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Preface

This is my master’s thesis, written the spring of 2010 at the Norwegian University of
Science and Technology (NTNU). The purpose of this thesis has been to study how
topology can be used to extract information from data sets. To be able to do this, one
needs to acquire some knowledge from different topics in topology. Getting to know this
topological machinery has been the main focus of this thesis. However, I have also spent
some time on implementing both Mapper and persistent homology, which are the two
main topics of this thesis, in Python.

Firstly, I would like to thank my supervisor professor Nils A. Baas. His advice and
guidance throughout my study and the writing of this thesis was greatly appreciated. I
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Abstract

In the last years, there has been done research in using topology as a new tool for studying
data sets, typically high dimensional data. These studies have brought new methods for
qualitative analysis, simplification, and visualization of high dimensional data sets. One
good example, where these methods are useful, is in the study of microarray data (DNA
data). To be able to use these methods, one needs to acquire knowledge of different
topics in topology. In this paper we introduce simplicial homology, persistent homology,
Mapper, and some simplicial complex constructions.



vi



CONTENTS

Contents

(1 _Introduction|

[2

Simplicial homology|

2.4 Simplicial complex| . . . . . ... Lo

2.5  Ordered simplicial complex| . . . . ... .. ... .. ... ... ..

[2.6  Simplicial homology ot a simplicial complex| . . . . . .. .. ... ... ..

2.7 Simplicial homology of a topological spacel . . . . . . . ... ... ... ..

[2.8  Simplicial homology on datasets . . . . ... ... ... .. ... ... ..

Simplicial complexes|

13.4 Cech - and Vietoris-Rips complex| . . . . .. .. ... ... ... ... ...
3.5 Voronoi diagram| . . . . . . . ... ...
3.6 Witnessesl . . . . . ...
3.7  Witness complexes| . . . . . . ...
3.8 CDT complexes|. . . . . . . . ..
3.9 Choosing landmark points| . . . . . . .. ... ...

Persistent homology]

z Algebra

[4.2.1 Graded rings and modules| . . . . .. ... ... oL
4.2.2  Representing homomorphisms as matrices| . . . . . . ... .. ...

[4.2.3  Column Operations|. . . . . . . . .. .. . ... ... ... .....

4.2.4  Algorithm for Column reduction| . . . . . ... ... ... ... ..
4.2.5  Smith normal forml . . . . . . .. ...

do Calculation| . . . .. .. o
M.5.1  Summary| . . . . ... L

4.6  Improved algorithm|. . . . . . ... . .. ... o o

4.7 Tmproved algorithm 2| . . . .. .. ... ... oo
4.8 Final algorithm| . . . . . . . . .o oo
4.9 Examples| . . . . .

vii

13
13
13
14
15
17
18
19
23
26



viii CONTENTS

Mapp 66
5. Motivationl. . . . . . . . . . .o 66
5.2 Cover manipulation|. . . . . . ... ... o 66
0.3 Filter functionl. . . . . . . . . . 75

9.3.1 Density estimators| . . . . . . . . . .. ... 75
5.3.2  Eccentricity| . . . . . . .. ..o 75
5.3.3  Projection maps| . . .. . .. ... Lo 75
[5.3.4  Filter tunctions applied to datasets| . . . ... ... .. ... ... 75
5.4 Cover of parameter space] . . . . . . . . . . . ... 78
b.d Clustering] . . . . . . . . . 80
5.6 Algorithm| . . . . . . . .. 80
b.7 Examples . . . .. .. . 81
0.8 Parameters . . .. . .. . .. 86

5.9  Map of coverings|
[5.10 Flexible clusteringl . . . . . . .. . . . . .. o 89




1 Introduction

An important field of study in modern science is the process of extracting patterns from
data. The reason for it is importance is partly because of the fact that the amount of
data being produced by modern science and engineering is increasing at an unprecedented
rate. For centuries the job of extracting patterns from data have been done manually, but
the increasing volume of data calls for more automated approaches. One other important
fact besides the vast amount of the data is the nature it comes in. The data is often given
as very long vectors (high-dimensional), where only a few unknown coordinates turn out
to be of importance to the question in mind. It is also more common that the data is a
lot noisier and missing more data than in the past.

Unfortunately, our ability to analyse this data, both in terms of quantity and the
nature of the data, is not keeping pace with the data being produced. In the last years,
there has been done research in using topology and geometry as new tools to study data
sets. Topology and geometry are old fields in mathematics, where geometry is the study
of figures in a space of a given number of dimensions and of a given type. Topology is the
mathematical study of the properties that are preserved through deformations, twisting,
and stretching of objects. One can view geometry as the finest level of classification as it
focuses on local properties of shapes. In this sense, geometry has a quantitative nature
and can answer low level questions about a shape. But most of our questions have a
qualitative feel and take a higher view of a shape. This prompts us to look at topological
techniques that classify shapes according to the way they are connected globally - their
connectivity. Topology in itself is often too coarse to be useful. For example, the topolog-
ical invariant homology cannot distinguish between circles and ellipses, or even between
circles and rectangles. On the other side, when we combine geometry and topology we
get robust methods for classifying spaces. D

One good example, where topological methods work well, is in the study of DNA,
where the data is collected from microarrays. A microarray is an instrument which can
measure the expression level of thousands of different genes from a sample of cells. Al-
though biomedical investigators have been quick to adopt this powerful new research
tool, accurate analysis and interpretation of the data have provided unique challenges.
Collected information from microarrays is noisy, high-dimensional, and may also be miss-
ing some data. When looking at the data, one may view it as a matrix, as in Table
In this matrix a row corresponds to a gene, a column corresponds to a sample, and the
entries are gene expression levels in the different samples.

When we want to study the data using topology, the first thing we do is to represent
the data as a finite set of points in Euclidean space with a distance function. This is
what we call a point cloud. In the case of microarray data, it is both possible to either
let each gene represent a point with the corresponding gene expressions from the samples
as coordinates, or let each sample represent a point with the gene expressions from the
sample as coordinates. In a typical case, we have 100 samples and 3000 different genes.

!For example: Instead of applying homology to a space, we apply it to a derived space with attached
geometric content.
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Sample 1 --- Sample m
Gene 1 a1l e A1m,
Gene n an1 e Anim

Table 1: Microarray data represented as a matrix, where element a;; is the expression of
gene ¢ in sample j.

Then the first point cloud will consists of 3000 points in R'%° while the later case has 100
samples in R3%%° When working with such data, one wishes to have lots of points in a
low-dimensional space. Unfortunately, in our case it is the high-dimensional space, with
100 points in R399 that turns out to be of importance. To make it even worse, there are
no good distance functions available. A distance function, or a metric as it is commonly
called, usually have an understandable physical meaning. In the case of DNA, there
are many different ways of measuring distances, but there is no good choice of a metric
that has a decent underlying understanding. In the world of biology, they mainly use
BLAS’IE] scores to measure similarity. It is calculated using some intuitively measures of
similarity, but it is far from clear how much significance to attach to the actual distances,
particularly at large scales. Fortunately for us, topology need not depend too much on
the distance function. What is important is not the distance between two points, but if
they are “close” or not.

After obtaining the point cloud, topology can be used to extract qualitative geometric
information, which gives the data a signature (classification). One way of doing so is by
assigning the point cloud to some topological space, and then calculating the homology
of this space. There are many viable ways of connecting the point cloud to a space.
One natural way of doing this is by letting the space be the union of the collection of
balls, see Figure |1} where we have one ball with a fixed radius € for each element in the
point cloud. When we calculate the homology of this space, we get information about
the connectivity of the space, which tends to be important information in the study
of microarray data. In fact, the lowest level of the connectivity information is about
the number of connected components, and is analogous to the information we get from
clustering methods in statistics.

Clustering methods are very central and probably the most used tools in data analysis.
They are good at finding clues of structures in the data, but have a lack of validity. There
are many different clustering methods, but very little is known about the theoretical
foundation of clustering methods. One other problem with these clustering methods
is that they often demand some choice of parameters, such as the € we used as the
radius on our balls in Figure [I] Choices like these makes the methods less robust. It is
possible to do the calculations multiple times by changing the parameters, but there will
still be a lack of information of what has happened between the different calculations

In bioinformatics, Basic Local Alignment Search Tool, or BLAST, is an algorithm for comparing
primary biological sequence information.



(“slices”) and about the connection between them. In the world of topology, we have
tools such as homology, which are well studied and understood. Functorial properties
of homology makes it possible to get more complete pictures compared to just looking
at each “slice”. Moreover, as mentioned above, homology gives more information than
clustering techniques. Informally, we can say that clustering measures 0-dimensional
loops while homology measures all n-dimensional loopiness. In this sense homology looks
deeper into the data, and gives an increased amount of usable information, even though
not all of the information may be of importance.
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Figure 1: Illustrates how a data set, in this case microarray data, can be assigned
a signature. There is mainly three steps in this process. Step 1: Data set — Point
cloud. This first step consists of representing the data as some metric space, i.e. a
space with a distance function. In the case of microarray data, it is both possible to
either let each gene represent a point with the corresponding gene expressions from the
samples as coordinates, or let each sample represent a point with the gene expressions
from the sample as coordinates. There are also many possibilities of choosing a distance
function. The straightforward way of doing this is to let the point cloud be a collection
of points in Fuclidean space with the usual metric. Step 2: Point cloud — Space. This
is a difficult step. The data cloud is only a sample from some underlying space. It
is important in this step to make a good guess of a space representing the underlying
space. A good guess would be a space that is homotopic to the unknown underlying
space. One natural way of doing this is by letting the space be the union of the collection
of balls, where we have one ball with a fixed radius € for each element in the point
cloud. A more general and frequently used method is to build a simplicial complex as
a model of the space. Step 3: Space — Signature. This last step consists of extracting
topological information about key properties, such as the number of n-dimensional holes.
The number of n-dimensional holes in the different dimensions, is called the Betti numbers
and is a homotopy invariant. These Betti numbers can be computed with different
types of homology theories. The most commonly used is simplicial homology, which can
calculate the homology of simplicial complexes.



2 Simplicial homology

This introduction to simplicial homology follows definitions from planetmath[I4] and the
book “An Introduction to Intersection Homology Theory”[11] by Frances Kirwan and
Jonathan Woolf.

2.1 DMotivation

In this section we will establish simplicial homology. Simplicial homology is usually the
choice when doing computerized computations, since it gives an easy way of computing
homology. The idea behind simplicial homology is to use simple models, called simplicial
complexes, of the given topological space to infer global information.

2.2 Homological algebra

Before we can proceed with simplicial homology, we need to obtain some definitions from
homological algebra.

Definition 1. Chain complex

Let {Cp}p be a sequence of abelian groups or modules, and let 0, called the boundary
operator, be a sequence of maps {9, : Cp, — Cp_1}p s.t. Op—100, =0 Vp. Then (Cy,0)
is called a chain complex.

Definition 2. Homology of a chain complex
Let {Cy, 0} be a chain complex. Then the homology of this chain complex is given by

ker O
H, = Pwp.
b im 6p+1 vp

Definition 3. Chain homotopy
Let (A*,aA) and (B*,E?B) be chain complexes, and let f,g : A, — B, be chain
maps. Then a chain homotopy h between f and g is a sequence of homomorphisms
{hp tAp — Bp-H}p st. (f—g)p= hp—laj;l + 8}?+1hp'

o4 o4 o4 o4

p+2 Ap+1 p+1 Ap P Apfl p—1 o
hp+1 (f _9)p+1 hp (f—9)p hp—1 f —9)p-1 hp—2
/352 J /apBl J /af J /851
.. —)Jr Bp+1 Al D Bp—l

Note. If there exists a chain homotopy between two chains f and g, then f and g are
said to be chain homotopic, which we will denote f ~ g.
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Note. If f and g are chain homotopic, then f and g induce the same map [f] = [g] on
homology groups.

Definition 4. Chain equivalence

Let (A*,8A) and (B*,é)B) be chain complexes, and let f : A, — B, be a chain map.
Furthermore, let 14, be the identity map on A,, and let 15, be the identity map on B,.
Then f is called a chain equivalence if there 3 a chain g : B, — A, s.t. fog~1p,
and go f~14,.

Note. When there exists a chain equivalence between two chain complezes, they are said
to be homotopic.

2.3 Direct limit

We are also going to use the definition of the direct limit of a directed system.

Definition 5. Directed set
Let (A, <) be a partially ordered set. If Va,b € A there 3z € A s.t. a <z and b < z,
then (A, <) is a directed set.

Definition 6. Direct system and direct family
Let A = {A;|i € I} be a family of algebraic systems of the same type. If there 3 a
family of homomorphisms {¢;; : A; — A;|i <jel} st.

1. I is a directed set,
2. d¢i; + Ay — Ay,
3. ¢ii =14, on A;, and
4. Pjr o dij = dik
Vi < j <k, then A= {A;},.;is a directed family, and (A;, ¢;;) is a directed system.

Definition 7. Direct limit
Let (A, fij) be a direct system, let [[;.; A; be the disjoint union of {4;},.;, and let
x; € A; and x; € A; be equivalent if there 3k € I s.t. fix(x;) = fjr(z;). Then the
direct limit of (A;, fi;), h_II)lAZ = HAZ/ ~.

p .

)

2.4 Simplicial complex

Simplicial complexes use simplistic building blocks, called n-simplices, which are gener-
alizations of triangles and tetrahedrons to an arbitrary dimension, see Figure

Definition 8. n-simplex

Let {va}tacr € R™ be a set of n points, and let ag € I be some point in I. Then the
convex hull of {va}aer is an n-simplex if the elements of {vy — vag }y, Lagel ATe linearly
independent.
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U3

U2

U1

v,

G- Vg — V1 Vo U1 Vo

(a) O-simplex (b) 1-simplex (¢) 2-simplex (d) 3-simplex
Figure 2: Example of ordered simplices.

Notation. Let vert(o) be the set of vertices which construct o.

Notation. When o is an n-simplex, with vertices vert(o) = {va} 7, we will denote o
as <vo>acy.

Definition 9. Face of an n-simplex
Let o be an n-simplex with vertices {va},c;, and let ¢’ be an (n — 1)-simplex with
vertices {vo}cp- Then o' is a face of o if {va/}yep € {Vatacr-

With these terms we can define a simplicial complex as follows.

Definition 10. Simplicial complex in R"
Let N be a set of simplices. Then N is a simplicial complex in R™ if the following
statements hold:

1. If o € N, then ¢’/ € N Vo' face of o;
2. if 0,0’ € N and o N’ # (), then vert(o No’) = vert(o) N vert(o’);

3. if o € N and = € o, then there exists a neighborhood U of xz s.t. U No’ # () for
only finitely many simplices ¢’ € N.

2.5 Ordered simplicial complex

The boundary of a simplicial complex is important for constructing simplicial homology.
Before we can establish our boundary map, we need to have an ordering on our simplicial
complex. When given a simplicial complex, we can always make it into an ordered simpli-
cial complex by numbering the vertices. Keeping track of the ordering under operations
like boundary operations is a bit messy, and is therefore often hidden under the carpet
since it is trivial. Even though it is not nice, we will keep track of the orientation until
we have defined the boundary map on a simplicial complex.

An n-simplex with an ordering can be defined as follows.
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Definition 11. Ordered n-simplex
Let o be an n-simplex with {va },c; as vertices, and let A : [0,...,n] — I be a bijection.
Then the pair (o, h) is an ordered n-simplex.

Notation. Let o be an n-simplex with {Ui}ie[o 1 as vertices. Then we will denote the

n]
ordered n-simplex (O’, 1[0,.“7”]) = [vgy ..., n).

With this definition of an ordered n-simplex, an ordered simplicial complex becomes
as follows.

Definition 12. Ordered simplicial complex

Let N = {0a},cp be a simplicial complex, and let h, be a sequence of functions s.t.
(0w ha) 1s an ordered simplex Vo, € N. Then the pair (IV, hy) is an ordered simplicial
complex if 04,08 € N, where vert(cq) Nvert(og) # 0, implies that the equation

ha'(2) < hg'(y) & ' (z) < byl (y)
holds Vz,y € vert(oy) Nvert(og).

Notation. Let (N, h) be an ordered simplicial complex in R™. Then (N, h)" is the set
of ordered i-simplices, i.e. (N,hy)! = {(0a,ha)|0a is an i-simplex}.

Now that we have an ordered simplicial complex, we can construct a boundary map
on the n-simplices by using partial boundary maps.

Definition 13. j-th partial boundary of ordered n-simplices
Let (o, h) be an ordered n-simplex. Then the j-th partial boundary of (o, h) is given by
0; : (0,h) — (0j0,0;h), where

A~

8j 20 = <Up0)y -+« + s Uh(n)= F— <UR(0)s -+ > Vh(j) -+ s Vh(n)>
and 0;h is given by

| [ hk) if k < j
(O5h) (k) = {h(k;+ 1) ifk>j

These partial boundary maps give us a boundary map on the n-simplices.

Definition 14. Boundary of ordered n-simplices
Let (o, h) be an ordered n-simplex. Then the boundary of (o, h) is given by

n

d(o,h) =Y (~1)(9;0,0;h).

j=0

Note. 92 = 0.
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2.6 Simplicial homology of a simplicial complex

We will now build our chain complex that gives us simplicial homology. To make this
more notation friendly, we will use the following notations.

Notation. Let (N, h.) be an ordered simplicial complez, and let (o,h) be an ordered
simplex. Then the following notations will be used:

e N = (N, hy);

o N = (N,h,);

e 0= (0,h);

o “simpler” = “ordered simplex”;

o “simplicial complexr” = “ordered simplicial complex”.

The chains in our chain complex will be formal finite sums of ¢-simplices with coeffi-
cients in a field.

Definition 15. i-chain of a simplicial complex
Let F be a field, and let N be a simplicial complex. Then an i-chain of N is given by
finite

§= Z o0,

oEN?
where &, € F Vo € N°.
Notation. Let C;(N) be the set of all i-chains in N, i.e. C;(N) = {& i-chain in N}.

Now that we have the groups in our chain complex, we only need to construct a
boundary operator to get a complete chain complex. We need our boundary operator
d to turn an i-chain into an (i — 1)-chain, while satisfying the condition 9> = 0. By
using the boundary map we defined on our simplices, we can make an i-chain into a
(¢ — 1)-chain by using the boundary map on each of the i-simplices in the formal sum.

Definition 16. Boundary operator on ¢-chains

Let £ = Z{;Ig]t\?n £,0 be an i-chain, where £, € F Yo € N*. Then the boundary operator

on ¢ is given by the linear map

finite

0t = ¢00.

CEN?

This boundary operator satisfies 3> = 0. Hence, we have a chain complex (Cy(N), ).
By taking the homology of this chain complex, we get the simplicial homology of a
simplicial complex.
Definition 17. Homology of a simplicial complex
Let N be a simplicial complex. Then the simplicial homology of IV is given by

ker 0 : C;(N i—1(INV
() = X 02 GN) = Gia (),
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2.7 Simplicial homology of a topological space

We have now defined the simplicial homology of a simplicial complex. What we are
interested in is to make a homology theory on (triangulable) topological spaces by using
the simplicial complexes. We wish to describe the topological space with a collection of
simplicial complexes, and then use these to calculate the homology. In fact, we are only
going to do simplicial homology on triangulable topological spaces, and use the family
of all triangulations as our collection of simplicial complexes.

By a triangulation we mean.

Definition 18. Support of a simplicial complex in R”
Let N be a simplicial complex in R™. Then the support of N is given by

N =]

ocEN
Definition 19. Triangulation of a topological space
Let X be a topological space, and let NV be a simplicial complex. Then a triangulation

of X is a homeomorphism 7" : |N| =X,

Note. We will call N a triangulation of X when there ezxists a triangulation from |N| to
X.

We will also be using the following notation.

Notation. Let T : |[N| — X be a triangulation of X. Then we will write HI (X) =
H;(N) and CI(X) = C;(N).
There may exist several triangulations of a topological space. To make the simplicial

homology independent of a chosen triangulation, we will make a direct system by using
refinement of triangulations.

Definition 20. Refinement of a triangulation
Let N and N’ be two simplicial complexes, and let T : [N| — X, T" : |[N'| — X be
two triangulations of X. Then T is a refinement of 77 if Vo € N there 3o’ € N’ s.t.
T(c) CT'(d).

These triangulations will then induce chain maps on our chain complexes. Moreover,
the collection of chain complexes together with the induced maps will form a direct
system.

Proposition 2.1. Let N and N’ be two simplicial complexes, and let T : |[N| — X,
T : |N'| — X be two triangulations of X s.t. T is a refinement of T'. Then there
3 a natural map o/ 7 - C’,L»T/(X) — CZ»T(X) compatible with the boundary maps s.t. if
o' € N/, then

b0 — E +o,

0€N,;,T(0)CT'(c")

where the signs depend on the orientation of o compared to o’.
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Note. The indez set I = {a|T,, triangulation of X} is a directed set by a < 3 if Tp is
a refinement of T,.

Note. Let {T,}, be the family of all triangulations of X, and let

{00s: ) — PO}

be the corresponding family of natural maps. Then the pair (C’iTa (X), ¢a,p) form a direct
system.

By taking the direct limit we get a chain complex independent of any choice of
triangulation.

Definition 21. Space of piecewise linear i-chains
Let {7t} be the family of all triangulations of X, and let (T4, ¢, ) form a direct system.
Then the space of all piecewise linear i-chains is given by C;(X) = h_n>1(71T “(X).

[0}

Note. Note that the boundary maps 0, : C1*(X) — CI*/(X) induce boundary maps
0:Ci(X) — Ci_1(X) st. 9*2=0.

The homology of this chain complex gives us the simplicial homology of a triangulable
space.

Definition 22. Simplicial homology
Let X be a triangulable space. Then the simplicial homology of X is given by

simp _ker 0: Cy(X) — Ci_1(X)

(2

We will not show this, but simplicial homology is a homology theory. An impor-
tant property of simplicial homology is that we need only use one simplicial complex,
which gives a triangulation of our topological space, to calculate the simplicial homology.
Moreover, it corresponds with the singular homology.

Theorem 2.2. Let N be a simplicial complex, and let T : [N| — X be a triangulation
of a topological space X. Then H;"™(X) = H;""(X) = H;"""(N).

Unfortunately, not every topological space have a triangulation, but some does. In
fact, every compact manifold of dimension 3 or less has a triangulation.

2.8 Simplicial homology on data sets

When we are studying data sets, we do not know the underlying topological space X;
we are usually only given some sampled data from X. What we want to do is to use
the sampled data to infer information about the geometric and topological structure
of X. Information, such as the simplicial homology of X, is then very useful, and it
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would be of great help to be able to calculate it, or get an approximation. When we
are given a data set, we need to construct some simplicial complex that approximates
a triangulation of X. Since simplicial homology is a homology theory, it is sufficient
that our simplicial complex is a triangulation of a topological space Y that is homotopic
to X. This increases the possibility of our constructed simplicial complexes to be good
approximations. A diagram, which illustrates the process of approximating the simplicial
homology of a topological space X by using only some sampled data, is given in Figure
In the construction of simplicial homology, we used a family of triangulations to

Sample X

|

N

!
C«(N)

l .
HL(N) ===+ H™P(X)

Figure 3: This diagram illustrates the process of approximating the simplicial homology
of a topological space X by using some sampled data. The step Sample — N consists of
constructing some simplicial complex from the sampled data.

determine the homology. When we are dealing with sampled data, a natural question

is if we can construct and use multiple simplicial complexes to get more insight. This
idea is illustrated in Figure [ In Section [4 we will talk about persistent homology which

X

Sample

11
N

|
C«(N)

(1) .
HL(N) - HIP(X)

Figure 4: This diagram illustrates the process of approximating the simplicial homology
of a topological space X by using some sampled data. The step from Sample to N
consists of creating a collection of simplicial complexes from the sampled data, and the
step from Cy (V) to H.(N) consists of assembling the results by some manner.

follows this idea, but first we will talk about some different methods for constructing
simplicial complexes.
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3 Simplicial complexes

In this section we will introduce some methods for constructing simplicial complexes
(abstract simplicial complexes). Resources have been gathered from [5], [3], [12], [7] and

18-

3.1 Motivation

When we are given some sampled data from a topological space X, we want to use the
data to construct a simplicial complex, which is a triangulation or close to a triangulation
of the underlying space X, or a space homotopic to X. If we can find such a simplicial
complex, then it will give us the simplicial homology of X, which we are interested in.
There has been done a lot of study on constructing simplicial complexes that are home-
omorphic to a topological space X. One well known example is the Delaunay complex.
The Delaunay complex method makes a relative small simplicial complex, and in many
cases it becomes homeomorphic to the given space X when the resolution is fine enough.
In our case we only need a simplicial complex homotopy equivalent to X. This gives us
more freedom since a homeomorphic equivalence is more strict than a homotopy equiva-
lence; moreover, homeomorphic equivalence implies homotopy equivalence. On the other
hand, we are not given the topological space X that we want to approximate. We are
only given a (discrete) finite sample. When working with a discrete sample, construc-
tions like the Delaunay complex becomes useless. In this section we will introduce some
methods for building simplicial complexes that makes sense when dealing with discrete
samples from a topological space.

One of the most theoretically backed up counstructions for creating simplicial complexes
is the Cech complex. The Cech complex method constructs abstract simplicial complexes
by taking the nerve of the covers. Before we can define the nerve of a cover, we need to
define an abstract simplicial complex.

3.2 Abstract simplicial complex

Note. Let S be a set, then the power set of S is given by P(S) = {A|A C S}.

Definition 23. Abstract simplicial complex
Let V be a set, and let ¥ be a family of subsets of V', i.e. ¥ C P(V). Then the pair
(V,X) is an abstract simplicial complex iff

1. o # 0,

2. o is a finite set, and
3.7eXVrCo

for all o € ¥.  Moreover, (V,X) is called a finite abstract simplicial complex if |V] is
finite.
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There is a close relation between abstract simplicial complexes, for which the nerve
is an example, and simplicial complexes. An abstract simplicial complex can in many
cases be interpreted as a simplicial complex; one such case is when it is a finite abstract
simplicial complex. To make the relation more clear, we will just state some definitions
and show a few results.

Definition 24. Vertex scheme
Let N be a simplicial complex, let V' = Ugenvert(o), and let ¥ = {vert(o)} .. Then
(V,X) is an abstract simplicial complex. Moreover, the set 3 is the vertex scheme of N.

Note. The dimension of a simplicial complex N is given by sup {|vert(c)| | o € N}, i.e.
the order of the largest simplex in N.

Note. The dimension of an abstract simplicial complex (V,X) is given by sup {|o|} cx,
i.e. the order of the largest simplex in (V,X).

Definition 25. Geometric realization

Let (V,X) be an abstract simplicial complex, and let K be a simplicial complex. Then
K is a geometric realization of (V,X) if ¥ is isomorphic to the vertex scheme of K.
Moreover, the vertex scheme K is unique up to a linear isomorphism.

Proposition 3.1. Let (V,X) be a finite abstract simplicial complex. Pick a bijection
¢ : V. — [l,...,N] to give V a total order, and let c(o) be the conver hull of
{eswy | v € a}. Then the space given by |(V,X)| = Uyex c(0) is a geometric realization
of (V,3)).

Note. Let ¢1 and ¢ be two bijections giving V' an order, and let |(V,X)|s, and |(V,X)|4,
be the corresponding geometric realizations. Then |(V,X)|s, and |(V,X)|4, are homo-
topy equivalent.

Proposition 3.2. Every finite abstract simplicial complex has a geometric realization.

Theorem 3.3. Let (V,X) be a finite abstract simplicial complex of dimension k. Then
(V,X) has a geometric realization in RZ*+1,

Since there is no difference between simplicial complexes and abstract simplicial com-
plexes when they are finite, we will feel free to mix their names and notation. We are
also only going to consider the case where the data is embedded in a metric space.

3.3 The nerve of a cover

Now that we have defined an abstract simplicial complex, we can define the nerve of a
cover.

Definition 26. Nerve of a cover N (U)

Let X be a topological space, and let ¢ = {Ua},c4 be cover of X. Then the nerve of
U is the abstract simplicial complex N (U) = (4,%), where o = {ap,...,a,} € ¥ iff
Uny N+ N Uy, # 0.
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Not all covers are fitted to create simplicial complexes by applying the nerve. How-
ever, a family of suitable covers is the family of good covers.

Definition 27. Good cover
Let U = {Uq} e 4 be an open cover of some topological space X. Then U is a good cover
of X if U is locally finite and mﬁeB Up is empty or contractible V B C A.

Note. A good cover is also called a Cech cover.

These covers have the essential property that under certain conditions the geometric
realization of the nerve is homotopy equivalent to the space itself.

Lemma 3.4. The nerve lemma
Let U be a good cover of some paracompact topological space X. Then the geometric
realization of N'(U) is homotopy equivalent to X.

The nerve lemma (Lemma gives the following corollary.

Corollary. Let U be a good cover of some paracompact topological space X. Then the
abstract simplicial complex N'(U) has a geometric realization.

We will not define paracompactness, but state the fact that topological spaces in
Fuclidean space are paracompact; moreover, every metric space is paracompact. The
nerve lemma (Lemma (3.4) and the following theorem (Theorem [3.5) makes the nerve a
useful tool.

Theorem 3.5. Let M be a compact Riemannian manifold. Then there 3 a positive e € R
s.t. N(Be(M)) is homotopic to M ¥ positive € < e. Moreover, ¥ positive € < e there 3 a
finite subset V of M s.t. N(B.(V)) is homotopic to M.

3.4 Cech - and Vietoris-Rips complex

As we mentioned, the nerve is an important tool; especially when used on covers consist-
ing of epsilon balls. We will therefor define the Cech complex as follows.

Definition 28. Cech complex - C/(X, ¢)
Let (X,d) be a metric space, let € € R be positive, and let U = {B(x,¢€)},.x. Then the
Cech complex with parameter € of X is the nerve of I, and will be denoted by C'(X,€).

Since we are working in a metric space, the nerve lemma (Lemman gives us that the
Cech complex is homotopic to the union of the balls. Unfortunately, the Cech complex
is inefficient when doing calculations. There are mainly three reasons for this.

1. It is cumbersome to check if intersections are empty.
2. A lot of storage space is needed.

3. It produces large simplicial complexes with high dimensional simplices.
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A solution to the first and second problem is the Vietoris-Rips complex.

Definition 29. Vietoris-Rips complex - VR(X ¢)

Let (X, d) be a metric space, and let € € R be positive. Then the Vietoris-Rips complex
VR(X,€) of X attached to the parameter € is the abstract simplicial complex given by
(X,Y), where {xo,... 2} € X iff d(zj,x;) <eVi,jst. 0<14,5<k.

A Vietoris-Rips complex is somewhat less detailed, but it does only need the distances
between each pair of data points to characterize the complex. However, it is more difficult
to get an understanding of the homotopy type of a Vietoris-Rips complex. On the other
hand, the Vietoris-Rips complex will give the same results as Cech complex when using
persistent homology, which we are going to use anyway. The key reason for why they
give the same persistent homology is the following property.

Proposition 3.6. Let (X,d) be a metric space, and let € € R be positive. Then

C(X,e) < VR(X, 2¢) < C(X, 2).

How the Vietoris-Rips complex differs from the Cech complex is illustrated in Figure
The Vietoris-Rips complex is computationally more friendly than the Cech complex,

VR(X,€) C(X,e)

Figure 5: Illustrates the similarities between the Cech complex and the Vietoris-Rips
complex.

but it is still inefficient. This is mostly because of the large vertex set we get with the
Cech and Vietoris-Rips complexes.
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3.5 Voronoi diagram

A solution to the large vertex set problem, which has been used to study subspaces of
Euclidean space, is the Voronoi diagram (Voronoi decomposition). One way of reducing
the vertex set is to only use a subset of the data as the vertex set. We call these points
for landmark points.

Note. A landmark point set of X is simply a subset of X.

Notation. The metric space X with L as the landmark point set will be denoted by
(X,L).

One common known way of dividing a space into cells, with each cell corresponding
to a landmark point, is the Voronoi diagram (Voronoi decomposition).

Definition 30. Voronoi cell
Let (X, d) be a metric space, and let £ be a subset of X. Then the Voronoi cells {V)}rer
of X with £ as the landmark point set are given by V) = {x € X|d(z,\) < d(z,\') VX € L}.

Definition 31. Voronoi diagram

Let (X,d) be a metric space, and let £ be a subset of X. Then the Voronoi diagram of
(X, L) is the cover U of X given by U = {V)} ¢, where {V)}\er are the Voronoi cells
of (X, L).

This gives a cover of the space. By taking the nerve of a Voronoi diagram, we get
what is called the Delaunay complex.

Definition 32. Delaunay complex
Let (X, d) be a metric space, let £ be a subset of X, and let U be the Voronoi diagram
of (X,L£). Then the Delaunay complex Del(X, £) of (X, £) is the nerve of U.

The complex Del(X, £) carries a great deal of information about the topology of X
and may even be homeomorphic to X if £ is sampled sufficiently fine. Unfortunately,
it is not very useful in the case of finite data sets unless we have an integer valued
metric or something similar. In the case of finite sets data sets in Euclidean space with
the usual metric, the Delaunay complex will most likely only consist of the O-simplices
corresponding to the landmark points of X. There will only be a 1-simplex if there
exists a point s.t. the distances to the two closest landmark points are equally long.
Using landmark points is a very efficient way of reducing the vertex set. However, the
Delaunay complex is too strict for our use. An example of a Voronoi diagram of some
sampled data, is given in Example 3.7}

Example 3.7. Let X = [0,1]2 C R?, let S C X be a sample consisting of 10000 randomly
selected points, and let L C S be a set consisting of 20 landmark points. Then the Voronoi
diagram of (S, L) is as shown in Figure 6}
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Figure 6: Refer to Examplefor details. Voronoi diagram of some sampled data. Each
landmark point is marked by a cross.

3.6 Witnesses

We want to add some slack to the conditions of the Delaunay complex such that we get
a more interesting complex. There are multiple ways of doing this. To make the next
complexes seem more similar, and to shorten the notation we introduce what we call a
witness for a p-simplex.

We allow £ to be infinite, even though £ will be finite when doing computations. When
L is finite, these abstract simplicial complexes will become simplicial complexes. The
motivation for allowing £ to be infinite is to be able to state the (strong) version of the
weak witness theorem (Theorem , where £ may be infinite. Moreover, allowing £ to
be infinite makes it possible to investigate and compare with cases where £ is infinite.

Definition 33. Strong witness for an abstract p-simplex

Let (X,d) be a metric space, let £ be a subset of X, and let o = {ly,...,l,} C L be
an abstract p-simplex. Then z € X is a strong witness for o iff d(l;,z) < d(I',z) for
i=0,...,pand VI € L.

Definition 34. Weak witness for an abstract p-simplex

Let (X,d) be a metric space, let £ be a subset of X, and let 0 = {lp,...,l,} C L be
an abstract p-simplex. Then z € X is a weak witness for o iff d(l;,xz) < d(I',z) for
i=0,...,pand VI' € L —{lp,...,1l,}.

Moreover, a strong witness can also be written in terms of weak witnesses.

Definition 35. Strong witness for an abstract p-simplex (alternative)

Let (X, d) be a metric space, let £ be a subset of X, and let ¢ = {lp,...,l,} C £ be an
abstract p-simplex. Then x € X is a strong witness for ¢ iff x is a weak witness for o
and d(x,lp) =d(z, 1) = -+ = d(z,1,).
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Definition 36. € strong witness for an abstract p-simplex

Let (X,d) be a metric space, let £ be a subset of X, ¢ € R be positive, and let o =
{lo,...,l,} € L be an abstract p-simplex. Then z € X is a € strong witness for o iff
d(li,z) <d(l',z)+eVi=0,....,pand VI € L.

Definition 37. ¢ weak witness for an abstract p-simplex

Let (X,d) be a metric space, let £ be a subset of X, ¢ € R be positive, and let o =
{lo,...,l} € L be an abstract p-simplex. Then z € X is a € weak witness for o iff
d(li,z) <d(l',z)+eVi=0,....,pand V' € L —{lp,...,1lp}.

3.7 Witness complexes

We will now use these witness definitions to construct some complexes. As mentioned,
the Delaunay complex has some very nice properties as a model of a topological space X,
but it is insufficient when we are only given a discrete set of X. It is therefore desirable
to design some new variations of the Delaunay complex, which approximates Del(X, £)
and makes sense when dealing with discrete data sets Z C X.

Let us first reface the Delaunay complex with the use of witnesses.

Definition 38. Strong witness complex (Delaunay complex) - W#(X, L)

Let (X, d) be a metric space, and let £ be a subset of X. Then the strong witness complex
W#(X, L) is the abstract simplicial complex (£,%), where o = {ly,...,l,} € X iff there
3 a strong witness for o.

There are two well studied methods for slacking the conditions of the strong witness
complex (Delaunay complex).

1. By using a tolerance parameter.
2. By using weak witnesses.

These two methods can also be combined, which results in what we call an € weak witness
complex. The first method by itself gives us what we call an € strong witness complex.

Definition 39. € strong witness complex - W*(X, L, ¢)
Let (X,d) be a metric space, £ be a subset of X, and let € € R be positive. Then the
e strong witness complex W*(X, L, €) is the abstract simplicial complex (£,3), where
o={l,...,lp} € X iff there 3 an € strong witness for o.

Definition 40. Weak witness complex - W* (X, £)

Let (X, d) be a metric space, and let £ be a subset of X. Then the weak witness complex
W*(X, L) is the abstract simplicial complex (£,%), where o = {ly,...,l,} € ¥ iff there
J a weak witness for o and a weak witness - for each subset 7 of o.

The weak witness complex is also known as the strict witness complex and as the
Martinetz-Schulten complex M S, (X, £). This second method, which gives the weak



20 3 SIMPLICIAL COMPLEXES

witness complex, may seem more unmotivated than the first, which gave us the € strong
witness complex. Even though it may seem unmotivated, it has a close connection to
the strong witness complex (Delaunay complex), see [7]. One of the results from Vin de
Silva’s work[7] is the following theorem.

Theorem 3.8. Weak witness theorem
Let L be a subset of R™, and let o = {ly,...,l,} be a p-simplex with vertices in L. Then
o has a strong witness iff there 3 a weak witness x € R™ for each subset T of 0.

Let X = R", and let £ be a subset of X, then this theorem gives that W*(X, L) =
W#(X, L). This does also hold for other spaces than R", but it does not hold in general.
Even though it does not hold for all spaces, it gives us a connection between the strong
witness complex (Delaunay complex) and the weak witness complex. When we combine
the methods of using a tolerance parameter and weak witnesses, we get the € weak witness
complex.

Definition 41. e weak witness complex - W (X, L, ¢)

Let (X, d) be a metric space, let £ be a subset of X, and let € € R be positive. Then the
e weak witness complex W™ (X, L, €) is the abstract simplicial complex (£,%), where
o={l,...,lp,} € X iff there 3 an € weak witness for 0 and an e weak witness z, for each
subset 7 of 0.

There is also a theorem connecting the e weak witness complex with the e strong
witness complex, see [7]. Figure [J] illustrates the weak witness complex construction
and the € weak witness complex construction. Moreover, we can make “Vietoris-Rips”
versions as we did with the Cech complex.

Definition 42. Wi (X, L, €)

Let (X,d) be a metric space, let £ be a subset of X, and let ¢ € R be positive.
Then the complex Wyg (X, L, €) is the abstract simplicial complex (£,%), where
o={lp,...,lp} € X iff there 3 an € strong witness x; ; for each 1-subsimplex {l;,1;} of
o.

The Vietoris-Rips version of the weak witness complex Wygw (X, £) is also known as
the Martinetz-Schulten complex M S (X, L).

Definition 43. W (X, L)

Let (X, d) be a metric space, and let £ be a subset of X. Then the complex Wi, (X, £)
is the abstract simplicial complex (£,X), where o = {ly,...,l,} € ¥ iff there 3 a weak
witness x; j for each 1-subsimplex {l;,1;} of o.

Definition 44. Wi (X, L, €)

Let (X,d) be a metric space, let £ be a subset of X, and let ¢ € R be positive.
Then the complex Wiz (X, L, €) is the abstract simplicial complex (£,%), where
o={lp,...,lp,} € X iff there 3 an € weak witness x; ; for each 1-subsimplex {l;,[;} of
0.
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A natural question about the Vietoris-Rips versions is: When do they give the same
persistent homology as their non-VR versions? I do not have the answers to this, but it
is an interesting question.

To get an overview of the validity of the strong witness complex (Delaunay complex),
weak witness complex, € strong witness complex, and the ¢ weak witness complex as
methods on a discrete data set, see Figure[fland Figure[§] An example showing simplicial
complexes constructed by the different witness complex constructions is given in Example

3.9

Weak
Nerve witness
X M Del(X, £) = WX, £) D2, ppre (X, L)
W*(Z, L) W (Z, L)

Figure 7: This gives an overview of the validity of the strong witness complex and the
weak witness complex. In this diagram X is a topological space, Z is a discrete sample
from X, and £ C Z is the landmark point set. The solid arrows indicate plausible
equality while the dashed arrows indicate most likely not equal.

€ weak

Nerve witness
X B Del(X, Ly €) = WX, £, €) O e (X, £ €)
W*(Z, L, e) W*(Z, L, e)

Figure 8: This gives an overview of the validity of the e strong witness complex and
the € weak witness complex. In this diagram X is a topological space, Z is a discrete
sample from X, and £ C Z is the landmark point set. The solid arrows indicate plausible
equality. For the € weak witness theorem see [7].
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o8
i

o

Figure 9: Tllustrates the weak witness complex and the € weak witness complex. The
radius of the balls around the non-landmark points are dependent on the distance to the
nearby landmark points. Each of the balls on the left side, i.e. the smallest ones, have
its radius given by the distance to its closest landmark point. Note that each radius
increases by € in the illustration of the € weak witness complex, i.e. in the lower figure.
The radius of the balls second to the left depends on the distance to their second closet
landmark point; the radius of the other balls are given in the same manner. When we
build a witness complex, i.e. a complex that uses witnesses, the landmark points may
also be witnesses. However, we omit drawing balls around the landmark points since
those balls would have made the figures less readable and in this illustration we get the
same results without using the landmark points as witnesses.
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Example 3.9. Let X be the annulus, let S C X be a sample consisting of 1000 randomly
selected points from X, and let L be the landmark point set as shown in Figure [10
Then the results from applying the different witness complex constructions, including the
Delaunay construction on (X, L), are shown in Figure ,

(a) X (b) Voronoi diagram

Figure 10: Refer to Example for details. Figure shows the space X while Figure
shows the Voronoi diagram, in which the landmark points are marked.

(a) DEL(X, £) (b) W*(X, L, e€) () W¥(X, L) (d) W¥(X, L, )

Figure 11: Refer to Example for details. Results from applying various complex
construction methods on the space shown in Figure [10a] with landmark points £ as
shown in Figure

3.8 CDT complexes

The combinatorial Delaunay triangulation (CDT) modifies our weak witness complex and
the Vietoris-Rips variant W/, (X, £) of the weak witness complex. Instead of just giving
some slack, this method creates a new metric. The metric is defined by first creating a
weighted graph; thereafter, the metric value on a pair of points is defined as the shortest
path between the two points.
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Definition 45. CDTY and CDTyy

Let (X, d) be a metric space, let £ a subset of X, and let k& € R be positive. Furthermore,
let (V, E,W) form a weighted graph, where V' = X is the set of vertices, E is the set of
edges, and W : (z,y) — d(x,y) is the function giving the weight between two vertices
that share an edge. The set of edges is constructed by one of the two following methods:

Method 1: Let £k € N. Then (z,y) € E if x is one of the k closest neighbours of
y and y is one of the k closest neighbours of .
Method 2: Let k € R. Then (z,y) € E if d(x,y) < k.

Let dy : X x X — R give the shortest path between two connected vertices. Moreover, let
dy(x,y) = oo for two disconnected vertices « and y. Then the combinatorial Delaunay

triangulations are given by
CDTY(X, L, k) =W*((X,dy), L)
and
CDTyR(X, L, k) = Wyr((X, dg), £).

Figure [[2 and Figure [13] illustrates how the combinatorial Delaunay triangulation
construction works. The combinatorial Delaunay triangulation is computationally effi-
cient; moreover, the method has greater tolerance of nonlinearity and curvature than the
other approaches that we have discussed, see [5] for results of comparison. An example

(V.E, W) CDT™(X, £,k)

SRRSO
g e A

Figure 12: Illustration of how the combinatorial Delaunay triangulation construction
works with method 1.

of when the CDT complex constructions does a good job is given in Example [3.10]

Example 3.10. Let X be the space shown in Figure[T]d, let S C X be a sample consisting
of 300 points, and let L be the landmark point set as shown in Figure[Ill Then the results
from applying CDTY on (X, L) with k = 0.7 is given in Figure .
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(V,E,W) CDTY(X, £,k)
- W*(X,dg), L)
P, T

ﬁl W*((X,dg), L) A
m W¥((X,dg), L) A

Figure 13: Mlustration of how the combinatorial Delaunay triangulation construction
works with method 2.
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(a) X (b) Voronoi diagram

Figure 14: Refer to Example for details. Figure shows X while Figure shows
the Voronoi diagram of .S, in which the landmark points are marked.

Figure 15: Refer to Example for details. Results from applying CDTY on the space
shown in Figure
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3.9 Choosing landmark points

The methods we have introduced uses a set of landmark points to construct the sim-
plices. The landmark point set is usually not given, and different landmark sets may give
different results. Hence, we need some algorithm for selecting a landmark point set.

When we are selecting a landmark point set, we want the set to have the following
properties.

1. Be well-separated.

2. Have more points where the data is dense or has a higher curvature.
There are two commonly used approaches for picking landmark points.

1. By random selection.

2. By the maxmin algorithm.

The maxmin algorithm is given in Algorithm [I} Both of them have pros and cons. The

Algorithm 1 Maxmin

Require: A metric space (X, d), and a number M of landmark points to pick.
Ensure: A set consisting of M landmark points.

Randomly pick an element [y from X;

Let £ = {lo};

while |£| < M do
Pick an element !’ in X which maximizes the function z — min {d(z,1)},c;
Let £L=LU{l'};

end while

return Z;

random selection may not give a well-separation; maxmin gives a well-separation, but it
has a tendency to pick more extreme points, which are placed on the verge of the data
set, and not so many points from where the data is dense. Moreover, the algorithmic
process makes the theoretical analysis of the maxmin method more difficult.

An example of the random selection and the maxmin algorithm applied on a 2-
dimensional random data set is given in Example [3.11}

Example 3.11. Let X be some random data set in R? consisting of 200 points. Then
the results from applying random selection and the mazmin algorithm on X are shown

in Figure [16]

Another method for picking landmark points, which I suggest, consists of using
Voronoi decompositions. The algorithm is given in Algorithm This method tends
to give landmark points more evenly spread than the random selection method, and it
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Figure 16: Refer to Example for details. The circles represent data points while the
disks represent landmark points. The result from random selection is shown in Figure
164] and the result from the maxmin algorithm is shown in Figure [I6b]

Algorithm 2 Voronoi landmarks(M?n)

Require: A finite metric space (X,d) with n elements, and a number M of landmark
points to pick.

Ensure: A set consisting of M landmark points.

Randomly pick an element [y from X;
Let £ = {lo};
while |£| < M do
Let {Vi},c, be the Voronoi diagram of X with £ as landmark points;
Pick al € L s.t. |[Vi| > |V for al I € L;
Randomly pick an element x € V; s.t. x #£ [;
Let £L=LU{z};
end while
return L;

tends to select more landmark points in dense regions compared to the maxmin method.
In Example we give an example where the Voronoi landmark algorithm is more
suited than the maxmin method; in Example we give an example where it is more
suited than the random selection method.

Example 3.12. Let X be the space shown in Figure[I7. If we use the mazmin method for
selecting landmark points on X and do not use enough landmark points, then a typical
resulting set of landmark points is as shown in Figure [18d. The landmark point set
shown in Figure [18d) consists of 25 points. With the same number of landmark points,
the Voronoi landmark selection algorithm tends to give a result as shown in Figure[180 If
we increase the number of landmark points, then the maxmin method will eventually also
select enough landmark points on the circle in the center. The tests done on our space X
showed that to get enough points in the center, we needed about 35 landmark points with
the mazmin method while we needed only 25 with the Voronoi landmark method.
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Figure 17: Refer to Example for details. A space used as input in Example .

(a)

Figure 18: Refer to Example for details. Voronoi diagrams of the space shown in
Figure The Voronoi diagram in Figure have landmark points selected by the
maxmin method. Likewise, the Voronoi diagram in Figure have landmark points
selected by the Voronoi landmark selection method. Each Voronoi cell has a random
assigned color, and each landmark point is marked by a cross.
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Example 3.13. Let X be the space shown in Figure [I9 Let the complex construction
method be the € strong witness complex method with some fized €. Then o typical sequence
of simplicial complexes created with 5,10, ...,50 landmark points selected by random
selection is shown in Figure [200 A typical sequence obtained with Voronoi landmark
selection is shown in Figure |21

Figure 19: Refer to Example for details. A space used as input in Example .

ittt

Figure 20: Refer to Example for details. Simplicial complexes constructed with
landmark point sets obtained by random selection. Note that each vertex has been
assigned a random color, and that the size of each vertex is determined by the number
of points in the corresponding Voronoi cell, i.e. large vertices have Voronoi cells which
contains many points.

@  (b) () (d) (e) (f) () (b) (1) ()

Figure 21: Refer to Example for details. Simplicial complexes constructed with
landmark point sets obtained by the Voronoi landmark algorithm. Note that each vertex
has been assigned a random color, and that the size of each vertex is determined by the
number of points in the corresponding Voronoi cell, i.e. large vertices have Voronoi cells
which contains many points.
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One downside with the Voronoi landmark algorithm compared to maxmin and ran-
dom selection is that it is more computationally expensive. The Voronoi landmark algo-
rithm consists of O(M?n) operations, where M is the number of landmark points and n
is the number of points in the sample, while the maxmin method may be implemented
with O(Mn) operations. The fastest of them is the random selection method, which has
O(M) operations. However, in practice we often create a series of simplicial complexes
by increasing some tolerance parameter while keeping the landmark point set fixed. This
allows us to use the same landmark point set for constructing multiple simplicial com-
plexes. A good algorithm for selecting landmark points makes it possible to get away with
selecting fewer landmark points, which then greatly reduces the number of operations
needed for calculating each simplicial complex.



31

4 Persistent homology

In this section we will introduce persistent homology. Resources have been gathered from

3], [18] and [26).

4.1 Motivation

Homology may be used to retrieve important quantitative information from a data set.
One example, where we use simplicial homology on a complex derived from a data set,

is given in Example

Example 4.1. Let X C R? be a space consisting of n elements {xi};,, where each
element corresponds to a sensor. Each sensor can detect objects in R? that are closer
than a distance €. Furthermore, let U; = B(x;,€). Then U = {U;};, gives a cover of
the space observed by our sensors. By computing the homology of the simplicial complex
given by the nerve of U, we get the Betti numbers By and B1. Betti number [y tells us
how many clusters there are in our sensor network while By tells us how many “holes”

there are in the space observed by our sensors. As an example, the sensor network in
Figure |22 has five clusters and one hole.

Figure 22: Refer to Example for details. This figure illustrates a sensor network with
five clusters and one hole.

Homology extracts pretty coarse information, and may not be a sufficient tool when
comparing spaces. One example, where simplicial homology is insufficient, is given in

Example £.2]

Example 4.2. The homology on the two simplicial complezes shown in Figure [23 does
both give Betti numbers B =4, 1 =3, and B, =0 for p > 1.

When we create simplicial complexes, there is often a natural way of making a nested
sequence of subcomplexes Ky C --- C K,, = K, which we will call a filtered complex of
a simplicial complex K.
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(b)

Figure 23: Two simplicial complexes with identical Betti numbers.

Definition 46. Filtered complex
Let K* = {K i}?zl be a sequence of simplicial complexes. Then a K* is a filtered complex
of Kif)=K'CK!'C...C K" =K.

One example, where we create a filtered complex to distinguish two objects, is given
in Example [4.3]

Example 4.3. Let K and K be the simplicial complexes shown in Figure and Figure
. Create the filtered complezes K* and K* as shown in Figure |24 and Figure . By
calculating the Betti numbers for each subcomplex, we can get the results shown in Figure
. With these results we can see a significant difference between K and K.

.0 o U |
L T N L\_d @ R
(a) (b) (c) (d) (e) () (g)

Figure 24: Refer to Example for details. This figure illustrates a filtered complex
constructed from the simplicial complex in Figure

The method of calculating the Betti numbers for each subcomplex in the filtered
complex may also be too coarse. One example, where this is the case, is given in Example

E4

Example 4.4. Let K and L be as shown in Figure and Figure 270 A natural way
of constructing filtered complexes from these is shown in Figure and Figure [29. With
these filtered complexes, the method consisting of calculating the Betti numbers for each
subcomplex will not give any difference.
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. .00 loall
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(a) (b) ()

Figure 25: Refer to Example for details. This figure illustrates a filtered complex
constructed from the simplicial complex in Figure 23D

4 A (o) %) %)
34 o
Bo 2} © o e 2 e o o
1__. (@) 61 1
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Figure 26: Refer to Example for details. These figures show the Betti numbers of two
different filtered complexes. The red dots correspond to the filtered complex in Figure
while the blue dots correspond to the filtered complex in Figure Overlapping results
give purple dots.

(a) (b)

Figure 27: Refer to Example for details.
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A

(a) (d)

Figure 28: Refer to Example for details. This figure illustrates a filtered complex
constructed from the simplicial complex in Figure

Figure 29: Refer to Example for details. This figure illustrates a filtered complex
constructed from the simplicial complex in Figure 27h]

Figure 30: Barcodes for the filtered complexes shown in Figure [28 and Figure
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The information, we get by computing the Betti numbers for each of the complexes
in a filtered complex, may be useful. However, this method does not take into account
the fact that the simplicial complexes are nested. By using such information we may
construct barcodes, as shown in Figure 30a] and Figure 30D} from the filtered complexes

in Example [£.4]

In this section we are going to discuss how we can make such barcodes. Speaking freely,
each bar in the barcode represents a generator in the homology group of the filtered
complex. Each bar starts at the time where the corresponding generator arises, and
stops when the generator gets zeroed out. If a generator does not get zeroed out, then
the corresponding barcode is endless. This kind of results have shown to be useful when
dealing with sampled data from some space X. It is difficult to produce a simplicial
complex, which is a good representation of X, from the sampled data. In Section [3| we
introduced several methods for constructing simplicial complexes, which naturally give
filtered complexes by increasing some epsilon parameter. By creating such filtered com-
plexes, the artifacts tends to give short bars while the real properties tend to give longer
bars. One example, where this is the case, is given in Example [£.5]

Example 4.5. Let X be an annulus, and let S be a sample consisting of 200 points from
X. Let K* be a filtered complex obtained by using the € weak witness complex construction
with 35 landmark points and varying epsilon. Then by applying persistent homology on
K*, we get the barcodes shown in Figure |31].

Figure 31: Refer to Example for details. Barcodes from applying persistent homology
on a filtered complex constructed from some sampled data from an annulus.



36 4 PERSISTENT HOMOLOGY

4.2 Algebra

Before we define persistent homology and do calculations, we need some definitions and
propositions from algebra.

4.2.1 Graded rings and modules

Definition 47. Graded Ring

A ring R is called a graded ring, more precisely Z-graded, if there exists a family of sub-
groups {R,},c; of Rst. R = ®,R, as abelian groups, and R,R,, € R, m. Moreover,
a non-zero element x € R, is called a homogeneous element of R of degree n.

Definition 48. Graded R-module

Let R be a graded ring, and let M be an R-module. Then M is a graded R-module if
there 3 a family of subgroups {My}, ., of M s.t. M = ®,M, (as abelian groups), and
R, My, € My iy, for all n,m. Moreover, if u € M — {0} and v = w;; + -+ + w;,
where u;; € R;; — {0} and i; # iy when j # j', then w; ..., u; are called the
homogeneous components of w.

Proposition 4.6. Let R be a graded ring, let M be a graded R-module, and let N be a
graded submodule of M. Then M /N is a graded R-module, where

(M/N), = (M,, + N)/N = {m + N|m € M,}.

Definition 49. Graded R-homomorphism

Let R be a graded ring, let M and N be graded R-modules, and let f : M — N be an
R-homomorphism. Then f is a graded R-homomorphism of degree d if f(M;) C Npiq
for all n.

Definition 50. Graded module isomorphism

Let R be a graded ring, let M and N be two graded R-modules, and let f: M — N be
a graded R-homomorphism. Then f is a graded R-isomorphism if there 3 an inverse of
f, and if f is of degree zero.

Note. Let M be a graded R-module, and let n € Z. Then we can define a new graded
R-module M(n) by twisting the grading on M by n, i.e. M(n)x = M, 1k.

4.2.2 Representing homomorphisms as matrices

Note that when we have an F[t]-homomorphism h : M — N between two finitely gen-
erated graded F[t]-modules M and N, with ordered bases B = [b;]"; and B’ = [b}]"_,,
we can represent h as a matrix A € F[t]"*"™. Moreover, the matrix A = (a;;) is given
by ai; = m o h(b;) for j = 1,...,m and i = 1,...,n, where 7; is the projection map
it Y opeq Ckb) — ¢, where ¢ € F[t] for k=1,...,n.
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Proposition 4.7. Let h : M — N be a graded F[t]-homomorphism of degree zero, and
let A = (as;) € F[t]"*™ be a matriz representing h with respect to to a homogeneous basis
(les]7qs [€]7q), deee A (M, [e5]72) — (N, [€iliy). Then the following equation holds.

dege; + dega;; = dege;

Notation. Let M and N be graded F[t]-modules, with bases M and N'. If A: (M, M) —
(N, N) is a matriz representation of some graded F[t]-homomorphism with respect to the
bases M and N, then (M, M) will be called the domain of A, and (N,N') will be called
the codomain of A. Furthermore, M will be called the domain basis of A, N will be called
the codomain basis of A, and (M, N') will be called the basis of A.

4.2.3 Column Operations

We will be using the following column operations. We will also talk about row opera-
tions, but we will not bother to define them since they are almost identical to the column
operations.

Note that we will use the short notation e;; for a matrix that has 1 as entity at po-
sition (i, 7) and zero as entity otherwise.

Column operations

Let A € F™™ be a matrix.

1. Switching two columns

Let A be the matrix after switching column ¢ and j, then A= AFE;;, where

Eij =1—e; —ej; +eji +eij.

Moreover, the inverse of E;; is given by Eigl = E;;.
2. Scaling a column .
Let A be the matrix after multiplying column i by o € F, then A = AL;(«), where

LZ<Oz) =1+ (a - 1)6”

Moreover, the inverse of L'(«) is given by L; *(a) = Li(a™!).

3. Adding a column times an element to another column )

Let A be the matrix after adding column 4 times o € F to column j, then A = AM;;(a),
where

Mij(O[) =1 + Qe .

Moreover, the inverse of M;;(«a) is given by M;;(a)™' = M;;(—a).

Note that the matrices E;j, L;(«), and M;; are change of basis matrices, i.e. they
change the basis of a matrix.
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Definition 51. Change of basis matrix
Let M be a graded F[t]-module, and let [e;];2; and [é;]7L; be two ordered bases for M.
Then each €; can be written as a unique linear combination of e;’s, say

m
& =Y pijei
i=1
for j =1,...,m, where p;; € F[t]. The m x m matrix

P = (pij) + (M, [&]721) — (M, [ei]iZ1)

is called change of basis matrix, or more precisely a matrix of transformation from [€;]
to [e;];.

m
J=1

Change of basis matrices may be used to change both the domain basis and the
codomain basis of a matrix representation. Let M and N be two graded F[t]-modules,
let M and M be two bases for M, let N and A be two bases for N, and let A : (M, M) —
(N, N') be some matrix representation of a graded F[t]-homomorphism. Furthermore, let
V : (M, M) — (M, M) be a change of basis matrix on M, and let U : (N, N) — (N, N)
be a change of basis matrix on N. Then we may use V to change the domain basis of A
and U to change the codomain basis of A as follows.

AV - (M, M) — (M, M)
UA: (M, M) — (N,N)
UAV : (M, M) — (N,N)
Notation. When doing column operations, we will use the following notations.
1. Switching column i and column j: C; < Cj.

2. Scaling a column by a € F: aCj.
3. Adding column i times a to column j: C; + aC;.

Example 4.8. Let A = (12), and let A be the result of doing the following column
operations.

a_ | 1?2 CreC [ 21 | 20 22 | Ga-Ch 20 .
- 35 5 3 5 6 5 1 =4
Then
A= AE12L2(2>M12(—1)
=GBHAHEDGETH
=GBHEDGT
=(3HE2)
=(29)
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In this example, the matriz (§ 2) is the change of basis matriz. Let this change of basis
matriz be called V, then A = AV . Moreover, since V = E12L2(2)Mi2(—1), the inverse
is given by My (—1)Ly (2) By = Mi2(1)La(0.5)Ep = (92 4).

Note. A change of basis matriz represents the identity map. Hence, it has degree zero.

4.2.4 Algorithm for Column reduction

Algorithm 3 Column reduction(n x m)

Require: A matrix M = (m;;) representing a graded F[t]-homomorphism of degree zero.
Ensure: The column echelon form of M.

1: p=1;

2: fori=1,...,n do

3 for j=p,...,mdo

4 if mij 75 0 then

5 Cp — Cj;

6: for //=p+1,...,mdo
7 Cjr = Cjr = 52 Cy;
8 end for

9: p=p-+1;

10: break;

11: end if

12: end for

13: end for

14: return M,

4.2.5 Smith normal form

In this section we introduce an algorithm for computing the Smith normal form of ma-
trices representing graded F[t]-homomorphisms.

Given a graded homomorphisms h : M — N of degree zero, where M and N are finitely
graded F[t]-modules with m and n generators respectively. Let A : (M, M) — (N,N)
be a matrix in F[¢t]"*™ representing h with respect to some ordered bases M and N. Fur-
thermore, let M = [e;]!", and N = [&;]7_; be homogeneous bases, and let A = (a;;).Since
h also has degree zero, property holds. Hence,

dege; + dega;; = dege;

for 0 <i<nand 0 <j <m. There are 4 steps in the computation of the Smith normal
form. .
Step 1: Sort [¢]", by decreasing degree, and let N/ denote the reordered basis. This
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is done by interchanging rows on A. Let P~! denote the corresponding change of basis
matrix P~ : N — N

Step 2: Sort [e;]!” by increasing degree, and let M denote the reordered basis. This
is done by interchanging columns on A. Let @ denote the corresponding change of basis
matrix Q : M — M. Let A: (M, M) — (N,N) be the matrix given by A = P~1AQ,
where P and @ are the change of basis matrices on N and M. Furthermore, let (a;;) = A.
Now that the domain and codomain bases are ordered, we have

deg Zlij < deg&ij/, 1.e. dij’dij/,
for1<j<j <mand0<i:<mn, and
deg&ij < deg&i/j, le. dij|di’j7 (1)

for 1 < j <mand 0 <i <14 <n. Hence, it is possible to use our column reduction
algorithm on A.

Step 3: Perform Column reduction. This gives us a new matrix A = AV, where V
is a change of basis matrix on M. Let (M, MV denote the domain of V. Then V :
(M, M") — (M, M), and A : (M, M") — (N,N). This new matrix A is on the

following form.

o O O O O

Moreover, since the column operations does not change the basis of the codomain N,
Equation |1 I still holds. Hence, it is possible to perform row reduction on A.

Step 4: Perform Row reduction. This gives us a new matrix A =UA = UAV, where
U is the change of basis matrix on N. Let (N, NU) be the domain of U. Then U :
(N,N) :— (N,NU), and A : (M, MY) — (N,N'V). The new matrix A will be on the

form
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where dy,...,d, € F[t] are the diagonal elements; moreover, they will have the following
property

dil|---|dy.

By letting U = UP~ and V = QV, we get that A = UAV, which then gives us a Smith
normal form representation of A.

4.3 Construction

We wish to define some homology on filtered complexes that takes into account that we
have inclusion maps between the subcomplexes. The homology we will introduce is called
persistent homology. The first step of this method this is to construct the chain complex.

In simplicial homology we already have a method for creating chain complexes from
simplicial complexes. Applying that method on the simplicial complexes in our filtered
complex K* = {Kp}zzl, gives us a sequence of chain complexes, but also induced inclu-
sion maps as follows.

O3 O3 03
Co(K%) = Ca(K') " - —— Cp(K™)
o 02 o))
C1(K%) —— Oy (K") " - " Cy(K™)
o1 o1 o1
Co(K0) —— Co(K") —— - —— Cy(K™)
o o do
0 0 0

We will call such a construction for a persistence complex.

Definition 52. Persistence complex
Let {Ci}i>0 be a sequence of chain complexes, and let {fZ}DO be a sequence of maps

fi:CL— O™ Then the sequence {Ci, fi}z.>0 is a persistence complex.

The structure of a persistence complex may be represented as the following diagram.
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a9 o3 93
f() fl fn—l
0 1
C2 02 . C’g
a3 0; 5
fO fl fn—l
0 1
Cl Cl A C{L
oy 0 or
fO fl fn—l
0 1
C() CO A 061
a3 a3 oy
0 0 0

A persistence complex {Ci, f }i>0 has a natural corresponding chain complex {C’p, 5p}p20,
where each element C’p is a graded F[t]-module. Given a persistence complex {Cf, ik } >0
our chain complex {C,, 3, }p>0 will be defined as follows. Let C), be the direct product

of the F-module components {Cg}po’ and give it a grading by letting (Cp)r = CI’f.
Since CF C C’;f/ for k < K/, we can define a map F[t] X C, — C,, given by (at,c) —
at(® ety ) = (0,ac,act,...) for ¢ = (%, c!,...) € C, and a € F, which then gives

C’p a graded F[t]-module structure. The boundary map o= {5p} - will be a graded
p

F[t]-homomorphism of degree zero, and is given by d,(c) = (89(c"),0p(c),...), where
c= (¢, ...) € Cp. Moreover,
Op 0 Dpr1(c) = (00030, 1(c),0) 00}, 1(c),...) = (0,0,...) =0

for c € ép+1 and Vp > 0. Hence, it gives us a boundary map on our chain complex.

Now that we have defined our chain complex, we can define the persistent homology
by taking the homology of our chain complex, i.e.

N ker O
Hy= =2 vp >0
im Op41

Note that ker 5p~is a graded F[t]-module, and that im d,1 is a graded F[t]-submodule of
ker 0p. Hence, H, is a graded F[t]-module Vp > 0.

3Note that we do not need the sequence of maps {ik}k>0 to be a sequence of inclusion maps, but
restricting them to be inclusion maps allows us to shorten the notation.
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When we are working with chain complexes, we will often refer to the standard ba-
sis of the chain complex. In simplicial homology the simplices in a simplicial complex
K induce a standard basis for each module Cy,(K) in the chain complex C,(K). Let
{Cg}k>07p>0 be the elements in our persistence complex, and for each kK > 0 and p > 0

let B]’; = {(b’;)i}igg be the standard basis for C’I’f. Note that B}’; - B{;H for £ > 0.

Let 775 be the inclusion map w;f : C’}’; — C’p. Then the standard bases for our graded
Ft]-modules {C}},>0 in Cy are given by

By = Jm(B, - B, ™)
k>0
for p > 0, where B}; =0 for k < 0.
To make this more clear, we will give the standard basis for the chain complex con-

structed from the filtered simplicial complex shown in Figure

Example 4.9. Let C, be the chain complex constructed from the filtered complex in
Figure[3. Then we will have the following collection of sets as basis:

e Cy:{(a,0,...),(b,0,...),(0,¢,0,...),(0,d,0,...)}
e C1:{(0,ab,0,...),(0,bc,0,...),(0,0,¢d,0,...),(0,0,ad,0,...),(0,0,0,ac,0,...)}

e C3:{0,0,0,0,abc,0,...),(0,0,0,0,0,acd,0,...}

Moreover,

Co = F[tla & F[t]b & Ft)tc & F[t|td ~F[t] © Ft] @ Ft]t © Flt]t

Cy1 = F[t]tab @ F[t)tbc @ F[t]t*cd @ Ft]t?ad @ Flt|t*ac  =F[t]t ® F[t]t ® F[t]t* @ F[t]t* @ F[t]t®
Cy = F[t]t*abe @ Ft]t°acd =F[t]t* @ Ft]t0

Note that we will shorten the notation by dropping the zeros, i.e. we will write ab
instead of (0, ab,0,...). Moreover, since we will only talk about boundary maps on and
homology of chain complexes derived from filtered complexes, we will use the following
notations:

o 0=0,

* Jp =0y,

e H, :f{p.
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4.4 Decomposition

The structure theorem, given for finitely generated graded modules over a PID, states
that a finitely generated graded module M over a graded PID D decomposes uniquely
into the form

n m D

M= (EBD(O%)> ® @m(%‘) :

i=1 j=1 "
where d; € D are homogeneous elements s.t. d;|d;+1 and «o;,7; € Z. Recall that D(n)
is given by (D(n))x = Dyyr. Since our graded modules are graded modules over the
graded polynomial ring F[t], where F is a field, the only ideals of our graded modules are
{(ti)}ZO' Hence, a graded F[t] module M decomposes uniquely into the form

Mg@_;lw(ai))@ D iy |

where o;0;,vi € Zfori=1,...,nand j =1,...,m; moreover, 3;|5;+1.

This structure theorem shows that a finitely generated graded F[t]-module can be
identified by two collections {a;};_; and {(8;,7;)}}2,. We will use a similar class to
represent our finitely generated graded F[t]-modules, namely the class consisting of finite
collections of P-intervals.

Definition 53. P-interval
A P-interval is an ordered pair (i,7) with 0 <i < j € Z>® =Z U {+0o0}.

Note. Note that a collection of P-intervals may have multiple equal entities.

This class can be associated to the set of finitely generated graded F[t]-modules by
a bijection @ : S — Q(S), where S = {(i1,71), .-+, (in,Jn)} is a collection of P-intervals
and Q(S) is a finitely generated graded F[t]-module. This is done by defining

oy - {10 13-

CED) (—i) otherwise,

and
Q(S) = P Qi ).
=1

Corollary. The correspondence S — Q(S) defines a bijection between the finite collec-
tions of P-intervals and the finitely generated graded F|[t]-modules.

One of the positive things with this representation is that it has an intuitive illustra-
tion as a barcode. The following figure, Figure illustrates how a graded module can
be represented as a barcode.

Example 4.10. The collection S = {(0,0), (1,2),(2,4), (0,3), (5,0), (1,2)} of P-intervals
gives the barcode in Figure [33

Note that the order of the lines in the barcode is unimportant.
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Figure 32: Illustration of how a graded module can be represented as a collection of
P-intervals.

Figure 33: Refer to Example for details. Barcode for the P-interval collection
S ={(0,00),(1,2),(2,4),(0,3), (5,00), (1,2)}.

4.5 Calculation

In this section we will show how the persistent homology of a filtered complex may be
calculated. We will start by showing a simple but computationally less efficient method.
Thereafter we will show how the method may be improved.

Let us recall what we want to achieve and what we are given. What we have is a
set of standard bases, one for each (), together with the boundary matrices M,, which
represent the boundary maps 0,. What we want is to calculate H, = ker M, /im M,
as a graded F[t]-module. We can determine Hy, if we have a basis {z;}7_, for ker M), and
a basis {b;};_; for im M1 s.t. (bj) C (24(;)) for j = 1,...,7 and for some 1-1 function
¢ :[1,7] — [1,s]. Let us assume ¢ is the injection map, i.e. ¢(i) =i, s.t. (b;) C (z;) for
t=1...r. Then we get that
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Let a; = deg 2,4 fori = 1,...,5 —r, let 3; = degb; — degz;, and let v; = degz; for
j=1,...,r. Then

He= (@FH@) ) & [P ()
. N (tPi)
=1 7j=1
Moreover, represented as a set of P-intervals we get

S = {(ay, +OO)}5;I U{ (v, + ﬁj)}§:1 :

There are multiple paths for finding such bases. If we have had a matrix M, also
representing 941, but with (Cpy1, Z,) instead of (Cpt1,Cp) as basis, where Z, is a basis
for ker M, = ker 0, then we could find suitable bases {b;};_, and {z;};_,, with the
property (b;) C (z;) for i =1,...,r, by computing the Smith normal form of M,;. Let
us call the Smith normal form of Mp—l-l for Mp+1 = Up+1Mp+1%+1. Then MPH can be
written as

U1 Ur Upy1 Um,
e
Z1 dy

|

|

|
_

Zp | dT‘ )

I
Zr+1, 0

I

I

1
_ |
Zs ! 0

where ([0;]7L;,[2i];_;) is the basis for Mp+1. The image of M11, i.e. imdpyq, is given
by the basis {d;z;}/_,, where {d;}/_, are the diagonal elements of M, ;. Hence, if we
let b; = d;Z;, then {b;};_, and {2;}]_, will be a suitable set of bases.

To be able to do this, we first need a map such as Mp+1 that is a matrix representation
of Op4+1 and has ker 0, as codomain. There are different approaches for constructing such
a map. Since im M,; C ker d,, we can change the codomain of M, by doing row
operations on M1, and then remove some rows s.t. the new codomain basis is a basis
for ker 0,. Note that this change of codomain basis can be described by two maps @
and D, where @ is a change of basis matrix and D is a map which delete rows. Hence,
we can construct Mp+1 by

Mpi1 = DQMp4y.

What we need is a method for finding some suitable maps @ and D s.t. DQ[e;]_,, where
lei]’; = Cp, is an ordered basis for ker J,. One way of doing this is to use a change of
basis matrix V' that reduce M), to a column echelon matrix M,V. Let s be the number
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of zero columns in M,V, then the last s elements of the domain basis C) = [v;]7, for V
give an ordered basis Z, for ker 9,. If we let D be the map deleting all the rows, except
the last s rows, then DV ~L[e;]"; = Z,. Moreover,

DV M, 1 : (Cpi1,Cpi1) — (ker 8y, Z,)

will be a matrix, with ker d, as codomain, representing dp41. Note that Dlxer 9, = Tp_l,
where T}, is the injection T}, : (ker 0p, Z,) — (Cp,C)). Hence, Dlimnr,,, = Ty Him My »
where

: Z1 Zs

v 0 - 0

Tp — VUn—s ‘ 0 e 0
Un—s+1 1 0

Up, l 0 1

We will therefore write T, pfl instead of D. Hence,
T, 'V Myt (Cpyr, Cppr) — (Ker 0y, 2Zp)

is a matrix, with ker 0, as codomain, representing J,+i. The following commutative
diagram gives an overview of how M, is constructed.

(ker 8p+}, Zp-‘rl) (ker 8{3, Zp) (ker 8p_}, Zp_l)
Tp+t1 Ty Tp—1
< <
(Cpt1, CXH) A (Cyp, CX) S (Cp-1, Cg‘zf—l)
Vp+1 V:D fol
Mpi1 My

(Cp+1,Cpt1)

4.5.1 Summary

Summing up our algorithm for calculating the persistent homology, we get the following
steps.

Step 1: Calculate the column echelon form M,V, for each p = 0,..., N, where N is
some number s.t. C, = 0 for p > N. This does also give us T}, for each p.

Step 2: Calculate M., = Tp_lv;;lMpH for each p = 0,..., N, by calculating the
inverse matrices and by doing the matrix multiplications.
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Step 3: For each p=0,..., N, reduce Mp-H to Smith normal form, this gives a matrix
with some nonzero diagonal elements {d?}_, and a codomain basis [2/]5_;, where r < s.
Then: For each p =0,..., N, H, is given by

s

~ Flt » )
H, = 26_91 (tdegl?)(— deg 27) @jg?rlF[t](— deg 27)

Moreover, the P-interval collections are given by

Sp = O {(deg 2, deg ¥ + degd?)} U {(deng,oo)}.
i=1 j=r+1

4.6 Improved algorithm

In this section we will introduce some shortcuts, and then use them in an example, where
we calculate the persistent homology of the filtered complex in Figure

Let us first look on how we can improve step 3. In step 3 we reduce Mp-l—l to Smith
normal form; this is computationally expensive, and it would be nice if we do not need
to do a full Smith normal form reduction. What we need from the Smith normal form is
the degree of the codomain basis elements, the degree of the diagonal elements, and the
knowledge of which pairs of diagonal elements and basis elements that share rows. The
following theorem states that we can get this information by just reducing the matrix to
column echelon form if we order the codomain basis decreasingly by degree before doing
the reduction.

Theorem 4.11. Let M be a matriz representing a graded F[t]-homomorphism, with
codomain basis &'y, s.t. M is in column echelon form and &), has a decreasing
order. Let M be the matriz after doing the row operations which makes M into a matriz
in normal form, and let [&]"_, be the codomain basis of M. Let p,...,p, be the pivot
elements of M, where py, which has row number ¢(1), is the first pivot element, pa, which
has row number ¢(2), is the second pivot element, etc. Furthermore, let dy,...,ds be the
non-zero diagonal elements ofM = (mij), where d; = my; for 1 <i<s. Then s=r and
pi =d; for 1 <i <r. Moreover, degéy;) = degé; for 1 <i <.

Proof. Let {ej}gnzl be the domain basis of M. Because [¢;]"_; is sorted, the degree of the
codomain elements é; are monotonically decreasing from the top row down. For each fixed
column j, the degree of e; is a constant c. By Proposition , degm(i,j) = ¢ — degé;.
Therefore, the degree of the elements in each column is monotonically increasing with
row. Hence, we may eliminate the non-zero elements below the pivot elements by using
row operations, which do not change the pivot elements or the degree of the codomain
basis elements. After doing this, we may place the matrix in diagonal form using only
row and column swaps. O
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Corollary. Let M, be a matriz in column echelon form that represents Oy with (Cy, [ej];-”:l)
as domain and (Zy_1,[é]]?_,) as codomain. If row i has a pivot element with degree d,
then it contributes (F[t]/t?)(— degé;) to the description of Hy_1; if the row does not have
a piwot element, it contributes F[t](— degé;). Fquivalently, we get (degé;, degé; +d) and

(deg é;,00) as P-intervals for Hy_1.

d/~tfo 0 0 0

cit —1]0 0 0 -

b 0 t |0 0

a0 0 t{0 0 ———

I
dega,
degb
degc,
degd

Let us now look at step 1. In this step we construct the matrices 7}, and V s.t.
T, 'V (Cp, Cp) — (Ker Dy, Z,),

where Z,, is some ordered basis for ker 0y, is the identity when restricted to ker d,. For
this sake we might as well use the change of basis matrix that we get from step 3 instead;
since the last s elements of the domain basis of this matrix will also give a basis for
ker 0,. Hence, if we compute the persistent homology for each p in ascending order, we
may skip step 1. Note that step 1 is trivial for p =0, i.e. My =0 and T0_1V*1 =1

a b | @ b as\Ib a b aE b at b
d c de c dijc d c d &

0 a,b 1Cad7ab7bc2| ad,cd 3| ac 4| abc 5| acd

Figure 34: A filtered complex with newly added simplices highlighted.

Example 4.12. In this ezample we calculate the persistent homology of the filtered com-
plex shown in Figure 34, We will do this by first calculating Hy, then Hy and so on.

Calculating Hy: The map Oqy 1s the zero map, hence My = 0; moreover, My is diagonal
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since it does not have any non-zero elements. The Smith normal form decomposition of
My can then be written as

My = IMyl,

where I is the identity matriz. The injection map Ty is also equal to I because ker 9y = Cj.
Hence,

My =Ty "Wy tMy = ITMy = M.

The matriz My = (mzlj) is known and given by milj = m;00y(e;), where m; is the projection
map T; : G161+ -+ apép — a; for 1 <i <4 and 1< 75 <5. The matriz M is given by

the same fashion, and the matrices becomes as follows.

rabe acd

ab be cd ad ac Ebriii?’”io

a0 o2 e || e 0

M, = b —t t 0 0 0 ed 0 3
ciO -1t 0 —t? adfo —3

dfo 0 —t —t 0 acf—t t2

Next, we want to reduce M1 into a matriz in column echelon form. This may be done as
follows.

N

rab be cd ad ac rab be ced ad ac

JE R - = - RlHR5 —

- — — =

a' 't 0 0 2 3 d'0 0 —t —t 0
l Ry < R3 l
M, = b=t t 0 0 0 ~ c' 0 -1 t 0 —¢
Cco -1t 0 —t? b —t t 0 0 0
d'0 0 —t —t 0 et 0 0 2
7N
red be ab ad ac led bc ab * ac
d—-t 0 0 -t 0 d—-t 0 0 0 0
G126 ¢t -1 0 0 Ca 16 ¢t -1 0 —t 2
b0 t —t 0 0 b0 t —t 0 0
afo 0o t t*2 afo 0o t >
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red be ab *

CamtC2l 1720 00 0 0
Cs — 1°Ca ¢t —1 0 0
bfo t —t —t? —t3

afo 0o t *

ed be ab zf 22

Cy —tCs SR
Cs —t*Cs 0 0
~ 0 0

0 O

0 O

51

Note that 2z} = ad —cd —t-bc —t - ab and 2} = ac — t> - bc — t* - ab. Let M be the
matriz obtained after ordering the codomain basis, and let Vi be the change of domain
basis matriz. Then the matrices M1 and Vi are given as follows.

Lab bc cd ad ac

d'0 0 —t -t 0

My = c'0 -1 t 0 —t
b i—t t 0 0 O

et 0 0 £

red be ab Z% zf

7ab7370770 1 —t —#2

Vi = bciO 1 0 —t —¢?
ed'1 0 0 —1 0

ad 0 0 0 1 0

ac' 0 0 0 0 1

Note. We do not need to calculate V. What we use to calculate Hy is the reduced column
echelon form Mﬂ/l, which we already have calculated. We use V1_1 to calculate Mo, but
we do not need to calculate V1 since we can calculate Vl_1 directly. Despite this, we will
calculate V1 anyway since it gives a good example of how a change of basis matriz is

constructed.

We may calculate V1 by taking the product of the column operation matrices.

Vi = Ei13M4(—1) (M24(—t)M25(—752)> (M34(—t)M35(752))

Vi

I
O O = O O
O O O = O
O O O O =
o = O O O
= o O O O

O O O O

O O O = O

O O = O O
o = O O

= o O O O

100 0 O 10
010 —t —t2 01
001 0 0 00
000 1 0 00
000 0 1 00

O O = O O

0
0

0
0

—t —t?

1
0

Now that we have our matriz in column echelon form, we can read of the pivot elements.

0
1
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d~t|0 0 0 0
MVi=| ¢/t 1[0 0 0
b O t —£]0 0
a0 0 t|0 0

This gives the pivot elements py = —t,pa = —1 and ps = —t, and by Corollary [£.6] we
get that

Flt](—degd) _ TF[t](— degb)

Hy = @ ® 0 @ F[t](— dega)
_ F)(=1) . Flg]
=0 ® 0 @ Ft].

Moreover, the collection of P-intervals becomes {(0,00),(0,1),(1,2)}, and the barcode
becomes as shown in Figure 39,

Figure 35: Barcode for dimension zero of the filtered complex in Figure .

Calculating Hi: In a similar fashion as we calculated Vi, we may calculate Vl_1 by
constructing the inverse column operation matrices, and then take the product of these.
Doing this gives us the following.

Vit = (Mas(t?) ™" Maa(—t) ") (Mos(—*) " Maa(—t)~") Mia(=1) "' By
Vit = (Mas(—t?) Mza(t)) (Mas(t*) Maa(t)) Mia(1)Enz

10000 10000 10010 00100
01000 010 ¢ ¢ 01000 01000
Vit=]l o001 ¢ 00100 00100 10000
00010 00010 00010 00010
0000 1 0000 1 00001 00001
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Taking the product of these matrices gives.

rab be ed ad ac

ed 00 1 1 0

be' 0 1 0 t ¢t2

vl = 1 2
1 ab;)1 0 0 ¢t t
2470 0 0 1 0

20 0 0 0 1

The matriz Ty : (ker 01, 21) — (C1,CY) is just the injection matriz, and the inverse T; !
1s equal to the transpose of T1. Moreover, the matrices T and T1_1 are giwen as follows.

21 22

e 0 0

be 0 0
= ab' 0 0 ed be ab|z 22
010 T = 2000010
z%iO 1 20 0 00 1

Now that we have both Vi and Ty, we can calculate My = T 'V My. For pedagogical
reasons we also calculate VflMQ and Tflvfl.

rabe accﬁli rab be cedlad ac
My =T WM, = z%i 0 —t3 T = z%i 00 0|1 0
22—t 12 22,0 0 0/0 1

abe_acd

ed 0 0

X be ! 0 0

ViMa=1 4d 0 o0

z% 3 0 —

20—t

Ordering the codomain of My and performing column reduction give the following matriz.
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/Y
rabe acdi Labe acgl racd
o O I EL il Bl
22 }—t t2 21 0 —t3 21 |

This gives the pivot elements p1 = —t and py = —t3, and by Corollary@ we get that

S o FH
Hy = (p1)( deg 1)@(]92)( deg 21)

_Fl, L Fl,

= e

Moreover, the collection of P-intervals becomes {(3,4),(2,5)}, and the barcode becomes
as shown in Figure [30]

Figure 36: Barcode for dimension one of the filtered complex in Figure

Calculating Hy: The next step is to calculate Hy. When we order the bases of Ma
and reduce it to column echelon form, we get that ker Oy = ker My = ().

rabc acd vabc acd
ab 30 ac —t £
M, = be 30 i ad 0 —t3 v —
ed 0 2 ed 0 3 vz =
ad 0 —f3 be 80
ac 3 —t t2 ab 3 0
Hence,

Hy

I
©



4.7 Improved algorithm 2 55

Calculating Hp,p > 2: Since C; = 0, i.e. there are no p-simplices in our filtered
complez, for p > 2, the persistent homology groups H, will also be equal to zero for
p > 2. Hence, we have

H,=0
forp> 2.
Summing up: We are now done with the calculations. Summing up we get that our
filtered complex has three 0-cycles; one that persists forever and two that persists for one

time interval each before they merge with the first cycle. Qur filtered complex does also
have two 1-cycles, which persist for one and three steps before they are filled in.

Figure 37: Barcodes for the filtered complex in Figure .

4.7 Improved algorithm 2

Another shortcut, which is worth mentioning, is that we may construct the matrix M
by simply deleting rows in M,;;. Note that the new codomain basis of M1 will in
general not have the same elements as the codomain basis of M1; however, the degree
of the basis elements in the codomain of M, are equal to those of the corresponding
basis elements in the codomain of M.

Theorem 4.13. Let A (N, [eM],) — (K, [eK]%,) and B : (M, [eM])) — (N, [eM]2,)
be matriz representations of two graded F[t]-homomorphisms g : N — K and f : M — N,
where g and f both have degree zero and go f = 0. Let o be the composition of the swap-
ping operations executed while performing our column reduction algorithm on A. Let r be
the rank of A, and let Iy, = o1 ({1,...,r}). Then there 3 a basis [z]}—] of ker A s.t.
the matriz B : (M,[eM]™,) — (ker A, [z]72]), obtained by deleting the rows of B that
have indices in Iy, 1s a matriz representation of f. Moreover, the degree of z; is equal

to the degree of the i’th element in the codomain basis of B that has not been removed.
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Proof. The permutation o' induces a new order, given by [efTV,1 (i)]l”:l and denoted

(7], from the ordered basis [e}¥

N7, . It does also induce a permutation matrix

Py-1: (N7 [eg]?zl) - (N7 [eﬁv]?zl)

given by

. o N
Po.—l . 61- — 60_1(1-)

for i =1,...,n. Note that Pa__l1 is given by

P(;ll celV - €o(i)
for i = 1,...,n. Let A be the matrix obtained by performing our column reduction
algorithm on A, and let [¢;];"; be the domain basis of A. Then the last n —r elements
of [&;]7_, give a basis for ker A. Moreover, A can be represented as A = AP,-1(Q, where
Q@ has the following form.

€1 €r |Ert1 €n
R - - = — e e e e - - = = — - —
ef 11 % x| x % %
1
| *
|
_ g
Q= ey 1 | % * %
o [}
e,’,_;'_ll 1
o
s 0
e 1
Let Z; = €4, for i = 1,...,n — 7. Then [%]!7] is an ordered basis for ker A, and

T : Z — &4, gives an injection T : (ker A, [Z%]"7]") — (N, [&],). Since im B C ker A,
the map T_lQ_lpgillB D (M, [eM]m ) — (ker B, [%]7-]) is well defined.
We are now going to show that by reordering the codomain of this matrix, we will

get the desired matrix B. Note that Q™' and T~! have the following forms

1 o (o o
161 €y er+1 €n
er . 1 % % * * %
|
|
o
~
Q_l = e * * % )
ér+1: 1
1
T 0
|
€n | 1




4.7 Improved algorithm 2 57

Since the lower left block of @ is zero and the lower right block is the identity matrix,
we get that T-1Q~! is given by

ie.
n n—r
T cie]) =Y civrdi
i=1 i=1
where ¢; € F[t] for i = 1,...,n. Moreover,
n n n
Q'R (Z cie') = T_IQ_I(Z Ci€q(i)) = T_IQ_I(Z Co=1(i)€7 )
i=1 i=1 i=1

n—r
= E Co-—l(iJr,,«)Zi.
i=1

Let ¢ =0 (i +r)fori=1,...,n—7r. Then

n—r n—r
E Co—1(i4r)%i = § Cq; %i-
i=1 =1

Let w € S(n—r) be the permutation s.t. g,1)<- - <gun—r). The permutation w induces
a new order, given by [Z,;];—; and denoted [z;];_}", from the ordered basis [Z];{—". It
does also induce a permutation matrix P, : (ker A, [z]7]") — (ker A, [Z]7"]") given by

Pw e éw(z)
for i =1,...,n —r. Note that P! is given by

-1 . =~
Pw 7 s wal(i)
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for i =1,...,n —r. The composition of P;! and T_IQ_IPU__l17 denoted by D, gives
n n—r
PIT'QTPIL (D aie)) = PO cqE)
i=1 i=1

n—r n—r
= E :qu'zwfl(i) = E :CQw(i)Zi7
i=1 =1

where g,(1)< " <qu(m—r) and ¢; € F[t] for i = 1,--- ,n. Hence, D is a matrix which
deletes the rows of a vector that have its index in Ip,. Moreover, D represents the
identity functions when restricted to the image of B. Hence, it gives a new matrix
B = DB, which also represents f and has (ker g, [z]7-]") as codomain. The following
diagram gives an overview of how B is defined.

—1

Nin Fom on Q! s n ! z.|n—r
(N, [e;" 7)) —— (N, [ef i) —— (V. [&iliy) — (kerg, [Z];))
B] b Pt
Mym B ner
(M, [ej ]j:l) (ker g, [2i];i=]")
Furthermore, degeé; = degef for i = 1,...,n since () has degree zero and ones as entities

along the diagonal. Hence,

deg z; = deg 2,(;) = deg €, (j)4r = deg eg(i)_H = deg eiv,l(w(l-)M) = deg eé\i(i)
fori=1,...,n —r, i.e. the degree of z; is equal to the degree of the i’th element in

This gives us an easier and less computationally expensive way for computing ]\Z/pH.
We do not need to remember or calculate V!, we just need to record which columns
become zero columns and which becomes a column with a pivot element, i.e. we need to

record the map o described in Theorem

Example 4.14. In this example we will calculate the persistent homology of the filtered
complex shown in Figure [34] by using Theorem[{.13 Recall that My and My are given as
follows.

rabc acd

rab be ed ad ac Ebriiigﬁo
croo e e | e o

M, = b —t t 0 0 0 ed 0 3
cio -1t 0 ¢ ad| 0 —t3

dfo 0 —t —t 0 acf—t t2



4.7 Improved algorithm 2 59

Recall from Erample that My already has ker Oy as codomain and that after ordering
the codomain and doing column reduction it becomes as follows.

ed be ab z 2o

-t/ 0 0 0 O

t 0
0 t —t]0 0
0 0 t|0 O
Note that the only performed column swapping is the swapping of column 1 and 2, i.e.

o= (1,2) € S(5). This o will be used for constructing My. Reading from our column
echelon matriz, we get by Corollary[[.6, that Hy is given by

d
Mﬂ/l = c
b
a

_ F[i] F[t] F[t]
Hy = @(— degd) @ m(— degc) @ @(— degb) @ F[t](— dega)

_ FlY Ft
= D e0e 50 @ IO
_Fl, . Fl

()( e 0 @ F[t].

Moreover, the collection of P-intervals becomes {(0,00),(0,1),(1,2)}, and the barcode
becomes as shown in Figure [35. We have now calculated the barcode for Hy, next up is
to calculate the barcode for Hy. For calculating Hy, we first construct M. Since My had
three pivot elements, we need to remove the corresponding rows from Mo. The three rows
to be removed are given by o~(1), 0=1(2), and c=1(3); this gives row 3,2 and 1. The
new My matriz becomes as follows.

‘abc acd
L
| ‘abc acd
My = ! ; — My = 2 } 0 —t3
: 29 : —t t2
ad 0 —t3 ‘
ac , —t t2

Note that [z1,22] is an ordered basis for ker 0;. Moreover, degz; = degad = 2 and
deg zo = degac = 3. By ordering the codomain descending with respect to the degree and
then reducing it to column echelon form, we get that

‘abc *
M2 = 22 ! _t 0
Z1 : 0 —t3
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Hence, we get that Hy is given by

F[t] [F[¢]

Hy = —(-d d —(=3) & —(—2).

v 2 (- deg ) @ ks~ deg ) = 15 (-3) @ 1 (-2

Moreover, the collection of P-intervals becomes {(3,4),(2,5)}, and the barcode becomes
as shown in Figure [30]

Ft] Ft]

4.8 Final algorithm

The algorithms we have discussed are based on doing Gaussian eliminations on matrices
derived from the M, matrices. In the process we found that a column in M, either
contributes a new cycle, or it stops a cycle from persisting. Following this idea, instead of
working with each matrix M), individually, we can evaluate one and one column (simplex)
to see if the simplex contributes a new cycle, in which case we will call it a free column,
or if it stops an existing cycle from persisting, in which case we will call it a pivot column.

Each simplex o is given a unique index i, s.t. dego < dego’ = i, < iy, and
dimo < dimo’ = i, < i,. The columns (simplices) are then evaluated by increasing
order, and the evaluation of a column consists of first zeroing out or deleting the rows
where the corresponding basis element corresponds to a pivot column. Thereafter, the
algorithm tries to zero out the other elements of the column, starting with the row
with the highest index, by adding already existing pivot columns times some coefficient
to the column. If the entire column is zeroed out, then it becomes what we call a free
column and contributes a new cycle; in addition, we mark the column (simplex) for being
free. If there still are some nonzero elements left, let 7 be the simplex corresponding to
the nonzero row with the highest index. Then the cycle corresponding to 7 will stop
persisting when our simplex, let us call it o, is added. This contributes the P-interval
(degT,deg o) to Sgim~- After all the simplices are added, we can get the last P-intervals
by finding the simplices that have been marked, but not stopped by some simplex.

A more detailed description of this algorithm is given in Algorithm {] and Algorithm
An illustration of the algorithm applied to the filtered complex in Figure [34]is given
in Figure [38]
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Algorithm 4 COMPUTEINTERVALS(m?)

Require: A filtered complex K with m simplices {aj } 0
Ensure: A collection Sy, of P-intervals for each dimension k£ =0, ...,dim K.

: for k=0,...,dim K do
Sk = @;
end for
:for j=0,....,m—1do
d = REDUCE(o);
if d =0 then
Mark o7
else
k = dimo7;
1 = maxindex d;
Sk = S, U {(dego’,dega’)};
Store d in T'[7];
13: end if
14: end for
15: for j=0,...,m—1do
16: if 0/ is marked and T'[j] is empty then
17: k = dimo/;
18: Sk =8, U {(dego?,00)};
19: end if
20: end for
21: return {Sk}gijaK;

m—1
j:

—_ = =
o2

Algorithm 5 REDUCE(m?)

Require: A simplex o.
Ensure: The reduced column corresponding to o.

1: k= dimo;

2: d = 0Ogo;

3: Remove unmarked terms in d;

4: while d # () do

5: 1 = maxindex d;

6: if TV[i] is empty then

7 break;

8: end if

9: Let g be the coefficient of o in T7i];
10: Let b be the coefficient of ¢* in d;
11: d=d— bqg 'T[il;

12: end while

13: return d;
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01234 5 6 7 8 9 10
“abcdlab be cd ad ac| abe acd
a'0000(t 0 0 t # 0 0
b 0000(—t t 0 0 0 0 0
c'0000[0 -1 ¢t 0 —tf 0 0
d'0000/0 0 —t—t 0/ 0 0
ab 00000 0 0 0 0 # 0
be' 0000[{0 0 0 0 0 £ o0
ecd 00000 0 0 0 0f 0
ad 00 00/0 0 0 0 0f 0 —#
ac. 0 00 0[O0 0O 0 O O —t ¢
abc 00 00[0 0 0 0 0| 0 O
acd 000 0/0 0 0 0 0/ 0 O

Free columns
3 abcdlab bc cd (ad) (ac) abc (acd)
@ 0000/t 0 0 0 o0 0 o0
b 0000/t t 0 0 o0of 0 0
¢ 00000 1L ¢t 0 0 0 0
d . 0000[0 0 — 0 0 0 0

{aby—0—0—0—6106—0—6—06—H06+—+t—90

(bc)f 6—6—0—6+0—8—8—0—0+—t—b

(Ud)f 0—0—0—610—0—6—6—o0T—0—t>

(ad 00000 0 0 0 0 0 —#

(ac) 0000[{0 0 0 0 0 —t 0

(erbey—0—0—6—010—H—6—6—61—06—H

(oed)—0—0—0—B10—0—6—6—0+—6—0

%JJ

Pivot columns

Figure 38: An illustration of Algorithm {| applied to the filtered complex in Figure
Some of the simplices are enclosed in parentheses, that is because they are not valid basis
elements when viewing the figure as a matrix. However, both the degree and dimension
of the enclosed simplex is equal to that of the correct basis element.
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4.9 Examples

In this section we will apply persistent homology on data from some known spaces.

Example 4.15. Let X be the torus in R3 with outer radius 2 and inner radius 1, and
let S be a sample of 500 randomly selected points from X. By using the ¢ weak witness
complex construction with 50 landmark points and varying e, and by applying persistent
homology on the resulting filtered complex, we get the barcodes shown in Figure[39. From
the barcodes in Figure [{0, we clearly see that it fits with the fact that the torus consists
of only one connected component. We can also see that there are two bars in dimension
1 that persist longer than the others; this fits with the fact that 81 = 2. However, the
barcode for dimension 2 is a bit more unclear and does not give a good reflection of the
fact that B = 1.
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Figure 39: Refer to Examplefor details. Barcodes from applying persistent homology
on a filtered complex constructed from 500 points randomly selected from the torus.
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Example 4.16. Let X be the torus in R® with outer radius 2 and inner radius 1, and
let S be a sample of 4000 randomly selected points from X. By using the € weak witness
complex construction with 50 landmark points and varying €, and by applying persistent
homology on the resulting filtered complex, we get the barcodes shown in Figure[{0. These
barcodes fit quite good with the actual Betti numbers of the torus.

Hy

- _HJ_H_H_.____________________

Hy| :

Figure 40: Refer to Example for details. Barcodes from applying persistent homology
on a filtered complex constructed from 4000 points randomly selected from the torus.

Example 4.17. Let X = 8B(0,0.5) U9B(0,1.5) UdB(0,3) C R2, and let S be 200
randomly selected points from X. Create a filtered complex K* by using the € weak witness
complex construction with 80 landmark points and varying €. By applying persistent
homology on K*, we get the barcodes shown in Figure[{1l The barcodes in Figure [{1] fits
quite good with the fact that the space has three 1-dimensional loops, but it does not give
a good representation at dimension zero.
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Figure 41: Refer to Example for details. Barcodes from applying persistent homol-
ogy on a filtered complex constructed from 200 points randomly selected from a space
consisting of three circles.
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5 Mapper

In this section we will introduce the Mapper method. Resources have been gathered from
[23] and [3].

5.1 Motivation

In many cases the data coming from modern science and engineering is massive and it
is not possible to visualize and recognise structures even in low dimensional projections.
In this section we will talk about how high dimensional data sets may be reduced into
simplicial complexes, which consists of far fewer points and may be used to capture
topological and geometric information in the data.

5.2 Cover manipulation

An efficient method for creating such simplicial complexes is to create a cover of the
space and then compute the nerve of the cover. This method is highly dependent on the
choice of cover, and a bad choice may give misleading results. One such example is given

in Example 5.1}

Example 5.1. Let S' be the 1-dimensional sphere and let U = {Ua}izl, where Uy =
{(z,y)ly < =03}, Uz = {(z,y)| — 0.6 <y < 0.6}, and Uz = {(z,y)]0.3 < y} as shown in
Figure[{4 With this cover we get the simplicial complez S = {{1,2},{2,3},{1},{2},{3}}
tllustrated in Figure which is not of the same homotopy type as the 1-dimensional

sphere.

0.6
0.3

—0.3
—0.6

Figure 42: Refer to Example for details. This figure illustrates a cover of the unit
circle.

Figure 43: Refer to Example for more details. The nerve of the cover displayed in

Figure
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If we recall the nerve lemma (Lemma , it states that, for a cover to satisfy the
criterions of the nerve lemma (Lemma [3.4), any intersection of elements in the cover
should be empty or contractible. Let us say we are given a cover of some topological
space X, where the contractability criterion does not hold. One can then ask if it is
possible to construct a new cover from the given one such that the criterions hold. One
example, of how the cover in Example may be altered, is given in Example

Example 5.2. Let S' and U be as in Example , Note that the open set Us consists
of two path-connected components. This leads to the fact that Us, Uy NUs and Us N Us
are neither contractible nor empty. If we instead of using Usa, replace it with Uz 1 and
Us,2, where Uz and Ua o are the two path-connected components of Us. The new cover
{U1,Uz,1,Uz2,Us} will satisfy the criterions of the nerve lemma (Lemma and gives
the simplicial complex illustrated in Figure [{4; moreover, it has the correct homotopy

type.

2,1

2,2

Figure 44: Refer to Example for details. The nerve of the cover constructed in

Example

The method used in Example may be generalized as the following algorithm
(Algorithm @ Note that this method only divides the covering elements into path-

Algorithm 6 Fj
Require: A cover U = {Ua}, 4 of a topological space.
Ensure: A new cover where each component is path-connected.

1: for « € A do

2 Let P, = {Uaﬁ}ﬁeBa be the set of path-connected components of Uy;
3: end for

4: return (J, 4 Po;

connected components. There is no assurance that these components or the intersections
of these are empty or contractible. However, for the elements and the intersections
to be contractible, they need to be path-connected since contractability implies path-
connectedness. Hence, when we are given a cover of the space in question, the method
Fy constructs a new cover that has a higher probability of satisfying the criterions of the
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nerve lemma (Lemma [3.4). It is also important to note that even though the elements
of the new cover are path-connected, intersections of them need not be. One example,
where this is the case, is given in Example [5.3

Example 5.3. Let X = S!, and let U = {Uy,Us}, where Uy = {(x,y)|ly < 0.3} and
Us = {(z,y)|ly > —0.3}, be a cover of X as shown in Figure[45| Then both Uy and Us
are path-connected (and even contractible), but Uy N Us is not. Moreover, the nerve of U
is given by the simplicial complex illustrated in Figure [40|

0.3

—0.3

N
Figure 45: Refer to Example for details. This figure illustrates a cover of the unit
circle.

Figure 46: Refer to Example for details. The nerve of the cover constructed in
Example H

One might ask if there are some methods for modifying the cover such that the new
cover also has the property that the intersection of two elements is path-connected. One
example, of how this may be done on the cover in Example is given in Example

Example 5.4. Let U and X be as in Example [5.3 Recall that Uy N Uy consists of two
path-connected components. Let these two components be called U11y2 and U1272. If we letU

be the cover given by U = {U1 — U1172, Uy — U1272, Uy — U1172, Us — U1272}, as shown in Figure
then the intersection of any two elements in U is either empty or path-connected (and
even contractible in this example).

The method used in Example may also be generalized as the following algorithm
(Algorithm [7)). One should note that the cover given by Fi, see Algorithm [7|, may have
collections of three (or more) elements such that their intersection is neither empty nor
path-connected.

When dealing with data sets, we need to remember that the given data S is only
a sample from the underlying space X, which we are interested in. The sample space
S is usually a finite metric space, and the given cover, which we will work with, is a
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U,-UZ,

Figure 47: Refer to Example for details. This figure illustrates a cover of the unit
circle.

Algorithm 7 Fy

Require: A cover U = {Uas},c4 of a topological space where each element is path-
connected.

Ensure: A new cover where the intersection of any two elements is path-connected.

1: Search for a pair (Uy,Ug) s.t. Uy N Ug is non-empty and has more than one path-
connected component;

2: if No such pair exists then

3: return U;

4: else

5: Let {Ugﬁ} be the path-connected components of U, N Ug;
) ~yeB

6: for vy € B do

7 Let Uow =U, — U;’yﬁ and let Ugﬁ =Ug — Uzﬂ;

8: end for

9: return F) <(L{ —{U.} —{Us}) U Fy ({Uam UB’7}765>>;

10: end if

cover of S not X. However, the idea is that a cover of S may act like a cover of X, i.e.
have similar properties to an actual cover of X. Since the path-connected components
of a finite metric space S only consists of the one point sets, using Fy on a cover of S
does not make much sense. To be able to decide if a subset U of a finite metric space
S is to be considered as path-connected, we need some notion of connectedness, i.e.
some clustering method that devides a given set into one or more disjoint subsets that
represent the path-connected components. Hence, when we write Fy(U), where U is a
cover of some finite metric space S, then it is implied that a clustering method is used
instead of the topological notion of path-connectedness.

In Example [5.2] and Example [5.4] we saw that the modification of cover algorithms
Fy and Fi helped to create simplicial complexes that were homotopic to the given space.
When dealing with sampled data, this may not always be the case. One example, where
method Fj actually prevents the correct result, is given in Example [5.5
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Example 5.5. Let X = S!, and let S be the subset of points with U = {Uy,Us, U3} as
cover as shown in Figure[{8. To be able to consider if the finite subsets Uy, Uy and Us
are to be considered as path-connected, we need some notion of connectedness, i.e. some
clustering method. In this example we will let two points x and y be contained in the
same cluster (subset) if d(z,y) <= € for some positive real value €. Assume that an € is
chosen s.t. Us is divided into two clusters Us 1 and Usa o, as shown in Figure while Uy
and Us consists of one cluster each. The nerve of the new cover N o Fo(U) is then given
by the simplicial complex shown in Figure while the nerve of U gives the simplicial
complex in Figure which is of the correct homotopy type.

Ui U, Us
e ® o e ® o4 09 oq4
e ° o
O ° 0] © O °
® o °
o O’ ® OO o .'
© 600 ® 00 © ® o0 ©

Figure 48: Refer to Example for details. This figure illustrates a cover of a data set
sampled from the unit circle.

Ui Us U1 Us,2
o (o] (@] o
@ “PY o Oo (@] Ogp o Oo
() (o] (e} o
o PR PG o ® 5
(o] Cf (o] ;. [ ] SD (o] 83
© 600 ® o0 © ® o0 © © 600

Figure 49: Refer to Example for details. This figure illustrates a cover of a data set
sampled from the unit circle.

The clustering method used in Example [5.5]is known as single-linkage clustering.

Definition 54. Single-linkage clustering 7rsp, (X, €)
Let (X, d) be a metric space, and let € € R be positive. Then the single-linkage clustering
with € as tolerance parameter on X is given by

7sL(X, €) = X/,

where x ~, y & d(z,y) < € for z,y € X.
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AN

1 2

Figure 50: Refer to Example for more details. The nerve of the cover displayed in

Figure

Figure 51: Refer to Example for more details. The nerve of the cover displayed in

Figure [9]

There are also examples where N o Fy(U) gives extra cycles compared to N (U) when
it shouldn not. A similar example, where F} creates artifacts, is given in Example [5.6]

Example 5.6. Let X = [0,2] x [0,1] C R2, let S be some data set sampled from X,
and let U = {Uy,Us} be a cover of S as shown in Figure . By using single-linkage
clustering with some suitable €, the intersection Uy N Us will consist of two clusters. Let
U1172 be the cluster in the upper part of the intersection, and let U1272 be the lower one,
see Figure . The new cover U = Fi(U) is then given by U = {01,1,[7172,02,1,17272},
where 0171 = U1 — U11’2, Ul,z = U1 — U1272, 0271 = U2 — U11’2, and 0272 = U2 — U12,2. Taking
the nerve of the new cover u gives the simplicial complex shown in Figure while the
nerve of U gives a simplicial complex that is homotopy equivalent to X, see Figure

Note that a cover of S only is a tool for approximating the topology of X. If we only
try to construct good covers of S, we might just end up with the cover where each open
set consists of one point, which most likely is not a fitting approximation of a cover of
X. To be more precise we will define what we mean with a fitting approximation of a
cover.

Definition 55. Fitting cover approximation

Let Us = {Ua},ea be a cover of S € X, and let Vx = {Vp} 4.5 be a cover of X, where
X is some topological space. Then Uy is a fitting cover approximation of Vx if there
a bijection ¢ : A — B s.t.

L. Ua C V(o) Ya € A and

2. ((Ua#0e [\ Vs#DVrCA

aET aET

Straight from the definition of a fitting approximation cover, we get Property [5.7]
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Figure 52: Refer to Example for details. This figure illustrates a cover of a sampled
data set.

Proposition 5.7. Let X be some topological space, and let U be a cover of some sampled
data S C X. If there 3 a cover V of X s.t. U is a fitting approzimation cover of V, then

NU)=NV),
1.e. they are isomorphic as abstract simplicial complexes.

Note that because of noise, the sampled data will often not be a subset of X. However,
if we assume that X is a subspace of some bounded metric space (Z,d) s.t. S C Z, then

SC|JB@e=BX,cCZ (2)
rzeX

for some positive value € € R, which depends on how noisy the sampled data is. With
good measurements this € will be small; moreover, B(X,¢€) will in many cases be ho-
motopic to X. One example, where there exists an € s.t. S C B(X,¢) and B(X,¢) is
homotopic to X, is given in Example [5.8

Example 5.8. Let X = S!, and let S be the sampled data as in Erample . Then
we can let X C R2, and pick a positive ¢ € R s.t. B(X,e) C R? is homotopic to X
and S C B(X,€), as shown in Figure . Moreover, if we let U be the cover of S as
i Erample and illustrated once more in Figure then we can find a cover V of
B(X,¢€), as shown in Figure s.t. S s a fitling cover approzimation of V. Note that
our cover V is in fact a good cover of B(X,€). Hence, by the nerve lemma (Lemma ,
Property and the fact that B(X,€) and X are homotopic gives

NU)=ZN(V)~ B(X,e) =~ X,
i.e. N(U) and X are homotopic.
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Figure 53: Refer to Example for details. This figure illustrates a cover of a sampled
data set.

Figure 54: Refer to Example for more details. The nerve of the cover displayed in

Figure

It may be wise to use methods such as Fjy and F} together with a clustering method
to try and make covers that are fitting cover approximations of some good cover of X or
a blown up version of X. However, we can not rely too much on the clustering methods
as they might lead to false judgements. In practice applying Fy on a cover has shown
to be a useful tool, and Fp is used by our Mapper method. Moreover, most clustering
algorithms use some positive real valued e to determine the clusters, and by increasing e
the method Fy becomes the identity function on covers, i.e. it does not alter the cover.
I have not tested the F; method, but with this method it becomes even more difficult to
determine path-connectedness since the intersection of two open sets will contain even
fewer data points.
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1,2 2,2
L1 2,1

Figure 55: Refer to Example for more details. The nerve of the cover displayed in

Figure 53]

B(X,e)

Figure 56: Refer to Example for details. This figure illustrates the blown up space
B(X,e€) of X, where the small dots are points in S and the black circle in the center is

X.

Figure 57: Refer to Example for details. This figure illustrates a cover of a data set

sampled from the unit circle.
@

Figure 58: Refer to Example for details. This figure illustrates a cover of B(X,e).
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5.3 Filter function

In this section we will talk about how we can construct covers of a given sampled data
set S by using what we will call a filter function.

The idea comes from the fact that if X and Z are two topological spaces, f : X — Z
is a continuous function, and U = {Ua},c4 is an open cover of Z, then ) =
{f‘l(Ua)}aeA is an open cover of X. When dealing with data sets, the space X will be
the sampled data while Z, which we will call the parameter space, will be some space
determined by the image of f. The parameter space is usually some subspace of R" or
S™, where n is some positive integer. There are also different choices of covers for each of
these parameter spaces; we will come back to those later. The filter function will just be
some continuous like function that assigns a value to each data point. The freedom to
choose such a filter function gives us many possibilities for constructing different covers
of our data set. We will now take a look at three families of filter functions.

5.3.1 Density estimators

A density estimator is a possible filter function. Density estimators are well known in
the area of statistics. One useful density estimator is the Gaussian kernel given by

fe = Ce Zexp <_d($’y)2) )
yeX €

where € is a positive real number and C. is a constant s.t. fX fe(x)d; = 1.

5.3.2 Eccentricity

Another family of useful functions is the family of eccentricity functions given by

o) = |y S dlp |
yeX

where N is the number of elements in X, and p is some positive integer. This may also
be extended to p = 400 by letting Eo(z) = maxyex d(z,y).
5.3.3 Projection maps

When dealing with objects in a low-dimensional space the projection maps such as
(z,y) — y are easy to use and will often do the job.

5.3.4 Filter functions applied to data sets

Example 5.9. Let X be the space consisting of the pizels in Figure[59 Then Es evaluated
on X gives the result shown in Figure (61| while the projection map (x,y) — —y gives the
result shown in Figure [60,



76 5 MAPPER

Example 5.10. Let X be the space consisting of the pizels in Figure [63.  Then the

density estimator, with some values for € and C¢, evaluated on X gives the result shown
in Figure [63

I\‘r//}

A

s

Figure 59: Refer to Example for details. This figure shows an image obtained by
scanning a hand drawn figure.

S

Figure 60: Refer to Example for details. This figure illustrates the use of a height

function as filter on the data shown in Figure f9] The color red indicates a low value
while green indicates high values.
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)

Figure 61: Refer to Example[5.9|for details. This figure illustrates the use of a eccentricity
function as filter on the data shown in Figure 59 The color red indicates a low value
while green indicates high values.
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Figure 63: Refer to Example for details. This figure illustrates the use of a deunsity
estimator as filter on the data shown in Figure [62] The color red indicates a low value
while green indicates high values.
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5.4 Cover of parameter space

The filter functions are used to pull back a cover of the parameter space into a cover of
the sampled data X. Some typical examples of covers of R and S! are given in Example

and Example [5.12]

Example 5.11. Let X = R, and let | and € be two positive real numbers. Let Up =
(kl—e€, (k4+1)l4€) for k € Z, then the family of these sets form an open coverU = {Ui},cz
of X. Note that when € < 1/2, the intersection Uy N U, = 0 for |k —n| > 1; hence, the
wntersection of any three distinct sets is empty.

Example 5.12. Let X = S!, let n € N be greater then 2, and let € be a positive
real number. Let Uy = {(cos(0), sin(0)) Yge(ank/N—c2nk/N+e) Jor B = 1,...,N. Then

U= {Uk}]k\[:1 is an open covering of X when € > w/N. Note that the intersection of three
distinct sets is empty when € < 2w /N.

Some examples, where coverings of the parameter space are pulled back, are given in
Example 5.13| and Example

Example 5.13. Let X be the sampled data consisting of the pizels in Figure and
let U be a cover of R as shown in Figure [64] Then the cover pulled back by using the
eccentricity function Ey becomes as shown in Figure [65]

Example 5.14. Let X be the sampled data consisting of the pizels in Figure p9, and
let U be a cover of R as shown in Figure [66. Then the cover pulled back by using the
projection map (x,y) — —y becomes as shown in Figure @

32.0,41.3) (43.2,52.5) (54.4,63.7) (65.6,75.0)

C -, ae-ees

(37.6,46.9) (48.8,58.1) (60.0,69.3) (71.2,80.6]

Figure 64: Refer to Example for details. This figure illustrates a cover on the image
of the eccentricity function FEs.
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Figure 65: Refer to Example for details. This figure illustrates a cover pulled back

by the eccentricity function FEjs.

[12.0,35.7) (40.4,64.0) (68.8,92.4) (97.2,120.8)

(26.2,49.8) (54.6,78.2) (83.0,106.6) (111.3,135.0]

Figure 66: Refer to Example for details. This figure illustrates a cover on the image
of the projection map (z,y) — —y.

Figure 67: Refer to Example for details. This figure illustrates a cover pulled back
by the projection map (z,y) — —y.
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A useful property is that when a covering U = {Ua},c4 of a parameter space has
the property that any intersection Uy, N --- N U,, of n distinct elements in U is empty
VYn > N for a natural number N, then the same holds for the cover pulled back by the
filter function.

Proposition 5.15. Let X and Z be two topological spaces, let f : X — Z be a continuous
function, let U = {Ua}cn be a cover of Z s.t. Uy, N---NUq, = 0 for any intersec-
tion of n > N distinct elements for some natural number N, and let V = f~U) =
{f‘l(Ua)}aeA be the cover pulled back by f. Then Vo, N---NV,, =0 Yn > N and
distinct aq, ..., qn € A.

Proof. Assume V,, N---NV,, # () for some distinct elements V,,,, ..., V4, , where n > N.
Then there dx € X st. x € Vo, N---NV,,, e f(x) € f(Vo,) CUy, fori=1,...,n.

Then f(xz) € Uy, N---NU,,,, which gives a contradiction. Hence, V,, N---NV,, must
be empty. O

5.5 Clustering

Clustering is a common technique in statistical data analysis. In Section we showed
how the single-linkage clustering method may be used, and we talked about what role
the chosen clustering method plays.

There are many other clustering methods other than single-linkage clustering that may
be used instead, but we will not talk about those. An important property for a clustering
method is to be functorial.

Definition 56. Functorial clustering method

A clustering method is said to be a functorial clustering method if whenever one have an
inclusion X — Y of points, i.e. a set map preserving distances, the image of each cluster
in X may be included in one of the clusters in Y.

Note that this implies that each cluster of X may be included in exactly one of the
clusters of Y. This will be an important property in Section where we want to
compare the results obtained by using two different covers on the parameter space. An
example of single-linkage clustering applied on a data set is given in Example [5.16

Example 5.16. Figure [68 shows the results from applying single-linkage clustering on
some sampled data in R?.

5.6 Algorithm

Now that we have covered the essential material of the Mapper method, we may give the
Mapper algorithm (Algorithm [g).
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Figure 68: This figure shows the results from applying single-linkage clustering on a data
set in R?. Each dot is a data point, and each color correspond to a cluster.

Algorithm 8 Mapper
Require: Some sampled data X.
Ensure: A simplicial complex.

Pick a filter function f defined on X;
Pick a cover U on im f;
Pick a clustering method to be used by Fp;

If needed pick a metric to be used by the clustering method;
return A o Fy o f~1(U);

5.7 Examples

In this section we will look at some examples, where Mapper is applied to some data
set. The following examples have been created by using an implementation of Mapper,
which I wrote in python. Note that the output will have some extra information added
to the simplicial complex. Each node will have a color, indicating the mean value of the
filter function applied on the points in the corresponding cluster. The size of the node
will correspond to the number of elements in the cluster. The positions of the nodes are
calculated by neato, a Graphviz layout program, see [I0]. Moreover, note that all the
examples will be using the single-linkage clustering method.

Example 5.17. In this example we will apply Mapper on the scanned hand drawn figures
in Figure [69 The filter function will be the height function. For each figure, we will
dwide the image of the filter function into 64 equally long intervals with 40% overlap,
and use those as a cover of the parameter space. The metric used by the single-linkage
clustering will be the standard euclidean metric. With these settings together with a
suitable clustering epsilon, we get the simplicial complexes shown in Figure [T0,
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Figure 69: Input data for Example
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Figure 70: Refer to Example for details. Results from applying Mapper on the
images shown in Figure
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Example 5.18. In this example we will apply Mapper on the image shown in Figure
with three different resolutions on the covers of the parameter space. The filter function
will be the eccentricity function Fs. For each resolution we will divide the image of
the filter function into equally long intervals with 40% overlap, but we will vary the
number of intervals. The coarsest cover will consist of 3 intervals, the second will have 6,
while the finest cover will consist of 12 intervals. The metric used by the single-linkage
clustering will be the standard euclidean metric. With these settings together with a
suitable clustering epsilon, we get the simplicial complexes shown in Figure[73, where the
figure to the left is the coarsest and the one to the right is the finest.

Figure 71: Input data for Example .

Figure 72: Refer to Example for details. Results from applying Mapper, with 3
different resolutions on the cover of the parameter space, on the image shown in Figure

71}
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Example 5.19. In this example we will apply Mapper on the image shown in Figure
with two different resolutions. The filter function will be the projection map (x,y) — x.
The wvalues of our filter function applied to our data is shown in Figure [T} For each
resolution, we will divide the image of the filter function into equally long intervals with
40% owverlap, but we will vary the number of intervals. In addition to alter the number of
intervals on the covers, we will use a different clustering epsilon for each resolution. The
coarsest resolution will use 8 intervals and clustering epsilon 1 = 10, while the finest
resolutions will use 30 intervals and clustering epsilon eo = 4. With these settings we get
the simplicial complexes shown in Figure[75, where Figure[75d| has the coarsest resolution
and Figure has the finest.

Figure 74: Refer to Example for details. This figure shows the values of the filter
function applied to the data shown in Figure

(a)

Figure 75: Refer to Example for details. Results from applying Mapper with two
different resolutions on the data set shown in Figure
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Example 5.20. In this example we will apply Mapper on a data set consisting of squares
of various size, color, and rotation. All three variables will be measured as numbers and a
configuration will be a point in R3. The collection of squares is shown in Figure . Note
that the three variables may not vary freely, i.e. there is some system in the configurations
space. Let the filter function be the eccentricity function Es, and divide the image of the
filter function into 10 equally long intervals with 40% overlap. Let the metric be the Ly
metric, i.e. d(z,y) = Y i |xi — yi|, where n = 3. With these settings together with a
suitable clustering epsilon, we get the simplicial complex shown in Figure[77. In addition
to the usual output, Figure also display some of the squares in the data set together
with lines pointing to the clusters that contain the square. Finding the pattern of the
configuration space is left as an exercise; using the results, shown in Figure from
applying Mapper on the data set may be of help.

. s B = =0 - -H" ] . »
L] = N | | B E s e v o n B
= [ ] . & m . . e
. T | = o | ] .
. [ ] | I R [ ] [ ] |
= W = = = H | = + B E
¢« =l s = = | = . " " .
| B s+ H N - ' -. «
" . [N BTN BEERS
' N HE - s - . »

Figure 76: Refer to Example for details. Collection of squares of various size, color,
and rotation. Used as input data in Example

Figure 77: Refer to Example for details. Results from applying Mapper on the data
set shown in Figure [76] In addition to the usual output, this figure also display some
of the squares from the input data set together with lines pointing to the clusters which
contain the square.
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Example 5.21. In this example we will apply Mapper on the scanned hand drawn figure
i Figure M. The filter function will be the identity map on R%. The parameter space
will now be a subspace of a two dimensional (filled) rectangle. To make a cover of the
rectangle, we first construct covers on the images of (x,y) — = and (x,y) — —y, and
then let the product of these covers be the cover of our rectangle. The cover on the image
of (z,y) — —y will have 64 elements while the cover on the image of (z,y) — = will have
20. Both of them will have intervals overlapping 40%. This gives 64 x 20 elements in
the cover of our parameter space. The metric used by the single-linkage clustering will
be the standard euclidean metric. With these settings together with o suitable clustering
epsilon, we get the simplicial complex shown in Figure[78 Note that the colors are given
by the height function.

Figure 78: Refer to Example for details. Results from applying Mapper on the data
set shown in Figure [69¢}

5.8 Parameters

The mapper method requires the user to give the following as input:
1. A finitely sampled data set X.
2. A filter function from X in to some parameter space Z.

3. A covering of the parameter space.

N

. A clustering method to be used on subsets of X.
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In addition, the choice of covering on the parameter space usually consists of choosing
some values determining the length (volume) and the overlapping of the sets. The clus-
tering method may also require a metric and a tolerance value to determine if points are
to be interpreted as being close or not.

5.9 Map of coverings

In some of the examples in Section we saw that the cover on the parameter space
may be too coarse to recover significant details of the data set. It is also possible to make
a cover of the parameter space that is too fine such that the resulting complex contains
lots of artifacts. It is therefore useful to be able to look at different resolutions. When
looking at the resulting complexes with different resolutions, it is useful to have some
information connecting them, such as a simplicial map.

Definition 57. Simplicial map
Let K and L be two simplicial complexes. Then a simplicial map from K to L is a contin-
uousmap f : |K| — |L|s.t. if o = {vg,..., v} € K, then f(o) = {f(v0),..., f(vn)} € L.

We will also use the definition of the vertex map together with Proposition in
this section.

Definition 58. Vertex map
Let K and L be two simplicial complexes. Then a vertex map from K to L is a map
¢ = vert(K) — vert(L) s.t. if 0 = {vg,...,vn} € K, then ¢(c) = {¢(vo),...,p(vn)} € L.

Proposition 5.22. Let K and L be two simplicial complexes, let ¢ be a vertex map
from K to L, and let vert(K) = {vi},c4. Let g be the extended map g : |K| — |L|
of ¢ st if x = tiv, where {vy,..., v} € K and t; € R for i = 0,...,n, then
g(z) =" g tip(vi). Then g is a simplicial map from K to L.

A map of coverings is defined as follows.

Definition 59. Map of coverings

Let U = {Us}peq and V = {V@}BEB be open covers of some topological space X. Then U
is a refinement of V if Voo € A there 38 € B s.t. U, C V3, i.e. there Jamap ¢: A — B
called a map of coverings, also known as refinement map, s.t. Uy C V(q).-

Notation. We will write U <V when U is a refinement of V.

We will now look at how we can make simplicial complexes with different resolutions
and have simplicial maps connecting them.

Assume we have two covers U and U’, on our sampled space, and want to make a
simplicial map from N (U) to N (U’). If we have a map of coverings from U to U’, then
Theorem gives us a simplicial map from N (U) to N'(U').

Theorem 5.23. Let X be a topological space, let U = {Ua},eq and U' = {Ug}pep be
two covers of X, and let ¢ : A — B be a map of coverings. Then ¢ induces a simplicial

map from N (U) to N(U').
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Proof. What we need to do is to use the map of coverings ¢ to induce a vertex map.
This will then, by Proposition give a simplicial map. Let K = N(U), and let
L = N(U'). Note that the vertex sets of K and L are the sets A and B, i.e. vert(K) = A
and vert(L) = B. If 0 = {ag,...,an} € K, then Uy, N---NU,, # 0, and since
Ua € Vy(a) for each a = ag, ..., an, we get that Vi) N+ N Via,) # 0, ie. ¢(o) =
{#(ap),...,¢(an)} € L. Hence, ¢ is an vertex map, and by Proposition it induces
a simplicial map. ]

In the Mapper method the resulting complexes are N o Fy(U) and N o Fy(U'); hence,
we need a map of coverings from Fy(U) — Fo(U') to be able to use Theorem
However, if we have a covering from U to U’ and Fy uses a functorial clustering method,

then Theorem gives a map of coverings Fo(U) — Fo(UL').

Theorem 5.24. Let g be the functorial clustering method used by Fo, let U = {Uqy }aca
and U' = {Ué}geB be two covers on a topological space, and let ¢ : A — B be a map of
coverings. Then ¢ induces a map of coverings from Fo(U) to Foy(U').

Proof. Let 70(Ua) = {UayytreGa, and let 7o(Us) = {Ué,n}néG’@ Va € A and Vj € B.
Then by the functionality property of 7p, there exists a (unique) element U é)( €
ﬁo(Ué)(a)) for each Uy y € T0(Uq) s.t. Uay € U(;(a) , since Ua © U(;(a). This gives a map

(a,7y) — (é(),n), which then gives a map of coverings from Fy(U) to Fo(U'). O
Hence, by Theorem and Theorem [5.24] we can induce a simplicial map
N o Fo(U) — N o Fy(U)

from a map of coverings Y — U’. A map of coverings does not always exist between two
arbitrary covers, but we may pick covers U and U’ s.t. there exists one. Example
and Example give examples where we have a map of coverings between two covers.

Example 5.25. Let U = {Uptrez and U' = {U},., be covers of R, where Uy, =
(Kl —e,(k+ 1)l +¢€) and U, = (KIN —€,(k+1)IN +€), and let N € N. Then the map
¢: kv |k/N| is a map of coverings from U to U'.

Example 5.26. Let U = {Uptrez and U' = {U}}, ., be covers of R, where Uj, =
(kl — €, (k+ 1)l +€) and U], = (kl — ae, (k4 1)l + ae), and let a be a real value greater
than 1. Then the identily map 1z : Z — 7 is a map of coverings from U to U'.

In Example we give an example of how a map of coverings may be illustrated.

Example 5.27. In this ezample we will apply Mapper on the scanned hand drawn figure
in Figure[59. The filter function will be the height function. We will use three different
covers of the image of the filter function. The three covers will be the covers obtained by
dividing the parameter space into 32, 16 and 8 equally long intervals with 40% overlap.
The metric used by the single-linkage clustering will be the standard euclidean metric.
With these settings together with a suitable clustering epsilon, we get the simplicial com-
plexes together with the simplicial maps between them as shown in Figure[79. Note that
the simplicial maps are the extensions of the vertex maps given by the arrowed lines.
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Figure 79: Refer to Example for details. This figure illustrates two simplicial maps
between three simplicial complexes obtained by Mapper.

5.10 Flexible clustering

In this section we will investigate the possibility of letting the clustering epsilon vary on
X when doing single-linkage clustering. We will also see how we can construct simplicial
maps between two resulting complexes, obtained by two different choices of clustering
epsilon configurations.

Let us first take a look on how we may let the clustering epsilon vary on X and why this
is useful. When studying data sets, there will in many cases not be possible to choose
a single clustering epsilon that is suitable for all of X. One example, where this is the
case, is given in Example [5.28

Example 5.28. Let the sampled data X be as shown in Figure [80, and assume that
we are given the cover U of X as shown in Figure [81 If we choose a small clustering
epsilon, we will end up with a simplex as shown in Figure[8Z; if we choose a large cluster
epsilon, we will gel a simplex as shown in Figure [83 If we instead of fizing one cluster
epsilon, choose one value for each open set, then we may choose a small epsilon for the
left part, a larger epsilon for the right part, and some intermediate clustering epsilons in
the center. By doing this, we could get the simplicial complex in Figure which is the
desired result.

Figure 80: Refer to Example for details. This figure illustrates a sampled data set.



90 5 MAPPER

[0.12,0.22) (1.5,2.6)
[0,0.1) (0.52,1.05)

(0.06,0.16) (1,1.59)
(0.18,0.62) (2.5,2.8]

Figure 81: Refer to Example for details. This figure illustrates a cover of the sampled
data shown in Figure [80]

Figure 82: Refer to Example for details. The result from applying Mapper, with a
small clustering epsilon, on the cover shown in Figure @

Figure 83: Refer to Example for details. The result from applying Mapper, with a
large clustering epsilon, on the cover shown in Figure .

o0

Figure 84: Refer to Example for details. The result from applying Mapper, with
varying cluster epsilon, on the cover shown in Figure @
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The freedom to choose a fixed clustering epsilon leaves many possible choices, and by
allowing it to variate gives even more. Luckily, small changes of the clustering epsilon
does often not alter the result. This fact may be used to create equivalence classes of
clustering epsilons and reduce the number of choices. Let us take a closer look on how
we can construct these equivalence classes. Assume that we are given a finite metric
space (X, d) and are interested in how 7rsy, (X, €) varies with e. Note that for e = 0, each
point in X has its own cluster. When € increases, the clusters merge and the number of

clusters decrease. Let €1, ..., €, be the values for which the clusters merge. Furthermore,
let ¢¢ = 0 and €,41 = 0o. Then g, (X, €) does not alter for e-values between these
values, i.e. 7sp, (X, €) = 7sp (X, €x) Ve € [ek, €x+1) and for £ =0, ..., n. Note that we will

let I = [eg,€x+1) for k = 0,...,n, and that we will call them stability intervals. The
equivalence relation we will use is given by

e~e e 3ke{0,...,n} st. e, €14

With this knowledge, we know that there actually only are n+ 1 different choices of fixed
e-values on X; moreover, the length of each interval gives a notion of how stable each of
these choices are.

In the Mapper method, we apply 75y, on each set U, of some cover U = {Us},c4 of
X. Let us assume that we choose one ¢, for each U, € U. That would then be equiva-
lent to choosing a function s defined on A and given by s : a — I, where I, is one of
the stability intervals of 7g;, on U,. When choosing the e,-values, there should be some
kind of continuity. One possibility for adding some continuity is to add the criterion

mUa#VJ: ﬂs(a)#@

aET aET

for all 7 C A on the choice of s. This gives us a method for varying the cluster epsilon
in the Mapper method; moreover, we could have used it to get a proper result from the
data set in Example [5.28

Each configuration, i.e. choice of s : a — I, will give its own simplicial complex when
used by the Mapper method, i.e. each configuration will give information about X in its
own resolution. It would then be useful to find some simplicial map connecting them. In
Section we discovered that a map of coverings induce a simplicial map on the nerve
of the covers. Hence, if we could produce some map of coverings on the covers produced
by #sr, with two configurations s and s, then we can produce a simplicial map between
the resulting simplicial complexes. Note that if € < ¢/, then 7gp, (X, €) < @g, (X, €), i.e.
for each cluster U € 7igy,(X,€) there 3 a cluster V € 7gp,(X,€') s.t. U C V. Hence, if
U= {Ua}yeca and € < €, then there 3 a map ¢ : 7g, (U, €) — 7sr,(U, €'), which is a map
of coverings.

There may not always exist a map of coverings ¢ : 7isp,(U, s) — @ (U, '), where U
is some cover, when given two arbitary configurations s and s’. However, if s and s satisfy
the condition sup os(a) < inf os'(«) Vv € A, then 7gp,(Uy, s(«)) < 751, (Ua, ' (o)) Va € A.
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Hence, there 3 a (unique) map of coverings ¢ : @gr, (U, s) — 7sr(U, "), which then, by
Theorem 5.24] gives us a simplicial map N o 7sy, (U, s) — N o g, (U, §').
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