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1 INTRODUCTION
Short-term variation of wind and wave conditions
has a great importance in planning and executing
safe and efficient marine operations. Long-term
statistical data of environmental conditions from
measurements or hindcast models are useful for
overall planning of marine operation activities.
However, decision-making during the execution of
marine operations requires more accurate and
short-term prediction (forecast) of environmental
conditions. For offshore wind turbines, the 6-hour
forecasting is mainly used for on-site installation of
bottom-fixed offshore wind turbines. The 1-3 days
forecasting is, on the other hand, important for
transportation of floating offshore wind turbines.
In order to predict the environmental conditions,
several models such as empirical-based models,
numerical-based models and soft-computing
techniques have been developed during the last
decades. In empirical-based models, waves can be
predicted or forecasted with simple and fast methods
(Wilson, 1965; Bretschneider, 1970; Hasselmann et
al., 1973; Donelan, 1980), but these methods are
only accurate in limited cases (Bishop et al, 1983).
By means of the spectral energy or action balance
equation, several numerical models (The WAMDI
Group, 1988; Tolman, 1991; Booij et al., 1999) are
employed to predict wave data with good spatial and
time resolution. However, due to their complexity of
numerical implementation, high CPU time required,
and the need for accurate local bathymetric surveys,

their implementation is not an easy task (Brown et
al., 2007; Mahjoobi et al., 2008).
Recently, various soft-computing techniques have
been used to predict wave parameters. The
representative techniques include the Artificial
Neural Networks (ANN) (Deo et al., 2001; Agrawal
& Deo, 2002; Mandal et al, 2005; Jain & Deo, 2007),
Fuzzy Inference System (FIS) (Kazeminezhad et al.,
2005; Özger & Sen, 2007), and Adaptive
Network-based Fuzzy Inference System (ANFIS)
which is a combination of ANN and FIS.
Kazeminezhad et al. (2005; 2007) and Mahjoobi et
al. (2008) used ANFIS technique for the prediction
of wave parameters and compared the results of the
developed ANFIS with hindcasts of the Coastal
Engineering Manual (CEM), ANN and FIS methods.
Özger et al. (2007) and Akpınar et al. (2014) applied
ANFIS to predict wave parameters and made a
comparison with the results based on Auto
Regressive Moving Average with exogenous input
(ARMAX), Wilson, Shore Protection Manual (SPM),
Jonswap, CEM methods. Malekmohamadi et al.
(2011) investigated the efficacy of Support Vector
Machines (SWMs), Bayesian Networks (BNs),
ANNs, and ANFIS in wave height prediction. In
most of the above studies, the non-stationarity is
generally ignored, and the stationarity is sometimes
stated as an unnecessary condition for the Fuzzy
Time Series (FTS). In contrast, Stefanakos &
Schinas (2015) and Duru et al. (2012) considered
that before starting the fuzzy forecasting, the
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non-stationarity should be removed from the initial
time series. This procedure is especially important in
time series of wind and wave parameters where the
non-stationary character is inherent due to the
seasonal effect. Based on this view, Stefanakos
(2016a, 2016b; 2017) developed an ANFIS model
with a non-stationary modelling for the prediction of
wind and wave parameters, and more accurate
forecasts were obtained.
The purpose of this paper is to develop an improved
ANFIS method for forecasting short-term wind and
wave conditions using in marine operations. Before
an ANFIS model is established, two kinds of time
series are considered. One is the initial,
non-stationary one, and the other is the
corresponding stationary one, which has been
resulted by removing the non-stationary character
using a decomposition procedure. Then, the ANFIS
methods with initial and stationary time series are
established, respectively. The proposed methods are
utilized for the prediction of short-term mean wind
speed Uw, significant wave height Hs and peak
spectral wave period Tp through hindcast data in the
North Sea Center datapoint. The prediction
accuracies of the models are evaluated by means of
several error measures. Besides, the model
uncertainty in short-term weather forecasts during
the all 10-year hindcast data is also investigated.

2 METHODOLOGY

2.1 Study Area and Data Set

Figure 1. the study area and the locations of site

The North Sea area is concerned in this study. The
dataset used here comprises of hindcast data based
on a high-resolution regional atmospheric model
(SKIRON) and an ocean wave model (WAM), and
locations of the provided sites are shown in Figure
1. At each site, the mean wind speed at a height of
10m above the mean sea level is produced by the
atmospheric model and it then will be used as the

input for the wave model to obtain wave properties.
After that one-hourly time series of mean wind
speed Uw, significant wave height Hs and peak
spectral wave period Tp are obtained. The period
covered is from January 2001 to December 2010.
For more details, see Li et al. (2015).
The data set used in this study comprises of wind
and wave data at the North Sea Center (site 15,
Figure 1). This site is a shallow shelf sea adjacent to
the North Atlantic with a mean water depth of 29
meters and distance to shore of 300 kilometers.
During the mentioned period, the 50-year return
period wind speed and significant wave height are
27.2 m/s and 8.66 m respectively, and the mean
value of peak spectral wave period is 6.93s.

2.2 Model Setup

2.2.1 Data Pre-processing Technique
A many-year long time series of waves and wind
data is a nonlinear, non-stationary and seasonal time
series. It can be decomposed into a seasonal mean
value and a residual stationary time series multiplied
by a seasonal standard deviation (Athanassoulis &
Stefanakos, 1995). For a multi-variate time series,
the decomposition procedure (Stefanakos & Schinas,
2014) can be shown as
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where N is the number of time series. M(t) is the
monthly mean value vector and Σ(t) is the monthly
covariance matrix which are deterministic periodic
functions with period of one year. They describe the
exhibited seasonal patterns. W(t) is a vector
zero-mean, stationary, stochastic process.
The seasonal patterns (mean value vector and
covariance matrix) are estimated by averaging the
time series of monthly mean values M3,n(j,m) and
covariance matrix S3,nl(j,m)
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where J is the number of years, Km is the number of
observations within the m-th month, and Yn(j,m,τk) is
a re-parametrization of Y(t)
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where j is the year index, m is the month index and
k represents the monthly time.

It has been shown that periodic extensions of the
quantities 3, ( )nM m and 3, ( )nlS m are good
estimates of Mn(t) and ∑nl(t), respectively
(Stefanakos & Athanassoulis, 2002).
In our case, we have the initial joint long-term time
series of three wind and wave parameters, i.e. mean
wind speed Uw, significant wave height Hs and peak
spectral wave period Tp. By using Eq.(2)-(4), the
initial time series can be decomposed to obtain the
stationary part W(t) and the deterministic seasonal
patterns [M(t), Σ(t)].

2.2.2 FIS/ANFIS
Fuzzy inference system (FIS) starts with the concept
of a fuzzy set. A fuzzy set is an extension of a
classical set whose elements can be a member of
more than one set and take membership degrees
between 0 and 1. The degree of membership of a
given element is defined by the membership
functions (MFs). MFs is a curve which can
transform verbal data to numerical data. For
example, if X is an universe of discourse (like Hs)
and x is a particular element of X, then a fuzzy set O
(like ‘high’) on X can be described as:

{( , ( ), }OO x x x X  (6)

where μO(x) is the membership function, which
provides a measure of the degree of similarity of x to
the fuzzy set O (‘Hs is high’).
A Fuzzy Inference System (FIS) is a nonlinear
method presented within the context of fuzzy set
theory mapping from a given set of input variables
to an output by means of a list of fuzzy statements or
called IF-THEN rules. IF-THEN rules are
expressions of the form ‘If A Then B’ to infer a
fuzzy output based on fuzzy inputs, where A and B
are labels of fuzzy sets characterized by certain
MFs. Normally, the IF part is called premise and the
THEN part is called consequent. A FIS consists of
the following four functional blocks:

1. Fuzzifier. Fuzzification of the input variables
into fuzzy input using the MFs stored in the
fuzzy knowledge base.

2. Fuzzy knowledge base. It is composed of the
data base and rule base, which containing the
MFs of the fuzzy sets and IF-THEN rules,
respectively.

3. Inference engine. Mapping the set of fuzzy input
to fuzzy output by means of IF-THEN rules.

4. Defuzzifier. Defuzzify the fuzzy output to a
crisp output.

The most important two types of fuzzy inference
method are Mamdani (Mamdani, 1974) and
Takagi-Sugeno (Takagi & Sugeno, 1985) fuzzy
inference methods, which have different
defuzzification schemes. In TS method, outcome of
each IF-THEN fuzzy rule is a scalar rather than a
fuzzy set for the output variable of the form:

Rr: IF x1 is Sr(1), x2 is Sr(2), ... , xn is Sr(n)

THEN yr=pr x1+qr x2+...+tr xn (7)
where Sr(i) is a linguistic value (like ‘low’ and ‘high’
for Hs) which is represented by fuzzy sets and pr , qr,
tr are parameters to be defined.
The main problem with TS fuzzy inference method
is the selection of parameters. Traditionally, the
parameters are determined through the experience of
experts or past available data of the system. Besides,
it is also difficult to determine which shape of MFs
has the best performance in FIS. Thus, the Adapted
Network-based Fuzzy Inference System (ANFIS)
was first proposed by Jang (1993) and is applied to
optimize the premise and consequent parameters
based on the available datasets by using a hybrid
learning algorithm. Specifically, parameters of
membership functions are trained using a
back-propagation learning algorithm, while
parameters of IF-THEN rules are adjusted by the
least square method. To illustrate the procedure, a
simple structure of ANFIS consisting of two input x1
and x2 and one output y is shown in Figure 2.

Figure 2. ANFIS architecture

In this ANFIS structure, the first layer is fuzzifying
layer, in which the inputs xi are fuzzified to the
membership values based on the MFs of linguistic
labels, as shown in Eq.(8). The second and third
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layers are implication and normalizing layer
respectively. In these two layers, the firing strength
wj for each rule and the corresponding normalized
firing strength are calculated by Eq.(9)-(10). Then
the outcome Oi of each rule can be calculated in the
defuzzifying layer using the corresponding
IF-THEN rules, as shown in Eq.(11). Based on the
weighted average of all IF-THEN rules outcomes,
the overall output y can finally be estimated by
Eq.(12). It should be noted that in the ANFIS
architecture, the FIS model is optimized by using
adaptive neutral network. On one hand, by fixing the
premise parameters in IF part (fuzzifying layer), the
information is propagated forward to defuzzifying
layer and the consequent parameters are identified
using the least square method. On the other hand, by
fixing the consequent parameters in THEN part
(defuzzifying layer), the error is propagated back to
fuzzifying layer and the premise parameters are
modified and the optimal values are determined.
Therefore, it can be seen that the only information
need to be specified is the number and the type of
MFs for each input variables.
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In this study, three ANFIS models are developed to
predict mean wind speed Uw, significant wave height
Hs and peak spectral wave period Tp. For the
prediction of each environmental parameter, the
following ANFIS systems are considered:
(a) mean wind speed Uw :

  11 ( ( ))wwU t f U t  (13)

(b) significant wave height Hs :

     21 ( , )s w sH t f U t H t  (14)

(c) peak spectral wave period Tp :

       31 ( ,  ,  )p w s pT t f U t H t T t  (15)

where f function in each system includes n IF-THEN
rules. The number n depends on the the number of
fuzzy sets for each input variable. It can be seen that
in this study, the prediction is a recursive process,

that is the one-hour ahead forecasts only depend on
the weather conditions of the previous hour.
By using the following forecasting method, two
kinds of simulated time series ( )Y t and ( )W t are
obtained:
(i) Applying ANFIS to the initial non-stationary Y(t)

to obtain the forecast ( )Y t . The obtained series is
referred to as ‘initial time series’ and the
corresponding method is called ‘initial-method’.

(ii)Applying ANFIS to the stationary-part W(t) to
obtain the forecast ( )W t . Then, ( )W t should be
combined with the seasonal patterns to get the
simulated version of the initial non-stationary Y(t).
The obtained series and method are referred to as
‘stationary time series’ and ‘stationary-method’
respectively.

2.3 Measuring Forecasting Quality
In order to evaluate the short-term forecasting
performance, the following four error measures are
used:

(a) Root Mean Square Error (RMSE)
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where I is the total number of testing data,
and the forecasting error at time ti is the
difference between forecasts f(ti) and actual
values a(ti): e(ti)= a(ti)- f(ti)

(b) Bias

1

1 ( ( ))
I

i
i

Bias e t
I 

  (17)

(c) Scatter Index (SI)
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where a is defined as the mean value of a(ti)
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(d) Correlation coefficient (R2)
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Figure 3. Flowchart of short-term weather conditions prediction

3 NUMERICAL RESULTS AND DISCUSSION

3.1 Validation of the decomposition-ANFIS model
The procedure used in the prediction of short-term
weather conditions in this study are illustrated in
Figure 3.
As can be seen from the Figure 3, the first step is
decomposition procedure. In this step, the total time
series of Uw, Hs and Tp is divided into two parts. The
first nine-year (2001-2009) time series is referred to
as the historical data, and is decomposed by means
of the non-stationary modelling which is described
in Section 2.2.1 to estimate the seasonal patterns.
Meanwhile, the tenth-year (2010) is referred to as
the study period. This initial non-stationary time
series is Y(t) and it can be decomposed by using the
seasonal patterns calculated from the previous nine
years to obtain the stationary time series W(t). Then,
the same period of data (in this case, two-month data
in summer season) are selected from Y(t) and W(t)
as training data respectively, and according to the
duration required for transportation and installation
of offshore wind turbines, the corresponding series
of the following three days are selected as testing
data. The next step is to determine proper ANFIS
models to do prediction. Firstly, the initial FIS
models are developed using the training data whose

structures are summarized in Table 1. The Uw-FIS
model or Hs-FIS model consists of two membership
functions for each input. Gaussian type MFs is
chosen for inputs and constant type MFs for output.
However, since the Tp-FIS model has a
comparatively complex prediction system, it needs
more and of different type membership functions.
Specifically, the number of membership functions
for each input in Tp-FIS model is 2, 3 and 4. Two
membership functions for Uw corresponding to the
fuzzy sets “Low” and “High”; three membership
functions for Hs corresponding to the fuzzy sets
“Low”, “Medium” and “High”; four membership
functions for Tp corresponding to the fuzzy sets
“Low”, “Medium”, “High” and “Very high”. So,
there are 24 fuzzy rules for the prediction of Tp(t+1).
Meanwhile, the adaptive neutral network is applied
to train the parameters of initial FIS models and the
optimal values are obtained using the procedure
described in Section 2.2.2. By replacing these
parameters into the initial FIS models, the developed
ANFIS models are established. After that, the last
step is to apply the developed ANFIS models for
predicting the wave and wind parameters. It should
be noted that in this step, the applied ANFIS models
are determined based on training, while the
prediction is performed using testing data. Then, the
performance of forecasting models is assessed by
means of error measures.
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Table 1. Structure of ANFIS model
Prediction
parameter IF-THEN rules type MFs type No.of

MFsInput Output
Uw Uw(t+1)=f1(Uw(t)) Gaussmf Const. 2

Hs
Hs(t+1)=

f2(Uw(t), Hs(t))
Gaussmf Const. 2 2

Tp
Tp(t+1)=

f3(Uw(t),Hs(t),Tp(t))
Gauss2m

f Const. 2 3 4

The predictions based on the two kinds of time
series are performed and the error statistics for each
model are calculated and shown in Table 2. As it can
be seen, the ANFIS models are suitable in the
estimation of both wave and wind parameters. The
R2 are larger than 0.94 and the SI are less than or
equal to 7% for all of the models. It is also
interesting that the accuracies of the models using
initial- and stationary-time series are nearly the
same. Therefore, it can be concluded that when large
amount of historical data are available to construct
the ANFIS model, there is a good agreement
between actual data and predictions regardless of the
initial or stationary time series applied.
Practically, measurements are often used in weather
forecasting for decision-making during the
execution of marine operations. However, since the
measured wave and wind data are scarce and the
measurement are difficult, costly and
time-consuming, continuous time series for a long
duration is not available at every site. In order to
verify the performance of ANFIS which is closer to
reality, the length of training data is reduced to 12
days, and the testing period remains 3 days.
Following the aforementioned procedure, ANFIS
models with initial- and stationary-time series are
developed to forecast the three parameters,
respectively. The comparison of actual and forecast
values is shown in Figures 4-6. In each figure, the
(a) depicts the results based on the ‘initial-method’,
while the (b) depicts the results based on the
‘stationary-method’. The corresponding error
statistics are summarized in Table 3.

Figure 4. Forecasts of mean wind speed Uw

Figure 5. Forecasts of significant wave height Hs

Figure 6. Forecasts of peak
spectral wave period Tp

In Table 3 one can see that for the cases of Hs and
Uw, the accuracy of the both methods (initial- and
stationary-method) is satisfactory enough. It is
apparently seen in Figures 4-5 that all rising and
falling trends of the actual Hs and Uw are properly
followed by the predictions. However, for a relative
complex prediction system, the Tp predictions of
initial-method are less reliable. It is noted that, there
is an improvement in the prediction performance of
Tp by means of the stationary-method, which is
reflected in the reduction of the errors. Specifically,
the error reduction is generally between 48% and
79% and with minimum and maximum values at
48.6% (Bias) and 78.5% (SI), respectively.
Furthermore, the peaks and troughs are relative
accurately estimated by the proposed
stationary-method (see Fig. 6). This shows a great
enhancement of the short-term prediction by
introducing the decomposition procedure before the
ANFIS model is established. Generally speaking,
the non-stationarity is an important factor affecting
the short-term prediction accuracy of ANFIS model.
When only limited data is available, the ANFIS
models using the stationary time series typically
give better results than that of the initial time series.
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Table 2. Error measures (training period is 2 month)
Parameter Bias SI R2 RMSE

Uw (initial) -0.036 0.064 0.946 0.451
Uw (stationary) -0.041 0.065 0.946 0.452
Hs (initial) 0.017 0.039 0.986 0.041
Hs (stationary) 0.013 0.038 0.987 0.040
Tp (initial) 0.067 0.023 0.981 0.120
Tp (stationary) 0.071 0.021 0.984 0.109

Table 3. Error measures (training period is 12 days)
Parameter Bias SI R2 RMSE
Uw (initial) -0.080 0.066 0.943 0.481
Uw (stationary) -0.078 0.066 0.943 0.480
Hs (initial) 0.015 0.040 0.986 0.041
Hs (stationary) 0.015 0.039 0.987 0.040
Tp (initial) 0.208 0.130 0.564 0.684
Tp (stationary) 0.107 0.028 0.961 0.173

3.2 Sensitivity analysis
In addition, further investigations are also required
to study the influence of the length of both the
training and the forecasting period in short-term
prediction. Since there is a significant difference of
performance between the two methods for
predicting peak spectral wave period, the accuracy
of Tp prediction is used for the following sensitivity
analysis. On one hand, to determine the impact of
training period on model’s predicting ability, the
forecasting horizon is fixed for 3 days and the
historical time series varies from 3 days (72 points)
to 3 month (2160 points).

Figure 7. Error measures vs length in training period (site 15)

In Figure 7 the error measures are shown versus the
length of the training period. By inspecting this
figure, one can observe that in the stationary-method
the error measures are stabilized after 9 days
(approximately 3 times the forecasting horizon).
While in the initial-method the error measures are
likely to oscillate in the entire 3-month period, and,
therefore, a stable point cannot be determined.
Especially, in the range of 50-80 days, poor
accuracy and numerical instability is obtained when
dealing with initial time series. Thus, the ANFIS

models using stationary time series give better
results with lower error measures and higher
stability than ANFIS models using initial time
series.
On the other hand, in order to evaluate the
short-term predicting performance of ANFIS model
with the given training period when different
forecasting horizon are required, the length of
training data is fixed for two month (1440 points),
the forecasting horizon is let to vary from 1 day (24
points) to 1 month (720 points). In Figure 8 it is
shown that with the increase of testing period, the
results obtained from the stationary-method are
always better which remain lower error measures
and higher stability.

Figure 8. Error measures vs length in testing period (site 15)

3.3 Uncertainty quantification analysis
The examples in the previous sections focus on the
performance of forecasting models for predicting
short-term environmental conditions during the
summer season which is relatively calm. In order to
quantify the uncertainty in all seasons for the whole
year, uncertainty quantification analysis is required.
The purpose of this section is to quantify if the
proposed models still perform well in short-term
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prediction whichever seasons and weather
conditions are taken into account.
Since the accuracy for the forecasts at different time
instants in the future is important, in the following
analysis, the forecast error factor ɛM(t) is used to
quantify the uncertainty of the corresponding
forecast performance in a prediction model. It is
defined as the ratio between forecasted and actual
value in testing data:

( )( )
( )M
f tt
a t

  (21)

where t is the lead time (in day), f(t) and a(t) are the
forecasted and actual value at the tth day ahead
around 9am, respectively.
The methodology for estimating the uncertainty in
forecasting model with a given length of training
and testing data is as follows:
1. The length of training and testing data in each
ANFIS model are assumed to be t1 and t2 days,
respectively.

2. The short-term predictions of wave and wind
conditions are performed by applying ANFIS
methods in the entire ten-year period of the data.
For example, the first t1×24 datapoints in the
first-year time series are chosen to estimate the
first ANFIS model. This model is then applied to
predict the next t2×24 datapoints. The second
ANFIS model is established with the subsequent
t1×24 datapoints and the following t2×24
datapoints are predicted. The procedure is
repeated until the entire ten-year period is covered.
A number of N cases and corresponding
forecasting results are obtained.

3. Calculate the forecast error for each case from
Eq.(21). It can be seen that for a given t, ɛM(t) is a
random variable with N datapoints.

4. Calculate the statistical parameters of random
variable ɛM(t) and fit a proper probability
distribution to show its properties.

Assuming the length of training and testing time are
fixed to 50 days and 3 days respectively, the
aforementioned procedure is performed to
investigate weather forecast uncertainty. Similarly,
the accuracy of Tp prediction is used for the
following uncertainty quantification analysis. A
comparison between the initial- and
stationary-methods is shown in Figure 9 in the form
of density distributions with respect to the forecast
error factor ɛ.
As illustrated in the Figure 9, when the amount of
historical data is quite large compared to the forecast
data, the mean values of both two statistical
distributions are close to unit, which indicates that
the forecast value is approximately equal to the
corresponding actual value in each testing case
during the whole ten-year time series despite

seasonal variation. However, the shapes of the two
distributions of the forecast error have large
difference. The distribution of forecast error from
stationary method is more concentrated around the
mean value, which is closer to one. In contrast, the
mean value from initial method is far from one, and
the standard deviation is higher.

Figure 9. Forecast error factor ɛ distribution

It is evident that the forecast error is a function of
both the actual training period and the leading time
for forecast. Thus, in order to identify this feather, a
period ratio R between the training period and the
leading time for forecast is introduced as follows:

t

f

TR
T

 (22)

where Tt is the training period, representing the
length of the available historical time series before
executing a marine operation. Tf is the length of
forecasting horizon.
In the following case, the training period is assumed
to be fixed for 21 days, 14 days and 7 days. For each
training period, the period ratio R varies from 1 to 7.
The forecast error distribution in each ratio is built
using the corresponding number of cases of forecast
error factor. By statistically analyzing the series of
forecast error factor, the mean value and standard
deviation are calculated and tabulated in Table 4.
The results show several features. Firstly, the ratio R
would affect the short-term prediction performance
and this behavior is more pronounced in results
based on the initial-method. For instance, when the
training period is 21 days, the forecast error
distributions for 7 different ratios are illustrated in
Figure 10. It is apparent that the dispersion degree of
forecast error distributions using the
stationary-method is generally lower than those
using the initial-method. As the ratio increases from
1 to 7, the standard deviation increases significantly
based on the initial-method. While in the
stationary-method, standard deviations at different
ratios are always less than 0.23, demonstrating the
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Table 4. Statistical parameter of ɛ (varying training period)
Training
period
(days)

Method Coefficient
Period ratio R

1 2 3 4 5 6 7

21

Initial
m 1.4381 1.1145 1.2389 1.2737 1.1414 1.3674 1.1106
std 2.4727 0.5952 1.0491 1.2929 0.4767 1.5122 0.9281

No. of cases 80 110 130 130 140 140 150

Station
ary

m 1.0032 0.9914 1.0231 1.0224 1.0543 1.0335 0.9988
std 0.1378 0.1324 0.1503 0.1386 0.2286 0.2025 0.0805

No. of cases 80 110 130 130 140 140 150

14

Initial
m 1.6599 1.5333 1.4957 1.7399 1.5095 1.6026 1.5536
std 3.5603 3.0716 3.0728 4.3226 3.1317 2.7403 4.0345

No. of cases 130 170 190 200 210 220 220

Station
ary

m 1.0603 1.0309 1.0623 1.0572 1.0494 1.0656 1.0248
std 0.4243 0.1721 0.2673 0.2956 0.2186 0.3465 0.2019

No. of cases 130 170 190 200 210 220 220

7

Initial
m 8.6356 7.4797 4.7265 3.8716 5.3750 4.4432 5.5718
std 41.7178 42.3232 23.6164 18.8342 23.1004 24.0071 29.4128

No. of cases 260 340 390 410 430 440 450

Station
ary

m 1.0384 1.0587 1.0501 1.0598 1.0511 1.0523 1.0255
std 0.2318 0.2949 0.2499 0.2916 0.2535 0.2849 0.2376

No. of cases 260 340 390 410 430 440 450

degradation of forecasting performance not seen
remarkably from the stationary-method.

(a) Initial method

(b) Stationary method
Figure 10. Forecast error factor ɛ distribution vs period ratio R

Furthermore, the uncertainty of forecasts is not only
affected by the ratio R, but also changes in terms of
the training period, which usually increases along
with the decrease of the length of available historical
time series. For a given ratio R, the forecast error
factors using the initial-method show an obviously
divergent trend with the decrease of training period,
which can be observed from the Table 4. However,
in the stationary-method, the forecast error factors

are always stable at different training periods. To see
the difference over time more clearly, the ratio of 7
is chosen and the forecast error distribution
corresponding to training period of 7, 14 and 21
days are displayed for comparison, as shown in
Figure 11.

(a) Initial method

(b) Initial method (the tail part)

In Table 4, it can be observed that for the
initial-method, when the training period decreases
from 21 days to 7 days, the standard deviation of the
forecast error would increase more than 30 times
(from 0.9281 to 29.4128), which may be due to the
seasonal effects. In this case, few training data is not
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(c) Stationary method
Figure 11. Forecast error factor ɛ distribution vs training
period (Ratio is 7)

enough to predict the weather conditions in the
following several days, which can be illustrated in
the Figure 11 (a) and (b). As shown in these figures,
as the training period decreases, not only the peak of
forecast error density distribution decreases, but also
there are a lot of extremely large forecast error
values in the tail of the distribution. This lead to the
mean value of the distribution is far from one and
the standard deviation increases sharply. In contrast,
forecasting performance from the stationary-method
is not influenced much by seasonal effects and the
standard deviations have a small tendency to
fluctuate in shorter training period, which can be
shown in the Figure 11 (c). Hence, it can be
concluded that less uncertainty of short-term
weather forecasts is reflected by the
stationary-method, even in rough weather and severe
sea states.
Finally, for a given period ratio and training period,
the stationary-method has a much more accurate and
stable performance than the initial-method for
prediction of short-term weather conditions. For
each case in Table 5, the stationary-method gives
better results because the standard deviation of
forecast errors from the stationary-method are lower
than those from initial-method. In addition, it should
be noted that the difference between the standard
deviation from the two methods tends to increase as
the training period and ratio decrease. For instance,
the mean value and the standard deviation of
forecast error using the initial-method are greater
than 8 and 41 respectively at the training period of 7
days and period ratio of 1. This implies that the
forecasts from the initial-method fluctuates too
much and the results are totally unbelievable. On the
contrary, the stationary-method is a better method in
short-term prediction of weather conditions, with
less uncertainty over the forecasts in the entire
ten-year.
Moreover, in order to be more practical and to
provide more guidance for marine operations,
uncertainty quantification analysis of constant
day-ahead weather forecasting should be
investigated. In this part, the lead time is fixed to 1

day and ten different ratios from 1 to 10 are selected.
The time series of forecast error factor ɛ for each
ratio is plotted in Figure 12 and the corresponding
statistical results of each time series are calculated
and summarized in the Table 5.

(a) Stationary method

(b) Initial method
Figure 12. Time series of forecast error factor ɛ (lead time is 1
day)

It is apparently seen in Figure 12 that the proposed
stationary-method has better capacity to predict the
short-term weather conditions in all seasons since all
time series of forecast error factors are found to be
closed to 1. However, when the initial-method is
applied, the uncertainties corresponding to the
forecast error would significantly different from one
another. As illustrated in Figure 12 (b), as the ratio
decreases, the fluctuations of the forecast error
factors would increase in frequency and intensity,
and the maximum error value could up to 2×104,
making it hard to get the accuracy forecasts.

Figure 13. Error bars of logarithm transformed forecast error
factor ɛ
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Table 5. Statistical parameter of ɛ (lead time: 1 day)

method coefficient
ratio

1 2 3 4 5 6 7 8 9 10

Initial
m 611.08 245.15 104.57 41.919 12.914 9.1350 5.5718 4.1311 3.4523 1.5732
std 2712.8 1219.1 644.06 241.64 81.551 62.719 29.413 20.703 22.726 3.4314

No. of cases 1820 1210 910 730 600 520 450 400 360 330

Station
ary

m 1.0033 1.0145 1.0372 1.0356 1.0325 1.0382 1.0255 1.0252 1.0411 1.0315
std 0.2892 0.2638 0.3061 0.2997 0.2827 0.2729 0.2376 0.2061 0.2293 0.2109

No. of cases 1820 1210 910 730 600 520 450 400 360 330

In addition, error bar chart is used to indicate the
difference between the uncertainty of forecasts in
two methods. Since the mean value and standard
deviation of each ɛM based on the initial-method are
several orders of magnitude larger than those based
on the stationary-method, the logarithms of these
results are calculated and shown in Figure 13. The
results show that based on the initial-method there is
a divergent trend with the decrease of ratio. It can be
seen that both the mean value and standard deviation
continues to increase and a higher variability in the
short-term forecasts occurs as the ratio decreases.
However, the level of uncertainty in the forecasts by
using stationary-method is observably low and
remains stable at all ratios. In such cases, if the
forecast error factor is assumed to be a Gaussian
random variable, with mean value around 1 and
standard deviation around 0.2, there is a probability
of about 68% that the prediction lies within one
standard deviation of the mean (e,g. the mean value
of Hs is 1m, so the corresponding range is between
0.8-1.2m), which is satisfactory. Therefore, using
the stationary-method can be seen as a credible way
to predict the short-term weather conditions,
especially in the case of very little historical data is
available.
In summary, although a forecasting method can
correctly predict the environmental conditions for a
certain period, the overall forecasting performance
may be quite different in the whole year. Hence, the
uncertainty quantification analysis is a more
comprehensive approach to assessing the short-term
predicting performance of the forecasting model.
The results further indicate that the proposed
stationary-method is relative insensitive to the
seasonal variation and has more significant
advantages for short-term forecasting of waves and
wind.

4 CONCLUSIONS

In this paper, an improved ANFIS model combined
with a non-stationary decomposition technique is
applied for prediction of short-term mean wind
speed Uw, significant wave height Hs and peak
spectral wave period Tp during execution of marine
operations. To remove the non-stationary character

of wind and wave time series, ten-year long
(2001-2010) one-hourly data at the North Sea Center
is used. The seasonal patterns are estimated from the
first nine-year time series, and then the tenth-year
initial time series is decomposed by using the
obtained patterns to get a residual stationary part.
Forecasting performed by applying ANFIS models
with initial- and stationary-time series are called
initial-method and stationary-method, respectively.
For evaluating the prediction accuracy of the two
methods, several error measures such as Bias and
Correlation coefficient (R2) are utilized. The
comparison of error measures indicates that, the
stationary-method has a far better performance than
initial-method, especially in modeling complex
nonlinear systems and using limited historical data.
To further validate the performance of the
stationary-method, investigations on the influence of
the length of both the training and the forecasting
period in short-term prediction have been conducted.
It is further observed that stationary-method requires
less historical data to achieve a satisfactory result.
In addition, the model uncertainties in short-term
weather forecasts based on both initial- and
stationary-method are also investigated. For this
purpose, the all ten-year long data are used to
quantify the uncertainty in forecasts. Sensitivity
analysis results illustrate that the forecast errors
from the stationary-method suffer a relatively small
uncertainty for both severe weather conditions and
less historical time series. Thus, one can conclude
that the stationary-method outperforms the
initial-method in terms of prediction reliable.
Therefore, the proposed methodology based on the
aforementioned decomposition technique and
ANFIS could provide an effective way for the
short-term prediction of wave and wind conditions
and has a great application potential in marine
operations. However, it is also worth noting that a
limitation still exists in the stationary-method. In the
decomposition procedure, the deterministic seasonal
patterns need to be utilized to obtain the stationary
wind and waves time series, which estimated based
on the long-term historical data. Therefore, how to
obtain the long-term historical data at any point and
how to ensure the accuracy of short-term predictions
in the absence of long-term data are the hotpots and
difficult problems in future.
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