of
hypotheses. The background on this was presented in Section 4.4. There
too the concept of gating and clustering was introduced, the foundation for
the algorithm improvements we explore in this chapter.

The mHT algorithm was first introduced by Reid (1979), and many vari-
ants and improvements have been proposed since. It is drawn from the
intuition that the mTT problem is effectively reduced to multiple single-
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target tracking problems, given a perfect association of each measurement
to the two cases of either

e an existing target track; or

e a new target/a false measurement (both results from extraneous re-
ports).

Recognizing that perfect associations are idealistic, multiple hypothet-
ical associations are kept and maintained to defer the decision on which
hypothesis is “best” until more data is available. However, the number
of possible track associations increases exponentially with time, posing a
fundamental limitation which must be overcome with approximative im-
plementations.

The original muT formulation was based on exhaustive enumeration
of possible measurement associations, subjected to extensive pruning to
retain only the most relevant association hypotheses. This has been the
blueprint for multiple variants (Blackman, 2004), each of which has its
individual approach to limit the otherwise exponential growth of possible
hypotheses.

The Track-Oriented Multiple Hypothesis Tracker (tomnr), introduced in
Kurien (1990), contrasted the hypothesis-oriented approach in Reid (1979)
by replacing the exponentially growing hypothesis relation matrix with target
tree graphs to represent the different associations. This was also further
improved by Cox and Hingorani (1996), who introduced the application
of Murty’s algorithm (Murty, 1968) for efficient generation of relevant hy-
potheses, providing a way to limit the number of generated hypotheses.

Generally, the main difference between variants of the mut algorithm
are their approach to bookkeeping of hypotheses and the sampling of new
hypotheses. Another distinction can be made between batch sampling im-
plementations, such as the m-best S-D Assignment proposed in Popp et al.
(2001), and recursive implementations which retain and build upon the
hypotheses from previous iterations, e.g. Reid (1979); Kurien (1990). The
implementation described and used in this chapter uses recursive genera-
tion of hypotheses and track-oriented bookkeeping.

In many applications, the muT algorithm suffers from scalability is-
sues (Blackman, 2004; Reid, 1979), though this can sometimes be mitigated
e.g. through the use of clustering (Roy et al., 1997), which subdivides the
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filter into clusters which can be updated independently. Clustering is
generally coupled with the use of gating, by which a limit of association
probability is used to limit the amount of considered associations and keep
the number of targets in each cluster down. Through clustering and gating,
it is possible to limit an observation’s impact on the full filter to a local
region around the sensor field of view, and determine for each cluster if it
will need to be updated or not.

The application of spatial indexing to mTT was studied by Collins and
Uhlmann (1992). Specifically, report-target associations were considered,
and its application exemplified using the Joint Probabilistic Data Associ-
ation (Jppa) filter. Their study concludes that spatial indexing offers an
efficient way of coarsely selecting possible report-target associations. In
this context, this chapter focuses on the application of spatial indexing
to the muT algorithm, where instead report-track and report-cluster as-
signments are considered. Specifically, we apply spatial indexing on the
report—cluster assignment problem, to reduce a global coverage filter to a
local subfilter.

The muT algorithm is described in Section 5.2. The implementation is
discussed in Section 5.3, and the obtained results presented in Section 5.4.

5.2 The Multiple Hypothesis Tracker

The core of the MHuT algorithm is the likelihood of each hypothesis, first
derived in Reid (1979):

p (05121 = (65,0812, Z2s-)

o p (Zk|6kz®l&‘lg)121:k—l) p (6’§|®’&}9),Z1;k_1) p (G)]é_(}g)l-Zl:k—l) . (5.1)

In this expression, the last term is the likelihood of the parent hypothesis
from the previous timestep, the value of which can be expressed as

p (61((1@) |~Z1:k—1) = e~ faw) (5.2)

using the parent hypothesis” Negative Log Likelihood (NLL) score Ag(g) —
Q(9) again being the mapping to the parent hypothesis of hypothesis 39
of time k. The two remaining terms in (5.1) represent the likelihood of
the new assignment, which can be rewritten as follows, assuming Poisson-
distributed (with parameter A¢) extraneous reports,
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p (Zk|9k,@g(é),21:k—1) (9k |@IE)(‘19),Z1:1<—1)
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= H (tp (z¢) Pg) (1 —PD)mq)(/\é)é“’
¢€9f
(5.3)

where a,, m, and &, are mutually exclusive indicator functions for as-
signed, missed and new tracks (from potential new targets) ¢ respectively,
as assigned by assignment 9'\;. Analogously, a, is the indicator function
for assigned measurements. pg is the probability of detection for track ¢,
whereas 1, (z) is the innovation probability of the association between
track ¢ and its assigned report z,. The factors in (5.3) can, too, can be
expressed using the NLL, Ny,

1p (z¢) ph for associated tracks
e Mo 2l pﬁ for missed tracks (54)
Ag for new tracks

Unless beneficial in the context, the time index k is considered implicit
below and dropped. Combining (5.1)—(5.3) yields that

—A_j_
p(©51Z1) e [ ] e, (5.5)
@E@f

Conveniently, this product is easily converted to a sum by using the (neg-
ative) logarithm. This results in a sum over the scores, Ay, that each track

head in the hypothesis individually contributes,

Agr = = .
o Agk- L + Aek A®Ig()(1>) + Ag. (5.6)
@E@S

The total score of a track can be calculated recursively from the assign-
ment scores given at each historical assignment to the track. Hence, (5.6)
can be calculated as the sum of the total track score of the hypothesis’ tracks:

Agr= [Ag +A},;k—1] (.7)
@G@@
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for A}p:k_l = Z],z,_:ll Ag over the track history. Hence, in an implementation,
each track need only maintain the running sum and its own score to enable
the calculation of the score of a hypothesis containing a given set of tracks.

An equivalent formulation of (5.3), useful in the formulation of the
Linear Assignment Problem (raP) is

[T (k0 (z0) P5)™ (1= p5)" (M)

(pE@;<
ag (5.8)
IT; (Zi)p(P ' -
= l_[ (1_Pg) n ( (1_ _(p)D (/\5)1 .
peokl peot Pp
which yields the NLL sum
— m A
Ao = Mgt + D Mg+ Ay (5.9)
(peeg’(é) (pEQ’é

with the following definitions:

Ay =—1n (14 (2) pg)
"Ap ==In(1 —Pg)
Ag =—In(Ag)

i {ZA(P —"A, for associated (not missed) tracks
o = .

A¢ for extraneous tracks

To generate hypotheses with this formulation of the mMuT equations, a
cost matrix is created for each parent hypothesis in the cluster (Danchick
and Newnam, 2006). This uses the NLLs of the track assignments outlined
in (5.9), resulting in the matrix exemplified in (5.10) for a two-track hypoth-
esis and a two-report scan:

C= oy = "Npr Mg, =", Mg 00

5.10
ZZ/\(p1 — mA(Pl ZZA(PZ — mA(Pz o0 ZZAé. ( )

In the Gaussian case of an underlying Kalman filter Single-Target Track-
ing (stT), the NLL of the innovation probability density 1, (z) is calculated
through the Gaussian equation of (4.11):

—In (1p (2)) = % (z-24)7S (z-2p) +In|2RS|. (5.11)
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5.2.1 Filter Output Presentation

As discussed in Crouse et al. (2011), there are several ways to present the
data from an mHT tracker, including e.g. weighted averages of the hypothe-
ses (Bottlik and Blackman, 1989), and the most likely hypothesis:

®1knl = argmaxp (®]§|lek) (5.12a)
Of ok
P (Xl Z1) 2 p (X (©F) 10,1, Zix) (5.12b)

where X} (©) are the states of the targets given hypothesis © at time k.
While Crouse et al. (2011) proposes the application of improved meth-

ods of presentation, (5.12) remains the simplest and was thus selected as

the first to be implemented in the implementation described in Section 5.3.

5.3 Implementation

The mur algorithm presented in this chapter has been implemented in the
PYTHON programming language. The implementation has been made public
under a ross license at https://github.com/jonatanolofsson/mht.

Much of the complexity of an MuT implementation stems from the book-
keeping necessary to handle tracks, hypotheses, targets etc. Considerations
include, but are not limited to,

Track deletion A track can be selected for removal from a hypothesis
based on multiple grounds. Common choices are due to high track
cost (Blackman, 2004) or repeated missed detections (Kim et al., 2015);

Target deletion As soon as a target has no remaining track in any hypoth-
esis, a target can be removed;

Cluster deletion A cluster with no targets left can be removed;

Cluster management In the muT algorithm, clusters persist over time, and
they need to be merged, split, and maintained, as described in Sec-
tion 5.3.1.

A few high-level details regarding the implementation;


https://github.com/jonatanolofsson/mht
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Object hierarchy The implementation is object oriented, preserving the
natural hierarchy of a filter with clusters with targets with tracks. Clus-
ters also have hypotheses which are linked to the tracks of the targets.
Thus, equivalent tracks are created only once and not for each hy-
pothesis.

Track representation Each track is represented as an object. Since only
tracks from the last time step are included in the active hypotheses,
old tracks can be discarded as their relevant statistics are included in
the new track heads, assuming Markovian tracking.

Hypothesis representation The history of hypotheses are contained in the
tracks to which they refer. thus, once a hypothesis has been used
to generate new hypotheses, it can be discarded. Hence, it is only
necessary to store old hypotheses for a single time step.

Cluster management After the cluster splitting process, described in Sec-
tion 4.5, clusters are stored in an r*-TrRee indexed SQLiTE database,
away from the active algorithm. As a new scan comes in, the affected
clusters are selected and loaded into memory.

Cluster independence Since unaffected clusters are entirely left out of the
update, all parameters need to be specified on a per-cluster basis. For
example, there is no limit to the global number of hypotheses, only to
the number of hypotheses per cluster.

5.3.1 Cluster Management

Clustering as an addition to MuT was proposed already in the original maT
paper by Reid (1979), and has been subsequently extended with improved
clustering algorithms, e.g. in Kurien (1990). As new scans arrive, new
ambiguities may arise which makes previously independent clusters to
have to be merged. Conversely, as ambiguities are resolved over time,
clusters need to be split to maintain the benefits of clustering. Below are
discussed some of the intricacies involved in these operations.

Cluster Merging

As areport may only be associated with a single cluster, any reports that are
potentially associated with tracks in different clusters will trigger a merge
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of those clusters. The gating criterion described above is used to limit
the associations, as hypothetically any report could be associated with any
track. Since the number of hypotheses in the merged cluster is the product
of the number of hypotheses in each included cluster, it may be necessary
to select the Nj, best merged hypotheses to maintain a tractable number of
hypotheses.

Cluster Splitting

The implementation developed for this thesis, exploits that this problem
can be formulated as a graph search for connected components (Tarjan, 1972;
Pearce, 2005).

For each target-ambiguous report the resulting (incompatible) tracks
are grouped in a set, which is added to a list of all target-ambiguous assign-
ments. As new scans arrive and new hypotheses form, each set of tracks in
the list is replaced by the joint set of the children of the set’s tracks, as these
too are incompatible. When all tracks of the set belong to the same target,
i.e. all hypotheses agree on a single report—target association, the original
ambiguity has been resolved and the set can be removed from the list.

Each hypothesis” set of tracks can be transformed into the set of targets
which are associated with the respective track. By connecting all targets
which appear together in those sets, a graph can be formed which connects
all targets which, directly or indirectly, are connected through ambigui-
ties. The resulting graph will contain one or more groups of connected
components which represent the targets which thus must be kept in the
same cluster. If the resulting graph contains more than one such group, the
cluster can be split for each of these.

5.3.2 Report—cluster Association

In the aforementioned association problem, incoming reports are sought to
be associated with pre-existing tracks, or considered extraneous. Since the
scan may contain reports from several different clusters, reports may first
be associated with clusters to maintain the separability of cluster updates.
Association gates can, as described in Section 4.6, be used to uniquely assign
each report to either i) a pre-existing cluster (possibly merged from multiple
ambiguous clusters); or ii) a new cluster, if a report falls outside the gates
of all existing clusters.



CHAPTER 5. SPATIALLY INDEXED MULTIPLE HYPOTHESIS
104 TRACKING

To investigate different report—cluster association schemes, the follow-
ing three were implemented:

Naive All clusters are loaded into memory, one by one, and their intersec-
tion with the rov is calculated in the pyTHON-cOde.

Database Cluster bounding-boxes are pre-stored in the database and their
intersections with the sensor rov is calculated during the database
lookup, without loading objects into memory.

R-tree Similarly to the database matching scheme, cluster bounding boxes
are stored in the database, but using an Rectangle tree (rR-TREE) imple-
mentation for potentially improved lookup-speeds.

5.4 Results

Two studies were performed using the Spatially Indexed maT implemen-
tation. In Section 5.4.1, a performance comparison is carried out for the
properties of the filter that benefits from a spatially indexed database for
cluster storage. Second, the tracker was applied to satellite sea ice detec-
tions, extracted from the sar sensor of the SENTINEL 1A satellite from the
European Space Agency (Esa).

5.4.1 Spatial Indexing Performance

To verify the performance gain from spatial indexing, a test case was set
up with a uniform random field of objects over a large area of which only a
fraction was observed. The setup is displayed in Figure 5.2. Timing analysis
was then performed, comparing naive cluster filtering to that achievable
using an R-TREE database. In the analysis, the mur filter was initialized
with a given size of random clusters, and the process of finding clusters
intersecting with the sensor rFov was isolated and timed. The timing results
are presented in Figure 5.3. Elaborating on the last data point; 39810
intersections were queried, with a comparative timing improvement of
841%. The timing of the r-TREE association method was also compared to
that of a standard database lookup, see Figure 5.4, where the bounding
boxes of the clusters were stored in an SQLiTE database for faster lookup.
Notably, the performance gain of the r-TReE algorithm is far more modest,
mainly due to the reduced cost of loading clusters into memory. Note that
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Figure 5.2: Setup for spatial indexing time analysis. The sensor rov (green)
was queried for intersection with clusters (red) for possible associations.
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Figure 5.3: Compared results between naive and r-TREE cluster matching

this latter comparison is between two methods using pre-computed square
bounds, so significant differences are not to be expected except for very

large datasets.

5.4.2 SAR Sea Ice Tracking

The algorithm was also evaluated on sample data extracted from the sar
image in Figure 3.7, a Hu+nv! polarized image from the SENTINEL 1a
satellite. As described in Sections 3.4.1 and 3.5.1, polarimetric classifi-

Horizontally polarized illumination, horizontal and vertical reception.
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Figure 5.4: Compared results between database and r-TReE cluster matching

Table 5.1: MHT tuning parameters

Position prediction covariance: 1x107°°

Initial velocity covariance: le—51x 107 °/time
Report disturbance: 1x107°°

Sensor noise: 1x10™°°

Max number of hypotheses / cluster: 100

Minimum normalized hypothesis score: | 4

cation (Richards, 2009; Haykin, 1994) was used to extract and position
individual ice objects from the image, see Figure 5.5. The estimated posi-
tions, in degrees latitude/longitude, were used to initialize the filter, and
augmented with random velocities (x ~ N (0, 1le—6 - I) °/time) to generate
further data. Subsets of the data were extracted to simulated sensor rovs
and used to study the performance for larger datasets. Further, an addi-
tional 400000 clusters were instantiated outside the sensor rov to demon-
strate the effect of spatial indexing. No clutter or target death was included.
The globally most likely set of tracks are visualized in Figure 5.6. Tuning
parameters include those summarized in Table 5.1.
Tracker performance is summarized in Figure 5.7, showing

a) Number of clusters in the tracker over time, before and after cluster
splitting.

b) Estimated, and true, number of visible targets.

¢) Average and maximum number of targets per cluster.
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Figure 5.5: Individual ice objects were extracted from polarimetric satellite
imagery. Each object (most of which are too small to see) is plotted with
distinct colors, whereas red dots indicate the centerpoint of each object.

d) Average, and maximum number of hypotheses per cluster. This is lim-
ited by the score limit on included hypotheses.

e) Average number of true sources per track in the most likely hypothesis.
This is a measure of the quality of the hypothesis’ level of correct associ-
ations. In the case that all targets are visible in each timestep, and if all
reports in all tracks come from the same source, this will have a value
of one (and all associations will be correct). A value of two indicate that
tracks have, on average, one misassociation.

f) Average track length. If all true targets remain alive and visible, this will
increase linearly with time, as all tracks have a history back to the first
timestep.

g) Step time in seconds. This is the total amount of time spent to generate
associations and hypotheses for the scan(s) received at each time step.

h) The step time improvement achieved using r-TREE versus linear database
search. Over time, there is a performance increase of about 4 % by using
the r-TREE index over the database search.



CHAPTERS. SPATIALLY INDEXED MULTIPLE HYPOTHESIS
108 TRACKING

© 2017 IEEE

Figure 5.6: Most likely tracks of tracked ice objects. Ice tracking may result
in dense object clouds which are difficult to cluster.
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Figure 5.7: Statistics of the ice object tracking sequence
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5.5 Conclusions

In this chapter, spatially indexed clustering was explored to determine its
benefit when implementing MHT on a massive scale. Results show that the
linear search time of the in-memory naive cluster matching is significantly
reduced, by several orders of magnitude, when exchanged for the R-tree ap-
proach, but that modern database lookups can achieve comparable results.
In particular, when comparing to execution time of the full muT algorithm,
the gain with the choice of R-tree over the standard database cluster match
is modest — however there is no obvious drawback to this choice. A major
enabler for the fast cluster-match lookups is the overlap gating of (4.35),
applied to the report—cluster association. Without this result, gates would
need to be individually calculated for each report-track pair, entailing a
higher calculation load as well as loading clusters into memory. A high
level of partionability of the algorithm seems to be the big part of the speed
gain, not the exact details on how the clusters are stored.

Notably, the low sample rate and transmission speed of sar imagery
allow the update to run for quite some time and still be usable in “real
time”, though the value of the tracking of individual objects will decrease
with time. The large amount of data may however also call for a large
amount of hypotheses.

As noted in Figure 5.6, ice tracking may result in dense object clouds
which are interconnected through ambiguous reports. This effect can be
mitigated through the use of mHaT pruning parameters (e.g. limited number
of hypotheses or association likelihood). As the spatial indexing in the MuaT
implementation operates on clusters, a large amount of clustering is crucial
for the performance increase provided by spatial indexing.

The principle of spatial indexing could easily be extendible to other
filtering techniques than MHT, either on a cluster, target or track level. Other
considered extensions include the integration of the current filter with more
real-world data and sensors, including an automated process for satellite
image processing of real-time acquisitions.



Scaling the Labeled
Multi-Bernoulli Filter

In this chapter, we explore the applicability of the Labeled Multi-Bernoulli
(LmB) algorithm to large-scale Multiple Target Tracking (mrT) as performed
by the tracking module in the sytem overview of Figure 6.1. The contents
of this chapter is primarily based on the following papers:

Paper B: Olofsson, J., Brekke, E., and Johansen, T. A. (2017b). Cooperative
remote sensing of ice using a spatially indexed labeled multi-Bernoulli
filter. In International Conference Unmanned Aircraft Systems (ICUAS),
Miami, USA. © 2017 IEEE.

Paper C: Olofsson, J., Veibdck, C., and Hendeby, G. (2017d). Sea ice tracking
with a spatially indexed labeled multi-Bernoulli filter. In 20th Interna-
tional Conference on Information Fusion (FUSION), Xi’an, China. © 2017
IEEE.

The contributions of this chapter include:

e a novel simplifying reformulation of the Lms filter better suited for
implementation;

e asimulated example of the collaboration of multiple types of sensors,
with different sampling rates and Field-of-View (rov);

e a tracking scenario from Terrestrial Radar Interferometer (Tr1) data;
and

e adescription of the open-source algorithm implementation in pyTHON
and C++ respectively.

In polar region operations, drift ice positioning and tracking is useful for both
scientific and safety reasons. At its core is a MTT problem in which currents and
winds make motion modeling difficult. One recent algorithm in the mrT field is
the Lms filter. In particular, a proposed reformulation of the LMB equations exposes
a structure which is exploited to propose a compact algorithm for the generation
of the filter’s posterior distribution. Further, spatial indexing is applied to the
clustering process of the filter, allowing efficient separation of the filter into smaller,
independent parts with lesser total complexity than that of an unclustered filter.

111
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Many types of sensors can be employed to generate detections of sea ice. In this
chapter, a recorded dataset from a TR is used to demonstrate the application of
the Spatially Indexed LmB filter to estimate the currents of an observed area in
Kongsfjorden, Svalbard.
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Figure 6.1: Multiple Target Tracking in system context

6.1 Introduction

Tracking of sea ice movements is an essential part of ice management.
Multiple types of sensors have been studied for this application — such
as satellite-carried Synthetic Aperture Radar (sar) (Olofsson et al., 2017a),
Unmanned Aerial Systems (uas's) (Johansen and Perez, 2016; Haugen, 2014;
Leira, 2017) and, as studied in this chapter, Tr1 (Voytenko et al., 2015).

At the core of the tracking of individual sea ice objects lies the problem
of mrT. For this purpose we study the use of the Lms filter (Reuter et al., 2014;
Williams, 2015) — presented in Section 6.2 — and also make a contribution
with the first main result of the chapter: a reformulation, in Section 6.2.3,
of the LmMB equations to expose a structure which lends itself to an efficient
algorithm for the filter implementation.
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In Section 6.3, we present the contribution of a Free and Open Source
Software (ross) implementation of the Spatially Indexed Labeled Multi-
Bernoulli filter, which was implemented to demonstrate the aforemen-
tioned proposed algorithm. The implementation is verified through simu-
lated examples in Section 6.4.

The implementation is then applied, in the chapter’s second main con-
tribution, to a Trr dataset provided by the research institute Norut. The
application and dataset are described with results and conclusions in Sec-
tions 6.5 and 6.6, respectively.

6.2 Labeled Multi-Bernoulli Filter

The wms filter is defined in the framework of Finite Set Statistics
(r1sst) (Reuter et al., 2014), of which the Random Finite Set (rrs) is an
integral part. An introduction to rFs's was given in Section 4.3. In this
section we present the Lms algorithm, and proposes a reformulation of the
equations and an algorithm that follows for the calculation of the filter
posterior distribution.

6.2.1 LMB Filter Recursion

The vms filter follows the classical predict/correct filter recursion, each step
outlined below.

LMB Prediction

Given an LmB Probability Density Function (ppr) 7 (X), the prediction step of
the Lms filter and the updated distribution, 7, (X), is obtained by the appli-
cation of the standard prediction update of a Bayesian filter, the Chapman-
Kolmogorov equation?,

me X = [ F@)mX0X, (61)

extended for an rFs as defined in Vo and Vo (2013). This gives the following
set of surviving and new-born targets (Reuter et al., 2014),

(0 | R | I

INote that the syntax here differs slightly from (4.7a) to match existing 1ms literature
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where
=09, (6.3)
o _{psCOF@&0,p (1)
Pis = T2 , 6.4
s (0)={ps (. 0),p (-, 0), (6.5)

ps (-, €) is the distribution of target survival probability and f (x|-, {) is the

transition density. The set {(rl(f), pg))}[ “ is given by the birth model,
€

further discussed in Section 6.2.2.

LMB Measurement Update

Drawn from the update of the 5-Generalized Labeled Multi-Bernoulli (6-
crMmB) (Vo and Vo, 2013), the LMB measurement update is derived in Reuter
et al. (2014).

In general, as noted in Reuter et al. (2014), the Lms distribution is not
closed under the Bayesian filter measurement update. This means that
when inserting an Lms distribution into the measurement update equa-
tions, the algebraic result cannot be fully represented by an rLms distri-
bution. However, the resulting 6-cLms distribution — which is able to
represent multiple disjoint hypotheses — may be approximated as in (6.7a)
with an LmB pDF through the collapse of its hypotheses, weighted by their
probabilities. That is, the measurement updates the set

0 (¢

=) ©9

by the following approximation, for N¢ clusters:

N¢
. ~ (6) ) = (6.0 (&0
i@ (), O] e o
in which parameters are given by
A0 Z w0 (Z(C)) 1z, (), (6.7b)
(I+,e)e¢(z:<f))x@]+
1
(€,0) - (Z+,0) [ 7(©) (0) (©
POW=g D, @ (Z9)x10p? (v, 029),

([+,9)eff(1:<f>) xO7r,
(6.7¢)



6.2. LABELED MULTI-BERNOULLI FILTER 115

where Oy, is the space of hypothesis mappings of tracks, with assignment
mappings 0 : I, — [O, el Z(Q”, such that 0 (£) = 0 ({’) > 0 implies that
t = {', i.e., the mapping is unique for all values except those mapped to
zero, i.e. tracks with no associated measurement (Reuter et al., 2014). Also,
for I, C .EELQ

n
I 0
o Z+.6) (Z(C)) & ' ,c)[”(z ()O] , (6.82)
I 4 4
o= [T (1-A) [ 17 (6.8b)
ter'"-1, tel,
N, (6) = <p(f’(’) x), 70 (€ 9)> , (6.80)
po(x,0pcg(zax,€) 0(0) % z
Y7o (x,660) = (z00) 7 ’ (6.8d)
qp,c (x,1), 0 () = zy,
ap,c (x,€) =1-pp (x,€) pc, (6.8¢)
, CO x) Yo (x, € 0)
p@ (x,012) = &= (lﬁ)z (6.8f)
5 (0)
Nz0

where pg is the gating probability, g (zg(ylx, ) is the likelihood and
K (ze(g)) is the (Poisson) clutter intensity (Reuter et al., 2014). To exhaus-
tively iterate all hypothetical report-target associations, the operator # (A)
is used to denote the collection of all subsets of set ‘A.

Note that in general mrr, if different hypothetical associations assign
the same report to different targets, the resulting tracks will generally be
incompatible. Through the approximations of the Lwms filter, assignment
compatibility is only considered in the hypothesis generation, and is then
lost in the summations in (6.7b)—(6.7c). This also simplifies clustering for
the Lms algorithm, as no historical incompatibilities are considered.

Originally, the Lms filter was derived using a 6-GgLmB reconstruction
from the 1mB distribution (Reuter et al., 2014). While this is an intermediate
representation in the theoretical derivation of the filter, its construction in
implementation is not necessary to reach the collapsed LmB representation
of (6.7a).

To calculate the weight from (6.8a) for a hypothesis we start by making
the distinction between associated and non-associated targets by splitting
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the hypothesis label set Z:

={t: 00 +# zo}er, , (6.9a)
Ir={t: 0()= z@}é’eL ’ (6.9b)

(implying 7, = I U1 and 7! N 1" = 0). We can then rewrite (6.8a)—(6.8e)
as

I.,0 C (I+ (0)
w0 (Z( )) w [’7;/;(1)]

= [1 (1-7) (6.10)

KEL(C)—L
(f/ (9) I ([ ) (9) 124
x| | A @ [ ] A% @),
tell el

This product can be efficiently expressed using the Negative Log Likeli-
hoods (NLLS), Ay;

1+, ifce L -1,
oM = 140 (Ze(g) (6), iftel?, (6.11a)
l .
( ) (ZQ(:? (¢), ifterr,
yielding
w T+ 0) (Z(C)) o« exp| - Z Ae]. (6.11b)
tes

Each hypothesis (7., 0) is generated for each cluster in order of de-
cresing probability using Murty’s algorithm (Murty, 1968; Miller et al.,
1997), to create a truncated approximation of the full sums of (6.7b), (6.7¢).
The truncation is achieved through the termination of Murty’s algorithm
based on either a maximum number of drawn hypotheses, or a minimum
hypothesis probability.

In the context of LmB, the cost matrix C for Murty’s algorithm is created
for each target cluster, from the NLLs of the track assignments outlined
in (6.11a), resulting in a matrix exemplified by

zl/\g] zz/\g] nAgl 00 FAgl 00

C =
Z]/\f2 Zzl\f2 fo%e) nAfz ) FAZZ s

(6.12)

for a two-track hypothesis and a two-report scan (with costs for each target
being associated, non-associated and false targets, respectively).
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6.2.2 Adaptive Birth Model

To include new targets in the tracker, the Lms filter relies on a birth distri-
bution. Different birth-models has been discussed in e.g. Williams (2015),
but here, following (Reuter et al., 2014), the selected birth model for time
k + 1 is based on the reports of time k:

S

for new labels in B generated for each report in Zj.

The existence probabilities of new targets in this model are proportional
to the probability of the report not being associated with any previously
known target. For a report, the association probability is given by

ruk (z) = D w0) (z@) 1o (2). (6.14)
(L, 0)e7 (£ )xer,

Given an expected number of new targets in each scan, Ap x+1 — the exis-
tence probability of new targets — is thus given by

— : max (1 —Tuk (Z)) : /\B,k+1
Pk (2) = min {75 Yrez 1-rur(z) |
z k ,

Note that, for Ap 41 > 1, the existence probability may need to be limited

(6.15)

by the min()-clause to a maximum value of r3®* < 1.

6.2.3 Reformulation

The classic Lms filter formulation of Reuter et al. (2014) carries a heritage
from the 6-cLMB implementation, leading to the necessity of the artificial re-
construction of the 6-cLmB distribution using the k-shortest-path algorithm
in the measurement update stage. Here we propose a formulation that
does not require the 6-GLMB reconstruction due to its immediate collapse
into the Lms-distribution approximation.

In any hypothetical association, a target may be assigned as either associ-
ated to a specific report, missed, or assumed non-existent. In the following,
being missed is defined as being associated with the null report, zy. How-
ever, unlike for standard reports, any number of targets may be assigned to
zp. This warrants the following definition:

Zt=Zu{z}. (6.16)
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With this definition, we note that p(? (x, £|Z) in (6.7c), with the cluster
index omitted for notational convenience, belongs to a limited set:

P (x, 012) € {p' (x|2)} 7 6.17)

Thus, the sums in (6.7b)—(6.7c) may be partitioned as follows, abbrevi-
ating with w% = w+9 (Z(©) and denoting the inner sums as “w,. Again,
as defined in the notation, AS(_> ¢ is the indicator function for hypothesis 6
assigning report z (or zp) to label £ (also implying the inclusion function

1z, (£)).

7’([) = Z Z weAZ—)ﬁ
zeZt |(L.,0)eF (L1)x®r,

= Z 2wy, (6.18)

1
PO =5 ) Do WAl p0 (xlz)

zeZ" |(L,0)eF (L)xOr,

= % Z 2w (x|z2). (6.19)
zeZt
We see that *w, corresponds to the sum of weights of all hypotheses that
assign report z to label €. The outer sum includes all reports (and the null
report), altogether covering the same summands as the original sums.

Further, the birth model of (6.14) may be rewritten as follows (for time
index k):

ruk (z) = Z Z w?A?_, (6.20)

teLl (1, 00e7 (£ )xer,

= Z 2w, (6.21)

{’eL(f)

To exploit this reformulation, consider a cluster of Ny targets and Nz
reports, and a matrix W € RNx*(Nz+2) " Fyrther, consider a hypothesis
assignment mapping Rg (i) to be used for mapping each row index of
W (corresponding to a target) to a column index (corresponding to an
assignment). Hence, for all known targets (rows), Rg (7)
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1. maps associated targets to its report’s integer position in an ordered
enumeration of the reports;

2. maps missed targets to the integer index Nz + 1; and
3. maps false targets to the integer index Nz + 2.

Using this mapping, Algorithm 1 works on the assignments 0 and the
hypothesis score w? (of (6.11b)), drawn from each iteration of Murty’s
algorithm, to readily form the relevant sums of the Lms algorithm, without
the reconstruction of the 5-GLms of the original formulation. Note that the
addition to the matrix in the algorithm adds the value w? once to each row
in the column specified by Rg (i).

Algorithm 1 Weight matrix calculation

W « Nx X (Nz + 2) zero matrix.

s« 0

for (w?, 0) € murty(C) do
W(i,Rg (i)] < WI[i,Rg (i)] +w?, Vie[l,...,Nx]
s s+ w?

end for

W(—%

The result is exemplified in (6.22) for a problem of three targets and two
reports. Recalling the definitions of ) and ruk (z), from (6.18) and (6.20)
respectively, we see that these correspond to the column (excluding the
“False” column) and row sum respectively, as illustrated in (6.22).

70
(o [Fon o)
W= \Zl”(/ng 2wy, | Mwe, fwe, |. (6.22)

we, | Pwe, Q)wg3 FZU[3

T ruk(2)

Thus, with this proposed reformulation and algorithm, it is possible
to easily extract the existence probabilities. Moreover, through (6.19), this
formulation clarifies that the target ppFs may be attained simply through
the weighted sum of Nz + 1 ppFs, instead of one per hypothesis. Note that
in an implementation, the last column is unnecessary.
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The proposed algorithm reduces the complexity of the algorithm by
the complete removal of the, at best, pseudo-polynomially complex 6-GLmB
reconstruction step. Additionally, the more complex multi-hypothesis 0-
cLMB update is replaced with a single iteration over hypotheses generated
by the Murty algorithm, as in Algorithm 1.

6.3 Implementation

Two implementations of the Lms filter were published in connection with
the articles this chapter build upon.

6.3.1 Python Implementation

This section details the pyrHoN language implementation of the
Spatially Indexed 1ms filter implemented for this thesis. The
implementation has been made public under a Fross license at
https://github.com/jonatanolofsson/lmb.

A few remarks regarding the implementation;

Particle target tracking For the single-target distributions, the implemen-
tation is based on particle filter distributions, where the general equa-
tions of (6.8¢c)—(6.8f) are specialized as in Vo et al. (2014).

Parallelization Due to restrictions in pyrHoN parallelization, clusters are
currently updated sequentially. However, particle updates are vec-
torized using the numpy package.

Target storage and indexing In the implementation, targets are serialized
post-update and stored in an SQLite database. The database is Rect-
angle tree (rR-TReg) indexed based on the axis-aligned bounding boxes
of each target por. This allows for a fast extraction of relevant targets
in the initial gating process, allowing large parts of the filter to remain
dormant through measurement updates.

Rectangular gating The implementation makes use of rectangular gating
through the minimum bounding box of reports and targets. As a
tirst stage, all targets within the sensor rov’s minimum axis-aligned
bounding-box are loaded from the database. Second, the bounding-
box of each target is tried for intersection with the bounding-box of
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each report to establish the clusters, in accordance with Section 4.5.2.
Notably, these bounding-boxes need not be axis-aligned.

6.3.2 C++/Python Implementation

The C++ rwms filter implementation has several features in common with
the pyTHON one. For example, like the pyTHON implementation the C++
LMB implementation uses rectangular gating and r-TRee-indexed storage.
However, the C++ implementation has a significantly improved design
in terms of e.g. memory management, parallelization and speed. Other
features distinguishing this implementation includes:

Gaussian mixture target tracking The filtering of individual targets uses
Gaussian mixtures. This includes maintenance of the distribution
such as pruning of components, where low-weighted Gaussian com-
ponents are dropped either because of low probability weight, or due
to a maximum number of components.

Parallelization The implementation is parallelized using the OpenMP APL
This can be disabled through compile flags.

Geodetic target storage The implementation uses the geodetic target stor-
age scheme described in Section 4.7.

Performance indicators The implementation includes methods for perfor-
mance evaluation of tracking performance. In particular, the Optimal
Sub-Pattern Assignment (ospa) (Schuhmacher et al., 2008) and the
Generalized Optimal Sub-Pattern Assignment (cospa) (Rahmathul-
lah et al., 2017) algorithms are implemented.

PYTHON bindings The implementation includes pyTHON bindings, leverag-
ing the pybind11 library.

The implementation has been made public under a ross license at
https://github.com/jonatanolofsson/clmb.

6.4 Simulated Examples

In this section we study the implementation of the Spatially Indexed Lms
filter through a linear simulated multi-target tracking scenario. Next we
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present a simulated sea ice tracking scenario with the collaboration between
two uas agents and a satellite. Both simulations in this section use the
PYTHON filter implementation.

6.4.1 Crossing Tracks

This scenario, detailed in Figure 6.2, demonstrates the filter’s ability to
detect and track objects through a crossing by considering the multiple
likely association possibilities. It also illustrates the track-keeping abilities
of the Lms filter and the clustering feature of the implementation.

We see, in Figure 6.2:

a) The crossing tracks scenario in which in total of five targets are tracked
through collision courses. To simplify visual interpretation, each object
was given a velocity of 1 in the x-direction, to match the time dimension
of the following plots. Notably, all tracks retain the correct association
throughout the simulation, as indicated by the consistent color of each
straight track. As targets approach each other and come to share am-
biguous reports, it becomes apparent that the Lms filter, like the Joint
Probabilistic Data Association (jppa) (Blom and Bloem, 2000), suffers
from track coalescence — the tracks gravitate towards each other when
nearby, as associations with “the other” report becomes more plausible.

b) Target cardinality, for both true, estimated and verified targets. A target
is considered verified if its existence probability exceeds 0.7.

c) Number of clusters which the algorithm separates. Note that due to
hypothetical new-born targets, this can in fact exceed the number of
estimated targets.

d) Number of hypotheses used. In sequences where multiple associations
are possible, more hypotheses are generated before iteration termination
due to low hypothesis probability. In particular, note the peak between
t = 5and t = 10 corresponding to the period where the two initial targets
cross tracks.

6.4.2 Collaborative Sea Ice Tracking

In preparation of sea ice tracking field-tests, a scenario was devised to
emulate the anticipated data. In this scenario, shown in Figure 6.3, sea
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ice objects are caught in a vortex which is initially observed in full by
satellite imagery. In the interest of protecting a fixed installation — in the
center of the figure — in the following sequence the sea ice in the vortex is
partially observed by two independent uas agents which report wirelessly
to the central filter. The central filter then continuously fuses the data
received from each sensor into a joint estimate of the sea ice flow field. The
observation is also assisted by a second incoming satellite image processed
at timestep 75 which span the entire area of interest.

The detections from each uvas are drawn from a rov which in the vas-
local frame of reference corresponds to the bounding box

Suas = [-60, 60, —20, 60] (6.23)

in each vas’s frame of reference at each timestep.

As sample values, detection probability of uas reports are set to 0.99,
and for the satellite reports to 0.8. 20 icebergs are simulated. As it is
unlikely that a verified ice object disappears during the short time frame of
the vas flight, each track has a survival probability (in the prediction step)
of 0.999, uniformly. In practice, disappearing objects are instead likely to
be removed by the measurement update step, as they will no longer yield
reports likely to be associated to the target.

The tracks of the uas agents are a combination of a loitering uas with a
specific area to guard, and a second vas track with the intention of more
broadly exploring the area.

In Figure 6.3, the ice objects (in black) are plotted with their velocity
vectors, together with the (colored) filter estimates. uvas tracks are drawn
red. In Figure 6.4, the final timestep’s output of the filter is displayed as a
Gaussian field.

Notably, whereas position information is available from the fully cov-
ering satellite imagery, velocity may only be observed through repeated
observations and associations. New targets are initiated with a large vari-
ance in their velocity estimate, which results in a large variety of velocities
considered within the individual filters. Although only the mean velocity
estimates are displayed in the plots for clarity, this means a lot of options
for future associations will be considered as the uncertainty in velocity is
translated to uncertainty in position over time.
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Figure 6.2: Crossing tracks LmMB scenario
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Figure 6.3: The sea ice tracking scenario is based on the collaboration of two
uas's to loiter and explore respectively, assisted by satellite radar measure-
ments. 20 icebergs are simulated in this scenario. The (black) simulated
icebergs are here shown along with the (colored) estimates resulting from
the joint observations.
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Figure 6.4: The tracker estimates may be used as an input for current and
wind estimates (track estimates shown in red).



6.5. SEA ICE TRACKING APPLICATION 127

6.5 Sea Ice Tracking Application

In this application, we use the first dataset presented in Section 3.5.2 to
track the ice movements over time using the proposed Lms algorithm. We
also give a basic current estimation example based on the data extracted
from the tracker. The application uses the pyTHON LMB implementation.

The drift ice is modeled using a Nearly Constant Velocity (ncv) model
subject to zero-mean white-noise acceleration. The states in this model
are position and velocity in two dimensions. The sensor is modeled to
directly measure drift ice positions in the image, with zero-mean Gaussian
noise. Uniformly across the scanned region, each detection is assigned
a covariance of 12.2°m? - I, to form reports with Gaussian distributions.
The sampling time of the motion model is 180s, and the motion model
covariance parameter is chosen in both dimensions as 1.7 X 107> m?/s®.

The sea ice movements were tracked over a period of seven hours, with
scans delivered every three minutes. In Figure 6.5, we see the tracks of
tracked ice objects build up over time.

The stationary sea ice, shown in green, changes only slightly over the
course of the experiment, suggesting it would remain largely undetected if
treated as drift ice. The detections of drift ice, shown in red, suffer many
false alarms, but the rLms filter manages to confirm the targets, shown as
ellipses, and maintain their tracks, shown as lines, over large stretches of
water.

Looking at the estimated tracks from the Lms filter, there is a trend for the
drift ice to move in the north-west direction. This is further corroborated
by Figure 6.6 where the currents are estimated from the velocity estimates
of the targets.

As can be seen in Figure 6.5, each scan consists of hundreds of reports,
approximately 150 to 400, and about 50 to 190 targets are being maintained
over time by the Lwms filter. However, the low sampling rate of the Tr1 allows
the filter to run in real-time, despite such conditions.

Apart from tracking individual sea ice objects for collision avoidance,
the movements of drift ice were also be used to estimate the water cur-
rents in the region over time, as shown in Figure 6.6. A Gaussian kernel
smoother (Bishop, 2006) was applied to a grid over the water region. The
position and time of the drift ice, obtained from the tracks, are used to es-
timate the local velocity, which depends on the current. The length scale is



128 CHAPTER 6. SCALING THE LABELED MULTI-BERNOULLI FILTER

chosen at 750 m for the distance component and 1 h for the time component.
The grid spacing used is 600 m in the water. Note that the method can easily
be adapted to an online method by considering only causal measurements.
Note too that, unlike the method of Gaussian Fields used in Chapter 7, this
particular method does not account for uncertainties in the track estimates.
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(a) Tracks after 2h (b) Tracks after 4h

(c) Tracks after 7h

Figure 6.5: Drift sea ice tracks over time, showing the land mask in blue
and stationary detections in green. Tracks and targets retain an individual
randomly assigned color over time.
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Figure 6.6: Estimation of currents in the water region. The opacity of each
arrow is indicative of the amount of data available close to the arrow.
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6.6 Conclusions

In this chapter we presented a simplifying reformulation of the Lms filter,
which highlights that it largely can be reduced to a summation of hypoth-
esis weights according to the proposed algorithm. This is exploited in an
algorithm which simultaneously calculates both the update weights and
the weights for the adaptive birth model. Further, we presented its imple-
mentation in which also the proposed application of spatial indexing aids
in the online formation of target clusters. This clustering is critical for the
scalability of the Lms algorithm, and for the continuation of the studied
application of tracking a large number of ice objects.

The current information we extract from this tracking scenario could
potentially be used for prediction and modeling. However, this might
cause information looping which would need to be studied further prior
to a practical application. With the possible exception of existence prob-
abilities, the information carried in the rms filter is essentially the same
as other mrr-filters — some of which might be preferred for application-
specific advantages in specific cases. In related experiments, Global Nearest
Neighbour (GNN) tracking has been used to verify, with good results, the
LMB solution studied in this chapter. Note that NN roughly corresponds
to limiting the LM algorithm to use only the single best hypothesis, and as
such is expected to perform faster but less robust to incorrect associations.

For the specific task of current estimation (without positioning) one
may also compare the results with techniques such as optical flow. This is,
however, outside the scope of this thesis.
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Gaussian Field Current Estimation

In this chapter, a method is presented to construct a current/wind velocity
field map estimate. This map is an example of the data that can be ex-
tracted from the tracking module to establish situation awareness maps, as
indicated in Figure 7.1. The chapter is primarily based on:

Paper D: Olofsson, J., Flaten, A. L., Veiback, C., and Lauknes, T. R. (2017¢).
Gaussian field current estimation from drift sea ice tracking with
the labeled multi-Bernoulli filter. In Proceedings of OCEANS 2017
MTS/IEEE, Anchorage, Alaska, USA. © 2017 IEEE.

The contributions of this chapter include:

e a description of Gaussian fields and its application to velocity field
mapping from tracking data; and

e a velocity field mapping application from Terrestrial Radar Interfer-
ometer (Tr1) data.

In polar region operations, drift sea ice positioning and tracking is useful for both
scientific and safety reasons. Modeling ice movements has proven difficult, not least
due to the lack of information of currents and winds of high enough resolution.
Thus, observations of drift ice is essential to an up-to-date ice-tracking estimate.

As an inverse problem, it is possible to extract current and wind estimates from the
tracked objects of a Multiple Target Tracking (mtT) filter. By inserting the track
estimates into a Gaussian field, we obtain a two-dimensional current estimate over
a region of interest.

The algorithm is applied to a TR dataset from Kongsfjorden, Svalbard, to show the
practical application of the current estimation.

135
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Figure 7.1: System overview: Situation mapping

7.1 Introduction

Any target tracking problem is, ultimately, set up with the purpose of mak-
ing use of its output, the estimated tracks and states of the estimated target
list. In this chapter, we apply Gaussian fields for the creation of a velocity
map based on the tracking results presented in Section 6.5. The results are
based on a Tr1 dataset provided by Norut, described in Section 3.5.2.

The main forces involved in sea ice drift is presented in Section 3.2.2,
and (3.1) in particular. As discussed in Section 3.2.2, the main forces to act
upon the ice object is that of wind and water, both functions of the velocity
difference between the object and the air or currents, respectively. This
means that the theoretical terminal velocity is given by

1 ) . ) 1 ) . )
EPwaAk | — x| (% — %) + EpuCaAs |%, — X| (k; — %) =0, (7.1)

for drag coefficients (C(,), medium densities (p(,) and velocities (x.)) for
air and water respectively, as well as keel surface area Ay and sail surface
area As.

Thus, under the assumption of similar shape properties Ay and As,
similar ice objects will reach the same terminal velocity. This motivates the
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Figure 7.2: Tracking system outline. Scans are reported from multi-target
sensing sensors and tracked in an Lms filter. This information is then extrap-
olated through a Gaussian field current estimation model and evaluated
and displayed to the user.

study of velocity field maps based on historical observations, in order to
model the velocities of new detections.

The Labeled Multi-Bernoulli (Lms) filter application presented in Sec-
tion 6.5 estimates positions and velocities of the detected drift sea ice in
the scene. In this chapter, the data extracted from the tracker is used to
estimate a Gaussian velocity field. Since the tracked objects are passively
drifting, this field can be interpreted as the result of currents and/or winds
in the vicinity of each object. The estimated field can be used for user pre-
sentation, but potentially also for motion modeling and prediction. This
flow of data for the tracking system and current estimation is outlined in
Figure 7.2.

In Section 7.2, the theory of Gaussian fields is briefly presented and then
applied in Section 7.3 where the tuning and results are presented.

7.2 Gaussian Fields

Gaussian fields is the extension of Gaussian processes (Rasmussen and
Williams, 2006) into multi-dimensional space, and the standard equations
of Gaussian processes are straightforwardly applied by simply extending
the state vectors and covariances accordingly.
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Gaussian fields are used to estimate a vector field function as point-wise
Gaussian distributions at given points. As such it yields, for each point, an
estimated function value but also an estimated measure of the uncertainty
of this estimate — its covariance. In essence, for a given point of interest,
a Gaussian process/field uses the function values of other points and their
associated covariances to create a weighted estimate of the function value
at the point of interest.

In its simplest form, each dimension of the vector field is separable into
independent Gaussian processes although in general, covariance between
the dimensions must be taken into account if the dimensions are not fully
statistically independent. The field measurements and estimates, as for-
mulated below, are all assumed to be zero mean, although a mean is easily
removed beforehand and later re-added.

The evaluation of a Gaussian field is based on the points, X, at which
the field has been originally sampled. In an application, the value of a
function is sampled at those points — and normalized by removing the
mean — to form the measurements y;. This enables the evaluation of an
expected value at points of interest in X., at which we wish to evaluate
the estimated function. The equation, from which the concept of Gaussian
processes and fields are derived, is the joint Gaussian:

Ys| _ K K.

-l <) &
where f, is a vector of the (concatenated) vector-field values at the points
of interest, and K = cov (ys, ys), K. = cov (ys, f.), K« = cov (fs, f.) (Ras-

mussen and Williams, 2006). This leads, for the points in Xj., to the predic-
tive equation

flXs, ys, Xsu ~ N (fi, cov (£.)) (7.3a)

where
f. £ KKy, (7.3b)
cov (f.) = K.. — KTK'K.. (7.3¢)

Hence, ﬂ contains the mean of the estimated vectors at the points in X;.,
and cov (f.) contains their joint covariance. In the application presented in
this chapter, we consider the velocity estimates as the measurements ys,
taken at the estimated position of each target track — X;.
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For Gaussian processes, the matrices K. and K.. are predominantly
generated by standard covariance-generating functions — kernels. These are
functions of point pairs which form valid covariance matrices (Duvenaud,
2014), each element (i, j) being

Ki,]‘ = k (xi,xj) = COV (f (xi) ,f (x]-)) ,
where f is the estimate of the underlying function, such that

f(x) ~GP (m(x),k(x,x) (7.4)

for a specified mean function m. In the N;-dimensional case, K is instead
represented as a block matrix with N X N;-dimensional blocks at positions
(i, j)-
As an example kernel, the Squared Exponential (se) kernel for scalar
points x, x” is defined in one dimension as
(x —x)°

kSE (.x, x/) = 62 eXp (—T) P (7.5)

parametrized by the length hyperparameter / and standard covariance o.
This can be extended to the multi-dimensional case

ksg (x,x") = Pexp (—%(x —x)TL7 (x - x’)) , (7.6)

with P being the covariance matrix at x and L being the scaling and rotation
of the bell-shaped attenuation when moving away from x. Other kernels
may be extended analogously.

Note that the points are not necessarily in metric space — kernels may
be defined in any dimension. For example, a kernel may be defined for the
time dimension to represent a time dependency with a forgetting factor.

While kernels, and combination of kernels (Duvenaud, 2014), is the
standard way of forming the submatrices of (7.2), the predictive equations
of (7.3a) are valid for all valid covariance matrices. For example — and rel-
evantly — the uncertainty of the filtered velocity estimates of the mrr filter
may be incorporated in the K and K. matrices. For the LmB velocity covari-
ance, this corresponds to the case of noisy measurements in the Gaussian
process (Rasmussen and Williams, 2006). Another noise source is the un-
certainty in the position of the target from which the velocity measurement
is taken. However, a detailed handling of this is less straightforward and
thus here only taken into account indirectly through the general kernel.
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7.3 Velocity Field Mapping in TRI Data

This section describes the application of Gaussian fields to a Trr dataset
collected by the Norwegian research institute Norut at Kongsfjorden, Sval-
bard, see Section 3.5.2.

From the dataset, detections were extracted and tracked with the Lms
filter from Chapter 6 to generate tracks with estimated velocities and posi-
tions. The estimated target velocities are used to form a Gaussian field of
velocities, observed at the targets’ estimated positions.

A variation of kernel choices and kernel parametrizations were evalu-
ated against a score for comparing the predictive qualities of the model.
A verification set was formed by separating out tracks from the tracker,
forming disjoint training- and verification sets. To calculate the score, the
model was evaluated at the points of the verification set, and compared
to the verification track estimate. Given a velocity prediction and a veri-
fication vector — 0, and v,, respectively, with associated covariances Y;,
and Y,, — the optimal prediction is obtained when v, = v,. A descrip-
tion of the distribution difference is the innovation between the two which
in the Gaussian case, assuming independence, is formed by the Gaussian
distribution

N (5, — )0, Ya, +Yo,) = N (5V|6, YV) . 7.7)

A score function may be devised from the Negative Log Likelihood
(nLL) of the innovation:

1
=5 (In|Yy| + 3] Y, 5, +2In2n). (7.8)

The total score was created for each frame — repeatedly in Monte Carlo
fashion — by putting aside 25 % of the detections for the verification dataset
and averaging the score they receive when compared to the predictions from
the Gaussian field.

For the predictive modeling of the iceberg motion, the kernels consid-
ered in particular are presented in Table 7.1.

Additionally, the kernels were combined with a cip kernel over the time
dimension. In these cases, historical data from the Lms tracks were used for
additional data.

A range of kernels were tested — with and without time kernel — for a
variation of physically reasonable hyperparameter settings. The results are
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Table 7.1: Kernels considered in the velocity field mapping (for r = |x — x|,
hyperparameter /)

Exponential (exp) e~
Squared Exponential (se) eI’
Corrected Inverse Distance (cip) (1 + %)_1

Rational Quadratic (rQ) (1 + ?—;)_

Table 7.2: Score chart for a selected sample of kernels and hyperparameters.
A lower score indicates a better match, and a lower covariance indicate con-
sistent performance. Kernel distance hyperparameters are given in meters
and minutes respectively. With multiple similar scores, the comparison is
inconclusive for a single best setting.

Kernel Score Score cov. Relative, %
exr(400) 5.09175 0.0189955 101.105
exp(750) 5.10378 0.0181352 101.344
exr(1200) 5.12499 0.0369751 101.765
se(200) 6.10111 23.3351 121.147
cp(100) 5.07517 0.0204076 100.775
cip(400) 5.07999 0.0274274 100.871
c1p(900) 5.11524 0.0307042 101.571
rQ(200) 5.57251  0.578188 110.651

expT(400,30)  5.05754 0.0236918 100.425
exp1(750,30)  5.07125 0.0203695 100.698
expT(1200, 30) 5.07709 0.0217448 100.813

cmot(100, 30)  5.03612  0.0145595 100
co1(400, 30)  5.05708 0.0216197 100.416
cot(900, 30) 5.0955 0.0224501 101.179

summarized in Table 7.2 and exemplified in Figure 7.3 (kernels with a time
factor are suffixed by T).

Using two example kernels, the images in Figure 7.3 exemplify the
resulting velocity vector field attained from the Gaussian field. The blue
area represents the masked land, the green area the stationary ice and
the blue arrows the ice objects used for training the Gaussian field. The
verification set and their projected estimates are green and red arrows
respectively. The background — ranging from red (high) to green (low) —
is determined by the trace of the Gaussian field velocity covariance in each
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point, thus representing the inverse of the level of information available at
each point.

The best matches to the verification set are obtained through the use
of an exponential or a cip kernel, although for this specific dataset, similar
scores are obtainable from different parameter settings. In our simulations,
the rapid decline in correlation with the se kernel was so severe that it
caused numerical problems with an | hyperparameter outside the tested
range. Thus, only values up to 200 m were tested.
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(a) EXP(750 m)

© 2017 IEEE

(b) CIDT(1000 m, 90 min)

Figure 7.3: Examples of the resulting velocity vector field attained from the
Gaussian field The blue area represents the masked land, the green area
the stationary ice and the blue arrows the ice objects used for training the
Gaussian field. The verification set and their projected estimates are green
and red arrows respectively. The background — ranging from red (high)
to green (low) — is determined by the trace of the Gaussian field velocity
covariance in each point.
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7.4 Conclusions

This chapter has presented a follow-up for the Olofsson et al. (2017d) pa-
per — exploring the extension of MTT state estimation into Gaussian field
prediction modeling — and presented an abbreviated introduction to the
application of Gaussian fields as a method of modeling ice motion over an
observed region, based on the input of tracked ice objects.

Based on the available observations, the Gaussian field provides a con-
tinuous representation of the predicted object velocities of an area. Due to
the lack of precise information about for example ice object size and weight,
it is difficult to draw precise predictive conclusions about other, or future,
ice objects as the forces will act differently depending on object size and
other physical properties. One remedy for this may be to include infor-
mation about e.g. shape-describing Hu moments (Hu, 1962) and use this
information in the kernels as measures of inter-object proximity, showing
that similar objects move alike. The steady-state assumption that corre-
sponds to assuming similar speeds of nearby ice-objects appears, however,
to work reasonably well in practice.

Since it is its main input, the performance of the Gaussian field model
strongly depends on the quality of the tracker. Further tuning, testing and
verification of both the tracker and the Gaussian field model is still required
to attain a general result which confidently describes the scenario. One
potential improvement, for scalability as well as improved results, would
be to create a more local model of the velocity mean. Currently the mean
is shared throughout the entire dataset. Relevantly, a major limitation for
using Gaussian fields with large datasets is the computational burden of
inverting large matrices. This can partially be remedied through the use of
gating — a process in which only the points which most affect the result are
selected to create a considerably smaller matrix to invert, at the same time
yielding more local results for each point. This gating could be naturally
facilitated with the spatially indexed storage in the LmB implementation
used here.

The application of Gaussian models are often automated through the
optimization of the kernel hyperparameters using e.g. Monte Carlo opti-
mization. This is of course relevant here, although must be combined with
the manual addition of the experience and understanding of physically rel-
evant hyperparameter intervals. It also requires datasets of significant size,
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which is not yet available for this particular application.

With parameter tuning, very similar results can be obtained with differ-
ent kernels. The similarities in scores also indicates that in this dataset, the
velocities are generally not too far from the mean. Thus, rather than con-
clude a specific best kernel choice for this application, we chose to focus on
the general process of combining the multi-target tracking with Gaussian
fields to attain a velocity field model over the observed region.

Proposed future work include two primary aspects: the feedback of the
Gaussian field to the Lms filter for ice motion prediction, and its use for the
planning of information acquisition. In the first case, the velocity model
obtained in the Gaussian field can be utilized e.g. in the initialization of
new targets in the tracker, providing an improved model for initiating new
targets from single detections where velocity data is otherwise unavailable.
This is explored further in Veiback et al. (2018).

In the second case, we can see the Gaussian field covariance measure
as an inverse metric of information. This metric can be employed in an
optimization routine to plan the route of one or more moving sensor agents,
to maximize the information gain.






Informed Path Planning

The content of this chapter is based upon the following paper:

Paper F: Olofsson, J., Hendeby, G., Lauknes, T. R., and Johansen, T. A. (2018).
Multi-Agent Informed Path-Planning Using the Probability Hypoth-
esis Density. Autonomous Robots, (Submitted, Aug 2018). 2018 IEEE

This paper is awaiting publication and is not included in NTNU Open
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Conclusions

The goal of this thesis has been to present the research performed on the
requirements of a modern MTT system capable of scaling to the challenge
of tracking sea ice on a global scale, and to explore the utility of the data in
the system. This has, in particular, been explored from the perspective of
using the uas platform as a viable supplement to other available sensors. To
help formalize the requirements on such a system, we posed the following
questions in the introduction:

Questions
Q1. How can we track large amounts of sea ice globally?

Q2. How can we combine large scale (global) and small-scale (local) track-
ing?

Q3. How can we make sure only the relevant parts of the tracker is updated
with new measurements?

Q4. How can we maximize the relevance of future acquired data?

Q5. How is the route affected if a hazard is found? How is the route
affected if a hazard is not found?

Q6. How is the expected value of exploration affected by the modeled
motion of objects?

These questions, in the backdrop of combining the mrT field and the uas
platform, led to the formations of the plans for a system capable of the full
loop presented in Figure 9.1, and the formulations of the objectives from
the introduction, restated below for convenience.

Objectives

I. Research scalable multi-target, multi-sensor methods for global track-
ing of ice objects.

II. Explore the use of machine learning to make use of the information
in the tracking data.
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II. Improve the predictive capabilities through integrated mapping of
currents.

IV. Develop a statistical representation of the geographical distribution
of exploration value.

V. Optimize information acquisition through the exploitation of tracker
data and statistical models.

We propose in this thesis a modular design of a system for global sea
ice tracking, visualized in Figure 9.2. Contributions have been made to all
principal components of this system in accordance with the objectives, such
as

e exploration, improvement, implementations and application of two
methods for mtT (Objective I);

e description of data extraction methods for Synthetic Aperture Radar
(sar) and Trr datasets (Objective II);

e current mapping from sea ice tracking data (Objective III); and

e a PHD based scheme for multi-agent 1pp (Objectives IV and V).
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Machine learning was applied to extract detections of sea ice. This was
exemplified using sar data, and through model-based foreground extrac-
tion for detecting moving ice in Trr images. The data extraction served to
demonstrate the application of Objective II in the research, and the funda-
mental role the detections play in target tracking.

Spatial indexing was considered as one of the schemes pursuing Ob-
jective I, which condenses the first three of the questions above. Spatial
indexing was applied to both the mur and the Lms algorithm. The per-
formance gain of spatial indexing was studied and the algorithms were
applied to large datasets — such as detections extracted from satellite im-
agery — demonstrating its applicability and scalability. Ultimately, the
performance of the mHT filter was considered insufficient, and the research
went on to focus on the Lwms filter.

The LmB algorithm was studied in detail and improved through a, to our
knowledge, novel formulation of the Lwms filter which significantly simplifies
its implementation.

Two utilities of the mrT tracking data were demonstrated in Part IIL
The current/wind velocity field estimation of Chapter 7 — demostrating
the research carried out based on Objective III — could e.g. potentially be
employed to improve the initialization of new targets in the mrr.

In Chapter 8, the concept of the pHD was brought, from the field of mod-
ern MrT, into the field of 1ep. This was presented as an option for a common
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interfacing language between the tracker — that holds the collected obser-
vations — and the path planning algorithms that optimizes the value of
continued data collection for controllable agents. This covers Objectives IV
and V, which formalizes the three last questions in the list above.

The proposed path planning scheme is, specifically, based on the ex-
pected observed pHD, and it was applied to generate paths for multiple
controllable uas agents. A proof of concept Monte Carlo path planner,
using full path sample proposals, was developed and applied to the afore-
mentioned Tr1 dataset, as well as to a dataset collected with the uas platform
described in Section 3.5.3. In the context of Figure 9.1, this module is that
which in the end brings it all together and closes the loop.

The implementations presented in this thesis are available online at
https://github.com/jonatanolofsson/. Significant effort has gone into
the implementation of each of the algorithms used in this thesis, and the
encouragement to publish it as rFoss has been duly appreciated. The imple-
mentations show proof of concept for all the proposed algorithm improve-
ments discussed in this thesis.

A spatially indexed mHur filter was presented in Chapter 5, followed
by an LmB implementation in Chapter 6. The Lms algorithm was imple-
mented first as a PyTHON module, then as an improved version in C++ with
PYTHON bindings. The pyrTHON implementation was used in the application
of tracking drift sea ice in a dataset from a Tr1. This highlights a successful
cooperation with Norut, which further emanated in the applications pre-
sented in Chapters 7 and 8. The C++ LmB implementation was similarly
employed in the applications of Chapter 8, where it interfaced with the
Monte Carlo path planner implementation presented in the same chapter.

Each application presented in this thesis has been with real data, all but
the satellite imagery collected in situ.

Given the presented implementations, what mainly remains for a real-
life full demonstration is to connect the existing components and tune
filtering parameters to suite the available sensors. For example, a global
tracker could, theoretically, be instantiated through an effort to connect
the European Space Agency (esa) SENTINEL 1 data a1 — currently freely
available online — to a module for data extraction — as per Section 3.7.
This could then feed into a tracker module based on the proposed spatially
indexed LMmB algorithm and that would — when appropriately tuned —
constitute a full demonstration of global sea ice tracking. In theory, nothing
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would then hinder the addition of local observations into the same LmB
module as performed by e.g. uas agents.

In fact, discussions like the above have taken place in the collaboration
with Norut, in the context of including the implemented tracker into the
visualization tools they already develop. The same interface would even
allow the display of proposed optimized paths for the uas pilots to consider
when performing their flights.

Other future work that has been considered is for the target tracking to
include estimation of parameters such as ice mass, shape etc. Potentially,
this could improve the interpretation of how the currents and winds affect
the motion of the object, and enable more advanced Single-Target Track-
ing (stT) motion models. Notably, any improvements of the underlying
stT algorithm would improve mrT performance. This includes improved
motion modeling as well as improved modeling of the measurement noise.
In particular, the distortion introduced in the transformation of noise dis-
tributions has been largely ignored in this thesis, mentioned only in the
context of the range/angle detections of the Trr.

A proper information loop study may be needed for the inclusion of
velocity field estimates into the motion modeling of the tracker. In theory,
a circular dependency is introduced which may have the effect of falsely
reinforcing erroneous estimates. However, it may still work well in prac-
tice, or require only feasible changes to do so. Only using the estimated
velocity to initialize newly detected targets would not introduce the same
information loop.

The concept of the unobserved puD introduced in Chapter 8 may also
be studied further, in particular with respect to to the inclusion of motion
modeling. While the basic time update was presented in the chapter, it
remains to be properly implemented and utilized. Further, other path
planning algorithms could also be explored for their applicability to the
format of the proposed metric.
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