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Problem Description
Problem 1   E|X|

An explicit formula that unites the L2 and L1 mean integrated errors could reveal interesting
information. Actually, one could try to find a common expression for all 0 < L < 2 mean integrated
errors. Such an expression might be found by applying characteristic functions. This expression
could then be used to calculate the exact mean integrated errors; and the corresponding optimal
bandwidths can be found fairly easy by minimizing these expressions. One could also use these
expressions to compare different bandwidth selectors in terms of best approximation of the exact
optimal bandwidth.

Problem 2   cur(f)

The curvature of the target functions f is an important measure, as it is used in many different
bandwidth selectors. As the target density is unknown, we usually have to rely on some estimate of
the total curvature. New and better estimators of the curvature would be beneficial in many
settings and could improve the bandwidth selection procedures.
It is also possible to use this curvature measure as a bandwidth selection procedure. The main
idea is to estimate the curvature of the target density and then choose the bandwidth that
corresponds to the density estimate with the same curvature as the curvature estimate. To explore
this approach, and compare it with other methods, might results in new knowledge about the
bandwidth selection problem.
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Preface

“Do not put your faith in what statistics say until you have carefully considered what
they do not say. “

- William W. Watt

In this report we study one of the most popular non-parametric density estimators, the
kernel density estimator. While the idea behind the kernel density estimator is simple,
the practical implications are many. We can change the parameters involved, and by
that severely change the features of the resulting density estimate. Finding the optimal
parameters of the kernel density estimator is therefore extremely important in order to
obtain a good estimate. Although several parameters are involved, the bandwidth is
the dominant parameter. This is the motivation behind this project, where we study
different aspects of bandwidth selection.

I want to thank to my advisor, professor Nikolai Ushakov, for all the help during this
project.

Trondheim, Spring 2010
H̊akon Kile
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Abstract

In kernel density estimation, the most crucial step is to select a proper bandwidth
(smoothing parameter). There are two conceptually different approaches to this problem:
a subjective and an objective approach. In this report, we only consider the objective
approach, which is based upon minimizing an error, defined by an error criterion.

The most common objective bandwidth selection method is to minimize some squared
error expression, but this method is not without its critics. This approach is said to not
perform satisfactory in the tail(s) of the density, and to put too much weight on obser-
vations close to the mode(s) of the density. An approach which minimizes an absolute
error expression, is thought to be without these drawbacks. We will provide a new
explicit formula for the mean integrated absolute error. The optimal mean integrated
absolute error bandwidth will be compared to the optimal mean integrated squared error
bandwidth. We will argue that these two bandwidths are essentially equal.

In addition, we study data-driven bandwidth selection, and we will propose a new
data-driven bandwidth selector. Our new bandwidth selector has promising behavior
with respect to the visual error criterion, especially in the cases of limited sample sizes.





Contents

1 Introduction 1

1.1 Non-parametric density estimation . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Survey 4

2.1 The kernel density estimator . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The kernel, K(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 The bandwidth, h . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 The target density . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Normal mixture family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Error criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 The L2 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 The L1 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 The Visual Error Criterion . . . . . . . . . . . . . . . . . . . . . . 12

3 Mean Lp Error for Kernel Density Estimators 16

3.1 The MLPE and MILPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Some general results . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 The Mean LP Error (MLPE) . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 The Mean Integrated LP Error . . . . . . . . . . . . . . . . . . . . 20

3.2 Calculation of MAE and MIAE . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 The Mean Absolute Error . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 The Mean Integrated Absolute Error . . . . . . . . . . . . . . . . . 25

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.4 Other values of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Bandwidth Selection 35

4.1 Data-driven bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Optimal EVE2 bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Density Functionals and Direct plug-in . . . . . . . . . . . . . . . . . . . . 36

4.4 New data-driven bandwidth selector . . . . . . . . . . . . . . . . . . . . . 38

iii



4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

A Numerical methods 48

A.1 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2 Lagrange polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.3 Numerical differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B Additional Tables and Figures 56

B.1 From chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2 From chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C Notation 61

C.1 Definition of error criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
C.2 Notation concerning univariate functions . . . . . . . . . . . . . . . . . . . 61



Chapter 1

Introduction

Density estimation usually means fitting a parametric density model to a data sample. To
use such a parametric estimation, we need an assumption about which density family the
data is generated from. Often this assumption is based on little or no evidence, and if our
assumption is wrong we end up with a false result. In non-parametric density estimation
we do not need to make such an assumption. Non-parametric density estimation can be
used as an initial analysis, or as an analysis tool itself.

The idea behind non-parametric density estimation is old, but many of the meth-
ods are quite compute-intensive. As the computational power has increased rapidly
the last 30-40 years, non-parametric methods have received more attention and great
improvements have been made.

1.1 Non-parametric density estimation

There exists many different non-parametric density estimators, like the histogram, the
kernel density estimator and projection estimators. This report takes a closer look at the
kernel density estimator, but problems and issues that arises in this context are related
to problems and issues associated with other non-parametric density estimators as well.

The kernel density estimator at x, based upon an iid sequence X = (X1, ....Xn)
generated from a continuous, univariate target density fX(x), is

f̂n(x;h) =
1

nh

n
∑

i=1

K(
x−Xi

h
)

where
∫

K(x)dx = 1. There are three parameters in this estimator; the sample size n,
the kernel function K(·) and the bandwidth h. Quite typically we cannot do anything
about the sample size, and we have to make the best out of the situation by choosing
an appropriate kernel and a suitable bandwidth. It is well known that the bandwidth
selection is the most crucial step in order to obtain a good estimate, e.g. see chapter 2
in Wand and Jones (1995), [26]. Unfortunately, bandwidth selection is the most difficult

1



2 CHAPTER 1. INTRODUCTION

problem in kernel density estimation, and there exist no definite and unique solution to
this problem. This report will look into different aspects of bandwidth selection methods.

It is rather surprising that the most effective bandwidth selection method is a visual
assessment by the analyzer. The analyzer (visually) compares different density estimates,
based upon a variety of bandwidths, and then chooses the bandwidth that corresponds
to the (subjectively) optimal estimate. The unfortunate part is that such bandwidths
are non-unique; this method will (probably) yield different bandwidths when performed
by different analyzers. This method can also be very time consuming.

A more mathematical approach is to quantify the discrepancy between the estimate
and the target density by some error criterion. The optimal bandwidth will then be
the bandwidth value that minimizes the error measured by the error criterion. Such
a method is objective, and can be time-efficient as computers can solve it numerically.
However, if the error criterion does not reflect the discrepancy between the estimate and
the target density, the error criterion is worthless.

In this report, we will take a closer look at three different objective error criteria;
the squared error (SE), the absolute error (AE) and the visual error (VE). The first two
lead to the following global error measures

• Mean integrated absolute error: MIAE = E[
∫

|f̂n(x;h)− f(x)|dx]

• Mean integrated squared error: MISE = E[
∫

(f̂n(x;h)− f(x))2dx]

which we will handle in more detail in chapter 2.

One attraction toward the subjective bandwidth selection method is that the two
error criteria above only measure vertical distance. The human eye takes both horizontal
and vertical distance into account when assessing the distance between two curves, it can
therefore be some discrepancy between these approaches. An error criteria that better
captures the visual perception of distance will be beneficial in many situations. Such a
criterion was proposed by Marron and Tsybakov (1995), [18], and is denoted the visual
error. This error criterion will be handled in detail in chapter 2.

While the above error criteria are interesting from a theoretical point of view, they
do not do much good in practice, since the target function is unknown. In practice
we have to rely on methods that approximates these errors, and the corresponding
optimal bandwidths, based on the data at hand. Data-driven bandwidth selectors aim
to estimate the optimal bandwidth using different techniques, e.g. cross validation and
asymptotic expansions. We will discuss data-driven bandwidth selection in details later
in this report.

1.2 Background reading

For a general introduction to non-parametric density estimation, we will refer to Silver-
man (1986), [23], and Wand and Jones (1995), [26]. These books cover a broad specter
of methods and results within non-parametric density estimation.
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There are countless papers on the MISE as an error criterion in density estimation.
Marron and Wand (1992), [19], is a central paper in this report, and is a cornerstone for
research related to the MISE criterion. In Marron and Wand (1992), [19], they found an
exact formula for the MISE, when the target density is a member of the normal mixture
family. Alternatively, we can study the asymptotic behavior of the MISE, see chapter 2
in Wand and Jones (1995), [26].

The monograph by Devroye and Györfi (1985), [6], is a a general introduction to the
absolute error criterion in density estimation, and contains many useful results. Devroye
and Györfi presented some compelling arguments in favor of the L1 approach and some
interesting and useful results concerning its asymptotic behavior. Hall and Wand (1988),
[9, 10], derived an expression for the general asymptotic mean integrated absolute error.
They showed that the asymptotically optimal bandwidth can be found by numerically
solving a specific equation.

The visual error criterion is fairly new, and was first introduced in Marron and
Tsybakov (1995), [18]. In Marron (1998), [17], further analysis of the VE was presented.
As of today, many aspects of the VE criterion remains unexplored.

Data-driven bandwidth selection has been investigated in many papers. Two thor-
ough and extensive papers, regarding modern data-driven bandwidth selectors, are Cao,
Cuevas and Manteiga (1994), [3], and Jones, Marron and Sheather (1996), [12].

1.3 Outline of the report

In chapter 2 we present some of the background information we need in this study.
We will discuss the kernel density estimator, the normal mixture family, the MISE, the
MIAE and the VE in detail.

In chapter 3 we will present new results, as we will derive an explicit formula for the
mean Lp error and the mean integrated Lp error, where 0 < p < 2. We will use these
formulas in the context of kernel density estimation and investigate the relationship
between the MISE and the MIAE.

Chapter 4 will deal with data-driven bandwidth selection, and optimal density es-
timation with the respect to the VE criterion. Here we will present a new data-driven
bandwidth selector with promising behavior.

In Appendix A there is a summary of the numerical methods we use in chapter 3
and 4. Appendix B contains some additional tables and figures related to the results
in chapter 3 and 4. In Appendix C there is an overview of the notation and definitions
used in the report.



Chapter 2

Survey

This report will only deal with univariate density estimation. There are no obstacles to
use the kernel density estimator in multivariate density estimation, but not all results
from the univariate setting are directly applicable in a multivariate setting. To first
study the properties of the kernel density estimator in the univariate setting, and later
on find the multivariate extensions, is therefore quite natural.

Our sample will throughout this report be an iid sequence X = (X1, ....Xn) from
a known continuous, univariate target density fX(x). Unqualified integral sign,

∫

, will
mean integration over the whole real line, R.

2.1 The kernel density estimator

The kernel density estimator, or the Parzen-Rosenblatt estimator (see Parzen (1962)
[20]), at location x is:

f̂n(x;h) =
1

nh

n
∑

i=1

K(
x−Xi

h
) =

1

n

n
∑

i=1

Kh(x−Xi) (2.1)

where Kh(x) = 1
hK(xh), and K(·) is a function satisfying

∫

K(x)dx = 1 and K(x) ≥ 0

∀x. f̂ will be a density as long as these conditions are satisfied and K(·) and h do not
depend on x.

2.1.1 The kernel, K(x)

A usual requirement is that the kernel function is a continuous, unimodal, symmetric
density function. This ensures easy interpretation of the density estimate, the estimate
is a density itself, and it is easy to understand the estimation process.

It is possible to construct kernels with asymptotically better performance than these
conventional kernels. We can remove some of the restrictions and obtain kernels like
higher order kernels, infinite order kernels and the sinc kernel. In chapter 2 in Wand and
Jones (1995), [26], and in Marron and Wand (1992), [19], there is a thorough discussion

4
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regarding different types of kernels. The main result is that these alternative kernels
often need very large sample sizes before they outperform the conventional kernels.
In addition, these kernels distort the density estimates as the estimates are no longer
guaranteed to be densities. A method for correcting density estimates that are not
densities can be found in Glad, Hjort and Ushakov (2003), [7], but this problem will not
be addressed in this report. We need to consider if the gain in performance is worth the
sacrifices and disadvantages before we use such kernels.

In this report we focus on different error criteria and bandwidth selection methods, we
will not look into optimal kernel selection. Therefore, we will use a simple kernel which
ensures easily interpretable estimates, namely the N(0, 1) density. It also simplifies the
mean integrated squared error calculation when combined with a target density that
belongs to the normal mixture family, which we will see later.

2.1.2 The bandwidth, h

As mentioned in the introduction, the bandwidth is the most dominant parameter in
the kernel density estimator. This parameter controls the amount of smoothing, and is
analogous to the binwidth in a histogram. Even though the kernel estimator depends on
the kernel and the bandwidth in a rather complicated way, a graphical representation
clearly illustrates the difference in importance between these two parameters, see figure
2.3 page 13 and 2.6a page 29 in Wand and Jones (1995), [26]. Alternatively, we can see
the dominant role the bandwidth has in a Taylor expansion of the MISE for a kernel
density estimator, see chapter 2 in Wand and Jones (1995), [26].

A problem in bandwidth selection is what we define as the optimal bandwidth. Ac-
tually, there is no obvious and unique definition of the optimal bandwidth, as it depends
on our objective. One analyzer might be interested in the precise location of the modes
of the target density, like in spectroscopy, while other analyzers might be more inter-
ested in the number of modes, like in finance. These two situations calls for different
bandwidths. As we will see in section 2.3, different error criteria, and their optimal
bandwidths, are used for different objectives.

Another issues is whether we want to focus on one global bandwidth or if the band-
width should be allowed to vary according to the location. The argument in favor of
a bandwidth that varies, is that the amount of smoothing should reflect the amount of
smoothing needed at each location. E.g. around the modes one needs little smoothing,
while in the tail of a distribution one can use much smoothing. But if we do not know
anything about the qualitative features of the target density, we cannot use such local
bandwidths. In order to effectively use such an approach, we first need to do a prelim-
inary analysis, which in practice means an analysis with a global bandwidth. Another
problem with the local bandwidth is that the resulting density estimate is not a density.
This situation is outside the scope of this study. For a quick discussion, see chapter 2.10
in Wand and Jones (1995), [26].
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2.1.3 The target density

Some densities are harder to estimate than others. This is quite clear from a quick
look at the plot of our target densities in figure 2.1 at page 15. We see that some of
the densities have very complicated structures. For such densities, we need very large
sample sizes before we can expect our density estimate to capture all the features of the
target density. There have been several attempts to classify how hard a density is to
estimate, e.g. see Wand and Devroye (1993), [25], or chapter 2.9 in Wand and Jones
(1995), [26].

Another issues in kernel density estimation is the estimation of densities with bound-
aries, e.g. the exponential distribution. This problem is raised as a consequence of our
choice of a continuous kernels, see chapter 2.11 in Wand and Jones (1995), [26], for more
details. All our target densities are continuous, and we will not deal with this problem
in this study.

2.2 Normal mixture family

The normal mixture family is very useful due to the fact that any density can be ap-
proximated arbitrarily well by a member of this family. A probability density function
within this family is defined:

f(x) =
k
∑

l=1

ωlφσl(x− µl) (2.2)

where φσ(x) denotes the N(0, σ2) density, k is a positive integer, ω1, ...., ωk is a set of
positive numbers that sums to one, and for each l, −∞ < µl <∞ and σ2

l > 0.

We will use 15 different target densities in this report. They are defined in table 2.1
and can be seen in figure 2.1 on page 15. These densities were constructed by Marron and
Wand (1992), [19], to: ”...typify many different types of challenges to curve estimation.”
See section 3 in that paper for more details.

Many later studies have used these 15 densities as target densities. This is useful to
us, since we can easily compare our results with other research studies within the field
of kernel density estimation.

2.3 Error criteria

We mentioned in the introduction that the most effective bandwidth selection method is
a visual assessment by the analyzer. The analyzer (visually) compares different density
estimates, based upon a variety of bandwidths, and then chooses the bandwidth that
corresponds to the (subjectively) optimal estimate. This method suffers from non-unique
bandwidths, and it is time consuming. Further we mentioned that a more mathematical
approach is to quantify the discrepancy between the estimate and the target density by
some error criterion. In this section we discuss three different objective error criteria.
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Table 2.1: The normal mixture densities
Density Parameters

#1 Gaussian N(0, 1)

#2 Skewed unimodal 1
5N(0, 1) + 1

5N(1
2 , (

2
3)2) + 3

5N(12
13 , (

5
9)2)

#3 Strongly skewed
∑7
l=0

1
8N(3{(2

3)l − 1}, (2
3)2l)

#4 Kurtotic Unimodal 2
3N(0, 1) + 1

3N(0, ( 1
10)2))

#5 Outlier 1
10N(0, 1) + 9

10N(0, ( 1
10)2)

#6 Bimodal 1
2N(−1, (2

3)2)) + 1
2N(1, (2

3)2)

#7 Separated Bimodal 1
2N(−3

2), (1
2)2)) + 1

2N(3
2 , (

1
2)2)

#8 Skewed Bimodal 3
4N(0, 1) + 1

4N(3
2 , (

1
3)2)

#9 Trimodal 9
20N(−6

5 , (
3
5)2) + 9

20N(6
5(3

5)2) + 1
10N(0, (1

4)2)

#10 Claw 1
2N(0, 1) +

∑4
l=0

1
10N(( l2 − 1), ( 1

10)2)

#11 Double claw 49
100N(−1, (2

3)2) + 49
100N(1, (2

3)2)

+
∑6
l=0

1
350N( (l−3)

2 , ( 1
100)2)

#12 Asymmetric claw 1
2N(0, 1) +

∑2
l=−2

21−l

31 N(l + 1
2 , (2

−l/10)2

#13 Asymmetric double claw
∑1
l=0

46
100N(2l − 1, (2

3)2) +
∑3
l=1

1
300N(−l2 , (

1
100)2)

+
∑3
l=1

7
300N( l2 , (

7
100)2)

#14 Smooth Comb
∑5
l=0

25−l

63 N({65− 96(1
2)l}, (35

63)27(22l))

#15 Discrete Comb
∑2
l=0

2
7N((12l − 15)/7, (2

7 )2) +
∑10
l=8

1
21N(2l/7, ( 1

21)2)
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The first two should be quite familiar; the mean integrated squared error (MISE) and
the mean integrated absolute error (MIAE). As error criteria in density estimation, they
measure the vertical distance between the density estimate and target density, using the
L2 or L1 norm. The optimal density estimates in terms of the MISE and MIAE are
quite often far away from the visually optimal estimate, especially in the case of smaller
sample sizes. MISE and MIAE optimal estimates are often undersmoothed for smaller
sample sizes.

An error criterion that aims to produce estimates that are closer to the visually
optimal estimates, is the visual error (VE) criterion. The VE is linked to the idea of
qualitative smoothing, see Mammen (1993), [16], and was first introduced in Marron
and Tsybakov (1995), [18]. We will take a closer look at the VE in this section.

For limited sample sizes, it is quite obvious that we cannot extract all features of the
target density. At least for target densities with complicated structures, as discussed
earlier. How many of the features we can extract will depend on different factors, e.g.
how many false features we are willing to accept. An oversmooth estimate will smooth
out a multimodal structure, while an undersmooth estimate will results in too many
modes. We need to carefully weigh our options depending on our objective.

Data-driven bandwidth selectors aims to minimize an error, defined by some error
criterion. Modern data-driven bandwidth selectors have a relatively good performance
for large sample sizes, but often fail for limited sample sizes. This is mainly due to the
fact that the MISE and MIAE optimal bandwidths often fail to produce good estimates
for limited sample sizes. An error criteria with better performance for limited sample
sizes might provide a better basis for data-driven bandwidth selectors. We will see that
the VE often has better performance for limited sample sizes, and at the same time
converges to the same optimal estimate as the MISE/MIAE optimal estimate for large
sample sizes. On this basis, the VE has promising features.

2.3.1 The L2 Loss

The most common error criterion in estimation procedures is based upon the L2-norm,
and is here denoted SE; the squared error. The SE of the kernel density estimator at x
is:

SE(f̂n(x;h)) = [f̂n(x;h)− f(x)]2

The global error measure is found by integration, the integrated squared error:

ISE(f̂n(·;h)) =

∫

[f̂n(x;h)− f(x)]2dx

These errors are random variables since they are functions of the sample. In order
to minimize these errors we need deterministic numbers that represents their ”natural
values”. The expectation yields such numbers.

A substantial amount of work has been devoted to the E(ISE) as an error criterion in
kernel density estimation. One reason is the appealing variance-bias decomposition. This
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variance-bias trade-off situation is well known in all statistical estimation procedures, and
the interpretation of this trade-off situation should be familiar to the analyzer. Another
attraction toward the E(ISE) is the easy exact calculation formula from Marron and
Wand (1992), [19].

This section will summarize the results from chapter 2 in Wand and Jones (1995),
[26], and Marron and Wand (1992), [19].

The MISE and AMISE

The expected value of the SE will be denoted MSE:

MSE(f̂n(x;h)) = E(f̂n(x;h)− f(x))2

= V ar(f̂n(x;h) + (Ef̂n(x;h)− f(x))2

= V ar(f̂n(x;h) + [bias(f̂n(x;h))]2

where the variance-bias decomposition is represented after the last equality sign. The
bias of the kernel density estimator is:

bias(f̂n(x;h))) = E(f̂n(x;h))− f(x)

= E[
1

n

n
∑

i=1

Kh(x−Xi)]− f(x)

= n · 1

n
E[Kh(x−X)]− f(x)

=

∫

Kh(x− y)f(y)dy − f(x)

= (Kh ∗ f)(x)− f(x)

where (Kh ∗ f)(x) is the convolution. We use a similar method to find the variance of
the kernel estimator:

V ar(f̂n(x;h)) = V ar[
1

n

n
∑

i=1

Kh(x−Xi)]

= n · 1

n2
V ar[Kh(x−X)]

=
1

n
[

∫

K2
h(x− y)f(y)− [

∫

Kh(x− y)f(y)dy]2]

=
1

n
[(K2

h ∗ f)(x)− ((Kh ∗ f)2(x))]

Combining these two yield the mean squared error at x. Taking the expectation of the
ISE we obtain the mean integrated squared error, MISE:

MISE(f̂n(·;h)) = E[ISE(f̂n(·;h))] = E

∫

[f̂n(x;h)− f(x)]2dx (2.3)

=

∫

E[f̂n(x;h)− f(x)]2dx =

∫

MSE(f̂n(x;h)) (2.4)
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The MISE depends on the bandwidth and the kernel in a rather complicated way, but
through an asymptotic expansion one can see that the bandwidth is the dominant pa-
rameter. The asymptotic MISE (AMISE) is

AMISE(f̂n(·;h)) = (nh)−1R(K) +
1

4
h4µ2(K)R(f ′′) + o((nh)−1 + h4) (2.5)

where R(K) =
∫

K2(x)dx and µk(K) =
∫

xkK(x)dx. The minimizer of AMISE is
hAMISE :

hAMISE =

[

R(K)

µ2(K)R(f ′′)n

]1/5

(2.6)

See chapter 2.5 in Wand and Jones (1995), [26], for more details.

MISE for normal mixture densities

When the target density belongs to the normal mixture family, the MISE can be calcu-
lated exactly. Marron and Wand (1992), [19], provided an explicit formula for calculating
the exact MISE for arbitrary order kernels, see Theorem 2.1 in Marron and Wand (1992),
[19]. When the kernel is the N(0, 1) density, their formula simplifies and can be expressed
as in chapter 2.6 in Wand and Jones (1995), [26].

MISE(f̂n(·;h)) = (2π
1
2nh)−1 + wT[(1− n−1)Ω2 −Ω1 + Ω0]w (2.7)

where w = (ω1, ..., ωk)T and Ωα is the k × k matrix with (l, l′) entry equal to

φ
(αh+σ2

l
+σ2
l′

)
1
2
(µl − µl′)

From (2.7) it is fairly easy to determine the MISE optimal bandwidth, hMISE .

Data driven bandwidth selection

The majority of modern data-driven bandwidth selectors are motivated by minimizing
the MISE or the AMISE. The cross validation techniques, Least squares cross validation
(LSCV) and Smoothed cross validation (SCV), aims to minimize the MISE. See chapter
3 in Wand and Jones (1995), [26], for more details.

Other bandwidth selectors aim to minimize the AMISE. The most popular data-
driven bandwidth selector is the one of Sheather and Jones (1991), [22], which we will
call the Direct plug-in (DPI). In addition, we have the Biased cross-validation, which
also aims to minimize the AMISE. We will take a closer look at the DPI in chapter 4.
Again, for more details, and alternative bandwidth selectors, see chapter 3 in Wand and
Jones (1995), [26].



2.3. ERROR CRITERIA 11

2.3.2 The L1 Loss

An alternative to the MISE criterion, is an error measure that makes use of the L1-norm,
the absolute error (AE). The AE for the kernel density estimator at x is:

AE = |f̂n(x;h)− f(x)|

Once again we obtain the global error by integration; the integrated absolute error:

IAE(f̂n(·;h)) =

∫

|f̂n(x;h)− f(x)|dx

This error criterion received a lot of attention due to Devroye and Györfi (1985), [6].
Devroye and Györfi stated these arguments in favor of the IAE as an error criterion:

• L1 is the natural space for all densities.

• The IAE is invariant under monotone transformation of the coordinate axis. The
IAE is a universal measure of the error, e.g. one can compare different error values
without any scaling. (This is not the case for the ISE.)

• The IAE has the appealing interpretation of being the area between the curves,
which makes it easy to visualize.

• IAE is proportional to the total variation:
∫

|fn − f |/2

• If IAE → 0 as n→∞, then f̂ is a consistent estimator of f

MAE and MIAE

The AE and IAE are random variables and again we need deterministic numbers that
represent their ”natural value”. We can argue in favor of both the median and the expec-
tation as the appropriate procedure to obtain these values. For an extensive discussion,
see Devroye (1987), [4]. We will use the expected absolute error and the expected inte-
grated absolute error:

MAE(f̂n(x;h)) = E[AE(f̂n(x;h))] = E|f̂n(x;h)− f(x)| (2.8)

MIAE(f̂n(·;h)) = E[IAE(f̂n(·;h))] =

∫

E|f̂n(x;h)− f(x)|dx (2.9)

A lot of research has been done within this field, e.g. Devroye and Györfi (1985), [6], Hall
and Wand (1988), [9, 10], and Scott and Wand (1991), [21]. All this research investigates
asymptotic expansions and upper and lower bounds for the quantities in (2.8) and (2.9).
For details regarding the asymptotic behavior of the MAE and MIAE, we refer to the
articles mentioned in this paragraph. In chapter 3 we will show that we can calculate
both the MAE and the MIAE explicitly.
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Data driven bandwidth selection

There are very few bandwidth selectors that aim to minimize the absolute error. One
of the very few, is the Double kernel method of Devroye (1989), [5]. We will not discuss
this further here, and only refer to that paper for more details.

2.3.3 The Visual Error Criterion

The MISE and MIAE optimal estimates are based upon minimizing the integrated ver-
tical distance between the density estimate and the target density. We have previously
mentioned the idea of qualitative smoothing, and referred to Mammen (1993), [16]. In
some situations we are more interested in the shape of the density, rather than the point
values. In such a situation we are willing to increase the ISE/IAE in order to extract
the qualitative features of the target density.

While doing a visual inspection of a density estimate, we use many of the qualitative
features as indicators of how good the estimate is; how smooth it is, number of modes
etc. The VE criterion can been seen as a weighted average between the quantitative and
qualitative features of the density estimate. This idea was first introduces in Marron
and Tsybakov (1995), [18], and further developed in Marron (1998), [17]. In this section
we will give a summary of the methods and results of those papers.

The visual error criterion

Much of the inadequacy of the MISE and the MIAE lies in the fact that they only measure
the vertical distance between the density estimate and the target density. From a visual
point of view, both vertical and horizontal distance is important when we compare a
density estimate with a target function. The question is how can we construct a distance
measure that accounts for both vertical and horizontal distance?

Any continuous function, f : [a : b]→ R, can be represented by its graph:

Gf = {(x, y) : x ∈ [a, b], y = f(x)} ⊂ R
2

The shortest distance from a point, (x, y), to a graph, G, is

d((x, y), G) = inf
(x′,y′)∈G

||(x, y)− (x′, y′)||2,

where || · ||2 is the euclidian distance. We can use other norms as well, see Marron and
Tsybakov (1995), [18], but in this report we will only use the euclidian distance. This
way of measuring the distance between a point and a function is an improvement over the
L1 and L2 norm, as it accounts for both horizontal and vertical distance. The distance
between a kernel density estimate, f̂(x;h), and a target function, fX(x), we now define
as:

d((x, f̂(x;h)), GfX ) = inf
(x′,y′)∈GfX

||(x, f̂(x;h))− (x′, y′)||2,
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We can use this distance measure to find a global performance measure defined as:

V E2(f̂ → fX) =

[

∫ b

a
d((x, f̂(x;h)), GfX )2dx

]1/2

, (2.10)

which is denoted the asymmetric visual error. It is the integrated distance from the
kernel density estimate to the target function. A symmetrized version of this criterion
follows as:

SE2(f̂ , fX) =
[

V E2(f̂ → fX)2 + V E2(fX → f̂)2
]1/2

.

Marron and Tsybakov (1995), [18], recommended these two error criteria for two different
situations:

• If the goal is to duplicate an experienced analyst’s choice, i.e. recover the features
of the target density that are well documented trough the sample, use V E2(f̂ → f).

• If the goal is to recover as many of the qualitative features of the target density as
possible, use SE2(f̂ , f)

Marron and Tsybakov (1995), [18], showed that both E[V E2(f̂ → f)]2 and E[V E2(f →
f̂)]2 converges to MISE, but with faster convergence for E[V E2(f̂ → f)]2. The SE2

converges to twice the MISE. We will in the rest of this report only work with E[V E2(f̂ →
f)]2, which we will denote EVE2.

Discretizing and Scaling

The minimizer of EVE2, hEV E2, cannot be found explicitly; we need to find it numeri-
cally. As computers cannot handle continuous functions, we need to discretize the graphs
of the kernel density estimate and the target function. We do this by dividing our x-
interval into a grid of equally spaced points, χ, where the distance between points in χ
is ∆x.

Gdiscr
f = {(x, f(x)) : x ∈ χ} ⊂ R

2

We can use this discretized version in (2.10), and use for instance Riemann approxima-
tions or Simpson’s rule to approximate the integral.

A well known fact about norms is that they are not scale invariant, except for the L1-
norm in some special cases. Therefore we need to scale before we calculate the VE. We
will scale [a,b] and [infx∈[a,b] f(x), supx∈[a,b] f(x)] onto [0, 1], to avoid that the horizontal
or vertical distance dominates the error measure.

In this report we scale x onto [0, 1] by:

xscaled =
x−minx∈[a,b](x)

maxx∈[a,b](x)−minx∈[a,b](x)
.
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Further will we scale f̂ and fX onto [0, 1] by:

fscaled(xscaled) = f(x)/( max
x∈[a,b]

(fX(x)))

This will not map f̂ onto [0, 1] when maxx∈[a,b](f̂) > maxx∈[a,b](fX), but it is rare that

max(f̂)≫ max(fX), and we want to use the same scaling factor every time.

Bandwidth selection

To our knowledge there exist no bandwidth selector that specifically aims to minimize
the VE. The VE is a quite difficult criterion to handle, but it is a better error criterion
than MISE/MIAE for most situations where we are faced with a limited sample sizes. A
bandwidth selector that aims to minimize the VE might end up with an all over better
performance than today’s bandwidth selectors.

A starting point for such a bandwidth selector might be the asymptotic expansion
of the EVE2, which can be found in Marron and Tsybakov (1995), [18], but this is not
considered in this report.

For a review of many of today’s data-driven bandwidth selectors in terms of their
VE2 performance, see Marron (1998), [17].



2.3. ERROR CRITERIA 15

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

#1 Gaussian

−3 −2 −1 0 1 2 3
0

.0
0

.2
0

.4

#2 Skewed

−3 −2 −1 0 1 2 3

0
.0

0
.4

0
.8

1
.2

#3 Str Skew

−3 −2 −1 0 1 2 3

0
.0

0
.5

1
.0

1
.5

#4 Kurtotic

−3 −2 −1 0 1 2 3

0
1

2
3

#5 Outlier

−3 −2 −1 0 1 2 3

0
.0

0
0

.1
5

0
.3

0

#6 Bimodal

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

#7 Separated

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

#8 Asym Bim

−3 −2 −1 0 1 2 3

0
.0

0
0

.1
0

0
.2

0
0

.3
0

#9 Trimodal

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

#10 Claw

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

#11 Doub Claw

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

#12 Asym Claw

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

#13 As Do Claw

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

#14 Smoo Comb

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

#15 Disc Comb

Figure 2.1: The 15 target densities in report. All are from Marron and Wand (1992),
[19].



Chapter 3

Mean Lp Error for Kernel
Density Estimators

In the preceding chapter we discussed different objective error criteria. The mean in-
tegrated squared error is the most popular, in particular because of its mathematical
simplicity, but it is not without its flaws. In this chapter we will take a closer look
at an alternative error criterion; the mean integrated Lp error, where Lp means | · |p,
0 < p < 2. We will derive explicit formulas for the MLPE and the MILPE of the kernel
density estimator. With p = 1 as the most interesting case; it results in MAE and MIAE.

3.1 The MLPE and MILPE

One of the important topics in density estimation is the analysis of the performance of the
density estimator, and such an analysis needs an error measurement. An error criterion
can quantify the discrepancy between the density estimate and the target density. In
chapter 2 we discussed three different error criteria.

A major drawback for the mean absolute error, compared to the mean squared error,
is the lack of an explicit formula. In this chapter we will overcome this problem by
deriving explicit formulas for the MLPE and the MILPE.

3.1.1 Some general results

We will start by deriving some general results we will need later. Two well known
trigonometric relations are:

1 = sin2(x/2) + cos2(x/2)

cosx = cos2(x/2)− sin2(x/2)

which combined results in:

1− cosx = 2 sin(x/2).

16
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The function inside the integral below is an even function, which makes it possible
to change the integration limits; as we have done after the first equality sign. The
trigonometric relation above is used after the first equality sign as well. We get:

∫ ∞

−∞

1− cos t

|t|(p+1)
dt = 2

∫ ∞

0

2 sin2(t/2)

t(p+1)
dt

= 2

∫ ∞

0

2 sin2 u

(2u)(p+1)
2du

=
8

2(p+1)

∫ ∞

0

sin2 u

u(p+1)
du

=
4

2p

[

−π
23−(p+1)Γ(p+ 1) cos( (p+1)π

2 )

]

=
4

2p

[

−π
2(2−p)Γ(p+ 1) cos( (p+1)π

2 )

]

=

[

−π
Γ(p+ 1) cos( (p+1)π

2 )

]

= c(p).

In figure 3.1 we can see a plot of c(p) for 0 < p < 2. The following lemma will be the
basis for our explicit formulas for the MLPE and the MILPE.

Lemma 1. For any 0 < p < 2,

|x|p = 1
c(p)

∫∞
−∞

1−cos(xt)

|t|(p+1) dt

where c(p) = −π

Γ(p+1) cos(
(p+1)π

2
)

Proof. We define a function g(x).

g(x) ≡
∫ ∞

−∞

1− cos(xt)

|t|(p+1)
dt, 0 < p < 2 (3.1)

Now, let x > 0. Then it follows that:

g(x) =

∫ ∞

−∞

1− cos(xt)

|t|(p+1)
dt

=

∫ ∞

−∞

1− cos(xt)

|xtx |(p+1)

1

x
d(xt)

= xp
∫ ∞

−∞

1− cos(xt)

|xt|(p+1)
d(xt)

= xpc(p)
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Figure 3.1: A plot of the c(p) for 0 < p < 2

where c(p) is the same constant as earlier. g(x) is an even function; g(x) = g(−x).
∫ ∞

−∞

1− cos(−xt)
|t|(p+1)

dt =

∫ ∞

−∞

1− cos(xt)

|t|(p+1)
dt

It follows that

g(−x) = xpc(p)

and we get

|x|p =
1

c(p)
g(x).

The characteristic functions of a random variable x, with distribution function FX(x),
is:

ϕ(t) = Eeixt =

∫ ∞

−∞
eixtdFX(x)

=

∫ ∞

−∞
[cos(xt) + i sin(xt)]dFX(x)
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which means that

ℜϕ(t) =

∫ ∞

−∞
cos(xt)dFX(x)

3.1.2 The Mean LP Error (MLPE)

Now we can go on to find the explicit formula for the MLPE.

Theorem 1. Let X be a random variable with a finite absolute moment of order p,
0 < p < 2. Then

E|X|p = 1
c(p)

∫∞
−∞

1−ℜϕ(t)

|t|(p+1) dt

where ℜϕ(t) =
∫∞
−∞ cos(xt)dFX(x) and c(p) = −π

Γ(p+1) cos(
(p+1)π

2
)

Proof.

E|X|p =

∫ ∞

−∞
|X|pdFX(x)

=

∫ ∞

−∞

1

c(p)
g(x)dFX(x)

=
1

c(p)

∫ ∞

−∞

∫ ∞

−∞

1− cos(xt)

|t|(p+1)
dtdFX(x)

=
1

c(p)

∫ ∞

−∞

1

|t|(p+1)

∫ ∞

−∞
[1− cos(xt)]dFX(x)dt

=
1

c(p)

∫ ∞

−∞

1−ℜϕ(t)

|t|(p+1)
dt

In lemma 2 we state the characteristic function of the difference between the kernel
density estimate, f̂n(x;h), and the target function, fX(x).

Lemma 2. Define Z ≡ f̂(x, h)− fX(x). The characteristic function of Z will then be:

ϕZ(t) = e−itfX(x)
[
∫ ∞

−∞
e
it
nh
K(x−y

h
)fX(y)dy

]n
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Proof.

ϕZ(t) = Eeit(f̂(x,h)−fX(x))

= e−itfX(x)Ee
it
nh

∑n

i=1
K(
x−Xi
h

)

= e−itfX(x)E
n
∏

i=1

e
it
nh
K(
x−Xi
h

)

= e−itfX(x)
n
∏

i=1

Ee
it
nh
K(
x−Xi
h

)

= e−itfX(x)
[

Ee
it
nh
K(x−X

h
)
]n

= e−itfX(x)
[
∫ ∞

−∞
e
it
nh
K(x−y

h
)fX(y)dy

]n

Finally we can find the mean LP error of the kernel density estimator.

Theorem 2. Let |Z|p = |f̂(x, h)− fX(x)|p, then the expectation of |Z|p is:

E|f̂(x, h)− fX(x)|p =
1

c(p)

∫ ∞

−∞

1

|t|(p+1)

[

1−ℜ
(

e−itfX(x)
[
∫ ∞

−∞
e
it
nh
K(x−y

h
)fX(y)dy

]n)]

dt

Proof.

E|f̂(x, h)− fX(x)|p =
1

c(p)

∫ ∞

−∞

1−ℜϕ(t)

|t|(p+1)
dt

=
1

c(p)

∫ ∞

−∞

1−ℜ
(

e−itfX(x)
[

∫∞
−∞ e

it
nh
K(x−y

h
)fX(y)dy

]n)

|t|(p+1)
dt

=
1

c(p)

∫ ∞

−∞

1

|t|(p+1)

[

1−ℜ
(

e−itfX(x)
[
∫ ∞

−∞
e
it
nh
K(x−y

h
)fX(y)dy

]n)]

dt

3.1.3 The Mean Integrated LP Error

To find a global error measure, we integrate the point error measure over the desired
interval, i.e. integration over (−∞,∞).

Theorem 3. Let |Z|p = |f̂(x, h) − fX(x)|p, then will the expected integrated value of
this be:

∫ ∞

−∞
E|f̂(x, h)− fX(x)|p =

1

c(p)

∫ ∞

−∞

∫ ∞

−∞

[

1−ℜ
(

e−itfX(x)
[

∫∞
−∞ e

it
nh
K(x−y

h
)fX(y)dy

]n)]

|t|(p+1)
dtdx

Proof. This follows directly from theorem 2 after integrating with respect to x.
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3.2 Calculation of MAE and MIAE

We now have explicit formulas for the MAE and the MIAE, by setting p = 1, of the
kernel density estimator. In order to determine these values we need to do some fairly
complicated integrations. We need to solve the integrals in theorem 2 and theorem 3
numerically. We will start by analyzing the MAE and then later move on to the MIAE.
All the numerical techniques and methods used in this section are described in appendix
A. These methods are essential in our discussion below, and a good understanding of
these methods will be beneficial in the following.

Throughout this section we will work under the following assumption.

• Our kernel function, Kh(x) = 1
hK(xh), will be the standard normal density.

• Our target function, fX(y), will always be one of the 15 MarronWand densities
from Marron and Wand (1992), [19]. These densities are defined in table 2.1 on
page 7.

3.2.1 The Mean Absolute Error

To ease our notation we will define some functions that are included in theorem 2.

g(y, t, x, h, n) ≡ e itnKh(x−y)fX(y)

= cos

(

t

n
Kh(x− y)

)

fX(y) + i sin

(

t

n
Kh(x− y)

)

fX(y)

≡ a(y, t, x, h, n) + ib(y, t, x, h, n)

w(y, t, x, h, n) ≡ t

n
Kh(x− y)

ϕ(t, x, h, n)) ≡ e−itfX(x)
[
∫ ∞

−∞
g(y, t, x, h, n)dy

]n

f(t, x, h, n) ≡ 1−ℜ(ϕ(t, x, h, n))

t2

MAE(x, h, n) =

∫ ∞

−∞
f(t, x, h, n)dt

Before we start a numerical integration, it is important to understand the behavior
of the functions involved. We will start by doing some general observations regarding
the functions defined above. The kernel function, Kh(·), is a part of w(y, t, x, h, n).

lim
y→±∞

Kh(x− y) = 0

with a convergence rate of e−Cy
2
, where C is a constant. Now let y and t be linear

functions of s; i.e. y(s) = y0 · s and t(s) = t0 · s, where |y0| <∞ and |t0| <∞. Then it
follows that

lim
s→±∞

t

n
Kh(x− y) = 0.
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It follows directly that

lim
s→±∞

cos

(

t

n
Kh(x− y)

)

fX(y)→ fX(y)

lim
s→±∞

sin

(

t

n
Kh(x− y)

)

fX(y)→ 0

since

lim
s→±∞

cos(
t

n
Kh(x− y)) = 1

lim
s→±∞

sin(
t

n
Kh(x− y)) = 0.

The h and n will be constants during the integration process, and not effect our limit
considerations above.

The magnitude of t/n will determine the frequency of the trigonometric functions
above, cos(·) and sin(·). When t≫ n, we will have a large frequency; the trigonometric
functions will oscillate with a high frequency.

Our bandwidth h will control the standard deviation of our kernel function; a decrease
in h will result in a faster convergence to zero for Kh(x). That is to say, the rate
of convergence of w(y, t, x, h, n) will to some degree depend on the magnitude of the
bandwidth.

For our target densities we assume that:

fX(x) = 0 ∀|x| > 6.

This is not true in general, but our target densities are constructed in such a way that
they meet this requirement. It is easy to find densities that invalidates this assumption,
e.g. heavy tail densities.

Integration of g(y, t, x, h, n)

Before trying to determine the value of
∫∞
−∞ g(y, t, x, h, n)dy we split g(y, t, x, h, n) into

a real part and an imaginary part: a(·) and b(·), which we have defined earlier. We
will integrate these functions separately. In order to choose the appropriate integration
method, we need to study the involved functions in more detail than we have done so
far.

The structure of the target density is of great importance. If the target density has
a complicated structure, e.g. the Asymmetric Claw density in table 2.1, it complicates
the numerical integration. It is clear from figure 2.1 that some of our target densities
have a very complicated structure, and we need to take this into consideration when we
do a numerical integration.

Our integration limits are [−∞,∞], but we cannot use these limits in a numerical
integration. We will integrate g(y, t, x, h, n), with respect to y, over the interval [−6, 6].
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These limits are easily found by noting that:

fX(x) = 0∀ |x| > 6

| cos(·)| ≤ 1

| sin(·)| ≤ 1.

This makes it natural to assume a(y, t, x, h, n) and b(y, t, x, h, n) to be zero outside
[−6, 6].

Earlier we discussed the role of t/n in the trigonometric functions; it determines
the frequency. In figure 3.2 and 3.3, at page 28 and 29, we have plotted a(y, t, x, h, n)
and b(y, t, x, h, n) for different values of t, and at the same time kept the values of x, h
and n constant. We can see that as t increases, the structure of the function gets more
complicated. To do an accurate numerical integration when t/n increases in magnitude is
very difficult; it will require an integration grid with an almost infinite number of points.
We can use some properties of the characteristic function to see that the accuracy of
the integral is not that important for large values of t. These results are from chapter
6 in Karr (1993), [14]. For a characteristic function, ϕ(t), we have the following basic
properties:

• ϕ(t) is uniformly continuous

• ϕ(0) = 1

• |ϕ(t)| ≤ 1 for all real t

These results follows immediately:

|1−ℜϕ(t)| < 2

|1−ℜϕ(t)|
|t|p+1

≪ 1 ∀t≫ 1

We can allow some error in the numerical evaluation of ϕ(t) when t is large since it in
practice will have little impact on our results.

When t approaches zero, we have a curve which is as smooth as the target density.
We can do a numerical integration very accurate as long as the structure of the target
density is not too complicated.

The bandwidth h determines the spread of the oscillating area we find in figure 3.2
and 3.3, at pages 28 and 29. The location parameter x determines the location of the
noisy area. The oscillating area is within the interval (x−3h, x+ 3h), which can be seen
in figure 3.4 at page 30. In figure 3.4 we have changed the bandwidth and the location
parameters to illustrate this point; t and n are kept constant.

The important difference between a(y, t, x, h, n) and b(y, t, x, h, n) is that a(y, t, x, h, n)
converges to fX(x) when y increases, while b(y, t, x, h, n) converges to 0 when y increases.
If we compare the plots in figure 3.2 and 3.3 this difference in convergence is clearly il-
lustrated. Even though there is a difference between these functions, it will not affect
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our numerical integration, as both functions converge fast to 0, and we can use the same
integration technique on both of them.

Adaptive quadrature is usually preferred over the Composite Simpson’s rule as a
method of numerical integration. In adaptive quadrature we can to some degree control
the error, and potentially do fewer function evaluations. However, adaptive quadrature
requires that f (4)(x), where f(x) is the function we want to integrate, is approximately
of the same magnitude over the whole integration interval. It is clear from our plots in
figure 3.2 and 3.3 that this is not the case. To numerically integrate a(y, t, x, h, n) and
b(y, t, x, h, n) we will use the Composite Simpson’s rule.

The number of subintervals in the Composite Simpson’s rule should be chosen so it
reflects the structure of the target function, and to some degree the magnitude of t. A
complicated structure requires a large number of subintervals in order to obtain a good
approximation. The larger t gets, the larger number of subintervals is required to keep
the approximation error at a reasonable level. This should be taken into consideration
when we implement the Composite Simpson’s Rule in algorithm 3 .

Integration of f(t, x, h, n)

Above we have described how we can evaluate
∫

g(y, t, x, h, n)dx. If this is done accurate,
it is straight forward to determine the values of ϕ(t, x, h, n) and f(t, x, h, n).

However, we see that there is a problem in f(t, x, h, n) when t = 0. This problem is
overcome by doing a Taylor expansion for ϕ(t, x, h, n).

ℜϕX(t) = ℜEeitX = cos(E(tX)) = 1− E(tX)2

2
+ ...

If we put this into the function f(t, x, h, n) we get

∫ ǫ

−ǫ

1−ℜϕX(t)

t2
dt ≈

∫ ǫ

−ǫ

1− 1 + E(tX)2

2

t2
dt =

∫ ǫ

−ǫ

1

2
EX2dt,

which is valid in a close neighborhood of t = 0. EX2 will in kernel density estimation
be the well known MSE. The MSE of a kernel density estimator can be found in chapter
2.3 in Wand and Jones 1995, [26].

MSE
(

f̂n(x;h)
)

= n−1{(K2
h ∗ f)(x)− (Kh ∗ f)2(x)}

+ {(Kh ∗ f)2(x)− f(x)2}

The first term is the variance and the second term is the bias. When we know the target
denisty and the kernel, it is easy to calculate the MSE.

Further we have a similar problem as encountered earlier, we cannot integrate over
the interval [−∞,∞]. In this situation it is quite difficult to decide the integration
limits, since f(t, x, h, n) converges slowly to zero as |t| → ∞. Through a study of
different graphical representations of f(t, x, h, n) and comparing the calculated MAE
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with simulated values of MAE, it seems to be more than sufficient to integrate over
[−10.000, 10.000].

It is hard to say anything about the magnitude of f (4)(t) over the integration region,
and therefore it is hard to say whether or not an adaptive quadrature method is appro-
priate. But if we plot f(t, x, h, n) for different values of the parameters, it is a smooth
function when |t| > ǫ > 0. This is natural since ϕ(t, x, h, n) is a uniformly continuos
function, and therefore f(t, x, h, n) will also be a continuous function in this interval.
Our practical experience is that the adaptive quadrature approach works excellent for
this integral.

If we implement an adaptive quadrature for the evaluation of
∫

f(t, ...)dt, we can find
the MAE(x, h, n).

3.2.2 The Mean Integrated Absolute Error

To find the MIAE we need to determine the value of:

MIAE(n, h) =

∫ ∞

−∞
MAE(x, h, n)dx.

It is obvious that the MAE(x, h, n) is larger in areas where fX(x) changes rapidly, than
in areas where the fX(x) is smoother. So we can already conclude that for ”complicated

structure” target densities, the d4

dx4MAE(x, h, n) is far from constant over our integration
interval, and an adaptive quadrature is not appropriate. For nice target density, as the
standard normal density, adaptive quadrature is successful when the bandwidth is not
too far from the the optimal MIAE bandwidth. As the adaptive quadrature often fails,
we will not go into details of this approach here, and again we will use the Composite
Simpson’s rule.

To compute the MIAE can be quite computer intensive, as it may require many
function evaluations of g(y, t, x, h, n) and f(t, x, h, n). We again need to do an analysis
of the problem before we start our numerical integration.

First we return to the assumption that

fX(x) = 0 ∀|x| > 6,

which makes it natural to only consider x values in the interval [−6, 6].

Further it is natural that the smoother the target density is, the fewer subintervals
we need in the evaluation of MIAE. Some densities are easier to estimate than others,
and for these densities we expect the MAE to be little, and fairly evenly distributed over
the integration interval.

We can divide our integration interval into subintervals. Remember that our target
densities are constructed such that fX(x) ≈ 0 when |x| > 3. Therefore we can expect the
MAE to be very little outside [−3, 3], and we can use fewer subintervals in the Composite
Simpson’s rule in [−6, 3] and [3, 6] than in [−3, 3].
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To find the MIAE(h,n), we will integrate MAE(x,h,n) over the intervals, [−6,−3],
[−3, 3] and [3, 6], where we choose the number of subintervals in each integration interval
depending on the structure of the target function.

3.2.3 Results

After taking the considerations above into account, we have implemented the numerical
integration methods on a computer and done the numerical integration. In table 3.1 we
have found the optimal MIAE bandwidth for the 15 target densities, see chapter 2.2 for
definitions and figures.

In table 3.1 the sample size is set to 100. In addition have we calculated hMISE ,
as it is done in Marron and Wand (1992), [19], for easy comparison with a familiar
bandwidth. The MIAE optimal bandwidth can also be found through a simulation study,
see Kile (2009) [15], and we have reported this bandwidth as well to verify our numerical
calculations. The minimizers of the MIAE and the MISE are found by searching over
a grid of h values, ranging from 0.03 to 0.90. When we do a grid search, we avoid the
possible pitfall of local minima we might end up in if we use a minimization algorithm
like Newton’s Methods.

Table 3.1: Optimal bandwidths, n = 100
Density hMIAE hMISE Simulated hmIAE
1 0.42 0.45 0.43
2 0.30 0.31 0.30
3 0.12 0.08 0.12
4 0.10 0.08 0.10
5 0.05 0.05 0.05
6 0.36 0.39 0.36
7 0.25 0.26 0.25
8 0.31 0.32 0.32
9 0.33 0.36 0.33
10 0.10 0.10 0.10
11 0.36 0.39 0.36
12 0.21 0.20 0.21
13 0.34 0.36 0.34
14 0.14 0.14 0.14
15 0.15 0.16 0.15

Further we have plotted the MIAE(h) and MISE(h) for each target density in figure
3.5, 3.6, 3.7 and 3.8 . The MIAE(h) follows the scale on the left, and the MISE(h) follows
the scale to the right. The vertical lines are the corresponding optimal bandwidths.
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3.2.4 Other values of p

After implementing algorithms to solve MAE and MIAE, it is quite easy to modify them
to calculate MLPE and MILPE. We have done this, but the MILPE optimal bandwidth
results in basically the same bandwidths as the MIAE optimal bandwidth. In appendix
B we have included some tables and plots of these values.

It seems the MILPE converges to the MISE as p→ 2, and diverges from MISE when
p→ 0. This is quite natural, and is illustrated in the plots in the appendix.

Perhaps a more thorough investigation of the MILPE could reveal interesting results,
but this is outside the scope of this report.

3.3 Summary

We have seen that the MIAE and MISE optimal density estimates are essentially equal.
In other words, the optimal MIAE bandwidth is no better than the MISE optimal
bandwidth for limited sample sizes. But our new formula might lead to a new data-
driven bandwidth selectors that might outperform today’s bandwidth selectors, and in
that way give a new dimension to bandwidth selection.

There is an old controversy between which of the MISE and MIAE is the better error
criterion in kernel density estimation. Our results indicate that these are essentially
equal, and for further development of kernel density estimation, we should consider
looking at other error criteria, like the visual error criterion.
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Figure 3.2: Plot of a(y, t, x, h, n) for different values of t, when h=0.30, x=0, n=100.
The target function is the standard normal density.
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Figure 3.3: Plot of b(y, t, x, h, n) for different values of tm when h=0.30, x=0, n=100.
The target function is the standard normal density.
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Figure 3.4: Plot of a(y, t, x, h, n) for different values of h and x. t and n keep are kept
constant; t = -500 and n = 100. The target function is the standard normal density.
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Figure 3.5: MIAE(h) and MISE(h) of the target densities from #1 to #4. The sample
size is 100.



32 CHAPTER 3. MEAN LP ERROR FOR KERNEL DENSITY ESTIMATORS

MIAE(h) and MISE(h) of:  #5 Outlier

h

M
IA

E
(h

)

0.0 0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

1
1

.2
1

.4
MIAE(h) and MISE(h) of:  #5 Outlier

0
0

.5
1

1
.5

M
IS

E
(h

)

MIAE(h)
MISE(h)

MIAE(h) and MISE(h) of:  #6 Bimodal

h

M
IA

E
(h

)

0.0 0.2 0.4 0.6 0.8
0

.2
0

.3
0

.4
0

.5

MIAE(h) and MISE(h) of:  #6 Bimodal

0
.0

2
0

.0
4

0
.0

6
0

.0
8

M
IS

E
(h

)

MIAE(h)
MISE(h)

MIAE(h) and MISE(h) of:  #7 Separated

h

M
IA

E
(h

)

0.0 0.2 0.4 0.6 0.8

0
.2

0
.3

0
.4

0
.5

0
.6

MIAE(h) and MISE(h) of:  #7 Separated

0
.0

2
0

.0
4

0
.0

6
0

.0
8

M
IS

E
(h

)

MIAE(h)
MISE(h)

MIAE(h) and MISE(h) of:  #8 Asym Bim

h

M
IA

E
(h

)

0.0 0.2 0.4 0.6 0.8

0
.2

0
.2

5
0

.3
0

.3
5

0
.4

0
.4

5
0

.5

MIAE(h) and MISE(h) of:  #8 Asym Bim

0
.0

2
0

.0
4

0
.0

6
0

.0
8

M
IS

E
(h

)

MIAE(h)
MISE(h)

Figure 3.6: MIAE(h) and MISE(h) of the target densities from #5 to #8. The sample
size is 100.
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Figure 3.7: MIAE(h) and MISE(h) of the target densities from #9 to #12. The sample
size is 100.
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Figure 3.8: MIAE(h) and MISE(h) of the target densities from #13 to #15. The sample
size is 100.



Chapter 4

Bandwidth Selection

In practice it is not possible to find the exact minimizers of the error criteria discussed
in section 2.3, since the target density is unknown. Data-driven bandwidth selectors
try to estimate the minimizers by using different techniques, e.g. cross validation and
asymptotic approximation. There exists several different bandwidth selectors, but all of
them have their limitations. In this chapter we suggest a new data-driven bandwidth
selector, which is a modified version of the direct-plug in selector from Hall and Marron
(1987), [8], and Sheather and Jones (1991), [22]. We will also use some results from
Jones and Sheather (1991), [13]. Our new estimator will produces smoother density
estimates, and in some situations outperform the direct plug-in selector.

4.1 Data-driven bandwidth selection

We have previously discussed different aspects of bandwidth selection, and some of the
limitations of today’s methods. The best bandwidth selection method is by visual as-
sessment, but this can be very time consuming. Today’s data-driven bandwidth selectors
cannot replace the visual assessment, but can provide useful information. For an inex-
perienced analyzer it can provide a final bandwidth, while for an experienced analyzer
it might be a good starting point for further analysis. The same can be said about the
method of local varying bandwidth; we need a starting point, and data-driven bandwidth
selectors can provide that.

In section 2.3 we mentioned some of the data-driven bandwidth selectors that aim
to minimize both the MISE and the MIAE. For extensive discussions and simulation
studies, we refer to other sources.

• For a simulation study of different bandwidth selectors, see Cao, Cuevas and Man-
teiga (1994), [3].

• For both asymptotic rate of convergence of bandwidth selectors and a simulation
study, see Jones, Marron and Sheather (1996), [11] and [12].

35



36 CHAPTER 4. BANDWIDTH SELECTION

• In Marron (1998), [17], different bandwidth selectors are compared with respect to
their EVE2 performance.

• In chapter 3 in Wand and Jones (1995), [26], there is a thorough discussion of
several different bandwidth selectors.

The all around favorite from the above sources is the estimator of Sheather and Jones
(1991), from here on out denoted DPI; short for direct plug-in. But there is still room
for improvement; especially for limited sample sizes, and improved performance in terms
of the VE criterion. Maybe an approach to minimize the MIAE formula in chapter 3
will be more successful than the current bandwidth selectors..

4.2 Optimal EVE2 bandwidth

For limited sample sizes the hMISE and hMIAE will often result in undersmoothed
density estimates. Often twice the MISE optimal bandwidth is a better choice when
the resulting density estimates are compared visually. This of course, depends on the
structure of the target density; is it an ”easy to estimate” or ”hard to estimate” density?
Especially in the class of ”hard to estimate” densities, the inadequacy of the MISE and
the MIAE is clear.

To see that the VE optimal bandwidths are often different from the MISE and the
MIAE optimal bandwidths for limited sample sizes, we do a simulations study to find the
EVE2 optimal bandwidths. If we add these bandwidths to table 3.1, we get table 4.1.
We can see that the EVE2 optimal bandwidths are larger than the MISE and the MIAE
optimal bandwidths, i.e. the EVE2 optimal estimates are smoother than the MISE and
MIAE optimal estimates. We can also see a plot of the MISE versus the EVE2 in figure
4.1.

To save space we have not plotted the resulting density estimates, but some examples
can be found in appendix B.

We have essentially done the same simulation study as in Marron (1998), [17], but
our optimal bandwidths seems to differ a little from what is obtained in that paper. The
reason might be that we have chosen to do our simulations on a finer grid than Marron;
we have 1200 points versus Marron’s 400. We have also chosen do to it over a larger x
grid, [−5, 5], and to use Composite Simpson’s Rule, instead of Riemann approximation,
to numerically approximate the integral in (2.10). But our bandwidths are essentially
equal, and small differences in the bandwidths are not important.

4.3 Density Functionals and Direct plug-in

Many of the modern data-driven bandwidth selectors are based upon an estimate of the
integrated squared density derivative. A squared density derivative functional of order
s is defined as:

ψ2s =

∫

[f (s)(x)]2dx = (−1)s
∫

f (2s)(x)f(x)dx.
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Table 4.1: Optimal bandwidths, n = 100
Density hMIAE hMISE hEV E2

1 0.42 0.45 0.48
2 0.30 0.31 0.35
3 0.12 0.08 0.30
4 0.10 0.08 0.29
5 0.05 0.05 0.11
6 0.36 0.39 0.47
7 0.25 0.26 0.34
8 0.31 0.32 0.47
9 0.33 0.36 0.47
10 0.10 0.10 0.29
11 0.36 0.39 0.41
12 0.21 0.20 0.32
13 0.34 0.36 0.39
14 0.14 0.14 0.30
15 0.15 0.16 0.25

In the following we let r = 2s.

In chapter 3.5 in Wand and Jones (1995), [26], there is a thorough discussion regard-
ing estimation of density functionals; here we briefly summarize the results from that
chapter. An estimator of ψr is:

ψ̂r(g) = n−1
n
∑

i=1

f̂ (r)(Xi; g) = n−1
n
∑

i=1

n
∑

j=1

L(r)
g (Xi −Xj)

where g is a bandwidth and L(·) is a kernel function. The asymptotic MSE optimal
bandwidth for this estimator is:

gAMSE =

[

k!Lr(0)

−µk(L)ψr+kn

]1/(r+k+1)

where k is the order of the kernel. We can see that the optimal bandwidth depends
on ψr+k, and this dependence on higher order density functionals will continue. This
means that a density functional estimate will always depend on the value of a higher
order density functional, which is unknown.

The normal way of solving this problem is to choose to do an l-stage procedure. We
choose an initial estimate of ψ by assuming that the sample is generated from a normal
density, and then use the results from chapter 3.6 in Wand and Jones (1995), [26]. If
the sample is generated from a normal density, with standard deviation σ, ψr will be:

ψr =
(−1)r/2r!

(2σ)r+1(r/2)!π1/2
(4.1)
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We can find an estimate ψ̂r, of ψr, by replacing σ by σ̂ in (4.1). We call such an
estimate the normal scale estimate, denoted ψ̂r,NS . Further we plug this estimate into
the estimate of gAMSE,(r−2) and obtain the ψr−2 estimate. We then plug this estimate
into the gAMSE,r−4 and so on. See algorithm 1.

Algorithm 1: l stage Direct-Plug in

Input: number of stages l, kernel function K() of order 2, a data sample X
Output: Approximation of ψr

begin1

σ̂ ← [Var(X)]1/2
2

c← r + 2l3

ψc ← (−1)c/2c!

(2σ̂)(c+1)(c/2)!π1/24

c← c− 25

while c >= r do6

g ←
[

−2K(c)(0)

µ2(K) ˆψc+2n

]1/(c+2+1)

7

ψc = n−1∑n
i=1

∑n
j=1K

(r)
g (Xi −Xj)8

c← c− 29

end10

RETURN(ψc)11

end12

To choose the number of stages is not straight forward, but Wand and Jones (1995),
[26], suggest to take l to be greater or equal to 2, with the most common value to be
l = 2. For a more thorough discussion regarding the selection of number of stages, see
Chacon and Tenreiro (2009), [2].

To find the Direct plug-in bandwidth, we use the asymptotically optimal bandwidth
from (2.6),

hDPI =

[

R(K)

µ2(K)ψ̂4n

](1/5)

(4.2)

where we have replaced R(f ′′) in (2.6) by ψ̂4.

4.4 New data-driven bandwidth selector

We can now find an asymptotical MSE optimal estimate of the integrated squared deriva-
tive density functional of arbitrary order, and the question is now how we can use this
estimate in the most efficient way. We define the second order integrated derivative
density functional of the kernel density estimator as the total curvature (TC). TC will
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be a function of the bandwidth h.

TC(h) =

∫

∣

∣

∣f̂ (2)(x;h))
]2
dx (4.3)

We use a standard normal density as our kernel, and the TC(h) can be expressed as:

TC(h) =

∫

[

1

n

n
∑

i=1

(

(x−Xi)
2

h4
− 1

h2

)

Kh(x−Xi)

]2

dx (4.4)

We obtain this by noting that the second derivative of our kernel density estimator is

f̂ ′′(x;h) =
1

n

n
∑

i=1

(

(x−Xi)
2

h4
− 1

h2

)

·Kh(x−Xi)

This follows directly from some features of the normal density. For a normal density
N(µ, σ), denoted as φσ(x, µ), we have the following equalities

φσ(x, µ) =
1√
2πσ

e
−(x−µ)2

2σ2

φ′σ(x, µ) =
−(x− µ)√

2πσ3
e
−(x−µ)2

2σ2 =
−(x− µ)

σ2
φσ(x, µ)

φ′′σ(x, µ) =
−1

σ2
φσ(x, µ) +

(x− µ)2

σ4
φσ(x, µ)

If we plug the hDPI into (4.3), we get

TC(hDPI) > ψ̂4

This is not easy to prove explicitly, but we have done a simulation study and this is always
true for our 15 target densities in our simulations. We can interpret this as the hDPI
results in an undersmoothed density estimate compared to our estimated smoothness,
ψ̂4. Especially for limited sample sizes, this undersmoothing is not optimal in terms of
the VE.

An alternative approach to bandwidth selection is based on an idea of Ushakov and
Ushakov (2009), [24]. Here they investigate the total variation of the kernel density
estimator, and suggest to choose the bandwidth in such a way that the first order
integrated squared density derivative of the kernel density estimate equals the estimate
we can obtain for ψ2. In this section we will use a slightly different approach, and
choose the bandwidth of the kernel density estimate in such a way that the second order
integrated squared density derivative will equal the estimate of ψ4.

TCf̂ (h) = ψ4 (4.5)

The solution of this equation is purely a numerical problem. We denote the bandwidth
chosen in this way hNBW .

To see the effect of the bandwidth chosen in this way, versus the DPI bandwidth, we
have done a simulation study. The simulation procedure is described in algorithm 2.
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Algorithm 2: Simulation study of hNBW and hDPI

begin
sims← Number of simulations
for i = 1 to sims do

X ← A sample from the target density
ψ̂4 ← from algorithm 1
hNBW ← from (4.5)
hDPI ← from (2.6)
kdeF itOne← f̂(x, hNBW )
kdeF itTwo← f̂(x, hDPI)
Calculate VE2 and MISE for both kdeFitOne and kdeFitTwo
Store all values

end

end

4.4.1 Results

In figure 4.2 we can see the distributions of hNBW − hMISE and hDPI − hMISE . The
distributions are estimated by a kernel density estimator. The vertical line at 0 repre-
sents the hMISE , while the solid vertical line is the hEV E2 − hMISE . Even though the
densities are not strictly separated, it is important to note that hNBW > hDPI in all our
simulations. Our new density estimate is always smoother than the DPI estimate.

In figure 4.3 we can see the visual error of the hNBW and hDPI estimates plotted
against each other. For most densities the hNBW results in a smaller VE than the DPI.
In figure 4.4 we can see the ISE of hNBW versus hDPI . Here we can see that the DPI
tends to have a lower ISE than hNBW .

From our simulation study we see that the hNBW is always larger than hDPI , so our
new approach is consistently smoother than the DPI approach for our 15 target densities.
This agrees with our goal to obtain smoother estimates than the MISE optimal estimate,
but our new approach leads to an oversmooth estimate compared to he EVE2 optimal
estimate for some densities. This is especially clear for the densities 14 and 15, which
have a very complicated structure.

A summary table of the hNBW and hDPI is included in the appendix in table B.2.

4.5 Conclusion

We see that our new bandwidth selector is smoother than the DPI, but it still fails in
many situations with respect to VE optimal estimate. One reason might be that we use
the MSE optimal bandwidth in the estimation of the ψ, which again leaves us with the
problems related to the squared error. Further, the bandwidth selector is not designed
to minimize the VE, but instead just uses the estimate of ψ in a different manner.
Therefore, we cannot expect a VE optimal estimate in all cases, when we in fact do not
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try to minimize it.
For further development in bandwidth selection one should try to develop bandwidth

selectors which specifically aim to minimize the VE. Marron and Tsybakov (1995), [18],
suggested to look at a bandwidth selector based on the asymptotical expansion of the
VE. However, this problem is outside the scope of this report.
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Figure 4.1: EV E2(h) and MISE(h) for the 15 target densities in this report plotted, on
a log10 scale of h. Dotted lines for EV E2(h) and solid line for MISE(h). The vertical
lines are their respective minimizers.
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Figure 4.2: The distributions of hNBW − hMISE and hDPI − hMISE for n = 100 and
500 simulations for the 15 target densities. The vertical line at 0 is the hMISE optimal
bandwidth, while the solid vertical line is the hEV E2 − hMISE .
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Figure 4.3: Plot of V E(hNBW ) on the y axis and V E(hDPI) on the x axis, for the 15
target densities with n = 100 and 500 simulations
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Figure 4.4: Plot of ISE(hNBW ) on the y axis and ISE(hDPI) on the x axis, for the 15
target densities with n = 100 and 500 simulations
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Appendix A

Numerical methods

In this appendix we will quickly describe the numerical methods used in the previous
chapters. We will not pay too much attention to the deduction of the error terms, rather
just state their order, O(·). However, these errors are important, and for the interested
reader we will in each case refer to a reference where more details can be found.

A.1 Taylor’s Theorem

This is just a reminder of the well know Taylor’s theorem. Here stated as in theorem
1.14 in Burden and Faires (2005), [1]:

Suppose f ∈ C(n)[a, b], that f (n+1) exist on [a, b], and x0 ∈ [a, b]. For every x ∈ [a, b]
there exist a number ξ(x) between x0 and x with

f(x) =
n
∑

k=0

f (k)(x0)

k!
(x− x0)k +

f (n+1)(ξ(x))

(n+ 1)!
(x− x0)n+1

A.2 Lagrange polynomial

In numerical differentiation and integration we need to fit polynomials to data repre-
sented as (xi, f(xi)) for i = 0, 1, ..., n. Such a procedure is called interpolation, and
Taylor polynomials are not appropriate in this situation. One way of doing such an
interpolation is trough Lagrange polynomials.

To understand the idea behind a Lagrange polynomial, we will first take a look at
the most fundamental situation, where we fit a first degree polynomial to (x0, f(x0)) and
(x1, f(x1)). The idea is to construct a polynomial, P (x), which agrees with the values
at each observation point; i.e. P (x0) = f(x0) and P (x1) = f(x1). If we construct two
functions:

L0(x) =
x− x1

x0 − x1

L1(x) =
x− x0

x1 − x0
.
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it is quite easy to see that

P (x) = L0(x) · f(x0) + L1(x) · f(x1)

leads to P (x0) = f(x0) and P (x1) = f(x1).

In the general situation we want to fit a Lagrange polynomial to (n + 1) distinct
points: (x0, f(x0)), (x1, f(x1)), ..., (xn, f(xn)). We follow the same idea as above, and
construct functions Ln,k(x) such that

Ln,k(xi) =

{

0 i 6= k
1 i = k

This is done in theorem 3.2 in Burden and Faires (2005), [1]. We get:

P (x) =
n
∑

k=0

f(xk) · Ln,k(x)

Ln,k =
n
∏

i=0,i6=k

(x− xi)
(xk − xi)

.

Such a polynomial will be a nth Lagrange interpolating polynomial. For more details,
see chapter 3.1 in Burden and Faires (2005), [1].

A.3 Numerical differentiation

This is a quick summary of the methods described in chapter 4.1 in Burden and Faires
(2005), [1]. The first derivative of a function f(x) at x0 is defined as

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

We can use the Lagrange polynomial above to derive a five point formula for the first
derivative.

f ′(x0) =
1

12h
[f(x0 − 2h)− 8f(x0 − h) + 8f(x0 + h)− f(x0 + 2h)] +O(h4)

This formula can be found chapter 4.1 in Burden and Faires (2005), [1]. From this
formula it is fairly straight forward to derive the formula for the second derivative.

f ′′(x0) =
1

h2
[f(x0 − h)− 2f(x0) + f(x0 + h)] +O(h2) (A.1)

Again we will refer to chapter 4.1 in Burden and Faires (2005), [1] for a more extensive
discussion of the methods and the error analysis.
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A.4 Numerical Integration

Our numerical integration technique is called numerical quadrature, which means that
∫ b
a f(x)dx will be approximated by

n
∑

i=1

aif(xi).

Numerical quadrature is based on interpolation polynomials. We start by dividing [a, b]
into n+ 1 points, [x0, x1, ...xn]. From these points we can construct a Lagrange polyno-
mial:

Pn(x) =
n
∑

i=0

f(xi) · Ln,i(x).

Then we can integrate the Lagrange polynomial.

∫ b

a
f(x)dx =

∫ b

a

n
∑

i=0

f(xi) · Ln,i(x)dx+ ERROR

=
n
∑

i=0

aif(xi) + ERROR

where ai =
∫ b
a Ln,i(x)dx, i = 0, ..., n. And the ERROR will depend on the degree of our

polynomial. See chapter 4.3 in Burden and Faires (2005), [1].

Two famous numerical integration techniques, based upon numerical quadrature,
are the Trapezoidal rule and Simpson’s rule. We will only consider Simpson’s rule in
the following, and we will refer to chapter 4.3 in Burden and Faires (2005), [1], for a
discussion regarding the Trapezoidal rule.

Below we discuss three numerical integration techniques based upon the Simpson’s
rule. First we will take a look at Simpson’s rule. When we want to integrate over large
intervals this method is quite inaccurate, and we will see that we can modify the rule
and obtain Composite Simpson’s rule. Alternatively, we can change our approach and
make use of an adaptive quadrature method.

Simpson’s rule

Simpson’s rule follows from integrating a second degree Lagrange polynomial over [a, b],
i.e. integrate a Lagrange polynomial with nodes x0 = a, x1 = a + h and x2 = b where
h = b−a

2 . This is done on page 189 in Burden and Faires (2005), [1]. But we can obtain
a better error term if we derive the formula by doing a Taylor expansion of f(x) around
x1. This Taylor expansion will then be:

f(x) = f(x1) + (x− x1)f ′(x1) +
(x− x1)2

2
f ′′(x1) +

(x− x1)3

6
f ′′′(x1) +HOT
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where HOT is short for higher order terms. Then if follows that
∫ x2

x0

f(x)dx =

[

f(x1)(x− x0) +
f ′(x1)

2
(x− x1)2 +

f ′′(x1)

6
(x− x1)3

+
f ′′′(x1)

24
(x− x1)4 +HOT

]x2

x0

which can be simplified to
∫ x2

x0

f(x)dx = 2hf(x1) +
h3

3
f ′′(x1) +O(h5),

by noting that

(x2 − x1)2 − (x0 − x1)2 = (x2 − x1)4 − (x0 − x1)4 = 0

(x2 − x1)3 − (x0 − x1)3 = 2h3.

See page 190 in Burden and Faires (2005), [1]. If we now approximate f ′′(x1) as in (A.1),
we obtain Simpson’s rule:

∫ x2

x0

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)] +O(h5),

A detailed discussion regarding the error can be found in chapter 4.3 in Burden and
Faires (2005), [1].

Composite Simpson’s rule

If we want to integrate over large intervals, we can use Composite Simpson’s rule to
obtain a better estimate. The idea behind the Composite Simpson’s rule is to divide
the interval [a, b] into smaller subintervals and apply Simpson’s rule on each of the
subintervals, i.e. do a piecewise numerical integration.

Divide the interval [a, b] into an even number of subinterval n. Then

∫ b

a
f(x)dx =

n/2
∑

j=1

∫ x2j

x2j−2

f(x)dx

=

n/2
∑

j=1

{

h

3
[f(x2j−2) + 4f(x2j−1) + f(x2j)]

}

+O(h4)

where h = b−a
n and xj = a+ jh for each j = 0, 1, ..., n. We can simplify this expression

and obtain the Composite Simpson’s Rule.

∫ b

a
f(x)dx =

h

3



f(a) + 2

(n/2)−1
∑

j=1

f(x2j) + 4

(n/2)
∑

j=2

f(x2j+1) + f(b)



+O(h4)

See chapter 4.4 in Burden and Faires (2005), [1], for more details.
Composite Simpson’s rule can be implemented on a computer as in Algorithm 4.1 in

Burden and Faires (2005), [1]. In the algorithm below we will approximate the integral
I =

∫ b
a f(x)dx
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Algorithm 3: Composite Simpson’s Rule

Input: endpoints a, b; even positive integer n
Output: approximation XI of I

begin1

h← (b−a)
n2

XI0← f(a) + f(b)3

XI1← 0 (Summation of f(x2i−1) )4

XI2← 0 (Summation of f(x2i) )5

for i = 1 to n− 1 do6

X ← a+ ih7

if i is even then8

XI2→ XI2 + f(x)9

else10

XI1→ XI1 + f(x)11

end12

end13

XI ← h(XI0 + 2 ·XI2 + 4 ·XI1)/314

RETURN(XI)15

end16

Adaptive Quadrature

The Composite Simpson’s rule divides the integration interval into equal subintervals.
When integrating over large intervals the functional variation might vary a great deal
from subinterval to subinterval. A method that divides the integration interval into
subintervals which reflects the amount of functional variation might be better and more
efficient in many situations. In other words, we should use smaller subintervals in regions
with large functional variation, and larger subintervals where there is little functional
variation.

Such a method can distribute a predetermined maximal error evenly over the whole
integration interval, and might be more efficient since it might require fewer function
evaluations.

Here we will describe the idea behind an adaptive quadrature method based on
Simpson’s rule. More details can be found in chapter 4.6 in Burden and Faires (2005),
[1].

The idea is to approximate
∫ b
a f(x)dx with an error less than ǫ. We start by using

Simpson’s rule over the whole integration interval,

∫ b

a
f(x)dx = S(a, b)− h5

90
f (4)(µ), µ ∈ (a, b) (A.2)
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where h = b−a
2 and

S(a, b) =
h

3
[f(a) + 4f(a+ h) + f(b)] .

Now we divide [a, b] into two subinterval and we use Simpson’s rule on each subinterval.
∫ b

a
f(x)dx = S(a,

b− a
2

) + S(
b− a

2
, b)− 1

16

h5

90
f (4)(µ̃), µ̃ ∈ (a, b) (A.3)

where h is the same as above and

S(a,
b− a

2
) =

h

6
[f(a) + 4f(a+

h

2
) + f(a+ h)]

S(
b− a

2
, b) =

h

6
[f(a+ h) + 4f(a+

3h

2
) + f(b)].

If we now assume that f (4)(µ) ≈ f (4)(µ̃), we can combine (A.2) and (A.3)

S(a, b)− h5

90
f (4)(µ) ≈ S(a,

b− a
2

) + S(
b− a

2
, b)− 1

16

h5

90
f (4)(µ̃)

and it follows that

h5

90
f (4)(µ) ≈ 16

15

[

S(a, b)− S(a,
b− a

2
)− S(

b− a
2

, b)

]

.

If we use this estimate in (A.3) we get
∣

∣

∣

∣

∣

∫ b

a
f(x)dx− S(a,

b− a
2

)− S(
b− a

2
, b)

∣

∣

∣

∣

∣

≈ 1

15

∣

∣

∣

∣

S(a, b)− S(a,
b− a

2
)− S(

b− a
2

, b)

∣

∣

∣

∣

.

This means that S(a, b−a2 ) + S( b−a2 ) approximates the integral about 15 times better
than S(a, b). So if

∣

∣

∣

∣

S(a, b)− S(a,
b− a

2
)− S(

b− a
2

, b)

∣

∣

∣

∣

≤ 15ǫ

then
∣

∣

∣

∣

∣

∫ b

a
f(x)dx− S(a,

b− a
2

)− S(
b− a

2
, b)

∣

∣

∣

∣

∣

≤ ǫ

and we assume

S(a,
b− a

2
) + S(

b− a
2

, b)

to be an accurate enough approximation of
∫ b
a f(x)dx. If this does not result in an error

estimate less than ǫ, we can do the same procedure on each subinterval, and continue
until we obtain a small enough error estimate.

One should realize that this procedure depends on our assumption that f (4)(µ) ≈
f (4)(µ̃). If this is not true, this method might fail.

The adaptive quadrature can be implemented as done i algorithm 4.3 in Burden and
Faires (2005), [1]. In this study this algorithm is implemented i R. The algorithm below
approximates the integral I =

∫ b
a f(x)dx
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Algorithm 4: Adaptive Quadrature

Input: endpoints a, b, tolerance TOL, limit number of levels N
Output: approximation APP or message that N is exceeded

begin1

APP ← 02

i← 13

TOLi ← 10 · TOl4

ai ← a5

hi ← (b− a)/26

ai ← a7

FAi ← f(a)8

FCi ← f(a+ h)9

FBi ← (b)10

Si ← hi(FAi + 4FCi + FBi)/3 Approximation from Simpson’s method for11

entire interval

Li ← 112

while i > 0 do13

FD ← f(ai + hi/2)14

FE ← f(ai + 3hi/2)15

Approximations from Simpson’s method for halves subintervals

S1← hi(FAi + 4FD + FCi)/616

S1← hi(FCi + 4FE + FBi)/617

v1 ← ai Save data at this level18

v2 ← FAi19

v3 ← FCi20

v4 ← FBi21

v5 ← hi22

v6 ← TOLi23

v7 ← Si24

v8 ← Li25

i← i− 126

if |S1 + S2− v7| < v6 then27

APP ← APP + (S1 + S2)28

else29

Run the algorithm ”Adaptive Quadrature Two”

RUN(Adaptive Quadrature Two)30

end31

end32

RETURN(APP )33

end34
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Algorithm 5: Adaptive Quadrature Two

begin

if v8 ≥ N then
OUTPUT(’Level Exceeded. Method Fails’)
STOP

else

i← i+ 1 Data for right half subinterval

ai ← v1 + v51

FAi ← v32

FCi ← FE3

FBi ← v44

hi ← v5/25

TOLi ← v6/26

Si ← S27

Li ← v8 + 18

i← i+ 1 Data for left half subinterval9

ai ← v110

FAi ← v211

FCi ← FD12

FBi ← v313

hi ← hi−114

TOLi ← TOLi−115

Si ← S116

Li ← Li−117

end

end



Appendix B

Additional Tables and Figures

In this appendix we will just report some of our results. They are not part of our main
interest, but are interesting and might be a basis for further research.

B.1 From chapter 3

Here we present some results from chapter 3.

Table B.1: Optimal MILPE bandwidths, n = 100
Density p = 0.5 p = 1 p = 1.5 p = 2.0

1 0.41 0.42 0.44 0.45
2 0.30 0.30 0.30 0.31
3 0.16 0.12 0.09 0.08
4 0.15 0.10 0.09 0.08
5 0.05 0.05 0.05 0.05
6 0.34 0.36 0.37 0.39
7 0.24 0.25 0.25 0.26
8 0.31 0.31 0.32 0.32
9 0.31 0.33 0.34 0.36
10 0.10 0.10 0.10 0.10
11 0.34 0.36 0.37 0.39
12 0.20 0.21 0.17 0.20
13 0.32 0.34 0.35 0.36
14 0.32 0.34 0.35 0.14
15 0.13 0.15 0.16 0.16
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Figure B.1: Plot of MILPE(h) for p = {0.5, 1, 1.5, 2} for some target densities.
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B.2 From chapter 4

Here we present some results from chapter 4.

Table B.2: Summary statistics for hNBW and hDPI , from the simulation in algorithm 2
Density E(hNBW ) σ̂(hNBW ) E(hDPI) σ̂(hDPI)

1 0.43 0.058 0.40 0.058
2 0.32 0.042 0.29 0.043
3 0.24 0.025 0.17 0.022
4 0.20 0.031 0.15 0.030
5 0.07 0.009 0.05 0.005
6 0.43 0.058 0.39 0.068
7 0.37 0.016 0.29 0.018
8 0.39 0.054 0.35 0.064
9 0.44 0.048 0.39 0.060
10 0.34 0.043 0.31 0.048
11 0.43 0.057 0.38 0.068
12 0.45 0.058 0.42 0.065
13 0.42 0.053 0.38 0.064
14 0.41 0.027 0.30 0.026
15 0.48 0.041 0.33 0.040
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#1 Gaussian #2 Skewed #3 Str Skew

#4 Kurtotic #5 Outlier #6 Bimodal

#7 Separated #8 Asym Bim #9 Trimodal

#10 Claw #11 Doub Claw #12 Asym Claw

#13 As Do Claw #14 Smoo Comb #15 Disc Comb

Figure B.2: Plot of kernel density estimated with hMISE as bandwidth and sample size
100. Note that many of these estimates are undersmooth.



60 APPENDIX B. ADDITIONAL TABLES AND FIGURES

#1 Gaussian #2 Skewed #3 Str Skew

#4 Kurtotic #5 Outlier #6 Bimodal

#7 Separated #8 Asym Bim #9 Trimodal

#10 Claw #11 Doub Claw #12 Asym Claw

#13 As Do Claw #14 Smoo Comb #15 Disc Comb

Figure B.3: Plot of kernel density estimates with 2 ∗ hMISE as bandwidth and sample
size 100. Note that these estimates are smoother, and many of the estimates seems like
better estimates from a visual perspective, compared to the density estimates in figure
B.2.



Appendix C

Notation

C.1 Definition of error criteria

Mean absolute error: MAE = E[|f̂n(x;h)− f(x)|]
Mean integrated absolute error: MIAE = E[

∫

|f̂n(x;h)− f(x)|dx]
Mean squared error: MSE = E[(f̂n(x;h)− f(x))2]
Mean integrated squared error: MISE = E[

∫

(f̂n(x;h)− f(x))2dx]
Visual distance: d((x, f̂(x;h)), GfX ) = inf(x′,y′)∈GfX

||(x, f̂(x;h))− (x′, y′)||2
Visual error: V E2(f̂ → fX) =

[

∫ b
a d((x, f̂(x;h)), GfX )2dx

]1/2

C.2 Notation concerning univariate functions

Let f be a real valued function

fh(x) = f(x/h)/hh > 0
∫

f(x)dx =

∫ ∞

−∞
f(x)dx

R(f) =

∫

f2(x)dx

µk(f) =

∫

xkf(x)dx

(f ∗ f1)(x) =

∫

f(x− y)f1(y)dy

ϕf (t) =

∫

eitxf(x)dx
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