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ABSTRACT
We analyze surface waves generated by a translating, os-

cillating surface disturbance atop a horizontal background flow
of arbitrary depth dependence, with a focus on determining the
Doppler resonance. For a critical value of the dimensionless
frequency τ = ωV/g (ω: oscillation frequency, V : source ve-
locity, g: gravitational acceleration) at which generated waves
cannot escape. In the absence of shear the resonant value is fa-
mously 1/4; the presence of a shear current modifies this. We
derive the theoretical and numerical tools for studying this prob-
lem, and present the first calculation of the Doppler resonance
for a source atop a real, measured shear current to our knowl-
edge. Studying graphical solutions to the (numerically obtained)
dispersion relation allows derivation of criteria determining the
number of far-field waves that exist in different sectors of propa-
gation directions, from which the criteria for Doppler resonance
follow. As example flows we study a typical wind-driven current,
and a current measured in the Columbia River estuary. We show
that modeling these currents as uniform or with a linear depth
dependence based on surface measures may lead to large dis-
crepancies, in particular for long and moderate wavelengths.

1 INTRODUCTION
The studies of the fundamental problem of water waves gen-

erated by a translating, oscillating wave-maker dates back at least
to the middle of the last century. The problem is central for
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studying wave–body interactions in the frequency domain, e.g.
sea-keeping performance of ships, and motions of offshore float-
ing structures in regular waves.

A large body of literature in this regard exists in the absence
of a shear current, c.f .e.g. [1–3]. In particular, a well-known
phenomenon associated with the problem is Doppler resonance
that is of significant physics as well as of mathematical interest.
Physically, Doppler resonance occurs when the energy is held
stationary in space [3, 4], which leads to a marked increase of
the wave amplitude [5, 6]. Doppler resonance occurs when the
nondimensional frequency τ = ωV/g (ω and V are the oscillat-
ing frequency and moving speed of a wavemaker, respectively;
g is the gravitational acceleration) reaches a resonant value τres.
When no shear is present the resonant value is τres = 1/4 in deep
water [3] and decreases with the depth dependent Froude num-
ber Frh = V/

√
(gh) (h is the water depth) [7, 8]. Wave resis-

tance may also be noticeably increased in the vicinity of the crit-
ical value τres [9, 10], the resonant value poses numerical chal-
lenges [11, 12].

Studies of wave–body systems when a shear current is
present are, however, scarce. It has been shown the presence
of a shear current can strongly affect surface gravity waves from,
and associated forces on, wave sources (“ships”) in steady mo-
tion [8, 13–16]. Li & Ellingsen (2016) [17] have studied this
topic when a shear current of uniform vorticity S is present. In
particular, multiple resonant values τres – as many as four – may
occur, depending on the shear Froude number Frs =V S/g and the
angle β between the background shear current and motion of a
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FIGURE 1. Geometry of the wave-current system: gravity surface
waves on an arbitrary shear current.

wavemaker. That the presence of a shear current may profoundly
affect τres is further confirmed by Smeltzer et al. (2017) [8] in
where the presence of a surface shear layer such as may be cre-
ated by wind is considered, modeled as a bilinear profile.

Realistic currents generally vary with water depth in a
more complicated fashion than either a linear or bilinear pro-
file [18, 19]. It is thus of practical significance to allow current
varying arbitrarily with water depth. The present work analyzes
effects of the presence of an arbitrary depth dependent flow on
properties of waves generated by a translating, oscillating wave-
maker. Based on [20, 21], a direct integration method is used to
numerically obtain the dispersion relation of waves. In particular,
similar discussions as [17] with respect to dispersion relation of
different waves are presented for this far more general case. As
examples we analyze Doppler resonance in the presence of a typ-
ical wind induced shear current and a realistic current measured
at the mouth of Columbia River. Specifically, the corresponding
numerical results show the resonant values τres may differ signif-
icantly in the presence a realistic (nonlinear) shear current from
a linear shear current of the same surface vorticity.

2 SYSTEM DESCRIPTION AND FORMALISM
Linear gravity surface waves generated by a moving, os-

cillating surface disturbance are considered atop a background
shear flow that is expressed U(z) = (Ux(z),Uy(z)) . We con-
sider incompressible and inviscid flow and neglect surface ten-
sion. The geometry of the system is depicted in Fig. 1. The still
water surface is located at z = 0 and the positive z axis points
upwards. The water depth h is uniform.

Due to superposition no generality is lost by expressing a
surface disturbance in the form

η̂(x, t) = η0(k)exp(k ·x−ω(k)t), (1)

in which η̂ may denote motions along different directions,
e.g. heave, surge and sway, or an external oscillatory pres-
sure that is considered in the present work; η0(k) is the am-

plitudes of the corresponding motions or the pressure strength,
k = k(cosθ ,sinθ) (k = |k|) denotes the wave vector with θ be-
ing the direction of wave propagation, x = (x,y) is the position
vector in the horizontal plane, ω is the oscillating frequency, and
t is the time.

For further reference and convenience, we define

U0 = U(0) =U0(cosβ ,sinβ ),

ŵ(x,z, t) = A(k,z)exp(k ·x−ω(k)t),
σ(k) = ω−k ·U0, ∆U(z) = U(z)−U0,

in which U0 is the magnitude of the surface velocity, β is the
angle between the surface velocity U0 of a shear current and x
axis, ŵ is the vertical velocity due to waves, whose amplitude is
A(k,z), and σ is the intrinsic frequency.

2.1 Dispersion relation
In order to seek solutions of the perturbations generated by

the surface disturbance expressed by (1), we may refer to a cou-
ple of recent papers that analyze waves in the presence of a depth
dependent, horizontal background current, e.g. [15, 17]. In par-
ticular, a generalized theory of linear waves atop a background
shear flow can be found in [20]. We follow the theory presented
in [20,21]. The linearized governing equation and boundary con-
ditions for our set-up are well known (e.g. [22])

w̄′′(k,z)− k2w̄(k,z) =
k ·U′′(z)

ω−k ·U(z)
w̄(k,z), z < 0, (2a)

w̄(k,z) =1, at z = 0, (2b)
w̄(k,z) =0, at z =−h, (2c)

in which w̄ = A(k,z)/A(k,0) is called the unity vertical velocity
and the prime denotes the derivative with respect to z. (2a) is
obtained from the linearized continuity and Euler equation and
is called the Rayleigh equation.

The linearized kinematic and dynamic boundary conditions
at the water surface yield

σ
2w̄′−k ·U′0σ −gk2 = 0, at z = 0, (3)

in which w̄(k,0) = 1 is applied.
Based on (2a) and (3), we may find the dispersion relation

whose detailed derivation can be found in [15]. It reads

∆R(k,ω(k))≡ σ
2 + Icurσ −gk tanhkh = 0, (4)
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in which

Icur =(IS + IN) tanhkh, (5a)

IS =
k ·U′0

k
, (5b)

IN =

0∫
−h

σk ·U′′(z)w̄(k,z)sinhk(z+h)
(σ −k ·∆U(z))k sinhkh

dz, (5c)

where IS is called the surface shear and IN the depth-averaged
shear. When the latter is equal to zero, it denotes the presence of
a shear current of uniform vorticity. In addition, a critical layer
may occur when σ = k ·∆U that makes IN improperly defined
and thus special care is needed [22, 23]. We will not focus on
this particular case herein, but it is straightforward to extend the
results from the present paper to cases where a critical layer ex-
ists, i.e. we take the principle value of IN rather than IN when a
pole appears in the integrand.

Note that both k and w̄ in (4) are unknown at a given ω =ω0,
which makes (4) non-closed. Nevertheless, the coupled problem
consisting of (2) and (4) can be solved with respect to unknowns
k and w̄(z) by numerical methods, e.g. a shooting method in-
troduced in Dong & Kirby (2012) [24] or a direct integration
method studied in [20, 21]. We use the latter that essentially
solves (2) and (4) by an iterative approach. This method calcu-
lates w̄(z) and σ for a chosen set of discrete values of z varying
from −h to 0.

Based on (4), we obtain

ω(k)−k ·U0 =σ±

≡± (

√
gk tanhkh+

1
4

I2
cur∓

1
2

Icur), (6)

which implies

ω(k) =−ω(−k), (7)

meaning that there is a unique and positive phase velocity ω/k
pertaining to each wave vector k.

According to (4) and (6), we know that contributions from
a shear current are included in the current relevant term Icur that
returns zero when there is no shear current. We write

Icur =

0∫
−h

(
1+

σ

σ −k ·∆U
w̄sinhk(z+h)

sinhkh

)

× k ·U′′(z)
k

dz (8)

in which the inequality w̄sinhk(z+h)/sinhkh ≤ 1 holds for z ∈

(−h, 0). We in addition assume |ε| =
∣∣∣∣k ·∆U

σ

∣∣∣∣ < 1 and then

obtain

Icur =

0∫
−h

(1+N)
k ·U′′(z)

k
dz (9)

N =
w̄sinhk(z+h)

sinhkh

∞

∑
j=0

ε
j, (10)

in which N denotes the depth-dependent shear contributions rel-
ative to the surface vorticity of an arbitrary depth dependent cur-
rent. Eq. (9) compares the influence on dispersion of the surface
vorticity and the depth–averaged shear, respectively. For differ-
ent range of ε values, different approximate dispersion relations
can be obtained, as studied in [23].

In deep water, we may readily obtain the dispersion relation
by taking the limit kh→ ∞

∆Rin f (k,ω(k))≡ σ
2 + Icurin f σ −gk = 0, (11)

Icurin f =
k ·U′0

k
+

0∫
−∞

k ·U′′σ w̄
k(σ −k ·∆U)

ekzdz. (12)

Eq. (6) can be expressed with graphical solutions, as will
be demonstrated in §2.3. It is readily verified that the inequal-
ity
√

gk tanhkh+ I2
cur− Icur ≥ 0 holds for all k. Before seeking

the graphical solutions of (6), we introduce the nondimensional
parameters that are defined

K = kh; Frh =
U0√

gh
; Frs =

U0S
g

; Frsb = S

√
h
g

;

Ω = ω

√
h
g

; τ =
ωU0

g
= FrhΩ; Σ± = σ±

√
h
g
,

in which the water depth h is used as the reference length, S =
|S| (where S = U′(0) = (U ′x(0), 0), i.e. we always define the
S along the positive x axis) is the surface vorticity of the shear
current, and Frs and Frsb are the surface shear Froude numbers
that are defined based on the reference length

√
g/S2 and

√
gh,
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FIGURE 2. Definition of angles. See text for details.

respectively. Thereby, the nondimensional expression of (6) is

Ω(k)+KFrh cosγ = Σ±(K,γ +β ), (13)

Σ± =±

√K tanhK +

(
Frsb cos(γ +β )

2
+

FrSN

2

)2

tanh2 K

∓
(

Frsb cos(γ +β )

2
+

FrSN

2

)
tanhK

]
,

in which γ = θ −β and FrSN = IN

√
h
g

is a depth–averaged shear

Froude number. For an illustration of the different angles in-
volved, see Fig. 2 of [17] An illustration of the different angles
involved is depicted in Fig. 2. Based on (13), we observe the
behaviour of Σ at large K, i.e.+ lim

K→∞
Σ± ∼ ±

√
K (note that Frsb

and FrSN are order unity for most naturally appearing shear cur-
rents). This is one of the important features of Σ± in order to use
graphical solutions that will be introduced in §2.3.

Solutions to (13) cannot be expressed explicitly except in a
very few special cases. We will discuss the different wave so-
lutions for a given Ω0, K0(γ), in §2.3 from both a mathematical
and a physical perspective with graphical solutions.

2.2 Group and phase velocity
According to the definition, phase and group velocity are

defined, respectively,

c =
Ω(K,γ)

K
, (14)

cg = (cgK,cgθ
) =∇KΩ(K,γ), (15)

in which ∇K = (
∂

∂K
,

∂

K∂θ
).

> 0γ
Frhcos

Ω0 = 0γFrhcos
B

-(K)Σ

O
KBKD

KC
KE

KF

K
0

γ

Frh cos

+(K)
Σ

D

F

E

Case 1 Case 2

Case 3

C

A

KA

= 0γFrhcos

FIGURE 3. Graphic solutions of the dispersion relation. See text for
details.

Based on the dispersion relation (4), we may derive the im-
plicit expressions of the phase and group velocity, which are eas-
ily obtained at K0(γ) by numerical methods.

2.3 Different waves and wave sectors
Similar to the analysis made in [17], we use graphical so-

lutions of (13) to indicate far-field wave solutions K0(γ) under
different circumstances, whereupon analysis of the solutions that
exist in different wave propagation sectors is presented. The
analysis follows the principles of §3.7.1 of [25], and one may
refer to [17] for the generalization to the presence of a linear
shear current. The present case is a further generalization along
the same lines.

Fig. 3 depicts different graphical solutions to the dispersion
relation (13) at a given Ω0, using a typical wind–driven shear
current as example. Plotted as a function of K are the straight
lines Ω0 +KFrh cosγ , and the curves Σ±(K,γ) at different prop-
agation angles γ . Thus, the intersection points K0(γ) of the two
are solutions to the dispersion (13). Rich physics can be found
at the intersections. Let A be a point where a line and a curve
cross. Then the group velocity component cgK is found at A by
the difference between the slope of the tangent of Σ — ∂Σ/∂K
— and that of the straight line, Frh cosγ . The intrinsic phase ve-
locity Σ/K0 is the slope of the straight line that connects A and
the origin.

When cosγ < 0 (|γ| > π/2 or k · U0 < 0) , two solu-
tions for K0(γ) exist, denoted KB and KC in Fig.3. When
cosγ > 0, three different cases exist depending on the parameters
Ω0, Frh, γ, Frsb, and FrSN . There can be zero far–field waves
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(case 1: no intersection ), one wave (case 2: one intersection
point, F) and two waves – D and E – of different wavenumbers
(case 3: two intersection points). The group velocities for these
cases satisfy, respectively, cgK < 0 for K ≥ 0 (case 1), cgK = 0
at KF (case 2), and cgK > 0 at KD (case 3), and cgK < 0 at KE
(case 3). A wave with positive (negative) intrinsic group velocity
will be found in front (behind) of the oscillating source, hence
the only wave solution able to propagate ahead of the source is
D. For more details about the different far-field waves, one may
refer to [26].

As is indicated in Fig. 3, for a given value of Frh > 0 there
exists a critical frequency Ωc so that when Ω0 > Ωc a sector of
γ values exists that belongs to Case 1. For 2D systems, Ω0 = Ωc
always corresponds to the Doppler resonance frequency. The 3D
case will be discussed in §2.4.

As noted in the above discussions, three cases exist that de-
pend on the parameters Frh, Ω0, Frsb, γ , and FrSN for cosγ > 0.
Thus, criteria are needed in order to determine different wave
solutions. We introduce the function

Φ(Ω,Frh,Frs,β ,K,γ) = min
K(γ)≥0

(∆R)sgn( max
K(γ)≥0

(∆R)),

γ ∈ (−π/2,π/2), (16)

useful for determining different cases discussed above, and it
permits us to write down the criteria for the different cases suc-
cinctly:

Case 1: Φ > 0, indicating no waves propagate along direc-
tion γ .
Case 2: Φ = 0, indicating F waves.
Case 3: Φ < 0, i.e. min

K≥0
∆(Ω,Frh,Frs,β ,K,γ) < 0 and

max
K≥0

∆ > 0, implies D and E waves.

Based on the criterion of Case 1, it is straightforward to cal-
culate the wave sector (or sectors) of angles γ wherein there is no
wave. Moreover, the criterion of Case 2 plays an essential role in
determining the Doppler resonance as will be explained in §2.4.

2.4 Doppler resonance
As is discussed in §2.3, cgK = 0 in Case 2 for waves prop-

agating along direction γ . If cgθ in addition also equals zero,
|cg|= 0, and the energy of this particular F wave can not escape,
and Doppler resonance will occur. We thus obtain the criterion
for resonance in the form of a set of two equations,

|cg|=

√(
∂Ω

∂K

)2

+

(
1
K

∂Ω

∂θ

)2

= 0, (17a)

cg =(cgK ,cgθ ) = 0, (17b)

FIGURE 4. Shear Profiles: (a) the exponential shear current profile
U1 with Frh = 0.3 and α = 6 and (b) the current U2 at the mouth of
Columbia River. The dashed lines in the figure are the corresponding
linear shear currents of the same vorticity as the corresponding shear
current.

Eq. (17), together with the dispersion relation (4), yields the di-
mensionless resonant frequency τres. In the absence of shear it
famously equals 1/4 [3], and when a shear current is present it
can take more than one value [17].

Numerically, we first find Kres = (KF ,γres +β ) that satisfies
(17) and then substitute Kres to the dispersion relation (13) to ob-
tain the Doppler resonant value τ = τres. As noted above, finding
KF(γF +β ) (γ ∈ 〈−π/2,π/2]) is not in itself sufficient to yield
τres, but KF(γres +β ) is important for being the wavenumber re-
quired in order to obtain τres. Any numerical solutions τres < 0
can be discarded as unphysical.

3 NUMERICAL RESULTS AND LIMITING CASES
In this section, we present numerical results in the presence

of different shear currents. In particular, a typical wind-induced
shear current U1 and a current U2 measured in the mouth of
Columbia River [27] (with polynomial fit as in [15]) are con-
sidered. U1, plotted in Fig. 4a, is expressed

U1 = (Ux,Uy0) = (Frh
√

gh eαz/h,Uy0), (18)

where Uy0 is a constant, and U2 is plotted in Fig. 4b. We compare
results in the presence of either U1 or U2 with their correspond-
ing linear shear currents — U1S and U2S , respectively — with the
same surface vorticity as the corresponding nonlinear shear cur-
rent. These linear currents are shown as straight lines in Fig. 4.

Fig. 5 depicts the nondimensional intrinsic frequency
Σ0(K(γ)) and group velocity component c̃gK with respect to K in
the presence of U1, U1S , and when there is no shear. Significant
difference of the solutions to the dispersion relation is observed
in Fig. 5a between the presence of U1 and U1S and between the
presence and absence of a shear current. For example, as high-
lighted with circles in Fig. 5a, the K0 solutions at both Σ0 = 1.5
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(a)

(b)

FIGURE 5. Dispersion relation and group velocity with respect to K
in the presence of U1, U1S, and when there is no shear current. In the
figure, the parameters Frh = 0.3 and α = 6 are used; and the subscript s
denotes the results in the presence of U1S .

and Σ0 = 2 in the presence of U1S differ by ≈ 100% that for U1.
Moreover, the difference in group velocity among the different
cases is even more striking, especially for 0 < K . 2, as shown
in Fig. 5b.

Based on (16), we plot Φ with respect to γ ∈ 〈−π/2,π/2〉
for different values of the parameters Ω, Frsb, Frh, and β when a
linear shear current is present in finite water depth. This is shown
in Fig. 6a. For γ values where Φ > 0, no far-field waves exist, as
we showed in Sec. 2.3; Fig.6b–e show the excluded sectors cor-
responding to the parameters of the Φ-graphs in panel a. Panels
c, d and e show excluded propagation sectors with no far–field
waves. The F waves along different γF are marked with circles
in Fig.6a, at angles bounding the exclusion sectors. In particular,
the γF may satisfy (17) that further yields the Doppler resonant
value τres. Note that in the absence of shear, there can only be

cos >0 cos >0cos <0

(a)

(b) (c)

cos <0

cos >0cos <0 cos >0cos <0

(e)

F waveF 
w

av
e

F w
ave

F 
w

av
e

F w
ave

F wave

F waveF 
w

av
e

(d)

FIGURE 6. Different wave sectors in the absence and presence of a
linear shear current. In the figure, Frh = 0.3 is used.

one excluded region, symmetrical about γ = 0, existing when
τ > 1/4. A Doppler resonance occurs at values of τ at which
one or more exclusion sector appears or disappears. See further
discussions in [17].

We now proceed with Doppler resonant frequencies τres with
respect to Frh in the presence of U1, U1S, and when there is no
shear, as depicted in Fig. 7. Several interesting phenomena can
be observed in the figure. τres differs in the presence of a shear
current from no shear current and depends significantly on the
direction of motion of the source relative to the current, β . More-
over, the difference in τres between the presence of U1 and U1S
increases with Frh in the plotted Frh region and may be ignored
for Frh . 0.08. This observation can be inferred also from Figs. 3
and 5 where a larger Frh tends to yield a relatively smaller Ωc that
corresponds to the F waves of smaller wavenumbers. This sug-
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FIGURE 7. Doppler resonant frequencies τres with respect to Frh in
the presence of the exponential shear current U1 (exp.), U1S (Lin.), and
in the absence of a shear current. .

gests a relatively larger effect of different shear components from
a shear current on the group velocity and thus on the Doppler res-
onance.

Similar phenomena as in Fig.7 are also depicted in Fig.8
where comparisons of τres among U2, U2S, and no shear are pre-
sented. To our knowledge this is the first time the Doppler reso-
nance for a real, measured oceanographic shear current has been
calculated, or indeed a method for doing so has been developed.

Figs. 7 and 8 thus indicate several essential points. Approxi-
mating a measured shear current by a linear profile using the sur-
face velocity and shear rate (as is tempting, given that these pa-
rameters are readily measured using, e.g. radar techniques [28]),
may result in serious errors in the calculated Doppler resonance
frequency compared to when the full depth–dependent flow is
taken into account. Whether the current be linear or more gen-
eral of profile, all wave effects are seen to depend strongly on the
angle between shear current and direction of motion.

CONCLUSIONS
We have analyzed surface linear waves generated by a mov-

ing, oscillating wavemaker in the presence of a horizontal back-
ground flow with arbitrary depth–dependence. The necessary
theory for finding the resonant oscillation frequency τres in the
presence of such a current is derived, and a direct integration
method from [20, 21] is used to obtain numerical results. To our
knowledge this is the first time the Doppler resonance frequency
has been calculated for a real, measured oceanographic shear cur-
rent, and indeed that the method for doing so has been presented.

Since it is relatively simple to measure the velocity and vor-
ticity of a shear flow at the free surface, a tempting approxima-
tion is to use a linear shear profile using the surface shear. We

0 0.05 0.1 0.15 0.2 0.25
Fr

h

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

real.- =0
Lin.- =0

real.- = /2
Lin.- = /2
real.- =

Lin.- =
no shear

FIGURE 8. Doppler resonant frequencies τres with respect to Frh in
the presence of the realistic shear current U2 (real.), U2S (Lin.), and in
the absence of a shear current.

show for two different examples of real shear flows that the value
of τres taking the full current profile into account differs substan-
tially from those found assuming no shear or a linear current.

In the presence of a shear current in finite water depth, differ-
ent far–field waves exist that depend on parameters with respect
to the shear current, oscillating frequency and moving speed of
the wavemaker, water depth, and the angle between the shear cur-
rent and the motion of the wavemaker. In particular, two, three
or four waves may exist.

The results in the present work suggest that it may be insuffi-
cient to model a realistic shear current with a linear shear current
of the same surface vorticity, even though the surface vorticity
is strong. Full information of a real shear current varying with
water depth is of particular practical significance, especially to
long and moderate surface waves. It is also demonstrated how,
given flow measurements, the Doppler resonant frequency can
be readily calculated.
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